tlb.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. #include <linux/init.h>
  2. #include <linux/mm.h>
  3. #include <linux/spinlock.h>
  4. #include <linux/smp.h>
  5. #include <linux/interrupt.h>
  6. #include <linux/module.h>
  7. #include <linux/cpu.h>
  8. #include <asm/tlbflush.h>
  9. #include <asm/mmu_context.h>
  10. #include <asm/cache.h>
  11. #include <asm/apic.h>
  12. #include <asm/uv/uv.h>
  13. #include <linux/debugfs.h>
  14. DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
  15. = { &init_mm, 0, };
  16. /*
  17. * Smarter SMP flushing macros.
  18. * c/o Linus Torvalds.
  19. *
  20. * These mean you can really definitely utterly forget about
  21. * writing to user space from interrupts. (Its not allowed anyway).
  22. *
  23. * Optimizations Manfred Spraul <manfred@colorfullife.com>
  24. *
  25. * More scalable flush, from Andi Kleen
  26. *
  27. * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
  28. */
  29. struct flush_tlb_info {
  30. struct mm_struct *flush_mm;
  31. unsigned long flush_start;
  32. unsigned long flush_end;
  33. };
  34. /*
  35. * We cannot call mmdrop() because we are in interrupt context,
  36. * instead update mm->cpu_vm_mask.
  37. */
  38. void leave_mm(int cpu)
  39. {
  40. struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
  41. if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
  42. BUG();
  43. if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
  44. cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
  45. load_cr3(swapper_pg_dir);
  46. }
  47. }
  48. EXPORT_SYMBOL_GPL(leave_mm);
  49. /*
  50. * The flush IPI assumes that a thread switch happens in this order:
  51. * [cpu0: the cpu that switches]
  52. * 1) switch_mm() either 1a) or 1b)
  53. * 1a) thread switch to a different mm
  54. * 1a1) set cpu_tlbstate to TLBSTATE_OK
  55. * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
  56. * if cpu0 was in lazy tlb mode.
  57. * 1a2) update cpu active_mm
  58. * Now cpu0 accepts tlb flushes for the new mm.
  59. * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
  60. * Now the other cpus will send tlb flush ipis.
  61. * 1a4) change cr3.
  62. * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
  63. * Stop ipi delivery for the old mm. This is not synchronized with
  64. * the other cpus, but flush_tlb_func ignore flush ipis for the wrong
  65. * mm, and in the worst case we perform a superfluous tlb flush.
  66. * 1b) thread switch without mm change
  67. * cpu active_mm is correct, cpu0 already handles flush ipis.
  68. * 1b1) set cpu_tlbstate to TLBSTATE_OK
  69. * 1b2) test_and_set the cpu bit in cpu_vm_mask.
  70. * Atomically set the bit [other cpus will start sending flush ipis],
  71. * and test the bit.
  72. * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
  73. * 2) switch %%esp, ie current
  74. *
  75. * The interrupt must handle 2 special cases:
  76. * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
  77. * - the cpu performs speculative tlb reads, i.e. even if the cpu only
  78. * runs in kernel space, the cpu could load tlb entries for user space
  79. * pages.
  80. *
  81. * The good news is that cpu_tlbstate is local to each cpu, no
  82. * write/read ordering problems.
  83. */
  84. /*
  85. * TLB flush funcation:
  86. * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
  87. * 2) Leave the mm if we are in the lazy tlb mode.
  88. */
  89. static void flush_tlb_func(void *info)
  90. {
  91. struct flush_tlb_info *f = info;
  92. inc_irq_stat(irq_tlb_count);
  93. if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
  94. return;
  95. if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
  96. if (f->flush_end == TLB_FLUSH_ALL)
  97. local_flush_tlb();
  98. else if (!f->flush_end)
  99. __flush_tlb_single(f->flush_start);
  100. else {
  101. unsigned long addr;
  102. addr = f->flush_start;
  103. while (addr < f->flush_end) {
  104. __flush_tlb_single(addr);
  105. addr += PAGE_SIZE;
  106. }
  107. }
  108. } else
  109. leave_mm(smp_processor_id());
  110. }
  111. void native_flush_tlb_others(const struct cpumask *cpumask,
  112. struct mm_struct *mm, unsigned long start,
  113. unsigned long end)
  114. {
  115. struct flush_tlb_info info;
  116. info.flush_mm = mm;
  117. info.flush_start = start;
  118. info.flush_end = end;
  119. if (is_uv_system()) {
  120. unsigned int cpu;
  121. cpu = smp_processor_id();
  122. cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
  123. if (cpumask)
  124. smp_call_function_many(cpumask, flush_tlb_func,
  125. &info, 1);
  126. return;
  127. }
  128. smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
  129. }
  130. void flush_tlb_current_task(void)
  131. {
  132. struct mm_struct *mm = current->mm;
  133. preempt_disable();
  134. local_flush_tlb();
  135. if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
  136. flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
  137. preempt_enable();
  138. }
  139. /*
  140. * It can find out the THP large page, or
  141. * HUGETLB page in tlb_flush when THP disabled
  142. */
  143. static inline unsigned long has_large_page(struct mm_struct *mm,
  144. unsigned long start, unsigned long end)
  145. {
  146. pgd_t *pgd;
  147. pud_t *pud;
  148. pmd_t *pmd;
  149. unsigned long addr = ALIGN(start, HPAGE_SIZE);
  150. for (; addr < end; addr += HPAGE_SIZE) {
  151. pgd = pgd_offset(mm, addr);
  152. if (likely(!pgd_none(*pgd))) {
  153. pud = pud_offset(pgd, addr);
  154. if (likely(!pud_none(*pud))) {
  155. pmd = pmd_offset(pud, addr);
  156. if (likely(!pmd_none(*pmd)))
  157. if (pmd_large(*pmd))
  158. return addr;
  159. }
  160. }
  161. }
  162. return 0;
  163. }
  164. void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
  165. unsigned long end, unsigned long vmflag)
  166. {
  167. unsigned long addr;
  168. unsigned act_entries, tlb_entries = 0;
  169. preempt_disable();
  170. if (current->active_mm != mm)
  171. goto flush_all;
  172. if (!current->mm) {
  173. leave_mm(smp_processor_id());
  174. goto flush_all;
  175. }
  176. if (end == TLB_FLUSH_ALL || tlb_flushall_shift == -1
  177. || vmflag & VM_HUGETLB) {
  178. local_flush_tlb();
  179. goto flush_all;
  180. }
  181. /* In modern CPU, last level tlb used for both data/ins */
  182. if (vmflag & VM_EXEC)
  183. tlb_entries = tlb_lli_4k[ENTRIES];
  184. else
  185. tlb_entries = tlb_lld_4k[ENTRIES];
  186. /* Assume all of TLB entries was occupied by this task */
  187. act_entries = mm->total_vm > tlb_entries ? tlb_entries : mm->total_vm;
  188. /* tlb_flushall_shift is on balance point, details in commit log */
  189. if ((end - start) >> PAGE_SHIFT > act_entries >> tlb_flushall_shift)
  190. local_flush_tlb();
  191. else {
  192. if (has_large_page(mm, start, end)) {
  193. local_flush_tlb();
  194. goto flush_all;
  195. }
  196. /* flush range by one by one 'invlpg' */
  197. for (addr = start; addr < end; addr += PAGE_SIZE)
  198. __flush_tlb_single(addr);
  199. if (cpumask_any_but(mm_cpumask(mm),
  200. smp_processor_id()) < nr_cpu_ids)
  201. flush_tlb_others(mm_cpumask(mm), mm, start, end);
  202. preempt_enable();
  203. return;
  204. }
  205. flush_all:
  206. if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
  207. flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
  208. preempt_enable();
  209. }
  210. void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
  211. {
  212. struct mm_struct *mm = vma->vm_mm;
  213. preempt_disable();
  214. if (current->active_mm == mm) {
  215. if (current->mm)
  216. __flush_tlb_one(start);
  217. else
  218. leave_mm(smp_processor_id());
  219. }
  220. if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
  221. flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
  222. preempt_enable();
  223. }
  224. static void do_flush_tlb_all(void *info)
  225. {
  226. __flush_tlb_all();
  227. if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
  228. leave_mm(smp_processor_id());
  229. }
  230. void flush_tlb_all(void)
  231. {
  232. on_each_cpu(do_flush_tlb_all, NULL, 1);
  233. }
  234. static void do_kernel_range_flush(void *info)
  235. {
  236. struct flush_tlb_info *f = info;
  237. unsigned long addr;
  238. /* flush range by one by one 'invlpg' */
  239. for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
  240. __flush_tlb_single(addr);
  241. }
  242. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  243. {
  244. unsigned act_entries;
  245. struct flush_tlb_info info;
  246. /* In modern CPU, last level tlb used for both data/ins */
  247. act_entries = tlb_lld_4k[ENTRIES];
  248. /* Balance as user space task's flush, a bit conservative */
  249. if (end == TLB_FLUSH_ALL || tlb_flushall_shift == -1 ||
  250. (end - start) >> PAGE_SHIFT > act_entries >> tlb_flushall_shift)
  251. on_each_cpu(do_flush_tlb_all, NULL, 1);
  252. else {
  253. info.flush_start = start;
  254. info.flush_end = end;
  255. on_each_cpu(do_kernel_range_flush, &info, 1);
  256. }
  257. }
  258. #ifdef CONFIG_DEBUG_TLBFLUSH
  259. static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
  260. size_t count, loff_t *ppos)
  261. {
  262. char buf[32];
  263. unsigned int len;
  264. len = sprintf(buf, "%hd\n", tlb_flushall_shift);
  265. return simple_read_from_buffer(user_buf, count, ppos, buf, len);
  266. }
  267. static ssize_t tlbflush_write_file(struct file *file,
  268. const char __user *user_buf, size_t count, loff_t *ppos)
  269. {
  270. char buf[32];
  271. ssize_t len;
  272. s8 shift;
  273. len = min(count, sizeof(buf) - 1);
  274. if (copy_from_user(buf, user_buf, len))
  275. return -EFAULT;
  276. buf[len] = '\0';
  277. if (kstrtos8(buf, 0, &shift))
  278. return -EINVAL;
  279. if (shift < -1 || shift >= BITS_PER_LONG)
  280. return -EINVAL;
  281. tlb_flushall_shift = shift;
  282. return count;
  283. }
  284. static const struct file_operations fops_tlbflush = {
  285. .read = tlbflush_read_file,
  286. .write = tlbflush_write_file,
  287. .llseek = default_llseek,
  288. };
  289. static int __init create_tlb_flushall_shift(void)
  290. {
  291. debugfs_create_file("tlb_flushall_shift", S_IRUSR | S_IWUSR,
  292. arch_debugfs_dir, NULL, &fops_tlbflush);
  293. return 0;
  294. }
  295. late_initcall(create_tlb_flushall_shift);
  296. #endif