x86.c 180 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include "cpuid.h"
  29. #include <linux/clocksource.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/kvm.h>
  32. #include <linux/fs.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/module.h>
  35. #include <linux/mman.h>
  36. #include <linux/highmem.h>
  37. #include <linux/iommu.h>
  38. #include <linux/intel-iommu.h>
  39. #include <linux/cpufreq.h>
  40. #include <linux/user-return-notifier.h>
  41. #include <linux/srcu.h>
  42. #include <linux/slab.h>
  43. #include <linux/perf_event.h>
  44. #include <linux/uaccess.h>
  45. #include <linux/hash.h>
  46. #include <linux/pci.h>
  47. #include <linux/timekeeper_internal.h>
  48. #include <linux/pvclock_gtod.h>
  49. #include <trace/events/kvm.h>
  50. #define CREATE_TRACE_POINTS
  51. #include "trace.h"
  52. #include <asm/debugreg.h>
  53. #include <asm/msr.h>
  54. #include <asm/desc.h>
  55. #include <asm/mtrr.h>
  56. #include <asm/mce.h>
  57. #include <asm/i387.h>
  58. #include <asm/fpu-internal.h> /* Ugh! */
  59. #include <asm/xcr.h>
  60. #include <asm/pvclock.h>
  61. #include <asm/div64.h>
  62. #define MAX_IO_MSRS 256
  63. #define KVM_MAX_MCE_BANKS 32
  64. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  65. #define emul_to_vcpu(ctxt) \
  66. container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  67. /* EFER defaults:
  68. * - enable syscall per default because its emulated by KVM
  69. * - enable LME and LMA per default on 64 bit KVM
  70. */
  71. #ifdef CONFIG_X86_64
  72. static
  73. u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  74. #else
  75. static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  76. #endif
  77. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  78. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  79. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  80. static void process_nmi(struct kvm_vcpu *vcpu);
  81. struct kvm_x86_ops *kvm_x86_ops;
  82. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  83. static bool ignore_msrs = 0;
  84. module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
  85. bool kvm_has_tsc_control;
  86. EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
  87. u32 kvm_max_guest_tsc_khz;
  88. EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
  89. /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
  90. static u32 tsc_tolerance_ppm = 250;
  91. module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
  92. #define KVM_NR_SHARED_MSRS 16
  93. struct kvm_shared_msrs_global {
  94. int nr;
  95. u32 msrs[KVM_NR_SHARED_MSRS];
  96. };
  97. struct kvm_shared_msrs {
  98. struct user_return_notifier urn;
  99. bool registered;
  100. struct kvm_shared_msr_values {
  101. u64 host;
  102. u64 curr;
  103. } values[KVM_NR_SHARED_MSRS];
  104. };
  105. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  106. static struct kvm_shared_msrs __percpu *shared_msrs;
  107. struct kvm_stats_debugfs_item debugfs_entries[] = {
  108. { "pf_fixed", VCPU_STAT(pf_fixed) },
  109. { "pf_guest", VCPU_STAT(pf_guest) },
  110. { "tlb_flush", VCPU_STAT(tlb_flush) },
  111. { "invlpg", VCPU_STAT(invlpg) },
  112. { "exits", VCPU_STAT(exits) },
  113. { "io_exits", VCPU_STAT(io_exits) },
  114. { "mmio_exits", VCPU_STAT(mmio_exits) },
  115. { "signal_exits", VCPU_STAT(signal_exits) },
  116. { "irq_window", VCPU_STAT(irq_window_exits) },
  117. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  118. { "halt_exits", VCPU_STAT(halt_exits) },
  119. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  120. { "hypercalls", VCPU_STAT(hypercalls) },
  121. { "request_irq", VCPU_STAT(request_irq_exits) },
  122. { "irq_exits", VCPU_STAT(irq_exits) },
  123. { "host_state_reload", VCPU_STAT(host_state_reload) },
  124. { "efer_reload", VCPU_STAT(efer_reload) },
  125. { "fpu_reload", VCPU_STAT(fpu_reload) },
  126. { "insn_emulation", VCPU_STAT(insn_emulation) },
  127. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  128. { "irq_injections", VCPU_STAT(irq_injections) },
  129. { "nmi_injections", VCPU_STAT(nmi_injections) },
  130. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  131. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  132. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  133. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  134. { "mmu_flooded", VM_STAT(mmu_flooded) },
  135. { "mmu_recycled", VM_STAT(mmu_recycled) },
  136. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  137. { "mmu_unsync", VM_STAT(mmu_unsync) },
  138. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  139. { "largepages", VM_STAT(lpages) },
  140. { NULL }
  141. };
  142. u64 __read_mostly host_xcr0;
  143. static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
  144. static int kvm_vcpu_reset(struct kvm_vcpu *vcpu);
  145. static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
  146. {
  147. int i;
  148. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
  149. vcpu->arch.apf.gfns[i] = ~0;
  150. }
  151. static void kvm_on_user_return(struct user_return_notifier *urn)
  152. {
  153. unsigned slot;
  154. struct kvm_shared_msrs *locals
  155. = container_of(urn, struct kvm_shared_msrs, urn);
  156. struct kvm_shared_msr_values *values;
  157. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  158. values = &locals->values[slot];
  159. if (values->host != values->curr) {
  160. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  161. values->curr = values->host;
  162. }
  163. }
  164. locals->registered = false;
  165. user_return_notifier_unregister(urn);
  166. }
  167. static void shared_msr_update(unsigned slot, u32 msr)
  168. {
  169. u64 value;
  170. unsigned int cpu = smp_processor_id();
  171. struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
  172. /* only read, and nobody should modify it at this time,
  173. * so don't need lock */
  174. if (slot >= shared_msrs_global.nr) {
  175. printk(KERN_ERR "kvm: invalid MSR slot!");
  176. return;
  177. }
  178. rdmsrl_safe(msr, &value);
  179. smsr->values[slot].host = value;
  180. smsr->values[slot].curr = value;
  181. }
  182. void kvm_define_shared_msr(unsigned slot, u32 msr)
  183. {
  184. if (slot >= shared_msrs_global.nr)
  185. shared_msrs_global.nr = slot + 1;
  186. shared_msrs_global.msrs[slot] = msr;
  187. /* we need ensured the shared_msr_global have been updated */
  188. smp_wmb();
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  191. static void kvm_shared_msr_cpu_online(void)
  192. {
  193. unsigned i;
  194. for (i = 0; i < shared_msrs_global.nr; ++i)
  195. shared_msr_update(i, shared_msrs_global.msrs[i]);
  196. }
  197. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  198. {
  199. unsigned int cpu = smp_processor_id();
  200. struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
  201. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  202. return;
  203. smsr->values[slot].curr = value;
  204. wrmsrl(shared_msrs_global.msrs[slot], value);
  205. if (!smsr->registered) {
  206. smsr->urn.on_user_return = kvm_on_user_return;
  207. user_return_notifier_register(&smsr->urn);
  208. smsr->registered = true;
  209. }
  210. }
  211. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  212. static void drop_user_return_notifiers(void *ignore)
  213. {
  214. unsigned int cpu = smp_processor_id();
  215. struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
  216. if (smsr->registered)
  217. kvm_on_user_return(&smsr->urn);
  218. }
  219. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  220. {
  221. return vcpu->arch.apic_base;
  222. }
  223. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  224. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  225. {
  226. /* TODO: reserve bits check */
  227. kvm_lapic_set_base(vcpu, data);
  228. }
  229. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  230. #define EXCPT_BENIGN 0
  231. #define EXCPT_CONTRIBUTORY 1
  232. #define EXCPT_PF 2
  233. static int exception_class(int vector)
  234. {
  235. switch (vector) {
  236. case PF_VECTOR:
  237. return EXCPT_PF;
  238. case DE_VECTOR:
  239. case TS_VECTOR:
  240. case NP_VECTOR:
  241. case SS_VECTOR:
  242. case GP_VECTOR:
  243. return EXCPT_CONTRIBUTORY;
  244. default:
  245. break;
  246. }
  247. return EXCPT_BENIGN;
  248. }
  249. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  250. unsigned nr, bool has_error, u32 error_code,
  251. bool reinject)
  252. {
  253. u32 prev_nr;
  254. int class1, class2;
  255. kvm_make_request(KVM_REQ_EVENT, vcpu);
  256. if (!vcpu->arch.exception.pending) {
  257. queue:
  258. vcpu->arch.exception.pending = true;
  259. vcpu->arch.exception.has_error_code = has_error;
  260. vcpu->arch.exception.nr = nr;
  261. vcpu->arch.exception.error_code = error_code;
  262. vcpu->arch.exception.reinject = reinject;
  263. return;
  264. }
  265. /* to check exception */
  266. prev_nr = vcpu->arch.exception.nr;
  267. if (prev_nr == DF_VECTOR) {
  268. /* triple fault -> shutdown */
  269. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  270. return;
  271. }
  272. class1 = exception_class(prev_nr);
  273. class2 = exception_class(nr);
  274. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  275. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  276. /* generate double fault per SDM Table 5-5 */
  277. vcpu->arch.exception.pending = true;
  278. vcpu->arch.exception.has_error_code = true;
  279. vcpu->arch.exception.nr = DF_VECTOR;
  280. vcpu->arch.exception.error_code = 0;
  281. } else
  282. /* replace previous exception with a new one in a hope
  283. that instruction re-execution will regenerate lost
  284. exception */
  285. goto queue;
  286. }
  287. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  288. {
  289. kvm_multiple_exception(vcpu, nr, false, 0, false);
  290. }
  291. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  292. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  293. {
  294. kvm_multiple_exception(vcpu, nr, false, 0, true);
  295. }
  296. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  297. void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
  298. {
  299. if (err)
  300. kvm_inject_gp(vcpu, 0);
  301. else
  302. kvm_x86_ops->skip_emulated_instruction(vcpu);
  303. }
  304. EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
  305. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  306. {
  307. ++vcpu->stat.pf_guest;
  308. vcpu->arch.cr2 = fault->address;
  309. kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
  310. }
  311. EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
  312. void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  313. {
  314. if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
  315. vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
  316. else
  317. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  318. }
  319. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  320. {
  321. atomic_inc(&vcpu->arch.nmi_queued);
  322. kvm_make_request(KVM_REQ_NMI, vcpu);
  323. }
  324. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  325. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  326. {
  327. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  328. }
  329. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  330. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  331. {
  332. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  333. }
  334. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  335. /*
  336. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  337. * a #GP and return false.
  338. */
  339. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  340. {
  341. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  342. return true;
  343. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  344. return false;
  345. }
  346. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  347. /*
  348. * This function will be used to read from the physical memory of the currently
  349. * running guest. The difference to kvm_read_guest_page is that this function
  350. * can read from guest physical or from the guest's guest physical memory.
  351. */
  352. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  353. gfn_t ngfn, void *data, int offset, int len,
  354. u32 access)
  355. {
  356. gfn_t real_gfn;
  357. gpa_t ngpa;
  358. ngpa = gfn_to_gpa(ngfn);
  359. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  360. if (real_gfn == UNMAPPED_GVA)
  361. return -EFAULT;
  362. real_gfn = gpa_to_gfn(real_gfn);
  363. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  364. }
  365. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  366. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  367. void *data, int offset, int len, u32 access)
  368. {
  369. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  370. data, offset, len, access);
  371. }
  372. /*
  373. * Load the pae pdptrs. Return true is they are all valid.
  374. */
  375. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  376. {
  377. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  378. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  379. int i;
  380. int ret;
  381. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  382. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  383. offset * sizeof(u64), sizeof(pdpte),
  384. PFERR_USER_MASK|PFERR_WRITE_MASK);
  385. if (ret < 0) {
  386. ret = 0;
  387. goto out;
  388. }
  389. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  390. if (is_present_gpte(pdpte[i]) &&
  391. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  392. ret = 0;
  393. goto out;
  394. }
  395. }
  396. ret = 1;
  397. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  398. __set_bit(VCPU_EXREG_PDPTR,
  399. (unsigned long *)&vcpu->arch.regs_avail);
  400. __set_bit(VCPU_EXREG_PDPTR,
  401. (unsigned long *)&vcpu->arch.regs_dirty);
  402. out:
  403. return ret;
  404. }
  405. EXPORT_SYMBOL_GPL(load_pdptrs);
  406. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  407. {
  408. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  409. bool changed = true;
  410. int offset;
  411. gfn_t gfn;
  412. int r;
  413. if (is_long_mode(vcpu) || !is_pae(vcpu))
  414. return false;
  415. if (!test_bit(VCPU_EXREG_PDPTR,
  416. (unsigned long *)&vcpu->arch.regs_avail))
  417. return true;
  418. gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
  419. offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
  420. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  421. PFERR_USER_MASK | PFERR_WRITE_MASK);
  422. if (r < 0)
  423. goto out;
  424. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  425. out:
  426. return changed;
  427. }
  428. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  429. {
  430. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  431. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  432. X86_CR0_CD | X86_CR0_NW;
  433. cr0 |= X86_CR0_ET;
  434. #ifdef CONFIG_X86_64
  435. if (cr0 & 0xffffffff00000000UL)
  436. return 1;
  437. #endif
  438. cr0 &= ~CR0_RESERVED_BITS;
  439. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  440. return 1;
  441. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  442. return 1;
  443. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  444. #ifdef CONFIG_X86_64
  445. if ((vcpu->arch.efer & EFER_LME)) {
  446. int cs_db, cs_l;
  447. if (!is_pae(vcpu))
  448. return 1;
  449. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  450. if (cs_l)
  451. return 1;
  452. } else
  453. #endif
  454. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  455. kvm_read_cr3(vcpu)))
  456. return 1;
  457. }
  458. if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
  459. return 1;
  460. kvm_x86_ops->set_cr0(vcpu, cr0);
  461. if ((cr0 ^ old_cr0) & X86_CR0_PG) {
  462. kvm_clear_async_pf_completion_queue(vcpu);
  463. kvm_async_pf_hash_reset(vcpu);
  464. }
  465. if ((cr0 ^ old_cr0) & update_bits)
  466. kvm_mmu_reset_context(vcpu);
  467. return 0;
  468. }
  469. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  470. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  471. {
  472. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  473. }
  474. EXPORT_SYMBOL_GPL(kvm_lmsw);
  475. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  476. {
  477. u64 xcr0;
  478. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  479. if (index != XCR_XFEATURE_ENABLED_MASK)
  480. return 1;
  481. xcr0 = xcr;
  482. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  483. return 1;
  484. if (!(xcr0 & XSTATE_FP))
  485. return 1;
  486. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  487. return 1;
  488. if (xcr0 & ~host_xcr0)
  489. return 1;
  490. vcpu->arch.xcr0 = xcr0;
  491. vcpu->guest_xcr0_loaded = 0;
  492. return 0;
  493. }
  494. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  495. {
  496. if (__kvm_set_xcr(vcpu, index, xcr)) {
  497. kvm_inject_gp(vcpu, 0);
  498. return 1;
  499. }
  500. return 0;
  501. }
  502. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  503. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  504. {
  505. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  506. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
  507. X86_CR4_PAE | X86_CR4_SMEP;
  508. if (cr4 & CR4_RESERVED_BITS)
  509. return 1;
  510. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  511. return 1;
  512. if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
  513. return 1;
  514. if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
  515. return 1;
  516. if (is_long_mode(vcpu)) {
  517. if (!(cr4 & X86_CR4_PAE))
  518. return 1;
  519. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  520. && ((cr4 ^ old_cr4) & pdptr_bits)
  521. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  522. kvm_read_cr3(vcpu)))
  523. return 1;
  524. if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
  525. if (!guest_cpuid_has_pcid(vcpu))
  526. return 1;
  527. /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
  528. if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
  529. return 1;
  530. }
  531. if (kvm_x86_ops->set_cr4(vcpu, cr4))
  532. return 1;
  533. if (((cr4 ^ old_cr4) & pdptr_bits) ||
  534. (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
  535. kvm_mmu_reset_context(vcpu);
  536. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  537. kvm_update_cpuid(vcpu);
  538. return 0;
  539. }
  540. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  541. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  542. {
  543. if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
  544. kvm_mmu_sync_roots(vcpu);
  545. kvm_mmu_flush_tlb(vcpu);
  546. return 0;
  547. }
  548. if (is_long_mode(vcpu)) {
  549. if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
  550. if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
  551. return 1;
  552. } else
  553. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  554. return 1;
  555. } else {
  556. if (is_pae(vcpu)) {
  557. if (cr3 & CR3_PAE_RESERVED_BITS)
  558. return 1;
  559. if (is_paging(vcpu) &&
  560. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  561. return 1;
  562. }
  563. /*
  564. * We don't check reserved bits in nonpae mode, because
  565. * this isn't enforced, and VMware depends on this.
  566. */
  567. }
  568. /*
  569. * Does the new cr3 value map to physical memory? (Note, we
  570. * catch an invalid cr3 even in real-mode, because it would
  571. * cause trouble later on when we turn on paging anyway.)
  572. *
  573. * A real CPU would silently accept an invalid cr3 and would
  574. * attempt to use it - with largely undefined (and often hard
  575. * to debug) behavior on the guest side.
  576. */
  577. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  578. return 1;
  579. vcpu->arch.cr3 = cr3;
  580. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  581. vcpu->arch.mmu.new_cr3(vcpu);
  582. return 0;
  583. }
  584. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  585. int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  586. {
  587. if (cr8 & CR8_RESERVED_BITS)
  588. return 1;
  589. if (irqchip_in_kernel(vcpu->kvm))
  590. kvm_lapic_set_tpr(vcpu, cr8);
  591. else
  592. vcpu->arch.cr8 = cr8;
  593. return 0;
  594. }
  595. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  596. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  597. {
  598. if (irqchip_in_kernel(vcpu->kvm))
  599. return kvm_lapic_get_cr8(vcpu);
  600. else
  601. return vcpu->arch.cr8;
  602. }
  603. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  604. static void kvm_update_dr7(struct kvm_vcpu *vcpu)
  605. {
  606. unsigned long dr7;
  607. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  608. dr7 = vcpu->arch.guest_debug_dr7;
  609. else
  610. dr7 = vcpu->arch.dr7;
  611. kvm_x86_ops->set_dr7(vcpu, dr7);
  612. vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
  613. }
  614. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  615. {
  616. switch (dr) {
  617. case 0 ... 3:
  618. vcpu->arch.db[dr] = val;
  619. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  620. vcpu->arch.eff_db[dr] = val;
  621. break;
  622. case 4:
  623. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  624. return 1; /* #UD */
  625. /* fall through */
  626. case 6:
  627. if (val & 0xffffffff00000000ULL)
  628. return -1; /* #GP */
  629. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  630. break;
  631. case 5:
  632. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  633. return 1; /* #UD */
  634. /* fall through */
  635. default: /* 7 */
  636. if (val & 0xffffffff00000000ULL)
  637. return -1; /* #GP */
  638. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  639. kvm_update_dr7(vcpu);
  640. break;
  641. }
  642. return 0;
  643. }
  644. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  645. {
  646. int res;
  647. res = __kvm_set_dr(vcpu, dr, val);
  648. if (res > 0)
  649. kvm_queue_exception(vcpu, UD_VECTOR);
  650. else if (res < 0)
  651. kvm_inject_gp(vcpu, 0);
  652. return res;
  653. }
  654. EXPORT_SYMBOL_GPL(kvm_set_dr);
  655. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  656. {
  657. switch (dr) {
  658. case 0 ... 3:
  659. *val = vcpu->arch.db[dr];
  660. break;
  661. case 4:
  662. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  663. return 1;
  664. /* fall through */
  665. case 6:
  666. *val = vcpu->arch.dr6;
  667. break;
  668. case 5:
  669. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  670. return 1;
  671. /* fall through */
  672. default: /* 7 */
  673. *val = vcpu->arch.dr7;
  674. break;
  675. }
  676. return 0;
  677. }
  678. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  679. {
  680. if (_kvm_get_dr(vcpu, dr, val)) {
  681. kvm_queue_exception(vcpu, UD_VECTOR);
  682. return 1;
  683. }
  684. return 0;
  685. }
  686. EXPORT_SYMBOL_GPL(kvm_get_dr);
  687. bool kvm_rdpmc(struct kvm_vcpu *vcpu)
  688. {
  689. u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  690. u64 data;
  691. int err;
  692. err = kvm_pmu_read_pmc(vcpu, ecx, &data);
  693. if (err)
  694. return err;
  695. kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
  696. kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
  697. return err;
  698. }
  699. EXPORT_SYMBOL_GPL(kvm_rdpmc);
  700. /*
  701. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  702. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  703. *
  704. * This list is modified at module load time to reflect the
  705. * capabilities of the host cpu. This capabilities test skips MSRs that are
  706. * kvm-specific. Those are put in the beginning of the list.
  707. */
  708. #define KVM_SAVE_MSRS_BEGIN 10
  709. static u32 msrs_to_save[] = {
  710. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  711. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  712. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  713. HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
  714. MSR_KVM_PV_EOI_EN,
  715. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  716. MSR_STAR,
  717. #ifdef CONFIG_X86_64
  718. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  719. #endif
  720. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  721. };
  722. static unsigned num_msrs_to_save;
  723. static const u32 emulated_msrs[] = {
  724. MSR_IA32_TSC_ADJUST,
  725. MSR_IA32_TSCDEADLINE,
  726. MSR_IA32_MISC_ENABLE,
  727. MSR_IA32_MCG_STATUS,
  728. MSR_IA32_MCG_CTL,
  729. };
  730. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  731. {
  732. u64 old_efer = vcpu->arch.efer;
  733. if (efer & efer_reserved_bits)
  734. return 1;
  735. if (is_paging(vcpu)
  736. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  737. return 1;
  738. if (efer & EFER_FFXSR) {
  739. struct kvm_cpuid_entry2 *feat;
  740. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  741. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  742. return 1;
  743. }
  744. if (efer & EFER_SVME) {
  745. struct kvm_cpuid_entry2 *feat;
  746. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  747. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  748. return 1;
  749. }
  750. efer &= ~EFER_LMA;
  751. efer |= vcpu->arch.efer & EFER_LMA;
  752. kvm_x86_ops->set_efer(vcpu, efer);
  753. /* Update reserved bits */
  754. if ((efer ^ old_efer) & EFER_NX)
  755. kvm_mmu_reset_context(vcpu);
  756. return 0;
  757. }
  758. void kvm_enable_efer_bits(u64 mask)
  759. {
  760. efer_reserved_bits &= ~mask;
  761. }
  762. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  763. /*
  764. * Writes msr value into into the appropriate "register".
  765. * Returns 0 on success, non-0 otherwise.
  766. * Assumes vcpu_load() was already called.
  767. */
  768. int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
  769. {
  770. return kvm_x86_ops->set_msr(vcpu, msr);
  771. }
  772. /*
  773. * Adapt set_msr() to msr_io()'s calling convention
  774. */
  775. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  776. {
  777. struct msr_data msr;
  778. msr.data = *data;
  779. msr.index = index;
  780. msr.host_initiated = true;
  781. return kvm_set_msr(vcpu, &msr);
  782. }
  783. #ifdef CONFIG_X86_64
  784. struct pvclock_gtod_data {
  785. seqcount_t seq;
  786. struct { /* extract of a clocksource struct */
  787. int vclock_mode;
  788. cycle_t cycle_last;
  789. cycle_t mask;
  790. u32 mult;
  791. u32 shift;
  792. } clock;
  793. /* open coded 'struct timespec' */
  794. u64 monotonic_time_snsec;
  795. time_t monotonic_time_sec;
  796. };
  797. static struct pvclock_gtod_data pvclock_gtod_data;
  798. static void update_pvclock_gtod(struct timekeeper *tk)
  799. {
  800. struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
  801. write_seqcount_begin(&vdata->seq);
  802. /* copy pvclock gtod data */
  803. vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode;
  804. vdata->clock.cycle_last = tk->clock->cycle_last;
  805. vdata->clock.mask = tk->clock->mask;
  806. vdata->clock.mult = tk->mult;
  807. vdata->clock.shift = tk->shift;
  808. vdata->monotonic_time_sec = tk->xtime_sec
  809. + tk->wall_to_monotonic.tv_sec;
  810. vdata->monotonic_time_snsec = tk->xtime_nsec
  811. + (tk->wall_to_monotonic.tv_nsec
  812. << tk->shift);
  813. while (vdata->monotonic_time_snsec >=
  814. (((u64)NSEC_PER_SEC) << tk->shift)) {
  815. vdata->monotonic_time_snsec -=
  816. ((u64)NSEC_PER_SEC) << tk->shift;
  817. vdata->monotonic_time_sec++;
  818. }
  819. write_seqcount_end(&vdata->seq);
  820. }
  821. #endif
  822. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  823. {
  824. int version;
  825. int r;
  826. struct pvclock_wall_clock wc;
  827. struct timespec boot;
  828. if (!wall_clock)
  829. return;
  830. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  831. if (r)
  832. return;
  833. if (version & 1)
  834. ++version; /* first time write, random junk */
  835. ++version;
  836. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  837. /*
  838. * The guest calculates current wall clock time by adding
  839. * system time (updated by kvm_guest_time_update below) to the
  840. * wall clock specified here. guest system time equals host
  841. * system time for us, thus we must fill in host boot time here.
  842. */
  843. getboottime(&boot);
  844. if (kvm->arch.kvmclock_offset) {
  845. struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
  846. boot = timespec_sub(boot, ts);
  847. }
  848. wc.sec = boot.tv_sec;
  849. wc.nsec = boot.tv_nsec;
  850. wc.version = version;
  851. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  852. version++;
  853. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  854. }
  855. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  856. {
  857. uint32_t quotient, remainder;
  858. /* Don't try to replace with do_div(), this one calculates
  859. * "(dividend << 32) / divisor" */
  860. __asm__ ( "divl %4"
  861. : "=a" (quotient), "=d" (remainder)
  862. : "0" (0), "1" (dividend), "r" (divisor) );
  863. return quotient;
  864. }
  865. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  866. s8 *pshift, u32 *pmultiplier)
  867. {
  868. uint64_t scaled64;
  869. int32_t shift = 0;
  870. uint64_t tps64;
  871. uint32_t tps32;
  872. tps64 = base_khz * 1000LL;
  873. scaled64 = scaled_khz * 1000LL;
  874. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  875. tps64 >>= 1;
  876. shift--;
  877. }
  878. tps32 = (uint32_t)tps64;
  879. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  880. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  881. scaled64 >>= 1;
  882. else
  883. tps32 <<= 1;
  884. shift++;
  885. }
  886. *pshift = shift;
  887. *pmultiplier = div_frac(scaled64, tps32);
  888. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  889. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  890. }
  891. static inline u64 get_kernel_ns(void)
  892. {
  893. struct timespec ts;
  894. WARN_ON(preemptible());
  895. ktime_get_ts(&ts);
  896. monotonic_to_bootbased(&ts);
  897. return timespec_to_ns(&ts);
  898. }
  899. #ifdef CONFIG_X86_64
  900. static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
  901. #endif
  902. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  903. unsigned long max_tsc_khz;
  904. static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
  905. {
  906. return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
  907. vcpu->arch.virtual_tsc_shift);
  908. }
  909. static u32 adjust_tsc_khz(u32 khz, s32 ppm)
  910. {
  911. u64 v = (u64)khz * (1000000 + ppm);
  912. do_div(v, 1000000);
  913. return v;
  914. }
  915. static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
  916. {
  917. u32 thresh_lo, thresh_hi;
  918. int use_scaling = 0;
  919. /* Compute a scale to convert nanoseconds in TSC cycles */
  920. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  921. &vcpu->arch.virtual_tsc_shift,
  922. &vcpu->arch.virtual_tsc_mult);
  923. vcpu->arch.virtual_tsc_khz = this_tsc_khz;
  924. /*
  925. * Compute the variation in TSC rate which is acceptable
  926. * within the range of tolerance and decide if the
  927. * rate being applied is within that bounds of the hardware
  928. * rate. If so, no scaling or compensation need be done.
  929. */
  930. thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
  931. thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
  932. if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
  933. pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
  934. use_scaling = 1;
  935. }
  936. kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
  937. }
  938. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  939. {
  940. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
  941. vcpu->arch.virtual_tsc_mult,
  942. vcpu->arch.virtual_tsc_shift);
  943. tsc += vcpu->arch.this_tsc_write;
  944. return tsc;
  945. }
  946. void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
  947. {
  948. #ifdef CONFIG_X86_64
  949. bool vcpus_matched;
  950. bool do_request = false;
  951. struct kvm_arch *ka = &vcpu->kvm->arch;
  952. struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
  953. vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
  954. atomic_read(&vcpu->kvm->online_vcpus));
  955. if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
  956. if (!ka->use_master_clock)
  957. do_request = 1;
  958. if (!vcpus_matched && ka->use_master_clock)
  959. do_request = 1;
  960. if (do_request)
  961. kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
  962. trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
  963. atomic_read(&vcpu->kvm->online_vcpus),
  964. ka->use_master_clock, gtod->clock.vclock_mode);
  965. #endif
  966. }
  967. static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
  968. {
  969. u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
  970. vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
  971. }
  972. void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
  973. {
  974. struct kvm *kvm = vcpu->kvm;
  975. u64 offset, ns, elapsed;
  976. unsigned long flags;
  977. s64 usdiff;
  978. bool matched;
  979. u64 data = msr->data;
  980. raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  981. offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
  982. ns = get_kernel_ns();
  983. elapsed = ns - kvm->arch.last_tsc_nsec;
  984. /* n.b - signed multiplication and division required */
  985. usdiff = data - kvm->arch.last_tsc_write;
  986. #ifdef CONFIG_X86_64
  987. usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
  988. #else
  989. /* do_div() only does unsigned */
  990. asm("idivl %2; xor %%edx, %%edx"
  991. : "=A"(usdiff)
  992. : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
  993. #endif
  994. do_div(elapsed, 1000);
  995. usdiff -= elapsed;
  996. if (usdiff < 0)
  997. usdiff = -usdiff;
  998. /*
  999. * Special case: TSC write with a small delta (1 second) of virtual
  1000. * cycle time against real time is interpreted as an attempt to
  1001. * synchronize the CPU.
  1002. *
  1003. * For a reliable TSC, we can match TSC offsets, and for an unstable
  1004. * TSC, we add elapsed time in this computation. We could let the
  1005. * compensation code attempt to catch up if we fall behind, but
  1006. * it's better to try to match offsets from the beginning.
  1007. */
  1008. if (usdiff < USEC_PER_SEC &&
  1009. vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
  1010. if (!check_tsc_unstable()) {
  1011. offset = kvm->arch.cur_tsc_offset;
  1012. pr_debug("kvm: matched tsc offset for %llu\n", data);
  1013. } else {
  1014. u64 delta = nsec_to_cycles(vcpu, elapsed);
  1015. data += delta;
  1016. offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
  1017. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  1018. }
  1019. matched = true;
  1020. } else {
  1021. /*
  1022. * We split periods of matched TSC writes into generations.
  1023. * For each generation, we track the original measured
  1024. * nanosecond time, offset, and write, so if TSCs are in
  1025. * sync, we can match exact offset, and if not, we can match
  1026. * exact software computation in compute_guest_tsc()
  1027. *
  1028. * These values are tracked in kvm->arch.cur_xxx variables.
  1029. */
  1030. kvm->arch.cur_tsc_generation++;
  1031. kvm->arch.cur_tsc_nsec = ns;
  1032. kvm->arch.cur_tsc_write = data;
  1033. kvm->arch.cur_tsc_offset = offset;
  1034. matched = false;
  1035. pr_debug("kvm: new tsc generation %u, clock %llu\n",
  1036. kvm->arch.cur_tsc_generation, data);
  1037. }
  1038. /*
  1039. * We also track th most recent recorded KHZ, write and time to
  1040. * allow the matching interval to be extended at each write.
  1041. */
  1042. kvm->arch.last_tsc_nsec = ns;
  1043. kvm->arch.last_tsc_write = data;
  1044. kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
  1045. /* Reset of TSC must disable overshoot protection below */
  1046. vcpu->arch.hv_clock.tsc_timestamp = 0;
  1047. vcpu->arch.last_guest_tsc = data;
  1048. /* Keep track of which generation this VCPU has synchronized to */
  1049. vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
  1050. vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
  1051. vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
  1052. if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
  1053. update_ia32_tsc_adjust_msr(vcpu, offset);
  1054. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  1055. raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  1056. spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
  1057. if (matched)
  1058. kvm->arch.nr_vcpus_matched_tsc++;
  1059. else
  1060. kvm->arch.nr_vcpus_matched_tsc = 0;
  1061. kvm_track_tsc_matching(vcpu);
  1062. spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
  1063. }
  1064. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  1065. #ifdef CONFIG_X86_64
  1066. static cycle_t read_tsc(void)
  1067. {
  1068. cycle_t ret;
  1069. u64 last;
  1070. /*
  1071. * Empirically, a fence (of type that depends on the CPU)
  1072. * before rdtsc is enough to ensure that rdtsc is ordered
  1073. * with respect to loads. The various CPU manuals are unclear
  1074. * as to whether rdtsc can be reordered with later loads,
  1075. * but no one has ever seen it happen.
  1076. */
  1077. rdtsc_barrier();
  1078. ret = (cycle_t)vget_cycles();
  1079. last = pvclock_gtod_data.clock.cycle_last;
  1080. if (likely(ret >= last))
  1081. return ret;
  1082. /*
  1083. * GCC likes to generate cmov here, but this branch is extremely
  1084. * predictable (it's just a funciton of time and the likely is
  1085. * very likely) and there's a data dependence, so force GCC
  1086. * to generate a branch instead. I don't barrier() because
  1087. * we don't actually need a barrier, and if this function
  1088. * ever gets inlined it will generate worse code.
  1089. */
  1090. asm volatile ("");
  1091. return last;
  1092. }
  1093. static inline u64 vgettsc(cycle_t *cycle_now)
  1094. {
  1095. long v;
  1096. struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
  1097. *cycle_now = read_tsc();
  1098. v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
  1099. return v * gtod->clock.mult;
  1100. }
  1101. static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
  1102. {
  1103. unsigned long seq;
  1104. u64 ns;
  1105. int mode;
  1106. struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
  1107. ts->tv_nsec = 0;
  1108. do {
  1109. seq = read_seqcount_begin(&gtod->seq);
  1110. mode = gtod->clock.vclock_mode;
  1111. ts->tv_sec = gtod->monotonic_time_sec;
  1112. ns = gtod->monotonic_time_snsec;
  1113. ns += vgettsc(cycle_now);
  1114. ns >>= gtod->clock.shift;
  1115. } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
  1116. timespec_add_ns(ts, ns);
  1117. return mode;
  1118. }
  1119. /* returns true if host is using tsc clocksource */
  1120. static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
  1121. {
  1122. struct timespec ts;
  1123. /* checked again under seqlock below */
  1124. if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
  1125. return false;
  1126. if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
  1127. return false;
  1128. monotonic_to_bootbased(&ts);
  1129. *kernel_ns = timespec_to_ns(&ts);
  1130. return true;
  1131. }
  1132. #endif
  1133. /*
  1134. *
  1135. * Assuming a stable TSC across physical CPUS, and a stable TSC
  1136. * across virtual CPUs, the following condition is possible.
  1137. * Each numbered line represents an event visible to both
  1138. * CPUs at the next numbered event.
  1139. *
  1140. * "timespecX" represents host monotonic time. "tscX" represents
  1141. * RDTSC value.
  1142. *
  1143. * VCPU0 on CPU0 | VCPU1 on CPU1
  1144. *
  1145. * 1. read timespec0,tsc0
  1146. * 2. | timespec1 = timespec0 + N
  1147. * | tsc1 = tsc0 + M
  1148. * 3. transition to guest | transition to guest
  1149. * 4. ret0 = timespec0 + (rdtsc - tsc0) |
  1150. * 5. | ret1 = timespec1 + (rdtsc - tsc1)
  1151. * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
  1152. *
  1153. * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
  1154. *
  1155. * - ret0 < ret1
  1156. * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
  1157. * ...
  1158. * - 0 < N - M => M < N
  1159. *
  1160. * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
  1161. * always the case (the difference between two distinct xtime instances
  1162. * might be smaller then the difference between corresponding TSC reads,
  1163. * when updating guest vcpus pvclock areas).
  1164. *
  1165. * To avoid that problem, do not allow visibility of distinct
  1166. * system_timestamp/tsc_timestamp values simultaneously: use a master
  1167. * copy of host monotonic time values. Update that master copy
  1168. * in lockstep.
  1169. *
  1170. * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
  1171. *
  1172. */
  1173. static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
  1174. {
  1175. #ifdef CONFIG_X86_64
  1176. struct kvm_arch *ka = &kvm->arch;
  1177. int vclock_mode;
  1178. bool host_tsc_clocksource, vcpus_matched;
  1179. vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
  1180. atomic_read(&kvm->online_vcpus));
  1181. /*
  1182. * If the host uses TSC clock, then passthrough TSC as stable
  1183. * to the guest.
  1184. */
  1185. host_tsc_clocksource = kvm_get_time_and_clockread(
  1186. &ka->master_kernel_ns,
  1187. &ka->master_cycle_now);
  1188. ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
  1189. if (ka->use_master_clock)
  1190. atomic_set(&kvm_guest_has_master_clock, 1);
  1191. vclock_mode = pvclock_gtod_data.clock.vclock_mode;
  1192. trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
  1193. vcpus_matched);
  1194. #endif
  1195. }
  1196. static int kvm_guest_time_update(struct kvm_vcpu *v)
  1197. {
  1198. unsigned long flags, this_tsc_khz;
  1199. struct kvm_vcpu_arch *vcpu = &v->arch;
  1200. struct kvm_arch *ka = &v->kvm->arch;
  1201. s64 kernel_ns, max_kernel_ns;
  1202. u64 tsc_timestamp, host_tsc;
  1203. struct pvclock_vcpu_time_info guest_hv_clock;
  1204. u8 pvclock_flags;
  1205. bool use_master_clock;
  1206. kernel_ns = 0;
  1207. host_tsc = 0;
  1208. /*
  1209. * If the host uses TSC clock, then passthrough TSC as stable
  1210. * to the guest.
  1211. */
  1212. spin_lock(&ka->pvclock_gtod_sync_lock);
  1213. use_master_clock = ka->use_master_clock;
  1214. if (use_master_clock) {
  1215. host_tsc = ka->master_cycle_now;
  1216. kernel_ns = ka->master_kernel_ns;
  1217. }
  1218. spin_unlock(&ka->pvclock_gtod_sync_lock);
  1219. /* Keep irq disabled to prevent changes to the clock */
  1220. local_irq_save(flags);
  1221. this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
  1222. if (unlikely(this_tsc_khz == 0)) {
  1223. local_irq_restore(flags);
  1224. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  1225. return 1;
  1226. }
  1227. if (!use_master_clock) {
  1228. host_tsc = native_read_tsc();
  1229. kernel_ns = get_kernel_ns();
  1230. }
  1231. tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
  1232. /*
  1233. * We may have to catch up the TSC to match elapsed wall clock
  1234. * time for two reasons, even if kvmclock is used.
  1235. * 1) CPU could have been running below the maximum TSC rate
  1236. * 2) Broken TSC compensation resets the base at each VCPU
  1237. * entry to avoid unknown leaps of TSC even when running
  1238. * again on the same CPU. This may cause apparent elapsed
  1239. * time to disappear, and the guest to stand still or run
  1240. * very slowly.
  1241. */
  1242. if (vcpu->tsc_catchup) {
  1243. u64 tsc = compute_guest_tsc(v, kernel_ns);
  1244. if (tsc > tsc_timestamp) {
  1245. adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
  1246. tsc_timestamp = tsc;
  1247. }
  1248. }
  1249. local_irq_restore(flags);
  1250. if (!vcpu->pv_time_enabled)
  1251. return 0;
  1252. /*
  1253. * Time as measured by the TSC may go backwards when resetting the base
  1254. * tsc_timestamp. The reason for this is that the TSC resolution is
  1255. * higher than the resolution of the other clock scales. Thus, many
  1256. * possible measurments of the TSC correspond to one measurement of any
  1257. * other clock, and so a spread of values is possible. This is not a
  1258. * problem for the computation of the nanosecond clock; with TSC rates
  1259. * around 1GHZ, there can only be a few cycles which correspond to one
  1260. * nanosecond value, and any path through this code will inevitably
  1261. * take longer than that. However, with the kernel_ns value itself,
  1262. * the precision may be much lower, down to HZ granularity. If the
  1263. * first sampling of TSC against kernel_ns ends in the low part of the
  1264. * range, and the second in the high end of the range, we can get:
  1265. *
  1266. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  1267. *
  1268. * As the sampling errors potentially range in the thousands of cycles,
  1269. * it is possible such a time value has already been observed by the
  1270. * guest. To protect against this, we must compute the system time as
  1271. * observed by the guest and ensure the new system time is greater.
  1272. */
  1273. max_kernel_ns = 0;
  1274. if (vcpu->hv_clock.tsc_timestamp) {
  1275. max_kernel_ns = vcpu->last_guest_tsc -
  1276. vcpu->hv_clock.tsc_timestamp;
  1277. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  1278. vcpu->hv_clock.tsc_to_system_mul,
  1279. vcpu->hv_clock.tsc_shift);
  1280. max_kernel_ns += vcpu->last_kernel_ns;
  1281. }
  1282. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  1283. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  1284. &vcpu->hv_clock.tsc_shift,
  1285. &vcpu->hv_clock.tsc_to_system_mul);
  1286. vcpu->hw_tsc_khz = this_tsc_khz;
  1287. }
  1288. /* with a master <monotonic time, tsc value> tuple,
  1289. * pvclock clock reads always increase at the (scaled) rate
  1290. * of guest TSC - no need to deal with sampling errors.
  1291. */
  1292. if (!use_master_clock) {
  1293. if (max_kernel_ns > kernel_ns)
  1294. kernel_ns = max_kernel_ns;
  1295. }
  1296. /* With all the info we got, fill in the values */
  1297. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  1298. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  1299. vcpu->last_kernel_ns = kernel_ns;
  1300. vcpu->last_guest_tsc = tsc_timestamp;
  1301. /*
  1302. * The interface expects us to write an even number signaling that the
  1303. * update is finished. Since the guest won't see the intermediate
  1304. * state, we just increase by 2 at the end.
  1305. */
  1306. vcpu->hv_clock.version += 2;
  1307. if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
  1308. &guest_hv_clock, sizeof(guest_hv_clock))))
  1309. return 0;
  1310. /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
  1311. pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
  1312. if (vcpu->pvclock_set_guest_stopped_request) {
  1313. pvclock_flags |= PVCLOCK_GUEST_STOPPED;
  1314. vcpu->pvclock_set_guest_stopped_request = false;
  1315. }
  1316. /* If the host uses TSC clocksource, then it is stable */
  1317. if (use_master_clock)
  1318. pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
  1319. vcpu->hv_clock.flags = pvclock_flags;
  1320. kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
  1321. &vcpu->hv_clock,
  1322. sizeof(vcpu->hv_clock));
  1323. return 0;
  1324. }
  1325. static bool msr_mtrr_valid(unsigned msr)
  1326. {
  1327. switch (msr) {
  1328. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  1329. case MSR_MTRRfix64K_00000:
  1330. case MSR_MTRRfix16K_80000:
  1331. case MSR_MTRRfix16K_A0000:
  1332. case MSR_MTRRfix4K_C0000:
  1333. case MSR_MTRRfix4K_C8000:
  1334. case MSR_MTRRfix4K_D0000:
  1335. case MSR_MTRRfix4K_D8000:
  1336. case MSR_MTRRfix4K_E0000:
  1337. case MSR_MTRRfix4K_E8000:
  1338. case MSR_MTRRfix4K_F0000:
  1339. case MSR_MTRRfix4K_F8000:
  1340. case MSR_MTRRdefType:
  1341. case MSR_IA32_CR_PAT:
  1342. return true;
  1343. case 0x2f8:
  1344. return true;
  1345. }
  1346. return false;
  1347. }
  1348. static bool valid_pat_type(unsigned t)
  1349. {
  1350. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1351. }
  1352. static bool valid_mtrr_type(unsigned t)
  1353. {
  1354. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1355. }
  1356. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1357. {
  1358. int i;
  1359. if (!msr_mtrr_valid(msr))
  1360. return false;
  1361. if (msr == MSR_IA32_CR_PAT) {
  1362. for (i = 0; i < 8; i++)
  1363. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1364. return false;
  1365. return true;
  1366. } else if (msr == MSR_MTRRdefType) {
  1367. if (data & ~0xcff)
  1368. return false;
  1369. return valid_mtrr_type(data & 0xff);
  1370. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1371. for (i = 0; i < 8 ; i++)
  1372. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1373. return false;
  1374. return true;
  1375. }
  1376. /* variable MTRRs */
  1377. return valid_mtrr_type(data & 0xff);
  1378. }
  1379. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1380. {
  1381. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1382. if (!mtrr_valid(vcpu, msr, data))
  1383. return 1;
  1384. if (msr == MSR_MTRRdefType) {
  1385. vcpu->arch.mtrr_state.def_type = data;
  1386. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1387. } else if (msr == MSR_MTRRfix64K_00000)
  1388. p[0] = data;
  1389. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1390. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1391. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1392. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1393. else if (msr == MSR_IA32_CR_PAT)
  1394. vcpu->arch.pat = data;
  1395. else { /* Variable MTRRs */
  1396. int idx, is_mtrr_mask;
  1397. u64 *pt;
  1398. idx = (msr - 0x200) / 2;
  1399. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1400. if (!is_mtrr_mask)
  1401. pt =
  1402. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1403. else
  1404. pt =
  1405. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1406. *pt = data;
  1407. }
  1408. kvm_mmu_reset_context(vcpu);
  1409. return 0;
  1410. }
  1411. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1412. {
  1413. u64 mcg_cap = vcpu->arch.mcg_cap;
  1414. unsigned bank_num = mcg_cap & 0xff;
  1415. switch (msr) {
  1416. case MSR_IA32_MCG_STATUS:
  1417. vcpu->arch.mcg_status = data;
  1418. break;
  1419. case MSR_IA32_MCG_CTL:
  1420. if (!(mcg_cap & MCG_CTL_P))
  1421. return 1;
  1422. if (data != 0 && data != ~(u64)0)
  1423. return -1;
  1424. vcpu->arch.mcg_ctl = data;
  1425. break;
  1426. default:
  1427. if (msr >= MSR_IA32_MC0_CTL &&
  1428. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1429. u32 offset = msr - MSR_IA32_MC0_CTL;
  1430. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1431. * some Linux kernels though clear bit 10 in bank 4 to
  1432. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1433. * this to avoid an uncatched #GP in the guest
  1434. */
  1435. if ((offset & 0x3) == 0 &&
  1436. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1437. return -1;
  1438. vcpu->arch.mce_banks[offset] = data;
  1439. break;
  1440. }
  1441. return 1;
  1442. }
  1443. return 0;
  1444. }
  1445. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1446. {
  1447. struct kvm *kvm = vcpu->kvm;
  1448. int lm = is_long_mode(vcpu);
  1449. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1450. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1451. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1452. : kvm->arch.xen_hvm_config.blob_size_32;
  1453. u32 page_num = data & ~PAGE_MASK;
  1454. u64 page_addr = data & PAGE_MASK;
  1455. u8 *page;
  1456. int r;
  1457. r = -E2BIG;
  1458. if (page_num >= blob_size)
  1459. goto out;
  1460. r = -ENOMEM;
  1461. page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
  1462. if (IS_ERR(page)) {
  1463. r = PTR_ERR(page);
  1464. goto out;
  1465. }
  1466. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1467. goto out_free;
  1468. r = 0;
  1469. out_free:
  1470. kfree(page);
  1471. out:
  1472. return r;
  1473. }
  1474. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1475. {
  1476. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1477. }
  1478. static bool kvm_hv_msr_partition_wide(u32 msr)
  1479. {
  1480. bool r = false;
  1481. switch (msr) {
  1482. case HV_X64_MSR_GUEST_OS_ID:
  1483. case HV_X64_MSR_HYPERCALL:
  1484. r = true;
  1485. break;
  1486. }
  1487. return r;
  1488. }
  1489. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1490. {
  1491. struct kvm *kvm = vcpu->kvm;
  1492. switch (msr) {
  1493. case HV_X64_MSR_GUEST_OS_ID:
  1494. kvm->arch.hv_guest_os_id = data;
  1495. /* setting guest os id to zero disables hypercall page */
  1496. if (!kvm->arch.hv_guest_os_id)
  1497. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1498. break;
  1499. case HV_X64_MSR_HYPERCALL: {
  1500. u64 gfn;
  1501. unsigned long addr;
  1502. u8 instructions[4];
  1503. /* if guest os id is not set hypercall should remain disabled */
  1504. if (!kvm->arch.hv_guest_os_id)
  1505. break;
  1506. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1507. kvm->arch.hv_hypercall = data;
  1508. break;
  1509. }
  1510. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1511. addr = gfn_to_hva(kvm, gfn);
  1512. if (kvm_is_error_hva(addr))
  1513. return 1;
  1514. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1515. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1516. if (__copy_to_user((void __user *)addr, instructions, 4))
  1517. return 1;
  1518. kvm->arch.hv_hypercall = data;
  1519. break;
  1520. }
  1521. default:
  1522. vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1523. "data 0x%llx\n", msr, data);
  1524. return 1;
  1525. }
  1526. return 0;
  1527. }
  1528. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1529. {
  1530. switch (msr) {
  1531. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1532. unsigned long addr;
  1533. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1534. vcpu->arch.hv_vapic = data;
  1535. break;
  1536. }
  1537. addr = gfn_to_hva(vcpu->kvm, data >>
  1538. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1539. if (kvm_is_error_hva(addr))
  1540. return 1;
  1541. if (__clear_user((void __user *)addr, PAGE_SIZE))
  1542. return 1;
  1543. vcpu->arch.hv_vapic = data;
  1544. break;
  1545. }
  1546. case HV_X64_MSR_EOI:
  1547. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1548. case HV_X64_MSR_ICR:
  1549. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1550. case HV_X64_MSR_TPR:
  1551. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1552. default:
  1553. vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1554. "data 0x%llx\n", msr, data);
  1555. return 1;
  1556. }
  1557. return 0;
  1558. }
  1559. static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
  1560. {
  1561. gpa_t gpa = data & ~0x3f;
  1562. /* Bits 2:5 are reserved, Should be zero */
  1563. if (data & 0x3c)
  1564. return 1;
  1565. vcpu->arch.apf.msr_val = data;
  1566. if (!(data & KVM_ASYNC_PF_ENABLED)) {
  1567. kvm_clear_async_pf_completion_queue(vcpu);
  1568. kvm_async_pf_hash_reset(vcpu);
  1569. return 0;
  1570. }
  1571. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
  1572. return 1;
  1573. vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
  1574. kvm_async_pf_wakeup_all(vcpu);
  1575. return 0;
  1576. }
  1577. static void kvmclock_reset(struct kvm_vcpu *vcpu)
  1578. {
  1579. vcpu->arch.pv_time_enabled = false;
  1580. }
  1581. static void accumulate_steal_time(struct kvm_vcpu *vcpu)
  1582. {
  1583. u64 delta;
  1584. if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
  1585. return;
  1586. delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
  1587. vcpu->arch.st.last_steal = current->sched_info.run_delay;
  1588. vcpu->arch.st.accum_steal = delta;
  1589. }
  1590. static void record_steal_time(struct kvm_vcpu *vcpu)
  1591. {
  1592. if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
  1593. return;
  1594. if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
  1595. &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
  1596. return;
  1597. vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
  1598. vcpu->arch.st.steal.version += 2;
  1599. vcpu->arch.st.accum_steal = 0;
  1600. kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
  1601. &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
  1602. }
  1603. int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  1604. {
  1605. bool pr = false;
  1606. u32 msr = msr_info->index;
  1607. u64 data = msr_info->data;
  1608. switch (msr) {
  1609. case MSR_AMD64_NB_CFG:
  1610. case MSR_IA32_UCODE_REV:
  1611. case MSR_IA32_UCODE_WRITE:
  1612. case MSR_VM_HSAVE_PA:
  1613. case MSR_AMD64_PATCH_LOADER:
  1614. case MSR_AMD64_BU_CFG2:
  1615. break;
  1616. case MSR_EFER:
  1617. return set_efer(vcpu, data);
  1618. case MSR_K7_HWCR:
  1619. data &= ~(u64)0x40; /* ignore flush filter disable */
  1620. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1621. data &= ~(u64)0x8; /* ignore TLB cache disable */
  1622. if (data != 0) {
  1623. vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1624. data);
  1625. return 1;
  1626. }
  1627. break;
  1628. case MSR_FAM10H_MMIO_CONF_BASE:
  1629. if (data != 0) {
  1630. vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1631. "0x%llx\n", data);
  1632. return 1;
  1633. }
  1634. break;
  1635. case MSR_IA32_DEBUGCTLMSR:
  1636. if (!data) {
  1637. /* We support the non-activated case already */
  1638. break;
  1639. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1640. /* Values other than LBR and BTF are vendor-specific,
  1641. thus reserved and should throw a #GP */
  1642. return 1;
  1643. }
  1644. vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1645. __func__, data);
  1646. break;
  1647. case 0x200 ... 0x2ff:
  1648. return set_msr_mtrr(vcpu, msr, data);
  1649. case MSR_IA32_APICBASE:
  1650. kvm_set_apic_base(vcpu, data);
  1651. break;
  1652. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1653. return kvm_x2apic_msr_write(vcpu, msr, data);
  1654. case MSR_IA32_TSCDEADLINE:
  1655. kvm_set_lapic_tscdeadline_msr(vcpu, data);
  1656. break;
  1657. case MSR_IA32_TSC_ADJUST:
  1658. if (guest_cpuid_has_tsc_adjust(vcpu)) {
  1659. if (!msr_info->host_initiated) {
  1660. u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
  1661. kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
  1662. }
  1663. vcpu->arch.ia32_tsc_adjust_msr = data;
  1664. }
  1665. break;
  1666. case MSR_IA32_MISC_ENABLE:
  1667. vcpu->arch.ia32_misc_enable_msr = data;
  1668. break;
  1669. case MSR_KVM_WALL_CLOCK_NEW:
  1670. case MSR_KVM_WALL_CLOCK:
  1671. vcpu->kvm->arch.wall_clock = data;
  1672. kvm_write_wall_clock(vcpu->kvm, data);
  1673. break;
  1674. case MSR_KVM_SYSTEM_TIME_NEW:
  1675. case MSR_KVM_SYSTEM_TIME: {
  1676. u64 gpa_offset;
  1677. kvmclock_reset(vcpu);
  1678. vcpu->arch.time = data;
  1679. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1680. /* we verify if the enable bit is set... */
  1681. if (!(data & 1))
  1682. break;
  1683. gpa_offset = data & ~(PAGE_MASK | 1);
  1684. /* Check that the address is 32-byte aligned. */
  1685. if (gpa_offset & (sizeof(struct pvclock_vcpu_time_info) - 1))
  1686. break;
  1687. if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
  1688. &vcpu->arch.pv_time, data & ~1ULL))
  1689. vcpu->arch.pv_time_enabled = false;
  1690. else
  1691. vcpu->arch.pv_time_enabled = true;
  1692. break;
  1693. }
  1694. case MSR_KVM_ASYNC_PF_EN:
  1695. if (kvm_pv_enable_async_pf(vcpu, data))
  1696. return 1;
  1697. break;
  1698. case MSR_KVM_STEAL_TIME:
  1699. if (unlikely(!sched_info_on()))
  1700. return 1;
  1701. if (data & KVM_STEAL_RESERVED_MASK)
  1702. return 1;
  1703. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
  1704. data & KVM_STEAL_VALID_BITS))
  1705. return 1;
  1706. vcpu->arch.st.msr_val = data;
  1707. if (!(data & KVM_MSR_ENABLED))
  1708. break;
  1709. vcpu->arch.st.last_steal = current->sched_info.run_delay;
  1710. preempt_disable();
  1711. accumulate_steal_time(vcpu);
  1712. preempt_enable();
  1713. kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
  1714. break;
  1715. case MSR_KVM_PV_EOI_EN:
  1716. if (kvm_lapic_enable_pv_eoi(vcpu, data))
  1717. return 1;
  1718. break;
  1719. case MSR_IA32_MCG_CTL:
  1720. case MSR_IA32_MCG_STATUS:
  1721. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1722. return set_msr_mce(vcpu, msr, data);
  1723. /* Performance counters are not protected by a CPUID bit,
  1724. * so we should check all of them in the generic path for the sake of
  1725. * cross vendor migration.
  1726. * Writing a zero into the event select MSRs disables them,
  1727. * which we perfectly emulate ;-). Any other value should be at least
  1728. * reported, some guests depend on them.
  1729. */
  1730. case MSR_K7_EVNTSEL0:
  1731. case MSR_K7_EVNTSEL1:
  1732. case MSR_K7_EVNTSEL2:
  1733. case MSR_K7_EVNTSEL3:
  1734. if (data != 0)
  1735. vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1736. "0x%x data 0x%llx\n", msr, data);
  1737. break;
  1738. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1739. * so we ignore writes to make it happy.
  1740. */
  1741. case MSR_K7_PERFCTR0:
  1742. case MSR_K7_PERFCTR1:
  1743. case MSR_K7_PERFCTR2:
  1744. case MSR_K7_PERFCTR3:
  1745. vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1746. "0x%x data 0x%llx\n", msr, data);
  1747. break;
  1748. case MSR_P6_PERFCTR0:
  1749. case MSR_P6_PERFCTR1:
  1750. pr = true;
  1751. case MSR_P6_EVNTSEL0:
  1752. case MSR_P6_EVNTSEL1:
  1753. if (kvm_pmu_msr(vcpu, msr))
  1754. return kvm_pmu_set_msr(vcpu, msr, data);
  1755. if (pr || data != 0)
  1756. vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
  1757. "0x%x data 0x%llx\n", msr, data);
  1758. break;
  1759. case MSR_K7_CLK_CTL:
  1760. /*
  1761. * Ignore all writes to this no longer documented MSR.
  1762. * Writes are only relevant for old K7 processors,
  1763. * all pre-dating SVM, but a recommended workaround from
  1764. * AMD for these chips. It is possible to specify the
  1765. * affected processor models on the command line, hence
  1766. * the need to ignore the workaround.
  1767. */
  1768. break;
  1769. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1770. if (kvm_hv_msr_partition_wide(msr)) {
  1771. int r;
  1772. mutex_lock(&vcpu->kvm->lock);
  1773. r = set_msr_hyperv_pw(vcpu, msr, data);
  1774. mutex_unlock(&vcpu->kvm->lock);
  1775. return r;
  1776. } else
  1777. return set_msr_hyperv(vcpu, msr, data);
  1778. break;
  1779. case MSR_IA32_BBL_CR_CTL3:
  1780. /* Drop writes to this legacy MSR -- see rdmsr
  1781. * counterpart for further detail.
  1782. */
  1783. vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
  1784. break;
  1785. case MSR_AMD64_OSVW_ID_LENGTH:
  1786. if (!guest_cpuid_has_osvw(vcpu))
  1787. return 1;
  1788. vcpu->arch.osvw.length = data;
  1789. break;
  1790. case MSR_AMD64_OSVW_STATUS:
  1791. if (!guest_cpuid_has_osvw(vcpu))
  1792. return 1;
  1793. vcpu->arch.osvw.status = data;
  1794. break;
  1795. default:
  1796. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1797. return xen_hvm_config(vcpu, data);
  1798. if (kvm_pmu_msr(vcpu, msr))
  1799. return kvm_pmu_set_msr(vcpu, msr, data);
  1800. if (!ignore_msrs) {
  1801. vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1802. msr, data);
  1803. return 1;
  1804. } else {
  1805. vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1806. msr, data);
  1807. break;
  1808. }
  1809. }
  1810. return 0;
  1811. }
  1812. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1813. /*
  1814. * Reads an msr value (of 'msr_index') into 'pdata'.
  1815. * Returns 0 on success, non-0 otherwise.
  1816. * Assumes vcpu_load() was already called.
  1817. */
  1818. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1819. {
  1820. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1821. }
  1822. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1823. {
  1824. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1825. if (!msr_mtrr_valid(msr))
  1826. return 1;
  1827. if (msr == MSR_MTRRdefType)
  1828. *pdata = vcpu->arch.mtrr_state.def_type +
  1829. (vcpu->arch.mtrr_state.enabled << 10);
  1830. else if (msr == MSR_MTRRfix64K_00000)
  1831. *pdata = p[0];
  1832. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1833. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1834. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1835. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1836. else if (msr == MSR_IA32_CR_PAT)
  1837. *pdata = vcpu->arch.pat;
  1838. else { /* Variable MTRRs */
  1839. int idx, is_mtrr_mask;
  1840. u64 *pt;
  1841. idx = (msr - 0x200) / 2;
  1842. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1843. if (!is_mtrr_mask)
  1844. pt =
  1845. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1846. else
  1847. pt =
  1848. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1849. *pdata = *pt;
  1850. }
  1851. return 0;
  1852. }
  1853. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1854. {
  1855. u64 data;
  1856. u64 mcg_cap = vcpu->arch.mcg_cap;
  1857. unsigned bank_num = mcg_cap & 0xff;
  1858. switch (msr) {
  1859. case MSR_IA32_P5_MC_ADDR:
  1860. case MSR_IA32_P5_MC_TYPE:
  1861. data = 0;
  1862. break;
  1863. case MSR_IA32_MCG_CAP:
  1864. data = vcpu->arch.mcg_cap;
  1865. break;
  1866. case MSR_IA32_MCG_CTL:
  1867. if (!(mcg_cap & MCG_CTL_P))
  1868. return 1;
  1869. data = vcpu->arch.mcg_ctl;
  1870. break;
  1871. case MSR_IA32_MCG_STATUS:
  1872. data = vcpu->arch.mcg_status;
  1873. break;
  1874. default:
  1875. if (msr >= MSR_IA32_MC0_CTL &&
  1876. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1877. u32 offset = msr - MSR_IA32_MC0_CTL;
  1878. data = vcpu->arch.mce_banks[offset];
  1879. break;
  1880. }
  1881. return 1;
  1882. }
  1883. *pdata = data;
  1884. return 0;
  1885. }
  1886. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1887. {
  1888. u64 data = 0;
  1889. struct kvm *kvm = vcpu->kvm;
  1890. switch (msr) {
  1891. case HV_X64_MSR_GUEST_OS_ID:
  1892. data = kvm->arch.hv_guest_os_id;
  1893. break;
  1894. case HV_X64_MSR_HYPERCALL:
  1895. data = kvm->arch.hv_hypercall;
  1896. break;
  1897. default:
  1898. vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1899. return 1;
  1900. }
  1901. *pdata = data;
  1902. return 0;
  1903. }
  1904. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1905. {
  1906. u64 data = 0;
  1907. switch (msr) {
  1908. case HV_X64_MSR_VP_INDEX: {
  1909. int r;
  1910. struct kvm_vcpu *v;
  1911. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1912. if (v == vcpu)
  1913. data = r;
  1914. break;
  1915. }
  1916. case HV_X64_MSR_EOI:
  1917. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1918. case HV_X64_MSR_ICR:
  1919. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1920. case HV_X64_MSR_TPR:
  1921. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1922. case HV_X64_MSR_APIC_ASSIST_PAGE:
  1923. data = vcpu->arch.hv_vapic;
  1924. break;
  1925. default:
  1926. vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1927. return 1;
  1928. }
  1929. *pdata = data;
  1930. return 0;
  1931. }
  1932. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1933. {
  1934. u64 data;
  1935. switch (msr) {
  1936. case MSR_IA32_PLATFORM_ID:
  1937. case MSR_IA32_EBL_CR_POWERON:
  1938. case MSR_IA32_DEBUGCTLMSR:
  1939. case MSR_IA32_LASTBRANCHFROMIP:
  1940. case MSR_IA32_LASTBRANCHTOIP:
  1941. case MSR_IA32_LASTINTFROMIP:
  1942. case MSR_IA32_LASTINTTOIP:
  1943. case MSR_K8_SYSCFG:
  1944. case MSR_K7_HWCR:
  1945. case MSR_VM_HSAVE_PA:
  1946. case MSR_K7_EVNTSEL0:
  1947. case MSR_K7_PERFCTR0:
  1948. case MSR_K8_INT_PENDING_MSG:
  1949. case MSR_AMD64_NB_CFG:
  1950. case MSR_FAM10H_MMIO_CONF_BASE:
  1951. case MSR_AMD64_BU_CFG2:
  1952. data = 0;
  1953. break;
  1954. case MSR_P6_PERFCTR0:
  1955. case MSR_P6_PERFCTR1:
  1956. case MSR_P6_EVNTSEL0:
  1957. case MSR_P6_EVNTSEL1:
  1958. if (kvm_pmu_msr(vcpu, msr))
  1959. return kvm_pmu_get_msr(vcpu, msr, pdata);
  1960. data = 0;
  1961. break;
  1962. case MSR_IA32_UCODE_REV:
  1963. data = 0x100000000ULL;
  1964. break;
  1965. case MSR_MTRRcap:
  1966. data = 0x500 | KVM_NR_VAR_MTRR;
  1967. break;
  1968. case 0x200 ... 0x2ff:
  1969. return get_msr_mtrr(vcpu, msr, pdata);
  1970. case 0xcd: /* fsb frequency */
  1971. data = 3;
  1972. break;
  1973. /*
  1974. * MSR_EBC_FREQUENCY_ID
  1975. * Conservative value valid for even the basic CPU models.
  1976. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  1977. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  1978. * and 266MHz for model 3, or 4. Set Core Clock
  1979. * Frequency to System Bus Frequency Ratio to 1 (bits
  1980. * 31:24) even though these are only valid for CPU
  1981. * models > 2, however guests may end up dividing or
  1982. * multiplying by zero otherwise.
  1983. */
  1984. case MSR_EBC_FREQUENCY_ID:
  1985. data = 1 << 24;
  1986. break;
  1987. case MSR_IA32_APICBASE:
  1988. data = kvm_get_apic_base(vcpu);
  1989. break;
  1990. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1991. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1992. break;
  1993. case MSR_IA32_TSCDEADLINE:
  1994. data = kvm_get_lapic_tscdeadline_msr(vcpu);
  1995. break;
  1996. case MSR_IA32_TSC_ADJUST:
  1997. data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
  1998. break;
  1999. case MSR_IA32_MISC_ENABLE:
  2000. data = vcpu->arch.ia32_misc_enable_msr;
  2001. break;
  2002. case MSR_IA32_PERF_STATUS:
  2003. /* TSC increment by tick */
  2004. data = 1000ULL;
  2005. /* CPU multiplier */
  2006. data |= (((uint64_t)4ULL) << 40);
  2007. break;
  2008. case MSR_EFER:
  2009. data = vcpu->arch.efer;
  2010. break;
  2011. case MSR_KVM_WALL_CLOCK:
  2012. case MSR_KVM_WALL_CLOCK_NEW:
  2013. data = vcpu->kvm->arch.wall_clock;
  2014. break;
  2015. case MSR_KVM_SYSTEM_TIME:
  2016. case MSR_KVM_SYSTEM_TIME_NEW:
  2017. data = vcpu->arch.time;
  2018. break;
  2019. case MSR_KVM_ASYNC_PF_EN:
  2020. data = vcpu->arch.apf.msr_val;
  2021. break;
  2022. case MSR_KVM_STEAL_TIME:
  2023. data = vcpu->arch.st.msr_val;
  2024. break;
  2025. case MSR_KVM_PV_EOI_EN:
  2026. data = vcpu->arch.pv_eoi.msr_val;
  2027. break;
  2028. case MSR_IA32_P5_MC_ADDR:
  2029. case MSR_IA32_P5_MC_TYPE:
  2030. case MSR_IA32_MCG_CAP:
  2031. case MSR_IA32_MCG_CTL:
  2032. case MSR_IA32_MCG_STATUS:
  2033. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  2034. return get_msr_mce(vcpu, msr, pdata);
  2035. case MSR_K7_CLK_CTL:
  2036. /*
  2037. * Provide expected ramp-up count for K7. All other
  2038. * are set to zero, indicating minimum divisors for
  2039. * every field.
  2040. *
  2041. * This prevents guest kernels on AMD host with CPU
  2042. * type 6, model 8 and higher from exploding due to
  2043. * the rdmsr failing.
  2044. */
  2045. data = 0x20000000;
  2046. break;
  2047. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  2048. if (kvm_hv_msr_partition_wide(msr)) {
  2049. int r;
  2050. mutex_lock(&vcpu->kvm->lock);
  2051. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  2052. mutex_unlock(&vcpu->kvm->lock);
  2053. return r;
  2054. } else
  2055. return get_msr_hyperv(vcpu, msr, pdata);
  2056. break;
  2057. case MSR_IA32_BBL_CR_CTL3:
  2058. /* This legacy MSR exists but isn't fully documented in current
  2059. * silicon. It is however accessed by winxp in very narrow
  2060. * scenarios where it sets bit #19, itself documented as
  2061. * a "reserved" bit. Best effort attempt to source coherent
  2062. * read data here should the balance of the register be
  2063. * interpreted by the guest:
  2064. *
  2065. * L2 cache control register 3: 64GB range, 256KB size,
  2066. * enabled, latency 0x1, configured
  2067. */
  2068. data = 0xbe702111;
  2069. break;
  2070. case MSR_AMD64_OSVW_ID_LENGTH:
  2071. if (!guest_cpuid_has_osvw(vcpu))
  2072. return 1;
  2073. data = vcpu->arch.osvw.length;
  2074. break;
  2075. case MSR_AMD64_OSVW_STATUS:
  2076. if (!guest_cpuid_has_osvw(vcpu))
  2077. return 1;
  2078. data = vcpu->arch.osvw.status;
  2079. break;
  2080. default:
  2081. if (kvm_pmu_msr(vcpu, msr))
  2082. return kvm_pmu_get_msr(vcpu, msr, pdata);
  2083. if (!ignore_msrs) {
  2084. vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  2085. return 1;
  2086. } else {
  2087. vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  2088. data = 0;
  2089. }
  2090. break;
  2091. }
  2092. *pdata = data;
  2093. return 0;
  2094. }
  2095. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  2096. /*
  2097. * Read or write a bunch of msrs. All parameters are kernel addresses.
  2098. *
  2099. * @return number of msrs set successfully.
  2100. */
  2101. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  2102. struct kvm_msr_entry *entries,
  2103. int (*do_msr)(struct kvm_vcpu *vcpu,
  2104. unsigned index, u64 *data))
  2105. {
  2106. int i, idx;
  2107. idx = srcu_read_lock(&vcpu->kvm->srcu);
  2108. for (i = 0; i < msrs->nmsrs; ++i)
  2109. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  2110. break;
  2111. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  2112. return i;
  2113. }
  2114. /*
  2115. * Read or write a bunch of msrs. Parameters are user addresses.
  2116. *
  2117. * @return number of msrs set successfully.
  2118. */
  2119. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  2120. int (*do_msr)(struct kvm_vcpu *vcpu,
  2121. unsigned index, u64 *data),
  2122. int writeback)
  2123. {
  2124. struct kvm_msrs msrs;
  2125. struct kvm_msr_entry *entries;
  2126. int r, n;
  2127. unsigned size;
  2128. r = -EFAULT;
  2129. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  2130. goto out;
  2131. r = -E2BIG;
  2132. if (msrs.nmsrs >= MAX_IO_MSRS)
  2133. goto out;
  2134. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  2135. entries = memdup_user(user_msrs->entries, size);
  2136. if (IS_ERR(entries)) {
  2137. r = PTR_ERR(entries);
  2138. goto out;
  2139. }
  2140. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  2141. if (r < 0)
  2142. goto out_free;
  2143. r = -EFAULT;
  2144. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  2145. goto out_free;
  2146. r = n;
  2147. out_free:
  2148. kfree(entries);
  2149. out:
  2150. return r;
  2151. }
  2152. int kvm_dev_ioctl_check_extension(long ext)
  2153. {
  2154. int r;
  2155. switch (ext) {
  2156. case KVM_CAP_IRQCHIP:
  2157. case KVM_CAP_HLT:
  2158. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2159. case KVM_CAP_SET_TSS_ADDR:
  2160. case KVM_CAP_EXT_CPUID:
  2161. case KVM_CAP_CLOCKSOURCE:
  2162. case KVM_CAP_PIT:
  2163. case KVM_CAP_NOP_IO_DELAY:
  2164. case KVM_CAP_MP_STATE:
  2165. case KVM_CAP_SYNC_MMU:
  2166. case KVM_CAP_USER_NMI:
  2167. case KVM_CAP_REINJECT_CONTROL:
  2168. case KVM_CAP_IRQ_INJECT_STATUS:
  2169. case KVM_CAP_ASSIGN_DEV_IRQ:
  2170. case KVM_CAP_IRQFD:
  2171. case KVM_CAP_IOEVENTFD:
  2172. case KVM_CAP_PIT2:
  2173. case KVM_CAP_PIT_STATE2:
  2174. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  2175. case KVM_CAP_XEN_HVM:
  2176. case KVM_CAP_ADJUST_CLOCK:
  2177. case KVM_CAP_VCPU_EVENTS:
  2178. case KVM_CAP_HYPERV:
  2179. case KVM_CAP_HYPERV_VAPIC:
  2180. case KVM_CAP_HYPERV_SPIN:
  2181. case KVM_CAP_PCI_SEGMENT:
  2182. case KVM_CAP_DEBUGREGS:
  2183. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  2184. case KVM_CAP_XSAVE:
  2185. case KVM_CAP_ASYNC_PF:
  2186. case KVM_CAP_GET_TSC_KHZ:
  2187. case KVM_CAP_PCI_2_3:
  2188. case KVM_CAP_KVMCLOCK_CTRL:
  2189. case KVM_CAP_READONLY_MEM:
  2190. case KVM_CAP_IRQFD_RESAMPLE:
  2191. r = 1;
  2192. break;
  2193. case KVM_CAP_COALESCED_MMIO:
  2194. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  2195. break;
  2196. case KVM_CAP_VAPIC:
  2197. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  2198. break;
  2199. case KVM_CAP_NR_VCPUS:
  2200. r = KVM_SOFT_MAX_VCPUS;
  2201. break;
  2202. case KVM_CAP_MAX_VCPUS:
  2203. r = KVM_MAX_VCPUS;
  2204. break;
  2205. case KVM_CAP_NR_MEMSLOTS:
  2206. r = KVM_USER_MEM_SLOTS;
  2207. break;
  2208. case KVM_CAP_PV_MMU: /* obsolete */
  2209. r = 0;
  2210. break;
  2211. case KVM_CAP_IOMMU:
  2212. r = iommu_present(&pci_bus_type);
  2213. break;
  2214. case KVM_CAP_MCE:
  2215. r = KVM_MAX_MCE_BANKS;
  2216. break;
  2217. case KVM_CAP_XCRS:
  2218. r = cpu_has_xsave;
  2219. break;
  2220. case KVM_CAP_TSC_CONTROL:
  2221. r = kvm_has_tsc_control;
  2222. break;
  2223. case KVM_CAP_TSC_DEADLINE_TIMER:
  2224. r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
  2225. break;
  2226. default:
  2227. r = 0;
  2228. break;
  2229. }
  2230. return r;
  2231. }
  2232. long kvm_arch_dev_ioctl(struct file *filp,
  2233. unsigned int ioctl, unsigned long arg)
  2234. {
  2235. void __user *argp = (void __user *)arg;
  2236. long r;
  2237. switch (ioctl) {
  2238. case KVM_GET_MSR_INDEX_LIST: {
  2239. struct kvm_msr_list __user *user_msr_list = argp;
  2240. struct kvm_msr_list msr_list;
  2241. unsigned n;
  2242. r = -EFAULT;
  2243. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2244. goto out;
  2245. n = msr_list.nmsrs;
  2246. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2247. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2248. goto out;
  2249. r = -E2BIG;
  2250. if (n < msr_list.nmsrs)
  2251. goto out;
  2252. r = -EFAULT;
  2253. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2254. num_msrs_to_save * sizeof(u32)))
  2255. goto out;
  2256. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  2257. &emulated_msrs,
  2258. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2259. goto out;
  2260. r = 0;
  2261. break;
  2262. }
  2263. case KVM_GET_SUPPORTED_CPUID: {
  2264. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2265. struct kvm_cpuid2 cpuid;
  2266. r = -EFAULT;
  2267. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2268. goto out;
  2269. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  2270. cpuid_arg->entries);
  2271. if (r)
  2272. goto out;
  2273. r = -EFAULT;
  2274. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2275. goto out;
  2276. r = 0;
  2277. break;
  2278. }
  2279. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  2280. u64 mce_cap;
  2281. mce_cap = KVM_MCE_CAP_SUPPORTED;
  2282. r = -EFAULT;
  2283. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  2284. goto out;
  2285. r = 0;
  2286. break;
  2287. }
  2288. default:
  2289. r = -EINVAL;
  2290. }
  2291. out:
  2292. return r;
  2293. }
  2294. static void wbinvd_ipi(void *garbage)
  2295. {
  2296. wbinvd();
  2297. }
  2298. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  2299. {
  2300. return vcpu->kvm->arch.iommu_domain &&
  2301. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  2302. }
  2303. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  2304. {
  2305. /* Address WBINVD may be executed by guest */
  2306. if (need_emulate_wbinvd(vcpu)) {
  2307. if (kvm_x86_ops->has_wbinvd_exit())
  2308. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  2309. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  2310. smp_call_function_single(vcpu->cpu,
  2311. wbinvd_ipi, NULL, 1);
  2312. }
  2313. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2314. /* Apply any externally detected TSC adjustments (due to suspend) */
  2315. if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
  2316. adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
  2317. vcpu->arch.tsc_offset_adjustment = 0;
  2318. set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
  2319. }
  2320. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  2321. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  2322. native_read_tsc() - vcpu->arch.last_host_tsc;
  2323. if (tsc_delta < 0)
  2324. mark_tsc_unstable("KVM discovered backwards TSC");
  2325. if (check_tsc_unstable()) {
  2326. u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
  2327. vcpu->arch.last_guest_tsc);
  2328. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  2329. vcpu->arch.tsc_catchup = 1;
  2330. }
  2331. /*
  2332. * On a host with synchronized TSC, there is no need to update
  2333. * kvmclock on vcpu->cpu migration
  2334. */
  2335. if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
  2336. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  2337. if (vcpu->cpu != cpu)
  2338. kvm_migrate_timers(vcpu);
  2339. vcpu->cpu = cpu;
  2340. }
  2341. accumulate_steal_time(vcpu);
  2342. kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
  2343. }
  2344. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  2345. {
  2346. kvm_x86_ops->vcpu_put(vcpu);
  2347. kvm_put_guest_fpu(vcpu);
  2348. vcpu->arch.last_host_tsc = native_read_tsc();
  2349. }
  2350. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2351. struct kvm_lapic_state *s)
  2352. {
  2353. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2354. return 0;
  2355. }
  2356. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2357. struct kvm_lapic_state *s)
  2358. {
  2359. kvm_apic_post_state_restore(vcpu, s);
  2360. update_cr8_intercept(vcpu);
  2361. return 0;
  2362. }
  2363. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2364. struct kvm_interrupt *irq)
  2365. {
  2366. if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
  2367. return -EINVAL;
  2368. if (irqchip_in_kernel(vcpu->kvm))
  2369. return -ENXIO;
  2370. kvm_queue_interrupt(vcpu, irq->irq, false);
  2371. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2372. return 0;
  2373. }
  2374. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2375. {
  2376. kvm_inject_nmi(vcpu);
  2377. return 0;
  2378. }
  2379. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2380. struct kvm_tpr_access_ctl *tac)
  2381. {
  2382. if (tac->flags)
  2383. return -EINVAL;
  2384. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2385. return 0;
  2386. }
  2387. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2388. u64 mcg_cap)
  2389. {
  2390. int r;
  2391. unsigned bank_num = mcg_cap & 0xff, bank;
  2392. r = -EINVAL;
  2393. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2394. goto out;
  2395. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2396. goto out;
  2397. r = 0;
  2398. vcpu->arch.mcg_cap = mcg_cap;
  2399. /* Init IA32_MCG_CTL to all 1s */
  2400. if (mcg_cap & MCG_CTL_P)
  2401. vcpu->arch.mcg_ctl = ~(u64)0;
  2402. /* Init IA32_MCi_CTL to all 1s */
  2403. for (bank = 0; bank < bank_num; bank++)
  2404. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2405. out:
  2406. return r;
  2407. }
  2408. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2409. struct kvm_x86_mce *mce)
  2410. {
  2411. u64 mcg_cap = vcpu->arch.mcg_cap;
  2412. unsigned bank_num = mcg_cap & 0xff;
  2413. u64 *banks = vcpu->arch.mce_banks;
  2414. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2415. return -EINVAL;
  2416. /*
  2417. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2418. * reporting is disabled
  2419. */
  2420. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2421. vcpu->arch.mcg_ctl != ~(u64)0)
  2422. return 0;
  2423. banks += 4 * mce->bank;
  2424. /*
  2425. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2426. * reporting is disabled for the bank
  2427. */
  2428. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2429. return 0;
  2430. if (mce->status & MCI_STATUS_UC) {
  2431. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2432. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2433. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2434. return 0;
  2435. }
  2436. if (banks[1] & MCI_STATUS_VAL)
  2437. mce->status |= MCI_STATUS_OVER;
  2438. banks[2] = mce->addr;
  2439. banks[3] = mce->misc;
  2440. vcpu->arch.mcg_status = mce->mcg_status;
  2441. banks[1] = mce->status;
  2442. kvm_queue_exception(vcpu, MC_VECTOR);
  2443. } else if (!(banks[1] & MCI_STATUS_VAL)
  2444. || !(banks[1] & MCI_STATUS_UC)) {
  2445. if (banks[1] & MCI_STATUS_VAL)
  2446. mce->status |= MCI_STATUS_OVER;
  2447. banks[2] = mce->addr;
  2448. banks[3] = mce->misc;
  2449. banks[1] = mce->status;
  2450. } else
  2451. banks[1] |= MCI_STATUS_OVER;
  2452. return 0;
  2453. }
  2454. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2455. struct kvm_vcpu_events *events)
  2456. {
  2457. process_nmi(vcpu);
  2458. events->exception.injected =
  2459. vcpu->arch.exception.pending &&
  2460. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2461. events->exception.nr = vcpu->arch.exception.nr;
  2462. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2463. events->exception.pad = 0;
  2464. events->exception.error_code = vcpu->arch.exception.error_code;
  2465. events->interrupt.injected =
  2466. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2467. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2468. events->interrupt.soft = 0;
  2469. events->interrupt.shadow =
  2470. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2471. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2472. events->nmi.injected = vcpu->arch.nmi_injected;
  2473. events->nmi.pending = vcpu->arch.nmi_pending != 0;
  2474. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2475. events->nmi.pad = 0;
  2476. events->sipi_vector = vcpu->arch.sipi_vector;
  2477. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2478. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2479. | KVM_VCPUEVENT_VALID_SHADOW);
  2480. memset(&events->reserved, 0, sizeof(events->reserved));
  2481. }
  2482. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2483. struct kvm_vcpu_events *events)
  2484. {
  2485. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2486. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2487. | KVM_VCPUEVENT_VALID_SHADOW))
  2488. return -EINVAL;
  2489. process_nmi(vcpu);
  2490. vcpu->arch.exception.pending = events->exception.injected;
  2491. vcpu->arch.exception.nr = events->exception.nr;
  2492. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2493. vcpu->arch.exception.error_code = events->exception.error_code;
  2494. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2495. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2496. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2497. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2498. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2499. events->interrupt.shadow);
  2500. vcpu->arch.nmi_injected = events->nmi.injected;
  2501. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2502. vcpu->arch.nmi_pending = events->nmi.pending;
  2503. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2504. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2505. vcpu->arch.sipi_vector = events->sipi_vector;
  2506. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2507. return 0;
  2508. }
  2509. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2510. struct kvm_debugregs *dbgregs)
  2511. {
  2512. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2513. dbgregs->dr6 = vcpu->arch.dr6;
  2514. dbgregs->dr7 = vcpu->arch.dr7;
  2515. dbgregs->flags = 0;
  2516. memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
  2517. }
  2518. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2519. struct kvm_debugregs *dbgregs)
  2520. {
  2521. if (dbgregs->flags)
  2522. return -EINVAL;
  2523. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2524. vcpu->arch.dr6 = dbgregs->dr6;
  2525. vcpu->arch.dr7 = dbgregs->dr7;
  2526. return 0;
  2527. }
  2528. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2529. struct kvm_xsave *guest_xsave)
  2530. {
  2531. if (cpu_has_xsave)
  2532. memcpy(guest_xsave->region,
  2533. &vcpu->arch.guest_fpu.state->xsave,
  2534. xstate_size);
  2535. else {
  2536. memcpy(guest_xsave->region,
  2537. &vcpu->arch.guest_fpu.state->fxsave,
  2538. sizeof(struct i387_fxsave_struct));
  2539. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2540. XSTATE_FPSSE;
  2541. }
  2542. }
  2543. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2544. struct kvm_xsave *guest_xsave)
  2545. {
  2546. u64 xstate_bv =
  2547. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2548. if (cpu_has_xsave)
  2549. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2550. guest_xsave->region, xstate_size);
  2551. else {
  2552. if (xstate_bv & ~XSTATE_FPSSE)
  2553. return -EINVAL;
  2554. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2555. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2556. }
  2557. return 0;
  2558. }
  2559. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2560. struct kvm_xcrs *guest_xcrs)
  2561. {
  2562. if (!cpu_has_xsave) {
  2563. guest_xcrs->nr_xcrs = 0;
  2564. return;
  2565. }
  2566. guest_xcrs->nr_xcrs = 1;
  2567. guest_xcrs->flags = 0;
  2568. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2569. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2570. }
  2571. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2572. struct kvm_xcrs *guest_xcrs)
  2573. {
  2574. int i, r = 0;
  2575. if (!cpu_has_xsave)
  2576. return -EINVAL;
  2577. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2578. return -EINVAL;
  2579. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2580. /* Only support XCR0 currently */
  2581. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2582. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2583. guest_xcrs->xcrs[0].value);
  2584. break;
  2585. }
  2586. if (r)
  2587. r = -EINVAL;
  2588. return r;
  2589. }
  2590. /*
  2591. * kvm_set_guest_paused() indicates to the guest kernel that it has been
  2592. * stopped by the hypervisor. This function will be called from the host only.
  2593. * EINVAL is returned when the host attempts to set the flag for a guest that
  2594. * does not support pv clocks.
  2595. */
  2596. static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
  2597. {
  2598. if (!vcpu->arch.pv_time_enabled)
  2599. return -EINVAL;
  2600. vcpu->arch.pvclock_set_guest_stopped_request = true;
  2601. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  2602. return 0;
  2603. }
  2604. long kvm_arch_vcpu_ioctl(struct file *filp,
  2605. unsigned int ioctl, unsigned long arg)
  2606. {
  2607. struct kvm_vcpu *vcpu = filp->private_data;
  2608. void __user *argp = (void __user *)arg;
  2609. int r;
  2610. union {
  2611. struct kvm_lapic_state *lapic;
  2612. struct kvm_xsave *xsave;
  2613. struct kvm_xcrs *xcrs;
  2614. void *buffer;
  2615. } u;
  2616. u.buffer = NULL;
  2617. switch (ioctl) {
  2618. case KVM_GET_LAPIC: {
  2619. r = -EINVAL;
  2620. if (!vcpu->arch.apic)
  2621. goto out;
  2622. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2623. r = -ENOMEM;
  2624. if (!u.lapic)
  2625. goto out;
  2626. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2627. if (r)
  2628. goto out;
  2629. r = -EFAULT;
  2630. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2631. goto out;
  2632. r = 0;
  2633. break;
  2634. }
  2635. case KVM_SET_LAPIC: {
  2636. r = -EINVAL;
  2637. if (!vcpu->arch.apic)
  2638. goto out;
  2639. u.lapic = memdup_user(argp, sizeof(*u.lapic));
  2640. if (IS_ERR(u.lapic))
  2641. return PTR_ERR(u.lapic);
  2642. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2643. break;
  2644. }
  2645. case KVM_INTERRUPT: {
  2646. struct kvm_interrupt irq;
  2647. r = -EFAULT;
  2648. if (copy_from_user(&irq, argp, sizeof irq))
  2649. goto out;
  2650. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2651. break;
  2652. }
  2653. case KVM_NMI: {
  2654. r = kvm_vcpu_ioctl_nmi(vcpu);
  2655. break;
  2656. }
  2657. case KVM_SET_CPUID: {
  2658. struct kvm_cpuid __user *cpuid_arg = argp;
  2659. struct kvm_cpuid cpuid;
  2660. r = -EFAULT;
  2661. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2662. goto out;
  2663. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2664. break;
  2665. }
  2666. case KVM_SET_CPUID2: {
  2667. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2668. struct kvm_cpuid2 cpuid;
  2669. r = -EFAULT;
  2670. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2671. goto out;
  2672. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2673. cpuid_arg->entries);
  2674. break;
  2675. }
  2676. case KVM_GET_CPUID2: {
  2677. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2678. struct kvm_cpuid2 cpuid;
  2679. r = -EFAULT;
  2680. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2681. goto out;
  2682. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2683. cpuid_arg->entries);
  2684. if (r)
  2685. goto out;
  2686. r = -EFAULT;
  2687. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2688. goto out;
  2689. r = 0;
  2690. break;
  2691. }
  2692. case KVM_GET_MSRS:
  2693. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2694. break;
  2695. case KVM_SET_MSRS:
  2696. r = msr_io(vcpu, argp, do_set_msr, 0);
  2697. break;
  2698. case KVM_TPR_ACCESS_REPORTING: {
  2699. struct kvm_tpr_access_ctl tac;
  2700. r = -EFAULT;
  2701. if (copy_from_user(&tac, argp, sizeof tac))
  2702. goto out;
  2703. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2704. if (r)
  2705. goto out;
  2706. r = -EFAULT;
  2707. if (copy_to_user(argp, &tac, sizeof tac))
  2708. goto out;
  2709. r = 0;
  2710. break;
  2711. };
  2712. case KVM_SET_VAPIC_ADDR: {
  2713. struct kvm_vapic_addr va;
  2714. r = -EINVAL;
  2715. if (!irqchip_in_kernel(vcpu->kvm))
  2716. goto out;
  2717. r = -EFAULT;
  2718. if (copy_from_user(&va, argp, sizeof va))
  2719. goto out;
  2720. r = 0;
  2721. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2722. break;
  2723. }
  2724. case KVM_X86_SETUP_MCE: {
  2725. u64 mcg_cap;
  2726. r = -EFAULT;
  2727. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2728. goto out;
  2729. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2730. break;
  2731. }
  2732. case KVM_X86_SET_MCE: {
  2733. struct kvm_x86_mce mce;
  2734. r = -EFAULT;
  2735. if (copy_from_user(&mce, argp, sizeof mce))
  2736. goto out;
  2737. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2738. break;
  2739. }
  2740. case KVM_GET_VCPU_EVENTS: {
  2741. struct kvm_vcpu_events events;
  2742. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2743. r = -EFAULT;
  2744. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2745. break;
  2746. r = 0;
  2747. break;
  2748. }
  2749. case KVM_SET_VCPU_EVENTS: {
  2750. struct kvm_vcpu_events events;
  2751. r = -EFAULT;
  2752. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2753. break;
  2754. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2755. break;
  2756. }
  2757. case KVM_GET_DEBUGREGS: {
  2758. struct kvm_debugregs dbgregs;
  2759. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2760. r = -EFAULT;
  2761. if (copy_to_user(argp, &dbgregs,
  2762. sizeof(struct kvm_debugregs)))
  2763. break;
  2764. r = 0;
  2765. break;
  2766. }
  2767. case KVM_SET_DEBUGREGS: {
  2768. struct kvm_debugregs dbgregs;
  2769. r = -EFAULT;
  2770. if (copy_from_user(&dbgregs, argp,
  2771. sizeof(struct kvm_debugregs)))
  2772. break;
  2773. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2774. break;
  2775. }
  2776. case KVM_GET_XSAVE: {
  2777. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2778. r = -ENOMEM;
  2779. if (!u.xsave)
  2780. break;
  2781. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2782. r = -EFAULT;
  2783. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2784. break;
  2785. r = 0;
  2786. break;
  2787. }
  2788. case KVM_SET_XSAVE: {
  2789. u.xsave = memdup_user(argp, sizeof(*u.xsave));
  2790. if (IS_ERR(u.xsave))
  2791. return PTR_ERR(u.xsave);
  2792. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2793. break;
  2794. }
  2795. case KVM_GET_XCRS: {
  2796. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2797. r = -ENOMEM;
  2798. if (!u.xcrs)
  2799. break;
  2800. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2801. r = -EFAULT;
  2802. if (copy_to_user(argp, u.xcrs,
  2803. sizeof(struct kvm_xcrs)))
  2804. break;
  2805. r = 0;
  2806. break;
  2807. }
  2808. case KVM_SET_XCRS: {
  2809. u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
  2810. if (IS_ERR(u.xcrs))
  2811. return PTR_ERR(u.xcrs);
  2812. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2813. break;
  2814. }
  2815. case KVM_SET_TSC_KHZ: {
  2816. u32 user_tsc_khz;
  2817. r = -EINVAL;
  2818. user_tsc_khz = (u32)arg;
  2819. if (user_tsc_khz >= kvm_max_guest_tsc_khz)
  2820. goto out;
  2821. if (user_tsc_khz == 0)
  2822. user_tsc_khz = tsc_khz;
  2823. kvm_set_tsc_khz(vcpu, user_tsc_khz);
  2824. r = 0;
  2825. goto out;
  2826. }
  2827. case KVM_GET_TSC_KHZ: {
  2828. r = vcpu->arch.virtual_tsc_khz;
  2829. goto out;
  2830. }
  2831. case KVM_KVMCLOCK_CTRL: {
  2832. r = kvm_set_guest_paused(vcpu);
  2833. goto out;
  2834. }
  2835. default:
  2836. r = -EINVAL;
  2837. }
  2838. out:
  2839. kfree(u.buffer);
  2840. return r;
  2841. }
  2842. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  2843. {
  2844. return VM_FAULT_SIGBUS;
  2845. }
  2846. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2847. {
  2848. int ret;
  2849. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2850. return -EINVAL;
  2851. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2852. return ret;
  2853. }
  2854. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2855. u64 ident_addr)
  2856. {
  2857. kvm->arch.ept_identity_map_addr = ident_addr;
  2858. return 0;
  2859. }
  2860. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2861. u32 kvm_nr_mmu_pages)
  2862. {
  2863. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2864. return -EINVAL;
  2865. mutex_lock(&kvm->slots_lock);
  2866. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2867. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2868. mutex_unlock(&kvm->slots_lock);
  2869. return 0;
  2870. }
  2871. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2872. {
  2873. return kvm->arch.n_max_mmu_pages;
  2874. }
  2875. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2876. {
  2877. int r;
  2878. r = 0;
  2879. switch (chip->chip_id) {
  2880. case KVM_IRQCHIP_PIC_MASTER:
  2881. memcpy(&chip->chip.pic,
  2882. &pic_irqchip(kvm)->pics[0],
  2883. sizeof(struct kvm_pic_state));
  2884. break;
  2885. case KVM_IRQCHIP_PIC_SLAVE:
  2886. memcpy(&chip->chip.pic,
  2887. &pic_irqchip(kvm)->pics[1],
  2888. sizeof(struct kvm_pic_state));
  2889. break;
  2890. case KVM_IRQCHIP_IOAPIC:
  2891. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2892. break;
  2893. default:
  2894. r = -EINVAL;
  2895. break;
  2896. }
  2897. return r;
  2898. }
  2899. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2900. {
  2901. int r;
  2902. r = 0;
  2903. switch (chip->chip_id) {
  2904. case KVM_IRQCHIP_PIC_MASTER:
  2905. spin_lock(&pic_irqchip(kvm)->lock);
  2906. memcpy(&pic_irqchip(kvm)->pics[0],
  2907. &chip->chip.pic,
  2908. sizeof(struct kvm_pic_state));
  2909. spin_unlock(&pic_irqchip(kvm)->lock);
  2910. break;
  2911. case KVM_IRQCHIP_PIC_SLAVE:
  2912. spin_lock(&pic_irqchip(kvm)->lock);
  2913. memcpy(&pic_irqchip(kvm)->pics[1],
  2914. &chip->chip.pic,
  2915. sizeof(struct kvm_pic_state));
  2916. spin_unlock(&pic_irqchip(kvm)->lock);
  2917. break;
  2918. case KVM_IRQCHIP_IOAPIC:
  2919. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2920. break;
  2921. default:
  2922. r = -EINVAL;
  2923. break;
  2924. }
  2925. kvm_pic_update_irq(pic_irqchip(kvm));
  2926. return r;
  2927. }
  2928. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2929. {
  2930. int r = 0;
  2931. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2932. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2933. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2934. return r;
  2935. }
  2936. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2937. {
  2938. int r = 0;
  2939. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2940. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2941. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2942. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2943. return r;
  2944. }
  2945. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2946. {
  2947. int r = 0;
  2948. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2949. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2950. sizeof(ps->channels));
  2951. ps->flags = kvm->arch.vpit->pit_state.flags;
  2952. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2953. memset(&ps->reserved, 0, sizeof(ps->reserved));
  2954. return r;
  2955. }
  2956. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2957. {
  2958. int r = 0, start = 0;
  2959. u32 prev_legacy, cur_legacy;
  2960. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2961. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2962. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2963. if (!prev_legacy && cur_legacy)
  2964. start = 1;
  2965. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2966. sizeof(kvm->arch.vpit->pit_state.channels));
  2967. kvm->arch.vpit->pit_state.flags = ps->flags;
  2968. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2969. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2970. return r;
  2971. }
  2972. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2973. struct kvm_reinject_control *control)
  2974. {
  2975. if (!kvm->arch.vpit)
  2976. return -ENXIO;
  2977. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2978. kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
  2979. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2980. return 0;
  2981. }
  2982. /**
  2983. * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
  2984. * @kvm: kvm instance
  2985. * @log: slot id and address to which we copy the log
  2986. *
  2987. * We need to keep it in mind that VCPU threads can write to the bitmap
  2988. * concurrently. So, to avoid losing data, we keep the following order for
  2989. * each bit:
  2990. *
  2991. * 1. Take a snapshot of the bit and clear it if needed.
  2992. * 2. Write protect the corresponding page.
  2993. * 3. Flush TLB's if needed.
  2994. * 4. Copy the snapshot to the userspace.
  2995. *
  2996. * Between 2 and 3, the guest may write to the page using the remaining TLB
  2997. * entry. This is not a problem because the page will be reported dirty at
  2998. * step 4 using the snapshot taken before and step 3 ensures that successive
  2999. * writes will be logged for the next call.
  3000. */
  3001. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  3002. {
  3003. int r;
  3004. struct kvm_memory_slot *memslot;
  3005. unsigned long n, i;
  3006. unsigned long *dirty_bitmap;
  3007. unsigned long *dirty_bitmap_buffer;
  3008. bool is_dirty = false;
  3009. mutex_lock(&kvm->slots_lock);
  3010. r = -EINVAL;
  3011. if (log->slot >= KVM_USER_MEM_SLOTS)
  3012. goto out;
  3013. memslot = id_to_memslot(kvm->memslots, log->slot);
  3014. dirty_bitmap = memslot->dirty_bitmap;
  3015. r = -ENOENT;
  3016. if (!dirty_bitmap)
  3017. goto out;
  3018. n = kvm_dirty_bitmap_bytes(memslot);
  3019. dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
  3020. memset(dirty_bitmap_buffer, 0, n);
  3021. spin_lock(&kvm->mmu_lock);
  3022. for (i = 0; i < n / sizeof(long); i++) {
  3023. unsigned long mask;
  3024. gfn_t offset;
  3025. if (!dirty_bitmap[i])
  3026. continue;
  3027. is_dirty = true;
  3028. mask = xchg(&dirty_bitmap[i], 0);
  3029. dirty_bitmap_buffer[i] = mask;
  3030. offset = i * BITS_PER_LONG;
  3031. kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
  3032. }
  3033. if (is_dirty)
  3034. kvm_flush_remote_tlbs(kvm);
  3035. spin_unlock(&kvm->mmu_lock);
  3036. r = -EFAULT;
  3037. if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
  3038. goto out;
  3039. r = 0;
  3040. out:
  3041. mutex_unlock(&kvm->slots_lock);
  3042. return r;
  3043. }
  3044. int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
  3045. {
  3046. if (!irqchip_in_kernel(kvm))
  3047. return -ENXIO;
  3048. irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  3049. irq_event->irq, irq_event->level);
  3050. return 0;
  3051. }
  3052. long kvm_arch_vm_ioctl(struct file *filp,
  3053. unsigned int ioctl, unsigned long arg)
  3054. {
  3055. struct kvm *kvm = filp->private_data;
  3056. void __user *argp = (void __user *)arg;
  3057. int r = -ENOTTY;
  3058. /*
  3059. * This union makes it completely explicit to gcc-3.x
  3060. * that these two variables' stack usage should be
  3061. * combined, not added together.
  3062. */
  3063. union {
  3064. struct kvm_pit_state ps;
  3065. struct kvm_pit_state2 ps2;
  3066. struct kvm_pit_config pit_config;
  3067. } u;
  3068. switch (ioctl) {
  3069. case KVM_SET_TSS_ADDR:
  3070. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  3071. break;
  3072. case KVM_SET_IDENTITY_MAP_ADDR: {
  3073. u64 ident_addr;
  3074. r = -EFAULT;
  3075. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  3076. goto out;
  3077. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  3078. break;
  3079. }
  3080. case KVM_SET_NR_MMU_PAGES:
  3081. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  3082. break;
  3083. case KVM_GET_NR_MMU_PAGES:
  3084. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  3085. break;
  3086. case KVM_CREATE_IRQCHIP: {
  3087. struct kvm_pic *vpic;
  3088. mutex_lock(&kvm->lock);
  3089. r = -EEXIST;
  3090. if (kvm->arch.vpic)
  3091. goto create_irqchip_unlock;
  3092. r = -EINVAL;
  3093. if (atomic_read(&kvm->online_vcpus))
  3094. goto create_irqchip_unlock;
  3095. r = -ENOMEM;
  3096. vpic = kvm_create_pic(kvm);
  3097. if (vpic) {
  3098. r = kvm_ioapic_init(kvm);
  3099. if (r) {
  3100. mutex_lock(&kvm->slots_lock);
  3101. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  3102. &vpic->dev_master);
  3103. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  3104. &vpic->dev_slave);
  3105. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  3106. &vpic->dev_eclr);
  3107. mutex_unlock(&kvm->slots_lock);
  3108. kfree(vpic);
  3109. goto create_irqchip_unlock;
  3110. }
  3111. } else
  3112. goto create_irqchip_unlock;
  3113. smp_wmb();
  3114. kvm->arch.vpic = vpic;
  3115. smp_wmb();
  3116. r = kvm_setup_default_irq_routing(kvm);
  3117. if (r) {
  3118. mutex_lock(&kvm->slots_lock);
  3119. mutex_lock(&kvm->irq_lock);
  3120. kvm_ioapic_destroy(kvm);
  3121. kvm_destroy_pic(kvm);
  3122. mutex_unlock(&kvm->irq_lock);
  3123. mutex_unlock(&kvm->slots_lock);
  3124. }
  3125. create_irqchip_unlock:
  3126. mutex_unlock(&kvm->lock);
  3127. break;
  3128. }
  3129. case KVM_CREATE_PIT:
  3130. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  3131. goto create_pit;
  3132. case KVM_CREATE_PIT2:
  3133. r = -EFAULT;
  3134. if (copy_from_user(&u.pit_config, argp,
  3135. sizeof(struct kvm_pit_config)))
  3136. goto out;
  3137. create_pit:
  3138. mutex_lock(&kvm->slots_lock);
  3139. r = -EEXIST;
  3140. if (kvm->arch.vpit)
  3141. goto create_pit_unlock;
  3142. r = -ENOMEM;
  3143. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  3144. if (kvm->arch.vpit)
  3145. r = 0;
  3146. create_pit_unlock:
  3147. mutex_unlock(&kvm->slots_lock);
  3148. break;
  3149. case KVM_GET_IRQCHIP: {
  3150. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3151. struct kvm_irqchip *chip;
  3152. chip = memdup_user(argp, sizeof(*chip));
  3153. if (IS_ERR(chip)) {
  3154. r = PTR_ERR(chip);
  3155. goto out;
  3156. }
  3157. r = -ENXIO;
  3158. if (!irqchip_in_kernel(kvm))
  3159. goto get_irqchip_out;
  3160. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  3161. if (r)
  3162. goto get_irqchip_out;
  3163. r = -EFAULT;
  3164. if (copy_to_user(argp, chip, sizeof *chip))
  3165. goto get_irqchip_out;
  3166. r = 0;
  3167. get_irqchip_out:
  3168. kfree(chip);
  3169. break;
  3170. }
  3171. case KVM_SET_IRQCHIP: {
  3172. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3173. struct kvm_irqchip *chip;
  3174. chip = memdup_user(argp, sizeof(*chip));
  3175. if (IS_ERR(chip)) {
  3176. r = PTR_ERR(chip);
  3177. goto out;
  3178. }
  3179. r = -ENXIO;
  3180. if (!irqchip_in_kernel(kvm))
  3181. goto set_irqchip_out;
  3182. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  3183. if (r)
  3184. goto set_irqchip_out;
  3185. r = 0;
  3186. set_irqchip_out:
  3187. kfree(chip);
  3188. break;
  3189. }
  3190. case KVM_GET_PIT: {
  3191. r = -EFAULT;
  3192. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  3193. goto out;
  3194. r = -ENXIO;
  3195. if (!kvm->arch.vpit)
  3196. goto out;
  3197. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  3198. if (r)
  3199. goto out;
  3200. r = -EFAULT;
  3201. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  3202. goto out;
  3203. r = 0;
  3204. break;
  3205. }
  3206. case KVM_SET_PIT: {
  3207. r = -EFAULT;
  3208. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  3209. goto out;
  3210. r = -ENXIO;
  3211. if (!kvm->arch.vpit)
  3212. goto out;
  3213. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  3214. break;
  3215. }
  3216. case KVM_GET_PIT2: {
  3217. r = -ENXIO;
  3218. if (!kvm->arch.vpit)
  3219. goto out;
  3220. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  3221. if (r)
  3222. goto out;
  3223. r = -EFAULT;
  3224. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  3225. goto out;
  3226. r = 0;
  3227. break;
  3228. }
  3229. case KVM_SET_PIT2: {
  3230. r = -EFAULT;
  3231. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  3232. goto out;
  3233. r = -ENXIO;
  3234. if (!kvm->arch.vpit)
  3235. goto out;
  3236. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  3237. break;
  3238. }
  3239. case KVM_REINJECT_CONTROL: {
  3240. struct kvm_reinject_control control;
  3241. r = -EFAULT;
  3242. if (copy_from_user(&control, argp, sizeof(control)))
  3243. goto out;
  3244. r = kvm_vm_ioctl_reinject(kvm, &control);
  3245. break;
  3246. }
  3247. case KVM_XEN_HVM_CONFIG: {
  3248. r = -EFAULT;
  3249. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3250. sizeof(struct kvm_xen_hvm_config)))
  3251. goto out;
  3252. r = -EINVAL;
  3253. if (kvm->arch.xen_hvm_config.flags)
  3254. goto out;
  3255. r = 0;
  3256. break;
  3257. }
  3258. case KVM_SET_CLOCK: {
  3259. struct kvm_clock_data user_ns;
  3260. u64 now_ns;
  3261. s64 delta;
  3262. r = -EFAULT;
  3263. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3264. goto out;
  3265. r = -EINVAL;
  3266. if (user_ns.flags)
  3267. goto out;
  3268. r = 0;
  3269. local_irq_disable();
  3270. now_ns = get_kernel_ns();
  3271. delta = user_ns.clock - now_ns;
  3272. local_irq_enable();
  3273. kvm->arch.kvmclock_offset = delta;
  3274. break;
  3275. }
  3276. case KVM_GET_CLOCK: {
  3277. struct kvm_clock_data user_ns;
  3278. u64 now_ns;
  3279. local_irq_disable();
  3280. now_ns = get_kernel_ns();
  3281. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3282. local_irq_enable();
  3283. user_ns.flags = 0;
  3284. memset(&user_ns.pad, 0, sizeof(user_ns.pad));
  3285. r = -EFAULT;
  3286. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3287. goto out;
  3288. r = 0;
  3289. break;
  3290. }
  3291. default:
  3292. ;
  3293. }
  3294. out:
  3295. return r;
  3296. }
  3297. static void kvm_init_msr_list(void)
  3298. {
  3299. u32 dummy[2];
  3300. unsigned i, j;
  3301. /* skip the first msrs in the list. KVM-specific */
  3302. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3303. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3304. continue;
  3305. if (j < i)
  3306. msrs_to_save[j] = msrs_to_save[i];
  3307. j++;
  3308. }
  3309. num_msrs_to_save = j;
  3310. }
  3311. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3312. const void *v)
  3313. {
  3314. int handled = 0;
  3315. int n;
  3316. do {
  3317. n = min(len, 8);
  3318. if (!(vcpu->arch.apic &&
  3319. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
  3320. && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3321. break;
  3322. handled += n;
  3323. addr += n;
  3324. len -= n;
  3325. v += n;
  3326. } while (len);
  3327. return handled;
  3328. }
  3329. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3330. {
  3331. int handled = 0;
  3332. int n;
  3333. do {
  3334. n = min(len, 8);
  3335. if (!(vcpu->arch.apic &&
  3336. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
  3337. && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3338. break;
  3339. trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
  3340. handled += n;
  3341. addr += n;
  3342. len -= n;
  3343. v += n;
  3344. } while (len);
  3345. return handled;
  3346. }
  3347. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3348. struct kvm_segment *var, int seg)
  3349. {
  3350. kvm_x86_ops->set_segment(vcpu, var, seg);
  3351. }
  3352. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3353. struct kvm_segment *var, int seg)
  3354. {
  3355. kvm_x86_ops->get_segment(vcpu, var, seg);
  3356. }
  3357. gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3358. {
  3359. gpa_t t_gpa;
  3360. struct x86_exception exception;
  3361. BUG_ON(!mmu_is_nested(vcpu));
  3362. /* NPT walks are always user-walks */
  3363. access |= PFERR_USER_MASK;
  3364. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
  3365. return t_gpa;
  3366. }
  3367. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
  3368. struct x86_exception *exception)
  3369. {
  3370. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3371. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3372. }
  3373. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
  3374. struct x86_exception *exception)
  3375. {
  3376. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3377. access |= PFERR_FETCH_MASK;
  3378. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3379. }
  3380. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
  3381. struct x86_exception *exception)
  3382. {
  3383. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3384. access |= PFERR_WRITE_MASK;
  3385. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3386. }
  3387. /* uses this to access any guest's mapped memory without checking CPL */
  3388. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
  3389. struct x86_exception *exception)
  3390. {
  3391. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
  3392. }
  3393. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3394. struct kvm_vcpu *vcpu, u32 access,
  3395. struct x86_exception *exception)
  3396. {
  3397. void *data = val;
  3398. int r = X86EMUL_CONTINUE;
  3399. while (bytes) {
  3400. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3401. exception);
  3402. unsigned offset = addr & (PAGE_SIZE-1);
  3403. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3404. int ret;
  3405. if (gpa == UNMAPPED_GVA)
  3406. return X86EMUL_PROPAGATE_FAULT;
  3407. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3408. if (ret < 0) {
  3409. r = X86EMUL_IO_NEEDED;
  3410. goto out;
  3411. }
  3412. bytes -= toread;
  3413. data += toread;
  3414. addr += toread;
  3415. }
  3416. out:
  3417. return r;
  3418. }
  3419. /* used for instruction fetching */
  3420. static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
  3421. gva_t addr, void *val, unsigned int bytes,
  3422. struct x86_exception *exception)
  3423. {
  3424. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3425. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3426. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3427. access | PFERR_FETCH_MASK,
  3428. exception);
  3429. }
  3430. int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
  3431. gva_t addr, void *val, unsigned int bytes,
  3432. struct x86_exception *exception)
  3433. {
  3434. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3435. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3436. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3437. exception);
  3438. }
  3439. EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
  3440. static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  3441. gva_t addr, void *val, unsigned int bytes,
  3442. struct x86_exception *exception)
  3443. {
  3444. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3445. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
  3446. }
  3447. int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  3448. gva_t addr, void *val,
  3449. unsigned int bytes,
  3450. struct x86_exception *exception)
  3451. {
  3452. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3453. void *data = val;
  3454. int r = X86EMUL_CONTINUE;
  3455. while (bytes) {
  3456. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3457. PFERR_WRITE_MASK,
  3458. exception);
  3459. unsigned offset = addr & (PAGE_SIZE-1);
  3460. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3461. int ret;
  3462. if (gpa == UNMAPPED_GVA)
  3463. return X86EMUL_PROPAGATE_FAULT;
  3464. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3465. if (ret < 0) {
  3466. r = X86EMUL_IO_NEEDED;
  3467. goto out;
  3468. }
  3469. bytes -= towrite;
  3470. data += towrite;
  3471. addr += towrite;
  3472. }
  3473. out:
  3474. return r;
  3475. }
  3476. EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
  3477. static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
  3478. gpa_t *gpa, struct x86_exception *exception,
  3479. bool write)
  3480. {
  3481. u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
  3482. | (write ? PFERR_WRITE_MASK : 0);
  3483. if (vcpu_match_mmio_gva(vcpu, gva)
  3484. && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
  3485. *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
  3486. (gva & (PAGE_SIZE - 1));
  3487. trace_vcpu_match_mmio(gva, *gpa, write, false);
  3488. return 1;
  3489. }
  3490. *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3491. if (*gpa == UNMAPPED_GVA)
  3492. return -1;
  3493. /* For APIC access vmexit */
  3494. if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3495. return 1;
  3496. if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
  3497. trace_vcpu_match_mmio(gva, *gpa, write, true);
  3498. return 1;
  3499. }
  3500. return 0;
  3501. }
  3502. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3503. const void *val, int bytes)
  3504. {
  3505. int ret;
  3506. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3507. if (ret < 0)
  3508. return 0;
  3509. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  3510. return 1;
  3511. }
  3512. struct read_write_emulator_ops {
  3513. int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
  3514. int bytes);
  3515. int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
  3516. void *val, int bytes);
  3517. int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
  3518. int bytes, void *val);
  3519. int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
  3520. void *val, int bytes);
  3521. bool write;
  3522. };
  3523. static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
  3524. {
  3525. if (vcpu->mmio_read_completed) {
  3526. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3527. vcpu->mmio_fragments[0].gpa, *(u64 *)val);
  3528. vcpu->mmio_read_completed = 0;
  3529. return 1;
  3530. }
  3531. return 0;
  3532. }
  3533. static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
  3534. void *val, int bytes)
  3535. {
  3536. return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
  3537. }
  3538. static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
  3539. void *val, int bytes)
  3540. {
  3541. return emulator_write_phys(vcpu, gpa, val, bytes);
  3542. }
  3543. static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
  3544. {
  3545. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3546. return vcpu_mmio_write(vcpu, gpa, bytes, val);
  3547. }
  3548. static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
  3549. void *val, int bytes)
  3550. {
  3551. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3552. return X86EMUL_IO_NEEDED;
  3553. }
  3554. static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
  3555. void *val, int bytes)
  3556. {
  3557. struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
  3558. memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
  3559. return X86EMUL_CONTINUE;
  3560. }
  3561. static const struct read_write_emulator_ops read_emultor = {
  3562. .read_write_prepare = read_prepare,
  3563. .read_write_emulate = read_emulate,
  3564. .read_write_mmio = vcpu_mmio_read,
  3565. .read_write_exit_mmio = read_exit_mmio,
  3566. };
  3567. static const struct read_write_emulator_ops write_emultor = {
  3568. .read_write_emulate = write_emulate,
  3569. .read_write_mmio = write_mmio,
  3570. .read_write_exit_mmio = write_exit_mmio,
  3571. .write = true,
  3572. };
  3573. static int emulator_read_write_onepage(unsigned long addr, void *val,
  3574. unsigned int bytes,
  3575. struct x86_exception *exception,
  3576. struct kvm_vcpu *vcpu,
  3577. const struct read_write_emulator_ops *ops)
  3578. {
  3579. gpa_t gpa;
  3580. int handled, ret;
  3581. bool write = ops->write;
  3582. struct kvm_mmio_fragment *frag;
  3583. ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
  3584. if (ret < 0)
  3585. return X86EMUL_PROPAGATE_FAULT;
  3586. /* For APIC access vmexit */
  3587. if (ret)
  3588. goto mmio;
  3589. if (ops->read_write_emulate(vcpu, gpa, val, bytes))
  3590. return X86EMUL_CONTINUE;
  3591. mmio:
  3592. /*
  3593. * Is this MMIO handled locally?
  3594. */
  3595. handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
  3596. if (handled == bytes)
  3597. return X86EMUL_CONTINUE;
  3598. gpa += handled;
  3599. bytes -= handled;
  3600. val += handled;
  3601. WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
  3602. frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
  3603. frag->gpa = gpa;
  3604. frag->data = val;
  3605. frag->len = bytes;
  3606. return X86EMUL_CONTINUE;
  3607. }
  3608. int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
  3609. void *val, unsigned int bytes,
  3610. struct x86_exception *exception,
  3611. const struct read_write_emulator_ops *ops)
  3612. {
  3613. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3614. gpa_t gpa;
  3615. int rc;
  3616. if (ops->read_write_prepare &&
  3617. ops->read_write_prepare(vcpu, val, bytes))
  3618. return X86EMUL_CONTINUE;
  3619. vcpu->mmio_nr_fragments = 0;
  3620. /* Crossing a page boundary? */
  3621. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3622. int now;
  3623. now = -addr & ~PAGE_MASK;
  3624. rc = emulator_read_write_onepage(addr, val, now, exception,
  3625. vcpu, ops);
  3626. if (rc != X86EMUL_CONTINUE)
  3627. return rc;
  3628. addr += now;
  3629. val += now;
  3630. bytes -= now;
  3631. }
  3632. rc = emulator_read_write_onepage(addr, val, bytes, exception,
  3633. vcpu, ops);
  3634. if (rc != X86EMUL_CONTINUE)
  3635. return rc;
  3636. if (!vcpu->mmio_nr_fragments)
  3637. return rc;
  3638. gpa = vcpu->mmio_fragments[0].gpa;
  3639. vcpu->mmio_needed = 1;
  3640. vcpu->mmio_cur_fragment = 0;
  3641. vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
  3642. vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
  3643. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3644. vcpu->run->mmio.phys_addr = gpa;
  3645. return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
  3646. }
  3647. static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
  3648. unsigned long addr,
  3649. void *val,
  3650. unsigned int bytes,
  3651. struct x86_exception *exception)
  3652. {
  3653. return emulator_read_write(ctxt, addr, val, bytes,
  3654. exception, &read_emultor);
  3655. }
  3656. int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
  3657. unsigned long addr,
  3658. const void *val,
  3659. unsigned int bytes,
  3660. struct x86_exception *exception)
  3661. {
  3662. return emulator_read_write(ctxt, addr, (void *)val, bytes,
  3663. exception, &write_emultor);
  3664. }
  3665. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3666. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3667. #ifdef CONFIG_X86_64
  3668. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3669. #else
  3670. # define CMPXCHG64(ptr, old, new) \
  3671. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3672. #endif
  3673. static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
  3674. unsigned long addr,
  3675. const void *old,
  3676. const void *new,
  3677. unsigned int bytes,
  3678. struct x86_exception *exception)
  3679. {
  3680. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3681. gpa_t gpa;
  3682. struct page *page;
  3683. char *kaddr;
  3684. bool exchanged;
  3685. /* guests cmpxchg8b have to be emulated atomically */
  3686. if (bytes > 8 || (bytes & (bytes - 1)))
  3687. goto emul_write;
  3688. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3689. if (gpa == UNMAPPED_GVA ||
  3690. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3691. goto emul_write;
  3692. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3693. goto emul_write;
  3694. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3695. if (is_error_page(page))
  3696. goto emul_write;
  3697. kaddr = kmap_atomic(page);
  3698. kaddr += offset_in_page(gpa);
  3699. switch (bytes) {
  3700. case 1:
  3701. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3702. break;
  3703. case 2:
  3704. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3705. break;
  3706. case 4:
  3707. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3708. break;
  3709. case 8:
  3710. exchanged = CMPXCHG64(kaddr, old, new);
  3711. break;
  3712. default:
  3713. BUG();
  3714. }
  3715. kunmap_atomic(kaddr);
  3716. kvm_release_page_dirty(page);
  3717. if (!exchanged)
  3718. return X86EMUL_CMPXCHG_FAILED;
  3719. kvm_mmu_pte_write(vcpu, gpa, new, bytes);
  3720. return X86EMUL_CONTINUE;
  3721. emul_write:
  3722. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3723. return emulator_write_emulated(ctxt, addr, new, bytes, exception);
  3724. }
  3725. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3726. {
  3727. /* TODO: String I/O for in kernel device */
  3728. int r;
  3729. if (vcpu->arch.pio.in)
  3730. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3731. vcpu->arch.pio.size, pd);
  3732. else
  3733. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3734. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3735. pd);
  3736. return r;
  3737. }
  3738. static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
  3739. unsigned short port, void *val,
  3740. unsigned int count, bool in)
  3741. {
  3742. trace_kvm_pio(!in, port, size, count);
  3743. vcpu->arch.pio.port = port;
  3744. vcpu->arch.pio.in = in;
  3745. vcpu->arch.pio.count = count;
  3746. vcpu->arch.pio.size = size;
  3747. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3748. vcpu->arch.pio.count = 0;
  3749. return 1;
  3750. }
  3751. vcpu->run->exit_reason = KVM_EXIT_IO;
  3752. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  3753. vcpu->run->io.size = size;
  3754. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3755. vcpu->run->io.count = count;
  3756. vcpu->run->io.port = port;
  3757. return 0;
  3758. }
  3759. static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
  3760. int size, unsigned short port, void *val,
  3761. unsigned int count)
  3762. {
  3763. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3764. int ret;
  3765. if (vcpu->arch.pio.count)
  3766. goto data_avail;
  3767. ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
  3768. if (ret) {
  3769. data_avail:
  3770. memcpy(val, vcpu->arch.pio_data, size * count);
  3771. vcpu->arch.pio.count = 0;
  3772. return 1;
  3773. }
  3774. return 0;
  3775. }
  3776. static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
  3777. int size, unsigned short port,
  3778. const void *val, unsigned int count)
  3779. {
  3780. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3781. memcpy(vcpu->arch.pio_data, val, size * count);
  3782. return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
  3783. }
  3784. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3785. {
  3786. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3787. }
  3788. static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
  3789. {
  3790. kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
  3791. }
  3792. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3793. {
  3794. if (!need_emulate_wbinvd(vcpu))
  3795. return X86EMUL_CONTINUE;
  3796. if (kvm_x86_ops->has_wbinvd_exit()) {
  3797. int cpu = get_cpu();
  3798. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  3799. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3800. wbinvd_ipi, NULL, 1);
  3801. put_cpu();
  3802. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3803. } else
  3804. wbinvd();
  3805. return X86EMUL_CONTINUE;
  3806. }
  3807. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3808. static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
  3809. {
  3810. kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
  3811. }
  3812. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  3813. {
  3814. return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
  3815. }
  3816. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  3817. {
  3818. return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
  3819. }
  3820. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3821. {
  3822. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3823. }
  3824. static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
  3825. {
  3826. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3827. unsigned long value;
  3828. switch (cr) {
  3829. case 0:
  3830. value = kvm_read_cr0(vcpu);
  3831. break;
  3832. case 2:
  3833. value = vcpu->arch.cr2;
  3834. break;
  3835. case 3:
  3836. value = kvm_read_cr3(vcpu);
  3837. break;
  3838. case 4:
  3839. value = kvm_read_cr4(vcpu);
  3840. break;
  3841. case 8:
  3842. value = kvm_get_cr8(vcpu);
  3843. break;
  3844. default:
  3845. kvm_err("%s: unexpected cr %u\n", __func__, cr);
  3846. return 0;
  3847. }
  3848. return value;
  3849. }
  3850. static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
  3851. {
  3852. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3853. int res = 0;
  3854. switch (cr) {
  3855. case 0:
  3856. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3857. break;
  3858. case 2:
  3859. vcpu->arch.cr2 = val;
  3860. break;
  3861. case 3:
  3862. res = kvm_set_cr3(vcpu, val);
  3863. break;
  3864. case 4:
  3865. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3866. break;
  3867. case 8:
  3868. res = kvm_set_cr8(vcpu, val);
  3869. break;
  3870. default:
  3871. kvm_err("%s: unexpected cr %u\n", __func__, cr);
  3872. res = -1;
  3873. }
  3874. return res;
  3875. }
  3876. static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
  3877. {
  3878. kvm_set_rflags(emul_to_vcpu(ctxt), val);
  3879. }
  3880. static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
  3881. {
  3882. return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
  3883. }
  3884. static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3885. {
  3886. kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
  3887. }
  3888. static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3889. {
  3890. kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
  3891. }
  3892. static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3893. {
  3894. kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
  3895. }
  3896. static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3897. {
  3898. kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
  3899. }
  3900. static unsigned long emulator_get_cached_segment_base(
  3901. struct x86_emulate_ctxt *ctxt, int seg)
  3902. {
  3903. return get_segment_base(emul_to_vcpu(ctxt), seg);
  3904. }
  3905. static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
  3906. struct desc_struct *desc, u32 *base3,
  3907. int seg)
  3908. {
  3909. struct kvm_segment var;
  3910. kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
  3911. *selector = var.selector;
  3912. if (var.unusable) {
  3913. memset(desc, 0, sizeof(*desc));
  3914. return false;
  3915. }
  3916. if (var.g)
  3917. var.limit >>= 12;
  3918. set_desc_limit(desc, var.limit);
  3919. set_desc_base(desc, (unsigned long)var.base);
  3920. #ifdef CONFIG_X86_64
  3921. if (base3)
  3922. *base3 = var.base >> 32;
  3923. #endif
  3924. desc->type = var.type;
  3925. desc->s = var.s;
  3926. desc->dpl = var.dpl;
  3927. desc->p = var.present;
  3928. desc->avl = var.avl;
  3929. desc->l = var.l;
  3930. desc->d = var.db;
  3931. desc->g = var.g;
  3932. return true;
  3933. }
  3934. static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
  3935. struct desc_struct *desc, u32 base3,
  3936. int seg)
  3937. {
  3938. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3939. struct kvm_segment var;
  3940. var.selector = selector;
  3941. var.base = get_desc_base(desc);
  3942. #ifdef CONFIG_X86_64
  3943. var.base |= ((u64)base3) << 32;
  3944. #endif
  3945. var.limit = get_desc_limit(desc);
  3946. if (desc->g)
  3947. var.limit = (var.limit << 12) | 0xfff;
  3948. var.type = desc->type;
  3949. var.present = desc->p;
  3950. var.dpl = desc->dpl;
  3951. var.db = desc->d;
  3952. var.s = desc->s;
  3953. var.l = desc->l;
  3954. var.g = desc->g;
  3955. var.avl = desc->avl;
  3956. var.present = desc->p;
  3957. var.unusable = !var.present;
  3958. var.padding = 0;
  3959. kvm_set_segment(vcpu, &var, seg);
  3960. return;
  3961. }
  3962. static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
  3963. u32 msr_index, u64 *pdata)
  3964. {
  3965. return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
  3966. }
  3967. static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
  3968. u32 msr_index, u64 data)
  3969. {
  3970. struct msr_data msr;
  3971. msr.data = data;
  3972. msr.index = msr_index;
  3973. msr.host_initiated = false;
  3974. return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
  3975. }
  3976. static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
  3977. u32 pmc, u64 *pdata)
  3978. {
  3979. return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
  3980. }
  3981. static void emulator_halt(struct x86_emulate_ctxt *ctxt)
  3982. {
  3983. emul_to_vcpu(ctxt)->arch.halt_request = 1;
  3984. }
  3985. static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
  3986. {
  3987. preempt_disable();
  3988. kvm_load_guest_fpu(emul_to_vcpu(ctxt));
  3989. /*
  3990. * CR0.TS may reference the host fpu state, not the guest fpu state,
  3991. * so it may be clear at this point.
  3992. */
  3993. clts();
  3994. }
  3995. static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
  3996. {
  3997. preempt_enable();
  3998. }
  3999. static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
  4000. struct x86_instruction_info *info,
  4001. enum x86_intercept_stage stage)
  4002. {
  4003. return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
  4004. }
  4005. static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
  4006. u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
  4007. {
  4008. kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
  4009. }
  4010. static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
  4011. {
  4012. return kvm_register_read(emul_to_vcpu(ctxt), reg);
  4013. }
  4014. static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
  4015. {
  4016. kvm_register_write(emul_to_vcpu(ctxt), reg, val);
  4017. }
  4018. static const struct x86_emulate_ops emulate_ops = {
  4019. .read_gpr = emulator_read_gpr,
  4020. .write_gpr = emulator_write_gpr,
  4021. .read_std = kvm_read_guest_virt_system,
  4022. .write_std = kvm_write_guest_virt_system,
  4023. .fetch = kvm_fetch_guest_virt,
  4024. .read_emulated = emulator_read_emulated,
  4025. .write_emulated = emulator_write_emulated,
  4026. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  4027. .invlpg = emulator_invlpg,
  4028. .pio_in_emulated = emulator_pio_in_emulated,
  4029. .pio_out_emulated = emulator_pio_out_emulated,
  4030. .get_segment = emulator_get_segment,
  4031. .set_segment = emulator_set_segment,
  4032. .get_cached_segment_base = emulator_get_cached_segment_base,
  4033. .get_gdt = emulator_get_gdt,
  4034. .get_idt = emulator_get_idt,
  4035. .set_gdt = emulator_set_gdt,
  4036. .set_idt = emulator_set_idt,
  4037. .get_cr = emulator_get_cr,
  4038. .set_cr = emulator_set_cr,
  4039. .set_rflags = emulator_set_rflags,
  4040. .cpl = emulator_get_cpl,
  4041. .get_dr = emulator_get_dr,
  4042. .set_dr = emulator_set_dr,
  4043. .set_msr = emulator_set_msr,
  4044. .get_msr = emulator_get_msr,
  4045. .read_pmc = emulator_read_pmc,
  4046. .halt = emulator_halt,
  4047. .wbinvd = emulator_wbinvd,
  4048. .fix_hypercall = emulator_fix_hypercall,
  4049. .get_fpu = emulator_get_fpu,
  4050. .put_fpu = emulator_put_fpu,
  4051. .intercept = emulator_intercept,
  4052. .get_cpuid = emulator_get_cpuid,
  4053. };
  4054. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  4055. {
  4056. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  4057. /*
  4058. * an sti; sti; sequence only disable interrupts for the first
  4059. * instruction. So, if the last instruction, be it emulated or
  4060. * not, left the system with the INT_STI flag enabled, it
  4061. * means that the last instruction is an sti. We should not
  4062. * leave the flag on in this case. The same goes for mov ss
  4063. */
  4064. if (!(int_shadow & mask))
  4065. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  4066. }
  4067. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  4068. {
  4069. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4070. if (ctxt->exception.vector == PF_VECTOR)
  4071. kvm_propagate_fault(vcpu, &ctxt->exception);
  4072. else if (ctxt->exception.error_code_valid)
  4073. kvm_queue_exception_e(vcpu, ctxt->exception.vector,
  4074. ctxt->exception.error_code);
  4075. else
  4076. kvm_queue_exception(vcpu, ctxt->exception.vector);
  4077. }
  4078. static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
  4079. {
  4080. memset(&ctxt->twobyte, 0,
  4081. (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
  4082. ctxt->fetch.start = 0;
  4083. ctxt->fetch.end = 0;
  4084. ctxt->io_read.pos = 0;
  4085. ctxt->io_read.end = 0;
  4086. ctxt->mem_read.pos = 0;
  4087. ctxt->mem_read.end = 0;
  4088. }
  4089. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  4090. {
  4091. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4092. int cs_db, cs_l;
  4093. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4094. ctxt->eflags = kvm_get_rflags(vcpu);
  4095. ctxt->eip = kvm_rip_read(vcpu);
  4096. ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  4097. (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
  4098. cs_l ? X86EMUL_MODE_PROT64 :
  4099. cs_db ? X86EMUL_MODE_PROT32 :
  4100. X86EMUL_MODE_PROT16;
  4101. ctxt->guest_mode = is_guest_mode(vcpu);
  4102. init_decode_cache(ctxt);
  4103. vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
  4104. }
  4105. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
  4106. {
  4107. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4108. int ret;
  4109. init_emulate_ctxt(vcpu);
  4110. ctxt->op_bytes = 2;
  4111. ctxt->ad_bytes = 2;
  4112. ctxt->_eip = ctxt->eip + inc_eip;
  4113. ret = emulate_int_real(ctxt, irq);
  4114. if (ret != X86EMUL_CONTINUE)
  4115. return EMULATE_FAIL;
  4116. ctxt->eip = ctxt->_eip;
  4117. kvm_rip_write(vcpu, ctxt->eip);
  4118. kvm_set_rflags(vcpu, ctxt->eflags);
  4119. if (irq == NMI_VECTOR)
  4120. vcpu->arch.nmi_pending = 0;
  4121. else
  4122. vcpu->arch.interrupt.pending = false;
  4123. return EMULATE_DONE;
  4124. }
  4125. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  4126. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  4127. {
  4128. int r = EMULATE_DONE;
  4129. ++vcpu->stat.insn_emulation_fail;
  4130. trace_kvm_emulate_insn_failed(vcpu);
  4131. if (!is_guest_mode(vcpu)) {
  4132. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4133. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4134. vcpu->run->internal.ndata = 0;
  4135. r = EMULATE_FAIL;
  4136. }
  4137. kvm_queue_exception(vcpu, UD_VECTOR);
  4138. return r;
  4139. }
  4140. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
  4141. bool write_fault_to_shadow_pgtable)
  4142. {
  4143. gpa_t gpa = cr2;
  4144. pfn_t pfn;
  4145. if (!vcpu->arch.mmu.direct_map) {
  4146. /*
  4147. * Write permission should be allowed since only
  4148. * write access need to be emulated.
  4149. */
  4150. gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
  4151. /*
  4152. * If the mapping is invalid in guest, let cpu retry
  4153. * it to generate fault.
  4154. */
  4155. if (gpa == UNMAPPED_GVA)
  4156. return true;
  4157. }
  4158. /*
  4159. * Do not retry the unhandleable instruction if it faults on the
  4160. * readonly host memory, otherwise it will goto a infinite loop:
  4161. * retry instruction -> write #PF -> emulation fail -> retry
  4162. * instruction -> ...
  4163. */
  4164. pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
  4165. /*
  4166. * If the instruction failed on the error pfn, it can not be fixed,
  4167. * report the error to userspace.
  4168. */
  4169. if (is_error_noslot_pfn(pfn))
  4170. return false;
  4171. kvm_release_pfn_clean(pfn);
  4172. /* The instructions are well-emulated on direct mmu. */
  4173. if (vcpu->arch.mmu.direct_map) {
  4174. unsigned int indirect_shadow_pages;
  4175. spin_lock(&vcpu->kvm->mmu_lock);
  4176. indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
  4177. spin_unlock(&vcpu->kvm->mmu_lock);
  4178. if (indirect_shadow_pages)
  4179. kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
  4180. return true;
  4181. }
  4182. /*
  4183. * if emulation was due to access to shadowed page table
  4184. * and it failed try to unshadow page and re-enter the
  4185. * guest to let CPU execute the instruction.
  4186. */
  4187. kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
  4188. /*
  4189. * If the access faults on its page table, it can not
  4190. * be fixed by unprotecting shadow page and it should
  4191. * be reported to userspace.
  4192. */
  4193. return !write_fault_to_shadow_pgtable;
  4194. }
  4195. static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
  4196. unsigned long cr2, int emulation_type)
  4197. {
  4198. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  4199. unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
  4200. last_retry_eip = vcpu->arch.last_retry_eip;
  4201. last_retry_addr = vcpu->arch.last_retry_addr;
  4202. /*
  4203. * If the emulation is caused by #PF and it is non-page_table
  4204. * writing instruction, it means the VM-EXIT is caused by shadow
  4205. * page protected, we can zap the shadow page and retry this
  4206. * instruction directly.
  4207. *
  4208. * Note: if the guest uses a non-page-table modifying instruction
  4209. * on the PDE that points to the instruction, then we will unmap
  4210. * the instruction and go to an infinite loop. So, we cache the
  4211. * last retried eip and the last fault address, if we meet the eip
  4212. * and the address again, we can break out of the potential infinite
  4213. * loop.
  4214. */
  4215. vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
  4216. if (!(emulation_type & EMULTYPE_RETRY))
  4217. return false;
  4218. if (x86_page_table_writing_insn(ctxt))
  4219. return false;
  4220. if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
  4221. return false;
  4222. vcpu->arch.last_retry_eip = ctxt->eip;
  4223. vcpu->arch.last_retry_addr = cr2;
  4224. if (!vcpu->arch.mmu.direct_map)
  4225. gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
  4226. kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
  4227. return true;
  4228. }
  4229. static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
  4230. static int complete_emulated_pio(struct kvm_vcpu *vcpu);
  4231. int x86_emulate_instruction(struct kvm_vcpu *vcpu,
  4232. unsigned long cr2,
  4233. int emulation_type,
  4234. void *insn,
  4235. int insn_len)
  4236. {
  4237. int r;
  4238. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  4239. bool writeback = true;
  4240. bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
  4241. /*
  4242. * Clear write_fault_to_shadow_pgtable here to ensure it is
  4243. * never reused.
  4244. */
  4245. vcpu->arch.write_fault_to_shadow_pgtable = false;
  4246. kvm_clear_exception_queue(vcpu);
  4247. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  4248. init_emulate_ctxt(vcpu);
  4249. ctxt->interruptibility = 0;
  4250. ctxt->have_exception = false;
  4251. ctxt->perm_ok = false;
  4252. ctxt->only_vendor_specific_insn
  4253. = emulation_type & EMULTYPE_TRAP_UD;
  4254. r = x86_decode_insn(ctxt, insn, insn_len);
  4255. trace_kvm_emulate_insn_start(vcpu);
  4256. ++vcpu->stat.insn_emulation;
  4257. if (r != EMULATION_OK) {
  4258. if (emulation_type & EMULTYPE_TRAP_UD)
  4259. return EMULATE_FAIL;
  4260. if (reexecute_instruction(vcpu, cr2,
  4261. write_fault_to_spt))
  4262. return EMULATE_DONE;
  4263. if (emulation_type & EMULTYPE_SKIP)
  4264. return EMULATE_FAIL;
  4265. return handle_emulation_failure(vcpu);
  4266. }
  4267. }
  4268. if (emulation_type & EMULTYPE_SKIP) {
  4269. kvm_rip_write(vcpu, ctxt->_eip);
  4270. return EMULATE_DONE;
  4271. }
  4272. if (retry_instruction(ctxt, cr2, emulation_type))
  4273. return EMULATE_DONE;
  4274. /* this is needed for vmware backdoor interface to work since it
  4275. changes registers values during IO operation */
  4276. if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
  4277. vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
  4278. emulator_invalidate_register_cache(ctxt);
  4279. }
  4280. restart:
  4281. r = x86_emulate_insn(ctxt);
  4282. if (r == EMULATION_INTERCEPTED)
  4283. return EMULATE_DONE;
  4284. if (r == EMULATION_FAILED) {
  4285. if (reexecute_instruction(vcpu, cr2, write_fault_to_spt))
  4286. return EMULATE_DONE;
  4287. return handle_emulation_failure(vcpu);
  4288. }
  4289. if (ctxt->have_exception) {
  4290. inject_emulated_exception(vcpu);
  4291. r = EMULATE_DONE;
  4292. } else if (vcpu->arch.pio.count) {
  4293. if (!vcpu->arch.pio.in)
  4294. vcpu->arch.pio.count = 0;
  4295. else {
  4296. writeback = false;
  4297. vcpu->arch.complete_userspace_io = complete_emulated_pio;
  4298. }
  4299. r = EMULATE_DO_MMIO;
  4300. } else if (vcpu->mmio_needed) {
  4301. if (!vcpu->mmio_is_write)
  4302. writeback = false;
  4303. r = EMULATE_DO_MMIO;
  4304. vcpu->arch.complete_userspace_io = complete_emulated_mmio;
  4305. } else if (r == EMULATION_RESTART)
  4306. goto restart;
  4307. else
  4308. r = EMULATE_DONE;
  4309. if (writeback) {
  4310. toggle_interruptibility(vcpu, ctxt->interruptibility);
  4311. kvm_set_rflags(vcpu, ctxt->eflags);
  4312. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4313. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  4314. kvm_rip_write(vcpu, ctxt->eip);
  4315. } else
  4316. vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
  4317. return r;
  4318. }
  4319. EXPORT_SYMBOL_GPL(x86_emulate_instruction);
  4320. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  4321. {
  4322. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4323. int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
  4324. size, port, &val, 1);
  4325. /* do not return to emulator after return from userspace */
  4326. vcpu->arch.pio.count = 0;
  4327. return ret;
  4328. }
  4329. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  4330. static void tsc_bad(void *info)
  4331. {
  4332. __this_cpu_write(cpu_tsc_khz, 0);
  4333. }
  4334. static void tsc_khz_changed(void *data)
  4335. {
  4336. struct cpufreq_freqs *freq = data;
  4337. unsigned long khz = 0;
  4338. if (data)
  4339. khz = freq->new;
  4340. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4341. khz = cpufreq_quick_get(raw_smp_processor_id());
  4342. if (!khz)
  4343. khz = tsc_khz;
  4344. __this_cpu_write(cpu_tsc_khz, khz);
  4345. }
  4346. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  4347. void *data)
  4348. {
  4349. struct cpufreq_freqs *freq = data;
  4350. struct kvm *kvm;
  4351. struct kvm_vcpu *vcpu;
  4352. int i, send_ipi = 0;
  4353. /*
  4354. * We allow guests to temporarily run on slowing clocks,
  4355. * provided we notify them after, or to run on accelerating
  4356. * clocks, provided we notify them before. Thus time never
  4357. * goes backwards.
  4358. *
  4359. * However, we have a problem. We can't atomically update
  4360. * the frequency of a given CPU from this function; it is
  4361. * merely a notifier, which can be called from any CPU.
  4362. * Changing the TSC frequency at arbitrary points in time
  4363. * requires a recomputation of local variables related to
  4364. * the TSC for each VCPU. We must flag these local variables
  4365. * to be updated and be sure the update takes place with the
  4366. * new frequency before any guests proceed.
  4367. *
  4368. * Unfortunately, the combination of hotplug CPU and frequency
  4369. * change creates an intractable locking scenario; the order
  4370. * of when these callouts happen is undefined with respect to
  4371. * CPU hotplug, and they can race with each other. As such,
  4372. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  4373. * undefined; you can actually have a CPU frequency change take
  4374. * place in between the computation of X and the setting of the
  4375. * variable. To protect against this problem, all updates of
  4376. * the per_cpu tsc_khz variable are done in an interrupt
  4377. * protected IPI, and all callers wishing to update the value
  4378. * must wait for a synchronous IPI to complete (which is trivial
  4379. * if the caller is on the CPU already). This establishes the
  4380. * necessary total order on variable updates.
  4381. *
  4382. * Note that because a guest time update may take place
  4383. * anytime after the setting of the VCPU's request bit, the
  4384. * correct TSC value must be set before the request. However,
  4385. * to ensure the update actually makes it to any guest which
  4386. * starts running in hardware virtualization between the set
  4387. * and the acquisition of the spinlock, we must also ping the
  4388. * CPU after setting the request bit.
  4389. *
  4390. */
  4391. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  4392. return 0;
  4393. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  4394. return 0;
  4395. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4396. raw_spin_lock(&kvm_lock);
  4397. list_for_each_entry(kvm, &vm_list, vm_list) {
  4398. kvm_for_each_vcpu(i, vcpu, kvm) {
  4399. if (vcpu->cpu != freq->cpu)
  4400. continue;
  4401. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  4402. if (vcpu->cpu != smp_processor_id())
  4403. send_ipi = 1;
  4404. }
  4405. }
  4406. raw_spin_unlock(&kvm_lock);
  4407. if (freq->old < freq->new && send_ipi) {
  4408. /*
  4409. * We upscale the frequency. Must make the guest
  4410. * doesn't see old kvmclock values while running with
  4411. * the new frequency, otherwise we risk the guest sees
  4412. * time go backwards.
  4413. *
  4414. * In case we update the frequency for another cpu
  4415. * (which might be in guest context) send an interrupt
  4416. * to kick the cpu out of guest context. Next time
  4417. * guest context is entered kvmclock will be updated,
  4418. * so the guest will not see stale values.
  4419. */
  4420. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4421. }
  4422. return 0;
  4423. }
  4424. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  4425. .notifier_call = kvmclock_cpufreq_notifier
  4426. };
  4427. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  4428. unsigned long action, void *hcpu)
  4429. {
  4430. unsigned int cpu = (unsigned long)hcpu;
  4431. switch (action) {
  4432. case CPU_ONLINE:
  4433. case CPU_DOWN_FAILED:
  4434. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4435. break;
  4436. case CPU_DOWN_PREPARE:
  4437. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  4438. break;
  4439. }
  4440. return NOTIFY_OK;
  4441. }
  4442. static struct notifier_block kvmclock_cpu_notifier_block = {
  4443. .notifier_call = kvmclock_cpu_notifier,
  4444. .priority = -INT_MAX
  4445. };
  4446. static void kvm_timer_init(void)
  4447. {
  4448. int cpu;
  4449. max_tsc_khz = tsc_khz;
  4450. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4451. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4452. #ifdef CONFIG_CPU_FREQ
  4453. struct cpufreq_policy policy;
  4454. memset(&policy, 0, sizeof(policy));
  4455. cpu = get_cpu();
  4456. cpufreq_get_policy(&policy, cpu);
  4457. if (policy.cpuinfo.max_freq)
  4458. max_tsc_khz = policy.cpuinfo.max_freq;
  4459. put_cpu();
  4460. #endif
  4461. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4462. CPUFREQ_TRANSITION_NOTIFIER);
  4463. }
  4464. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4465. for_each_online_cpu(cpu)
  4466. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4467. }
  4468. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4469. int kvm_is_in_guest(void)
  4470. {
  4471. return __this_cpu_read(current_vcpu) != NULL;
  4472. }
  4473. static int kvm_is_user_mode(void)
  4474. {
  4475. int user_mode = 3;
  4476. if (__this_cpu_read(current_vcpu))
  4477. user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
  4478. return user_mode != 0;
  4479. }
  4480. static unsigned long kvm_get_guest_ip(void)
  4481. {
  4482. unsigned long ip = 0;
  4483. if (__this_cpu_read(current_vcpu))
  4484. ip = kvm_rip_read(__this_cpu_read(current_vcpu));
  4485. return ip;
  4486. }
  4487. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4488. .is_in_guest = kvm_is_in_guest,
  4489. .is_user_mode = kvm_is_user_mode,
  4490. .get_guest_ip = kvm_get_guest_ip,
  4491. };
  4492. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4493. {
  4494. __this_cpu_write(current_vcpu, vcpu);
  4495. }
  4496. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4497. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4498. {
  4499. __this_cpu_write(current_vcpu, NULL);
  4500. }
  4501. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4502. static void kvm_set_mmio_spte_mask(void)
  4503. {
  4504. u64 mask;
  4505. int maxphyaddr = boot_cpu_data.x86_phys_bits;
  4506. /*
  4507. * Set the reserved bits and the present bit of an paging-structure
  4508. * entry to generate page fault with PFER.RSV = 1.
  4509. */
  4510. mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
  4511. mask |= 1ull;
  4512. #ifdef CONFIG_X86_64
  4513. /*
  4514. * If reserved bit is not supported, clear the present bit to disable
  4515. * mmio page fault.
  4516. */
  4517. if (maxphyaddr == 52)
  4518. mask &= ~1ull;
  4519. #endif
  4520. kvm_mmu_set_mmio_spte_mask(mask);
  4521. }
  4522. #ifdef CONFIG_X86_64
  4523. static void pvclock_gtod_update_fn(struct work_struct *work)
  4524. {
  4525. struct kvm *kvm;
  4526. struct kvm_vcpu *vcpu;
  4527. int i;
  4528. raw_spin_lock(&kvm_lock);
  4529. list_for_each_entry(kvm, &vm_list, vm_list)
  4530. kvm_for_each_vcpu(i, vcpu, kvm)
  4531. set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
  4532. atomic_set(&kvm_guest_has_master_clock, 0);
  4533. raw_spin_unlock(&kvm_lock);
  4534. }
  4535. static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
  4536. /*
  4537. * Notification about pvclock gtod data update.
  4538. */
  4539. static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
  4540. void *priv)
  4541. {
  4542. struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
  4543. struct timekeeper *tk = priv;
  4544. update_pvclock_gtod(tk);
  4545. /* disable master clock if host does not trust, or does not
  4546. * use, TSC clocksource
  4547. */
  4548. if (gtod->clock.vclock_mode != VCLOCK_TSC &&
  4549. atomic_read(&kvm_guest_has_master_clock) != 0)
  4550. queue_work(system_long_wq, &pvclock_gtod_work);
  4551. return 0;
  4552. }
  4553. static struct notifier_block pvclock_gtod_notifier = {
  4554. .notifier_call = pvclock_gtod_notify,
  4555. };
  4556. #endif
  4557. int kvm_arch_init(void *opaque)
  4558. {
  4559. int r;
  4560. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  4561. if (kvm_x86_ops) {
  4562. printk(KERN_ERR "kvm: already loaded the other module\n");
  4563. r = -EEXIST;
  4564. goto out;
  4565. }
  4566. if (!ops->cpu_has_kvm_support()) {
  4567. printk(KERN_ERR "kvm: no hardware support\n");
  4568. r = -EOPNOTSUPP;
  4569. goto out;
  4570. }
  4571. if (ops->disabled_by_bios()) {
  4572. printk(KERN_ERR "kvm: disabled by bios\n");
  4573. r = -EOPNOTSUPP;
  4574. goto out;
  4575. }
  4576. r = -ENOMEM;
  4577. shared_msrs = alloc_percpu(struct kvm_shared_msrs);
  4578. if (!shared_msrs) {
  4579. printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
  4580. goto out;
  4581. }
  4582. r = kvm_mmu_module_init();
  4583. if (r)
  4584. goto out_free_percpu;
  4585. kvm_set_mmio_spte_mask();
  4586. kvm_init_msr_list();
  4587. kvm_x86_ops = ops;
  4588. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4589. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4590. kvm_timer_init();
  4591. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4592. if (cpu_has_xsave)
  4593. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4594. kvm_lapic_init();
  4595. #ifdef CONFIG_X86_64
  4596. pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
  4597. #endif
  4598. return 0;
  4599. out_free_percpu:
  4600. free_percpu(shared_msrs);
  4601. out:
  4602. return r;
  4603. }
  4604. void kvm_arch_exit(void)
  4605. {
  4606. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4607. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4608. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4609. CPUFREQ_TRANSITION_NOTIFIER);
  4610. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4611. #ifdef CONFIG_X86_64
  4612. pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
  4613. #endif
  4614. kvm_x86_ops = NULL;
  4615. kvm_mmu_module_exit();
  4616. free_percpu(shared_msrs);
  4617. }
  4618. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4619. {
  4620. ++vcpu->stat.halt_exits;
  4621. if (irqchip_in_kernel(vcpu->kvm)) {
  4622. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4623. return 1;
  4624. } else {
  4625. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4626. return 0;
  4627. }
  4628. }
  4629. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4630. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4631. {
  4632. u64 param, ingpa, outgpa, ret;
  4633. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4634. bool fast, longmode;
  4635. int cs_db, cs_l;
  4636. /*
  4637. * hypercall generates UD from non zero cpl and real mode
  4638. * per HYPER-V spec
  4639. */
  4640. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4641. kvm_queue_exception(vcpu, UD_VECTOR);
  4642. return 0;
  4643. }
  4644. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4645. longmode = is_long_mode(vcpu) && cs_l == 1;
  4646. if (!longmode) {
  4647. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4648. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4649. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4650. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4651. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4652. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4653. }
  4654. #ifdef CONFIG_X86_64
  4655. else {
  4656. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4657. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4658. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4659. }
  4660. #endif
  4661. code = param & 0xffff;
  4662. fast = (param >> 16) & 0x1;
  4663. rep_cnt = (param >> 32) & 0xfff;
  4664. rep_idx = (param >> 48) & 0xfff;
  4665. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4666. switch (code) {
  4667. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4668. kvm_vcpu_on_spin(vcpu);
  4669. break;
  4670. default:
  4671. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4672. break;
  4673. }
  4674. ret = res | (((u64)rep_done & 0xfff) << 32);
  4675. if (longmode) {
  4676. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4677. } else {
  4678. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4679. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4680. }
  4681. return 1;
  4682. }
  4683. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4684. {
  4685. unsigned long nr, a0, a1, a2, a3, ret;
  4686. int r = 1;
  4687. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4688. return kvm_hv_hypercall(vcpu);
  4689. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4690. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4691. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4692. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4693. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4694. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4695. if (!is_long_mode(vcpu)) {
  4696. nr &= 0xFFFFFFFF;
  4697. a0 &= 0xFFFFFFFF;
  4698. a1 &= 0xFFFFFFFF;
  4699. a2 &= 0xFFFFFFFF;
  4700. a3 &= 0xFFFFFFFF;
  4701. }
  4702. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4703. ret = -KVM_EPERM;
  4704. goto out;
  4705. }
  4706. switch (nr) {
  4707. case KVM_HC_VAPIC_POLL_IRQ:
  4708. ret = 0;
  4709. break;
  4710. default:
  4711. ret = -KVM_ENOSYS;
  4712. break;
  4713. }
  4714. out:
  4715. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4716. ++vcpu->stat.hypercalls;
  4717. return r;
  4718. }
  4719. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4720. static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
  4721. {
  4722. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  4723. char instruction[3];
  4724. unsigned long rip = kvm_rip_read(vcpu);
  4725. /*
  4726. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4727. * to ensure that the updated hypercall appears atomically across all
  4728. * VCPUs.
  4729. */
  4730. kvm_mmu_zap_all(vcpu->kvm);
  4731. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4732. return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
  4733. }
  4734. /*
  4735. * Check if userspace requested an interrupt window, and that the
  4736. * interrupt window is open.
  4737. *
  4738. * No need to exit to userspace if we already have an interrupt queued.
  4739. */
  4740. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4741. {
  4742. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4743. vcpu->run->request_interrupt_window &&
  4744. kvm_arch_interrupt_allowed(vcpu));
  4745. }
  4746. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4747. {
  4748. struct kvm_run *kvm_run = vcpu->run;
  4749. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4750. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4751. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4752. if (irqchip_in_kernel(vcpu->kvm))
  4753. kvm_run->ready_for_interrupt_injection = 1;
  4754. else
  4755. kvm_run->ready_for_interrupt_injection =
  4756. kvm_arch_interrupt_allowed(vcpu) &&
  4757. !kvm_cpu_has_interrupt(vcpu) &&
  4758. !kvm_event_needs_reinjection(vcpu);
  4759. }
  4760. static int vapic_enter(struct kvm_vcpu *vcpu)
  4761. {
  4762. struct kvm_lapic *apic = vcpu->arch.apic;
  4763. struct page *page;
  4764. if (!apic || !apic->vapic_addr)
  4765. return 0;
  4766. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4767. if (is_error_page(page))
  4768. return -EFAULT;
  4769. vcpu->arch.apic->vapic_page = page;
  4770. return 0;
  4771. }
  4772. static void vapic_exit(struct kvm_vcpu *vcpu)
  4773. {
  4774. struct kvm_lapic *apic = vcpu->arch.apic;
  4775. int idx;
  4776. if (!apic || !apic->vapic_addr)
  4777. return;
  4778. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4779. kvm_release_page_dirty(apic->vapic_page);
  4780. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4781. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4782. }
  4783. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4784. {
  4785. int max_irr, tpr;
  4786. if (!kvm_x86_ops->update_cr8_intercept)
  4787. return;
  4788. if (!vcpu->arch.apic)
  4789. return;
  4790. if (!vcpu->arch.apic->vapic_addr)
  4791. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4792. else
  4793. max_irr = -1;
  4794. if (max_irr != -1)
  4795. max_irr >>= 4;
  4796. tpr = kvm_lapic_get_cr8(vcpu);
  4797. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4798. }
  4799. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4800. {
  4801. /* try to reinject previous events if any */
  4802. if (vcpu->arch.exception.pending) {
  4803. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4804. vcpu->arch.exception.has_error_code,
  4805. vcpu->arch.exception.error_code);
  4806. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4807. vcpu->arch.exception.has_error_code,
  4808. vcpu->arch.exception.error_code,
  4809. vcpu->arch.exception.reinject);
  4810. return;
  4811. }
  4812. if (vcpu->arch.nmi_injected) {
  4813. kvm_x86_ops->set_nmi(vcpu);
  4814. return;
  4815. }
  4816. if (vcpu->arch.interrupt.pending) {
  4817. kvm_x86_ops->set_irq(vcpu);
  4818. return;
  4819. }
  4820. /* try to inject new event if pending */
  4821. if (vcpu->arch.nmi_pending) {
  4822. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4823. --vcpu->arch.nmi_pending;
  4824. vcpu->arch.nmi_injected = true;
  4825. kvm_x86_ops->set_nmi(vcpu);
  4826. }
  4827. } else if (kvm_cpu_has_injectable_intr(vcpu)) {
  4828. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4829. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4830. false);
  4831. kvm_x86_ops->set_irq(vcpu);
  4832. }
  4833. }
  4834. }
  4835. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4836. {
  4837. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4838. !vcpu->guest_xcr0_loaded) {
  4839. /* kvm_set_xcr() also depends on this */
  4840. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4841. vcpu->guest_xcr0_loaded = 1;
  4842. }
  4843. }
  4844. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4845. {
  4846. if (vcpu->guest_xcr0_loaded) {
  4847. if (vcpu->arch.xcr0 != host_xcr0)
  4848. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4849. vcpu->guest_xcr0_loaded = 0;
  4850. }
  4851. }
  4852. static void process_nmi(struct kvm_vcpu *vcpu)
  4853. {
  4854. unsigned limit = 2;
  4855. /*
  4856. * x86 is limited to one NMI running, and one NMI pending after it.
  4857. * If an NMI is already in progress, limit further NMIs to just one.
  4858. * Otherwise, allow two (and we'll inject the first one immediately).
  4859. */
  4860. if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
  4861. limit = 1;
  4862. vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
  4863. vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
  4864. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4865. }
  4866. static void kvm_gen_update_masterclock(struct kvm *kvm)
  4867. {
  4868. #ifdef CONFIG_X86_64
  4869. int i;
  4870. struct kvm_vcpu *vcpu;
  4871. struct kvm_arch *ka = &kvm->arch;
  4872. spin_lock(&ka->pvclock_gtod_sync_lock);
  4873. kvm_make_mclock_inprogress_request(kvm);
  4874. /* no guest entries from this point */
  4875. pvclock_update_vm_gtod_copy(kvm);
  4876. kvm_for_each_vcpu(i, vcpu, kvm)
  4877. set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
  4878. /* guest entries allowed */
  4879. kvm_for_each_vcpu(i, vcpu, kvm)
  4880. clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
  4881. spin_unlock(&ka->pvclock_gtod_sync_lock);
  4882. #endif
  4883. }
  4884. static void update_eoi_exitmap(struct kvm_vcpu *vcpu)
  4885. {
  4886. u64 eoi_exit_bitmap[4];
  4887. memset(eoi_exit_bitmap, 0, 32);
  4888. kvm_ioapic_calculate_eoi_exitmap(vcpu, eoi_exit_bitmap);
  4889. kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
  4890. }
  4891. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4892. {
  4893. int r;
  4894. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4895. vcpu->run->request_interrupt_window;
  4896. bool req_immediate_exit = 0;
  4897. if (vcpu->requests) {
  4898. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4899. kvm_mmu_unload(vcpu);
  4900. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4901. __kvm_migrate_timers(vcpu);
  4902. if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
  4903. kvm_gen_update_masterclock(vcpu->kvm);
  4904. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  4905. r = kvm_guest_time_update(vcpu);
  4906. if (unlikely(r))
  4907. goto out;
  4908. }
  4909. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4910. kvm_mmu_sync_roots(vcpu);
  4911. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4912. kvm_x86_ops->tlb_flush(vcpu);
  4913. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4914. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4915. r = 0;
  4916. goto out;
  4917. }
  4918. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4919. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4920. r = 0;
  4921. goto out;
  4922. }
  4923. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4924. vcpu->fpu_active = 0;
  4925. kvm_x86_ops->fpu_deactivate(vcpu);
  4926. }
  4927. if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
  4928. /* Page is swapped out. Do synthetic halt */
  4929. vcpu->arch.apf.halted = true;
  4930. r = 1;
  4931. goto out;
  4932. }
  4933. if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
  4934. record_steal_time(vcpu);
  4935. if (kvm_check_request(KVM_REQ_NMI, vcpu))
  4936. process_nmi(vcpu);
  4937. req_immediate_exit =
  4938. kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  4939. if (kvm_check_request(KVM_REQ_PMU, vcpu))
  4940. kvm_handle_pmu_event(vcpu);
  4941. if (kvm_check_request(KVM_REQ_PMI, vcpu))
  4942. kvm_deliver_pmi(vcpu);
  4943. if (kvm_check_request(KVM_REQ_EOIBITMAP, vcpu))
  4944. update_eoi_exitmap(vcpu);
  4945. }
  4946. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  4947. inject_pending_event(vcpu);
  4948. /* enable NMI/IRQ window open exits if needed */
  4949. if (vcpu->arch.nmi_pending)
  4950. kvm_x86_ops->enable_nmi_window(vcpu);
  4951. else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
  4952. kvm_x86_ops->enable_irq_window(vcpu);
  4953. if (kvm_lapic_enabled(vcpu)) {
  4954. /*
  4955. * Update architecture specific hints for APIC
  4956. * virtual interrupt delivery.
  4957. */
  4958. if (kvm_x86_ops->hwapic_irr_update)
  4959. kvm_x86_ops->hwapic_irr_update(vcpu,
  4960. kvm_lapic_find_highest_irr(vcpu));
  4961. update_cr8_intercept(vcpu);
  4962. kvm_lapic_sync_to_vapic(vcpu);
  4963. }
  4964. }
  4965. r = kvm_mmu_reload(vcpu);
  4966. if (unlikely(r)) {
  4967. goto cancel_injection;
  4968. }
  4969. preempt_disable();
  4970. kvm_x86_ops->prepare_guest_switch(vcpu);
  4971. if (vcpu->fpu_active)
  4972. kvm_load_guest_fpu(vcpu);
  4973. kvm_load_guest_xcr0(vcpu);
  4974. vcpu->mode = IN_GUEST_MODE;
  4975. /* We should set ->mode before check ->requests,
  4976. * see the comment in make_all_cpus_request.
  4977. */
  4978. smp_mb();
  4979. local_irq_disable();
  4980. if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
  4981. || need_resched() || signal_pending(current)) {
  4982. vcpu->mode = OUTSIDE_GUEST_MODE;
  4983. smp_wmb();
  4984. local_irq_enable();
  4985. preempt_enable();
  4986. r = 1;
  4987. goto cancel_injection;
  4988. }
  4989. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4990. if (req_immediate_exit)
  4991. smp_send_reschedule(vcpu->cpu);
  4992. kvm_guest_enter();
  4993. if (unlikely(vcpu->arch.switch_db_regs)) {
  4994. set_debugreg(0, 7);
  4995. set_debugreg(vcpu->arch.eff_db[0], 0);
  4996. set_debugreg(vcpu->arch.eff_db[1], 1);
  4997. set_debugreg(vcpu->arch.eff_db[2], 2);
  4998. set_debugreg(vcpu->arch.eff_db[3], 3);
  4999. }
  5000. trace_kvm_entry(vcpu->vcpu_id);
  5001. kvm_x86_ops->run(vcpu);
  5002. /*
  5003. * If the guest has used debug registers, at least dr7
  5004. * will be disabled while returning to the host.
  5005. * If we don't have active breakpoints in the host, we don't
  5006. * care about the messed up debug address registers. But if
  5007. * we have some of them active, restore the old state.
  5008. */
  5009. if (hw_breakpoint_active())
  5010. hw_breakpoint_restore();
  5011. vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
  5012. native_read_tsc());
  5013. vcpu->mode = OUTSIDE_GUEST_MODE;
  5014. smp_wmb();
  5015. local_irq_enable();
  5016. ++vcpu->stat.exits;
  5017. /*
  5018. * We must have an instruction between local_irq_enable() and
  5019. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  5020. * the interrupt shadow. The stat.exits increment will do nicely.
  5021. * But we need to prevent reordering, hence this barrier():
  5022. */
  5023. barrier();
  5024. kvm_guest_exit();
  5025. preempt_enable();
  5026. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  5027. /*
  5028. * Profile KVM exit RIPs:
  5029. */
  5030. if (unlikely(prof_on == KVM_PROFILING)) {
  5031. unsigned long rip = kvm_rip_read(vcpu);
  5032. profile_hit(KVM_PROFILING, (void *)rip);
  5033. }
  5034. if (unlikely(vcpu->arch.tsc_always_catchup))
  5035. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  5036. if (vcpu->arch.apic_attention)
  5037. kvm_lapic_sync_from_vapic(vcpu);
  5038. r = kvm_x86_ops->handle_exit(vcpu);
  5039. return r;
  5040. cancel_injection:
  5041. kvm_x86_ops->cancel_injection(vcpu);
  5042. if (unlikely(vcpu->arch.apic_attention))
  5043. kvm_lapic_sync_from_vapic(vcpu);
  5044. out:
  5045. return r;
  5046. }
  5047. static int __vcpu_run(struct kvm_vcpu *vcpu)
  5048. {
  5049. int r;
  5050. struct kvm *kvm = vcpu->kvm;
  5051. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  5052. pr_debug("vcpu %d received sipi with vector # %x\n",
  5053. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  5054. kvm_lapic_reset(vcpu);
  5055. r = kvm_vcpu_reset(vcpu);
  5056. if (r)
  5057. return r;
  5058. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5059. }
  5060. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  5061. r = vapic_enter(vcpu);
  5062. if (r) {
  5063. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  5064. return r;
  5065. }
  5066. r = 1;
  5067. while (r > 0) {
  5068. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  5069. !vcpu->arch.apf.halted)
  5070. r = vcpu_enter_guest(vcpu);
  5071. else {
  5072. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  5073. kvm_vcpu_block(vcpu);
  5074. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  5075. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  5076. {
  5077. switch(vcpu->arch.mp_state) {
  5078. case KVM_MP_STATE_HALTED:
  5079. vcpu->arch.mp_state =
  5080. KVM_MP_STATE_RUNNABLE;
  5081. case KVM_MP_STATE_RUNNABLE:
  5082. vcpu->arch.apf.halted = false;
  5083. break;
  5084. case KVM_MP_STATE_SIPI_RECEIVED:
  5085. default:
  5086. r = -EINTR;
  5087. break;
  5088. }
  5089. }
  5090. }
  5091. if (r <= 0)
  5092. break;
  5093. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  5094. if (kvm_cpu_has_pending_timer(vcpu))
  5095. kvm_inject_pending_timer_irqs(vcpu);
  5096. if (dm_request_for_irq_injection(vcpu)) {
  5097. r = -EINTR;
  5098. vcpu->run->exit_reason = KVM_EXIT_INTR;
  5099. ++vcpu->stat.request_irq_exits;
  5100. }
  5101. kvm_check_async_pf_completion(vcpu);
  5102. if (signal_pending(current)) {
  5103. r = -EINTR;
  5104. vcpu->run->exit_reason = KVM_EXIT_INTR;
  5105. ++vcpu->stat.signal_exits;
  5106. }
  5107. if (need_resched()) {
  5108. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  5109. kvm_resched(vcpu);
  5110. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  5111. }
  5112. }
  5113. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  5114. vapic_exit(vcpu);
  5115. return r;
  5116. }
  5117. static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
  5118. {
  5119. int r;
  5120. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  5121. r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
  5122. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  5123. if (r != EMULATE_DONE)
  5124. return 0;
  5125. return 1;
  5126. }
  5127. static int complete_emulated_pio(struct kvm_vcpu *vcpu)
  5128. {
  5129. BUG_ON(!vcpu->arch.pio.count);
  5130. return complete_emulated_io(vcpu);
  5131. }
  5132. /*
  5133. * Implements the following, as a state machine:
  5134. *
  5135. * read:
  5136. * for each fragment
  5137. * for each mmio piece in the fragment
  5138. * write gpa, len
  5139. * exit
  5140. * copy data
  5141. * execute insn
  5142. *
  5143. * write:
  5144. * for each fragment
  5145. * for each mmio piece in the fragment
  5146. * write gpa, len
  5147. * copy data
  5148. * exit
  5149. */
  5150. static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
  5151. {
  5152. struct kvm_run *run = vcpu->run;
  5153. struct kvm_mmio_fragment *frag;
  5154. unsigned len;
  5155. BUG_ON(!vcpu->mmio_needed);
  5156. /* Complete previous fragment */
  5157. frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
  5158. len = min(8u, frag->len);
  5159. if (!vcpu->mmio_is_write)
  5160. memcpy(frag->data, run->mmio.data, len);
  5161. if (frag->len <= 8) {
  5162. /* Switch to the next fragment. */
  5163. frag++;
  5164. vcpu->mmio_cur_fragment++;
  5165. } else {
  5166. /* Go forward to the next mmio piece. */
  5167. frag->data += len;
  5168. frag->gpa += len;
  5169. frag->len -= len;
  5170. }
  5171. if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
  5172. vcpu->mmio_needed = 0;
  5173. if (vcpu->mmio_is_write)
  5174. return 1;
  5175. vcpu->mmio_read_completed = 1;
  5176. return complete_emulated_io(vcpu);
  5177. }
  5178. run->exit_reason = KVM_EXIT_MMIO;
  5179. run->mmio.phys_addr = frag->gpa;
  5180. if (vcpu->mmio_is_write)
  5181. memcpy(run->mmio.data, frag->data, min(8u, frag->len));
  5182. run->mmio.len = min(8u, frag->len);
  5183. run->mmio.is_write = vcpu->mmio_is_write;
  5184. vcpu->arch.complete_userspace_io = complete_emulated_mmio;
  5185. return 0;
  5186. }
  5187. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  5188. {
  5189. int r;
  5190. sigset_t sigsaved;
  5191. if (!tsk_used_math(current) && init_fpu(current))
  5192. return -ENOMEM;
  5193. if (vcpu->sigset_active)
  5194. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  5195. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  5196. kvm_vcpu_block(vcpu);
  5197. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  5198. r = -EAGAIN;
  5199. goto out;
  5200. }
  5201. /* re-sync apic's tpr */
  5202. if (!irqchip_in_kernel(vcpu->kvm)) {
  5203. if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
  5204. r = -EINVAL;
  5205. goto out;
  5206. }
  5207. }
  5208. if (unlikely(vcpu->arch.complete_userspace_io)) {
  5209. int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
  5210. vcpu->arch.complete_userspace_io = NULL;
  5211. r = cui(vcpu);
  5212. if (r <= 0)
  5213. goto out;
  5214. } else
  5215. WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
  5216. r = __vcpu_run(vcpu);
  5217. out:
  5218. post_kvm_run_save(vcpu);
  5219. if (vcpu->sigset_active)
  5220. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  5221. return r;
  5222. }
  5223. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  5224. {
  5225. if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
  5226. /*
  5227. * We are here if userspace calls get_regs() in the middle of
  5228. * instruction emulation. Registers state needs to be copied
  5229. * back from emulation context to vcpu. Userspace shouldn't do
  5230. * that usually, but some bad designed PV devices (vmware
  5231. * backdoor interface) need this to work
  5232. */
  5233. emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
  5234. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  5235. }
  5236. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  5237. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  5238. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  5239. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  5240. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  5241. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  5242. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  5243. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  5244. #ifdef CONFIG_X86_64
  5245. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  5246. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  5247. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  5248. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  5249. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  5250. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  5251. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  5252. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  5253. #endif
  5254. regs->rip = kvm_rip_read(vcpu);
  5255. regs->rflags = kvm_get_rflags(vcpu);
  5256. return 0;
  5257. }
  5258. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  5259. {
  5260. vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
  5261. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  5262. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  5263. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  5264. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  5265. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  5266. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  5267. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  5268. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  5269. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  5270. #ifdef CONFIG_X86_64
  5271. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  5272. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  5273. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  5274. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  5275. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  5276. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  5277. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  5278. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  5279. #endif
  5280. kvm_rip_write(vcpu, regs->rip);
  5281. kvm_set_rflags(vcpu, regs->rflags);
  5282. vcpu->arch.exception.pending = false;
  5283. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5284. return 0;
  5285. }
  5286. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  5287. {
  5288. struct kvm_segment cs;
  5289. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  5290. *db = cs.db;
  5291. *l = cs.l;
  5292. }
  5293. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  5294. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  5295. struct kvm_sregs *sregs)
  5296. {
  5297. struct desc_ptr dt;
  5298. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  5299. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  5300. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  5301. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  5302. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  5303. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  5304. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  5305. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  5306. kvm_x86_ops->get_idt(vcpu, &dt);
  5307. sregs->idt.limit = dt.size;
  5308. sregs->idt.base = dt.address;
  5309. kvm_x86_ops->get_gdt(vcpu, &dt);
  5310. sregs->gdt.limit = dt.size;
  5311. sregs->gdt.base = dt.address;
  5312. sregs->cr0 = kvm_read_cr0(vcpu);
  5313. sregs->cr2 = vcpu->arch.cr2;
  5314. sregs->cr3 = kvm_read_cr3(vcpu);
  5315. sregs->cr4 = kvm_read_cr4(vcpu);
  5316. sregs->cr8 = kvm_get_cr8(vcpu);
  5317. sregs->efer = vcpu->arch.efer;
  5318. sregs->apic_base = kvm_get_apic_base(vcpu);
  5319. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  5320. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  5321. set_bit(vcpu->arch.interrupt.nr,
  5322. (unsigned long *)sregs->interrupt_bitmap);
  5323. return 0;
  5324. }
  5325. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  5326. struct kvm_mp_state *mp_state)
  5327. {
  5328. mp_state->mp_state = vcpu->arch.mp_state;
  5329. return 0;
  5330. }
  5331. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  5332. struct kvm_mp_state *mp_state)
  5333. {
  5334. vcpu->arch.mp_state = mp_state->mp_state;
  5335. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5336. return 0;
  5337. }
  5338. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
  5339. int reason, bool has_error_code, u32 error_code)
  5340. {
  5341. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  5342. int ret;
  5343. init_emulate_ctxt(vcpu);
  5344. ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
  5345. has_error_code, error_code);
  5346. if (ret)
  5347. return EMULATE_FAIL;
  5348. kvm_rip_write(vcpu, ctxt->eip);
  5349. kvm_set_rflags(vcpu, ctxt->eflags);
  5350. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5351. return EMULATE_DONE;
  5352. }
  5353. EXPORT_SYMBOL_GPL(kvm_task_switch);
  5354. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  5355. struct kvm_sregs *sregs)
  5356. {
  5357. int mmu_reset_needed = 0;
  5358. int pending_vec, max_bits, idx;
  5359. struct desc_ptr dt;
  5360. if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
  5361. return -EINVAL;
  5362. dt.size = sregs->idt.limit;
  5363. dt.address = sregs->idt.base;
  5364. kvm_x86_ops->set_idt(vcpu, &dt);
  5365. dt.size = sregs->gdt.limit;
  5366. dt.address = sregs->gdt.base;
  5367. kvm_x86_ops->set_gdt(vcpu, &dt);
  5368. vcpu->arch.cr2 = sregs->cr2;
  5369. mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
  5370. vcpu->arch.cr3 = sregs->cr3;
  5371. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  5372. kvm_set_cr8(vcpu, sregs->cr8);
  5373. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  5374. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  5375. kvm_set_apic_base(vcpu, sregs->apic_base);
  5376. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  5377. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  5378. vcpu->arch.cr0 = sregs->cr0;
  5379. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  5380. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  5381. if (sregs->cr4 & X86_CR4_OSXSAVE)
  5382. kvm_update_cpuid(vcpu);
  5383. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5384. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  5385. load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
  5386. mmu_reset_needed = 1;
  5387. }
  5388. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5389. if (mmu_reset_needed)
  5390. kvm_mmu_reset_context(vcpu);
  5391. max_bits = KVM_NR_INTERRUPTS;
  5392. pending_vec = find_first_bit(
  5393. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  5394. if (pending_vec < max_bits) {
  5395. kvm_queue_interrupt(vcpu, pending_vec, false);
  5396. pr_debug("Set back pending irq %d\n", pending_vec);
  5397. }
  5398. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  5399. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  5400. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  5401. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  5402. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  5403. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  5404. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  5405. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  5406. update_cr8_intercept(vcpu);
  5407. /* Older userspace won't unhalt the vcpu on reset. */
  5408. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  5409. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  5410. !is_protmode(vcpu))
  5411. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5412. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5413. return 0;
  5414. }
  5415. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  5416. struct kvm_guest_debug *dbg)
  5417. {
  5418. unsigned long rflags;
  5419. int i, r;
  5420. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  5421. r = -EBUSY;
  5422. if (vcpu->arch.exception.pending)
  5423. goto out;
  5424. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  5425. kvm_queue_exception(vcpu, DB_VECTOR);
  5426. else
  5427. kvm_queue_exception(vcpu, BP_VECTOR);
  5428. }
  5429. /*
  5430. * Read rflags as long as potentially injected trace flags are still
  5431. * filtered out.
  5432. */
  5433. rflags = kvm_get_rflags(vcpu);
  5434. vcpu->guest_debug = dbg->control;
  5435. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  5436. vcpu->guest_debug = 0;
  5437. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  5438. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  5439. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  5440. vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
  5441. } else {
  5442. for (i = 0; i < KVM_NR_DB_REGS; i++)
  5443. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  5444. }
  5445. kvm_update_dr7(vcpu);
  5446. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5447. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  5448. get_segment_base(vcpu, VCPU_SREG_CS);
  5449. /*
  5450. * Trigger an rflags update that will inject or remove the trace
  5451. * flags.
  5452. */
  5453. kvm_set_rflags(vcpu, rflags);
  5454. kvm_x86_ops->update_db_bp_intercept(vcpu);
  5455. r = 0;
  5456. out:
  5457. return r;
  5458. }
  5459. /*
  5460. * Translate a guest virtual address to a guest physical address.
  5461. */
  5462. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  5463. struct kvm_translation *tr)
  5464. {
  5465. unsigned long vaddr = tr->linear_address;
  5466. gpa_t gpa;
  5467. int idx;
  5468. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5469. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  5470. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5471. tr->physical_address = gpa;
  5472. tr->valid = gpa != UNMAPPED_GVA;
  5473. tr->writeable = 1;
  5474. tr->usermode = 0;
  5475. return 0;
  5476. }
  5477. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5478. {
  5479. struct i387_fxsave_struct *fxsave =
  5480. &vcpu->arch.guest_fpu.state->fxsave;
  5481. memcpy(fpu->fpr, fxsave->st_space, 128);
  5482. fpu->fcw = fxsave->cwd;
  5483. fpu->fsw = fxsave->swd;
  5484. fpu->ftwx = fxsave->twd;
  5485. fpu->last_opcode = fxsave->fop;
  5486. fpu->last_ip = fxsave->rip;
  5487. fpu->last_dp = fxsave->rdp;
  5488. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  5489. return 0;
  5490. }
  5491. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5492. {
  5493. struct i387_fxsave_struct *fxsave =
  5494. &vcpu->arch.guest_fpu.state->fxsave;
  5495. memcpy(fxsave->st_space, fpu->fpr, 128);
  5496. fxsave->cwd = fpu->fcw;
  5497. fxsave->swd = fpu->fsw;
  5498. fxsave->twd = fpu->ftwx;
  5499. fxsave->fop = fpu->last_opcode;
  5500. fxsave->rip = fpu->last_ip;
  5501. fxsave->rdp = fpu->last_dp;
  5502. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  5503. return 0;
  5504. }
  5505. int fx_init(struct kvm_vcpu *vcpu)
  5506. {
  5507. int err;
  5508. err = fpu_alloc(&vcpu->arch.guest_fpu);
  5509. if (err)
  5510. return err;
  5511. fpu_finit(&vcpu->arch.guest_fpu);
  5512. /*
  5513. * Ensure guest xcr0 is valid for loading
  5514. */
  5515. vcpu->arch.xcr0 = XSTATE_FP;
  5516. vcpu->arch.cr0 |= X86_CR0_ET;
  5517. return 0;
  5518. }
  5519. EXPORT_SYMBOL_GPL(fx_init);
  5520. static void fx_free(struct kvm_vcpu *vcpu)
  5521. {
  5522. fpu_free(&vcpu->arch.guest_fpu);
  5523. }
  5524. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  5525. {
  5526. if (vcpu->guest_fpu_loaded)
  5527. return;
  5528. /*
  5529. * Restore all possible states in the guest,
  5530. * and assume host would use all available bits.
  5531. * Guest xcr0 would be loaded later.
  5532. */
  5533. kvm_put_guest_xcr0(vcpu);
  5534. vcpu->guest_fpu_loaded = 1;
  5535. __kernel_fpu_begin();
  5536. fpu_restore_checking(&vcpu->arch.guest_fpu);
  5537. trace_kvm_fpu(1);
  5538. }
  5539. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  5540. {
  5541. kvm_put_guest_xcr0(vcpu);
  5542. if (!vcpu->guest_fpu_loaded)
  5543. return;
  5544. vcpu->guest_fpu_loaded = 0;
  5545. fpu_save_init(&vcpu->arch.guest_fpu);
  5546. __kernel_fpu_end();
  5547. ++vcpu->stat.fpu_reload;
  5548. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  5549. trace_kvm_fpu(0);
  5550. }
  5551. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  5552. {
  5553. kvmclock_reset(vcpu);
  5554. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  5555. fx_free(vcpu);
  5556. kvm_x86_ops->vcpu_free(vcpu);
  5557. }
  5558. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  5559. unsigned int id)
  5560. {
  5561. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  5562. printk_once(KERN_WARNING
  5563. "kvm: SMP vm created on host with unstable TSC; "
  5564. "guest TSC will not be reliable\n");
  5565. return kvm_x86_ops->vcpu_create(kvm, id);
  5566. }
  5567. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  5568. {
  5569. int r;
  5570. vcpu->arch.mtrr_state.have_fixed = 1;
  5571. r = vcpu_load(vcpu);
  5572. if (r)
  5573. return r;
  5574. r = kvm_vcpu_reset(vcpu);
  5575. if (r == 0)
  5576. r = kvm_mmu_setup(vcpu);
  5577. vcpu_put(vcpu);
  5578. return r;
  5579. }
  5580. int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  5581. {
  5582. int r;
  5583. struct msr_data msr;
  5584. r = vcpu_load(vcpu);
  5585. if (r)
  5586. return r;
  5587. msr.data = 0x0;
  5588. msr.index = MSR_IA32_TSC;
  5589. msr.host_initiated = true;
  5590. kvm_write_tsc(vcpu, &msr);
  5591. vcpu_put(vcpu);
  5592. return r;
  5593. }
  5594. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5595. {
  5596. int r;
  5597. vcpu->arch.apf.msr_val = 0;
  5598. r = vcpu_load(vcpu);
  5599. BUG_ON(r);
  5600. kvm_mmu_unload(vcpu);
  5601. vcpu_put(vcpu);
  5602. fx_free(vcpu);
  5603. kvm_x86_ops->vcpu_free(vcpu);
  5604. }
  5605. static int kvm_vcpu_reset(struct kvm_vcpu *vcpu)
  5606. {
  5607. atomic_set(&vcpu->arch.nmi_queued, 0);
  5608. vcpu->arch.nmi_pending = 0;
  5609. vcpu->arch.nmi_injected = false;
  5610. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5611. vcpu->arch.dr6 = DR6_FIXED_1;
  5612. vcpu->arch.dr7 = DR7_FIXED_1;
  5613. kvm_update_dr7(vcpu);
  5614. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5615. vcpu->arch.apf.msr_val = 0;
  5616. vcpu->arch.st.msr_val = 0;
  5617. kvmclock_reset(vcpu);
  5618. kvm_clear_async_pf_completion_queue(vcpu);
  5619. kvm_async_pf_hash_reset(vcpu);
  5620. vcpu->arch.apf.halted = false;
  5621. kvm_pmu_reset(vcpu);
  5622. memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
  5623. vcpu->arch.regs_avail = ~0;
  5624. vcpu->arch.regs_dirty = ~0;
  5625. return kvm_x86_ops->vcpu_reset(vcpu);
  5626. }
  5627. int kvm_arch_hardware_enable(void *garbage)
  5628. {
  5629. struct kvm *kvm;
  5630. struct kvm_vcpu *vcpu;
  5631. int i;
  5632. int ret;
  5633. u64 local_tsc;
  5634. u64 max_tsc = 0;
  5635. bool stable, backwards_tsc = false;
  5636. kvm_shared_msr_cpu_online();
  5637. ret = kvm_x86_ops->hardware_enable(garbage);
  5638. if (ret != 0)
  5639. return ret;
  5640. local_tsc = native_read_tsc();
  5641. stable = !check_tsc_unstable();
  5642. list_for_each_entry(kvm, &vm_list, vm_list) {
  5643. kvm_for_each_vcpu(i, vcpu, kvm) {
  5644. if (!stable && vcpu->cpu == smp_processor_id())
  5645. set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
  5646. if (stable && vcpu->arch.last_host_tsc > local_tsc) {
  5647. backwards_tsc = true;
  5648. if (vcpu->arch.last_host_tsc > max_tsc)
  5649. max_tsc = vcpu->arch.last_host_tsc;
  5650. }
  5651. }
  5652. }
  5653. /*
  5654. * Sometimes, even reliable TSCs go backwards. This happens on
  5655. * platforms that reset TSC during suspend or hibernate actions, but
  5656. * maintain synchronization. We must compensate. Fortunately, we can
  5657. * detect that condition here, which happens early in CPU bringup,
  5658. * before any KVM threads can be running. Unfortunately, we can't
  5659. * bring the TSCs fully up to date with real time, as we aren't yet far
  5660. * enough into CPU bringup that we know how much real time has actually
  5661. * elapsed; our helper function, get_kernel_ns() will be using boot
  5662. * variables that haven't been updated yet.
  5663. *
  5664. * So we simply find the maximum observed TSC above, then record the
  5665. * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
  5666. * the adjustment will be applied. Note that we accumulate
  5667. * adjustments, in case multiple suspend cycles happen before some VCPU
  5668. * gets a chance to run again. In the event that no KVM threads get a
  5669. * chance to run, we will miss the entire elapsed period, as we'll have
  5670. * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
  5671. * loose cycle time. This isn't too big a deal, since the loss will be
  5672. * uniform across all VCPUs (not to mention the scenario is extremely
  5673. * unlikely). It is possible that a second hibernate recovery happens
  5674. * much faster than a first, causing the observed TSC here to be
  5675. * smaller; this would require additional padding adjustment, which is
  5676. * why we set last_host_tsc to the local tsc observed here.
  5677. *
  5678. * N.B. - this code below runs only on platforms with reliable TSC,
  5679. * as that is the only way backwards_tsc is set above. Also note
  5680. * that this runs for ALL vcpus, which is not a bug; all VCPUs should
  5681. * have the same delta_cyc adjustment applied if backwards_tsc
  5682. * is detected. Note further, this adjustment is only done once,
  5683. * as we reset last_host_tsc on all VCPUs to stop this from being
  5684. * called multiple times (one for each physical CPU bringup).
  5685. *
  5686. * Platforms with unreliable TSCs don't have to deal with this, they
  5687. * will be compensated by the logic in vcpu_load, which sets the TSC to
  5688. * catchup mode. This will catchup all VCPUs to real time, but cannot
  5689. * guarantee that they stay in perfect synchronization.
  5690. */
  5691. if (backwards_tsc) {
  5692. u64 delta_cyc = max_tsc - local_tsc;
  5693. list_for_each_entry(kvm, &vm_list, vm_list) {
  5694. kvm_for_each_vcpu(i, vcpu, kvm) {
  5695. vcpu->arch.tsc_offset_adjustment += delta_cyc;
  5696. vcpu->arch.last_host_tsc = local_tsc;
  5697. set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
  5698. &vcpu->requests);
  5699. }
  5700. /*
  5701. * We have to disable TSC offset matching.. if you were
  5702. * booting a VM while issuing an S4 host suspend....
  5703. * you may have some problem. Solving this issue is
  5704. * left as an exercise to the reader.
  5705. */
  5706. kvm->arch.last_tsc_nsec = 0;
  5707. kvm->arch.last_tsc_write = 0;
  5708. }
  5709. }
  5710. return 0;
  5711. }
  5712. void kvm_arch_hardware_disable(void *garbage)
  5713. {
  5714. kvm_x86_ops->hardware_disable(garbage);
  5715. drop_user_return_notifiers(garbage);
  5716. }
  5717. int kvm_arch_hardware_setup(void)
  5718. {
  5719. return kvm_x86_ops->hardware_setup();
  5720. }
  5721. void kvm_arch_hardware_unsetup(void)
  5722. {
  5723. kvm_x86_ops->hardware_unsetup();
  5724. }
  5725. void kvm_arch_check_processor_compat(void *rtn)
  5726. {
  5727. kvm_x86_ops->check_processor_compatibility(rtn);
  5728. }
  5729. bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
  5730. {
  5731. return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
  5732. }
  5733. struct static_key kvm_no_apic_vcpu __read_mostly;
  5734. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  5735. {
  5736. struct page *page;
  5737. struct kvm *kvm;
  5738. int r;
  5739. BUG_ON(vcpu->kvm == NULL);
  5740. kvm = vcpu->kvm;
  5741. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  5742. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  5743. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5744. else
  5745. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  5746. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  5747. if (!page) {
  5748. r = -ENOMEM;
  5749. goto fail;
  5750. }
  5751. vcpu->arch.pio_data = page_address(page);
  5752. kvm_set_tsc_khz(vcpu, max_tsc_khz);
  5753. r = kvm_mmu_create(vcpu);
  5754. if (r < 0)
  5755. goto fail_free_pio_data;
  5756. if (irqchip_in_kernel(kvm)) {
  5757. r = kvm_create_lapic(vcpu);
  5758. if (r < 0)
  5759. goto fail_mmu_destroy;
  5760. } else
  5761. static_key_slow_inc(&kvm_no_apic_vcpu);
  5762. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  5763. GFP_KERNEL);
  5764. if (!vcpu->arch.mce_banks) {
  5765. r = -ENOMEM;
  5766. goto fail_free_lapic;
  5767. }
  5768. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  5769. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  5770. goto fail_free_mce_banks;
  5771. r = fx_init(vcpu);
  5772. if (r)
  5773. goto fail_free_wbinvd_dirty_mask;
  5774. vcpu->arch.ia32_tsc_adjust_msr = 0x0;
  5775. vcpu->arch.pv_time_enabled = false;
  5776. kvm_async_pf_hash_reset(vcpu);
  5777. kvm_pmu_init(vcpu);
  5778. return 0;
  5779. fail_free_wbinvd_dirty_mask:
  5780. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  5781. fail_free_mce_banks:
  5782. kfree(vcpu->arch.mce_banks);
  5783. fail_free_lapic:
  5784. kvm_free_lapic(vcpu);
  5785. fail_mmu_destroy:
  5786. kvm_mmu_destroy(vcpu);
  5787. fail_free_pio_data:
  5788. free_page((unsigned long)vcpu->arch.pio_data);
  5789. fail:
  5790. return r;
  5791. }
  5792. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  5793. {
  5794. int idx;
  5795. kvm_pmu_destroy(vcpu);
  5796. kfree(vcpu->arch.mce_banks);
  5797. kvm_free_lapic(vcpu);
  5798. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5799. kvm_mmu_destroy(vcpu);
  5800. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5801. free_page((unsigned long)vcpu->arch.pio_data);
  5802. if (!irqchip_in_kernel(vcpu->kvm))
  5803. static_key_slow_dec(&kvm_no_apic_vcpu);
  5804. }
  5805. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  5806. {
  5807. if (type)
  5808. return -EINVAL;
  5809. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  5810. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  5811. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  5812. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  5813. /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
  5814. set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
  5815. &kvm->arch.irq_sources_bitmap);
  5816. raw_spin_lock_init(&kvm->arch.tsc_write_lock);
  5817. mutex_init(&kvm->arch.apic_map_lock);
  5818. spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
  5819. pvclock_update_vm_gtod_copy(kvm);
  5820. return 0;
  5821. }
  5822. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  5823. {
  5824. int r;
  5825. r = vcpu_load(vcpu);
  5826. BUG_ON(r);
  5827. kvm_mmu_unload(vcpu);
  5828. vcpu_put(vcpu);
  5829. }
  5830. static void kvm_free_vcpus(struct kvm *kvm)
  5831. {
  5832. unsigned int i;
  5833. struct kvm_vcpu *vcpu;
  5834. /*
  5835. * Unpin any mmu pages first.
  5836. */
  5837. kvm_for_each_vcpu(i, vcpu, kvm) {
  5838. kvm_clear_async_pf_completion_queue(vcpu);
  5839. kvm_unload_vcpu_mmu(vcpu);
  5840. }
  5841. kvm_for_each_vcpu(i, vcpu, kvm)
  5842. kvm_arch_vcpu_free(vcpu);
  5843. mutex_lock(&kvm->lock);
  5844. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  5845. kvm->vcpus[i] = NULL;
  5846. atomic_set(&kvm->online_vcpus, 0);
  5847. mutex_unlock(&kvm->lock);
  5848. }
  5849. void kvm_arch_sync_events(struct kvm *kvm)
  5850. {
  5851. kvm_free_all_assigned_devices(kvm);
  5852. kvm_free_pit(kvm);
  5853. }
  5854. void kvm_arch_destroy_vm(struct kvm *kvm)
  5855. {
  5856. kvm_iommu_unmap_guest(kvm);
  5857. kfree(kvm->arch.vpic);
  5858. kfree(kvm->arch.vioapic);
  5859. kvm_free_vcpus(kvm);
  5860. if (kvm->arch.apic_access_page)
  5861. put_page(kvm->arch.apic_access_page);
  5862. if (kvm->arch.ept_identity_pagetable)
  5863. put_page(kvm->arch.ept_identity_pagetable);
  5864. kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
  5865. }
  5866. void kvm_arch_free_memslot(struct kvm_memory_slot *free,
  5867. struct kvm_memory_slot *dont)
  5868. {
  5869. int i;
  5870. for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
  5871. if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
  5872. kvm_kvfree(free->arch.rmap[i]);
  5873. free->arch.rmap[i] = NULL;
  5874. }
  5875. if (i == 0)
  5876. continue;
  5877. if (!dont || free->arch.lpage_info[i - 1] !=
  5878. dont->arch.lpage_info[i - 1]) {
  5879. kvm_kvfree(free->arch.lpage_info[i - 1]);
  5880. free->arch.lpage_info[i - 1] = NULL;
  5881. }
  5882. }
  5883. }
  5884. int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
  5885. {
  5886. int i;
  5887. for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
  5888. unsigned long ugfn;
  5889. int lpages;
  5890. int level = i + 1;
  5891. lpages = gfn_to_index(slot->base_gfn + npages - 1,
  5892. slot->base_gfn, level) + 1;
  5893. slot->arch.rmap[i] =
  5894. kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
  5895. if (!slot->arch.rmap[i])
  5896. goto out_free;
  5897. if (i == 0)
  5898. continue;
  5899. slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
  5900. sizeof(*slot->arch.lpage_info[i - 1]));
  5901. if (!slot->arch.lpage_info[i - 1])
  5902. goto out_free;
  5903. if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  5904. slot->arch.lpage_info[i - 1][0].write_count = 1;
  5905. if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  5906. slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
  5907. ugfn = slot->userspace_addr >> PAGE_SHIFT;
  5908. /*
  5909. * If the gfn and userspace address are not aligned wrt each
  5910. * other, or if explicitly asked to, disable large page
  5911. * support for this slot
  5912. */
  5913. if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  5914. !kvm_largepages_enabled()) {
  5915. unsigned long j;
  5916. for (j = 0; j < lpages; ++j)
  5917. slot->arch.lpage_info[i - 1][j].write_count = 1;
  5918. }
  5919. }
  5920. return 0;
  5921. out_free:
  5922. for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
  5923. kvm_kvfree(slot->arch.rmap[i]);
  5924. slot->arch.rmap[i] = NULL;
  5925. if (i == 0)
  5926. continue;
  5927. kvm_kvfree(slot->arch.lpage_info[i - 1]);
  5928. slot->arch.lpage_info[i - 1] = NULL;
  5929. }
  5930. return -ENOMEM;
  5931. }
  5932. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  5933. struct kvm_memory_slot *memslot,
  5934. struct kvm_memory_slot old,
  5935. struct kvm_userspace_memory_region *mem,
  5936. bool user_alloc)
  5937. {
  5938. int npages = memslot->npages;
  5939. /*
  5940. * Only private memory slots need to be mapped here since
  5941. * KVM_SET_MEMORY_REGION ioctl is no longer supported.
  5942. */
  5943. if ((memslot->id >= KVM_USER_MEM_SLOTS) && npages && !old.npages) {
  5944. unsigned long userspace_addr;
  5945. /*
  5946. * MAP_SHARED to prevent internal slot pages from being moved
  5947. * by fork()/COW.
  5948. */
  5949. userspace_addr = vm_mmap(NULL, 0, npages * PAGE_SIZE,
  5950. PROT_READ | PROT_WRITE,
  5951. MAP_SHARED | MAP_ANONYMOUS, 0);
  5952. if (IS_ERR((void *)userspace_addr))
  5953. return PTR_ERR((void *)userspace_addr);
  5954. memslot->userspace_addr = userspace_addr;
  5955. }
  5956. return 0;
  5957. }
  5958. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5959. struct kvm_userspace_memory_region *mem,
  5960. struct kvm_memory_slot old,
  5961. bool user_alloc)
  5962. {
  5963. int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
  5964. if ((mem->slot >= KVM_USER_MEM_SLOTS) && old.npages && !npages) {
  5965. int ret;
  5966. ret = vm_munmap(old.userspace_addr,
  5967. old.npages * PAGE_SIZE);
  5968. if (ret < 0)
  5969. printk(KERN_WARNING
  5970. "kvm_vm_ioctl_set_memory_region: "
  5971. "failed to munmap memory\n");
  5972. }
  5973. if (!kvm->arch.n_requested_mmu_pages)
  5974. nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5975. if (nr_mmu_pages)
  5976. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5977. /*
  5978. * Write protect all pages for dirty logging.
  5979. * Existing largepage mappings are destroyed here and new ones will
  5980. * not be created until the end of the logging.
  5981. */
  5982. if (npages && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
  5983. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5984. /*
  5985. * If memory slot is created, or moved, we need to clear all
  5986. * mmio sptes.
  5987. */
  5988. if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
  5989. kvm_mmu_zap_all(kvm);
  5990. kvm_reload_remote_mmus(kvm);
  5991. }
  5992. }
  5993. void kvm_arch_flush_shadow_all(struct kvm *kvm)
  5994. {
  5995. kvm_mmu_zap_all(kvm);
  5996. kvm_reload_remote_mmus(kvm);
  5997. }
  5998. void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
  5999. struct kvm_memory_slot *slot)
  6000. {
  6001. kvm_arch_flush_shadow_all(kvm);
  6002. }
  6003. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  6004. {
  6005. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  6006. !vcpu->arch.apf.halted)
  6007. || !list_empty_careful(&vcpu->async_pf.done)
  6008. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  6009. || atomic_read(&vcpu->arch.nmi_queued) ||
  6010. (kvm_arch_interrupt_allowed(vcpu) &&
  6011. kvm_cpu_has_interrupt(vcpu));
  6012. }
  6013. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  6014. {
  6015. return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  6016. }
  6017. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  6018. {
  6019. return kvm_x86_ops->interrupt_allowed(vcpu);
  6020. }
  6021. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  6022. {
  6023. unsigned long current_rip = kvm_rip_read(vcpu) +
  6024. get_segment_base(vcpu, VCPU_SREG_CS);
  6025. return current_rip == linear_rip;
  6026. }
  6027. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  6028. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  6029. {
  6030. unsigned long rflags;
  6031. rflags = kvm_x86_ops->get_rflags(vcpu);
  6032. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  6033. rflags &= ~X86_EFLAGS_TF;
  6034. return rflags;
  6035. }
  6036. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  6037. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  6038. {
  6039. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  6040. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  6041. rflags |= X86_EFLAGS_TF;
  6042. kvm_x86_ops->set_rflags(vcpu, rflags);
  6043. kvm_make_request(KVM_REQ_EVENT, vcpu);
  6044. }
  6045. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  6046. void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
  6047. {
  6048. int r;
  6049. if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
  6050. is_error_page(work->page))
  6051. return;
  6052. r = kvm_mmu_reload(vcpu);
  6053. if (unlikely(r))
  6054. return;
  6055. if (!vcpu->arch.mmu.direct_map &&
  6056. work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
  6057. return;
  6058. vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
  6059. }
  6060. static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
  6061. {
  6062. return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
  6063. }
  6064. static inline u32 kvm_async_pf_next_probe(u32 key)
  6065. {
  6066. return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
  6067. }
  6068. static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  6069. {
  6070. u32 key = kvm_async_pf_hash_fn(gfn);
  6071. while (vcpu->arch.apf.gfns[key] != ~0)
  6072. key = kvm_async_pf_next_probe(key);
  6073. vcpu->arch.apf.gfns[key] = gfn;
  6074. }
  6075. static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
  6076. {
  6077. int i;
  6078. u32 key = kvm_async_pf_hash_fn(gfn);
  6079. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
  6080. (vcpu->arch.apf.gfns[key] != gfn &&
  6081. vcpu->arch.apf.gfns[key] != ~0); i++)
  6082. key = kvm_async_pf_next_probe(key);
  6083. return key;
  6084. }
  6085. bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  6086. {
  6087. return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
  6088. }
  6089. static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  6090. {
  6091. u32 i, j, k;
  6092. i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
  6093. while (true) {
  6094. vcpu->arch.apf.gfns[i] = ~0;
  6095. do {
  6096. j = kvm_async_pf_next_probe(j);
  6097. if (vcpu->arch.apf.gfns[j] == ~0)
  6098. return;
  6099. k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
  6100. /*
  6101. * k lies cyclically in ]i,j]
  6102. * | i.k.j |
  6103. * |....j i.k.| or |.k..j i...|
  6104. */
  6105. } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
  6106. vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
  6107. i = j;
  6108. }
  6109. }
  6110. static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
  6111. {
  6112. return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
  6113. sizeof(val));
  6114. }
  6115. void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
  6116. struct kvm_async_pf *work)
  6117. {
  6118. struct x86_exception fault;
  6119. trace_kvm_async_pf_not_present(work->arch.token, work->gva);
  6120. kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
  6121. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
  6122. (vcpu->arch.apf.send_user_only &&
  6123. kvm_x86_ops->get_cpl(vcpu) == 0))
  6124. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  6125. else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
  6126. fault.vector = PF_VECTOR;
  6127. fault.error_code_valid = true;
  6128. fault.error_code = 0;
  6129. fault.nested_page_fault = false;
  6130. fault.address = work->arch.token;
  6131. kvm_inject_page_fault(vcpu, &fault);
  6132. }
  6133. }
  6134. void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
  6135. struct kvm_async_pf *work)
  6136. {
  6137. struct x86_exception fault;
  6138. trace_kvm_async_pf_ready(work->arch.token, work->gva);
  6139. if (is_error_page(work->page))
  6140. work->arch.token = ~0; /* broadcast wakeup */
  6141. else
  6142. kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
  6143. if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
  6144. !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
  6145. fault.vector = PF_VECTOR;
  6146. fault.error_code_valid = true;
  6147. fault.error_code = 0;
  6148. fault.nested_page_fault = false;
  6149. fault.address = work->arch.token;
  6150. kvm_inject_page_fault(vcpu, &fault);
  6151. }
  6152. vcpu->arch.apf.halted = false;
  6153. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  6154. }
  6155. bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
  6156. {
  6157. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
  6158. return true;
  6159. else
  6160. return !kvm_event_needs_reinjection(vcpu) &&
  6161. kvm_x86_ops->interrupt_allowed(vcpu);
  6162. }
  6163. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  6164. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  6165. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  6166. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  6167. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  6168. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  6169. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  6170. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  6171. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  6172. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  6173. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  6174. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);