vmx.c 219 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "cpuid.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/ftrace_event.h>
  30. #include <linux/slab.h>
  31. #include <linux/tboot.h>
  32. #include "kvm_cache_regs.h"
  33. #include "x86.h"
  34. #include <asm/io.h>
  35. #include <asm/desc.h>
  36. #include <asm/vmx.h>
  37. #include <asm/virtext.h>
  38. #include <asm/mce.h>
  39. #include <asm/i387.h>
  40. #include <asm/xcr.h>
  41. #include <asm/perf_event.h>
  42. #include <asm/kexec.h>
  43. #include "trace.h"
  44. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  45. #define __ex_clear(x, reg) \
  46. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. static const struct x86_cpu_id vmx_cpu_id[] = {
  50. X86_FEATURE_MATCH(X86_FEATURE_VMX),
  51. {}
  52. };
  53. MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  54. static bool __read_mostly enable_vpid = 1;
  55. module_param_named(vpid, enable_vpid, bool, 0444);
  56. static bool __read_mostly flexpriority_enabled = 1;
  57. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  58. static bool __read_mostly enable_ept = 1;
  59. module_param_named(ept, enable_ept, bool, S_IRUGO);
  60. static bool __read_mostly enable_unrestricted_guest = 1;
  61. module_param_named(unrestricted_guest,
  62. enable_unrestricted_guest, bool, S_IRUGO);
  63. static bool __read_mostly enable_ept_ad_bits = 1;
  64. module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  65. static bool __read_mostly emulate_invalid_guest_state = true;
  66. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  67. static bool __read_mostly vmm_exclusive = 1;
  68. module_param(vmm_exclusive, bool, S_IRUGO);
  69. static bool __read_mostly fasteoi = 1;
  70. module_param(fasteoi, bool, S_IRUGO);
  71. static bool __read_mostly enable_apicv_reg_vid;
  72. /*
  73. * If nested=1, nested virtualization is supported, i.e., guests may use
  74. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  75. * use VMX instructions.
  76. */
  77. static bool __read_mostly nested = 0;
  78. module_param(nested, bool, S_IRUGO);
  79. #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
  80. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
  81. #define KVM_VM_CR0_ALWAYS_ON \
  82. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  83. #define KVM_CR4_GUEST_OWNED_BITS \
  84. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  85. | X86_CR4_OSXMMEXCPT)
  86. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  87. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  88. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  89. /*
  90. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  91. * ple_gap: upper bound on the amount of time between two successive
  92. * executions of PAUSE in a loop. Also indicate if ple enabled.
  93. * According to test, this time is usually smaller than 128 cycles.
  94. * ple_window: upper bound on the amount of time a guest is allowed to execute
  95. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  96. * less than 2^12 cycles
  97. * Time is measured based on a counter that runs at the same rate as the TSC,
  98. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  99. */
  100. #define KVM_VMX_DEFAULT_PLE_GAP 128
  101. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  102. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  103. module_param(ple_gap, int, S_IRUGO);
  104. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  105. module_param(ple_window, int, S_IRUGO);
  106. extern const ulong vmx_return;
  107. #define NR_AUTOLOAD_MSRS 8
  108. #define VMCS02_POOL_SIZE 1
  109. struct vmcs {
  110. u32 revision_id;
  111. u32 abort;
  112. char data[0];
  113. };
  114. /*
  115. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  116. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  117. * loaded on this CPU (so we can clear them if the CPU goes down).
  118. */
  119. struct loaded_vmcs {
  120. struct vmcs *vmcs;
  121. int cpu;
  122. int launched;
  123. struct list_head loaded_vmcss_on_cpu_link;
  124. };
  125. struct shared_msr_entry {
  126. unsigned index;
  127. u64 data;
  128. u64 mask;
  129. };
  130. /*
  131. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  132. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  133. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  134. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  135. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  136. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  137. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  138. * underlying hardware which will be used to run L2.
  139. * This structure is packed to ensure that its layout is identical across
  140. * machines (necessary for live migration).
  141. * If there are changes in this struct, VMCS12_REVISION must be changed.
  142. */
  143. typedef u64 natural_width;
  144. struct __packed vmcs12 {
  145. /* According to the Intel spec, a VMCS region must start with the
  146. * following two fields. Then follow implementation-specific data.
  147. */
  148. u32 revision_id;
  149. u32 abort;
  150. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  151. u32 padding[7]; /* room for future expansion */
  152. u64 io_bitmap_a;
  153. u64 io_bitmap_b;
  154. u64 msr_bitmap;
  155. u64 vm_exit_msr_store_addr;
  156. u64 vm_exit_msr_load_addr;
  157. u64 vm_entry_msr_load_addr;
  158. u64 tsc_offset;
  159. u64 virtual_apic_page_addr;
  160. u64 apic_access_addr;
  161. u64 ept_pointer;
  162. u64 guest_physical_address;
  163. u64 vmcs_link_pointer;
  164. u64 guest_ia32_debugctl;
  165. u64 guest_ia32_pat;
  166. u64 guest_ia32_efer;
  167. u64 guest_ia32_perf_global_ctrl;
  168. u64 guest_pdptr0;
  169. u64 guest_pdptr1;
  170. u64 guest_pdptr2;
  171. u64 guest_pdptr3;
  172. u64 host_ia32_pat;
  173. u64 host_ia32_efer;
  174. u64 host_ia32_perf_global_ctrl;
  175. u64 padding64[8]; /* room for future expansion */
  176. /*
  177. * To allow migration of L1 (complete with its L2 guests) between
  178. * machines of different natural widths (32 or 64 bit), we cannot have
  179. * unsigned long fields with no explict size. We use u64 (aliased
  180. * natural_width) instead. Luckily, x86 is little-endian.
  181. */
  182. natural_width cr0_guest_host_mask;
  183. natural_width cr4_guest_host_mask;
  184. natural_width cr0_read_shadow;
  185. natural_width cr4_read_shadow;
  186. natural_width cr3_target_value0;
  187. natural_width cr3_target_value1;
  188. natural_width cr3_target_value2;
  189. natural_width cr3_target_value3;
  190. natural_width exit_qualification;
  191. natural_width guest_linear_address;
  192. natural_width guest_cr0;
  193. natural_width guest_cr3;
  194. natural_width guest_cr4;
  195. natural_width guest_es_base;
  196. natural_width guest_cs_base;
  197. natural_width guest_ss_base;
  198. natural_width guest_ds_base;
  199. natural_width guest_fs_base;
  200. natural_width guest_gs_base;
  201. natural_width guest_ldtr_base;
  202. natural_width guest_tr_base;
  203. natural_width guest_gdtr_base;
  204. natural_width guest_idtr_base;
  205. natural_width guest_dr7;
  206. natural_width guest_rsp;
  207. natural_width guest_rip;
  208. natural_width guest_rflags;
  209. natural_width guest_pending_dbg_exceptions;
  210. natural_width guest_sysenter_esp;
  211. natural_width guest_sysenter_eip;
  212. natural_width host_cr0;
  213. natural_width host_cr3;
  214. natural_width host_cr4;
  215. natural_width host_fs_base;
  216. natural_width host_gs_base;
  217. natural_width host_tr_base;
  218. natural_width host_gdtr_base;
  219. natural_width host_idtr_base;
  220. natural_width host_ia32_sysenter_esp;
  221. natural_width host_ia32_sysenter_eip;
  222. natural_width host_rsp;
  223. natural_width host_rip;
  224. natural_width paddingl[8]; /* room for future expansion */
  225. u32 pin_based_vm_exec_control;
  226. u32 cpu_based_vm_exec_control;
  227. u32 exception_bitmap;
  228. u32 page_fault_error_code_mask;
  229. u32 page_fault_error_code_match;
  230. u32 cr3_target_count;
  231. u32 vm_exit_controls;
  232. u32 vm_exit_msr_store_count;
  233. u32 vm_exit_msr_load_count;
  234. u32 vm_entry_controls;
  235. u32 vm_entry_msr_load_count;
  236. u32 vm_entry_intr_info_field;
  237. u32 vm_entry_exception_error_code;
  238. u32 vm_entry_instruction_len;
  239. u32 tpr_threshold;
  240. u32 secondary_vm_exec_control;
  241. u32 vm_instruction_error;
  242. u32 vm_exit_reason;
  243. u32 vm_exit_intr_info;
  244. u32 vm_exit_intr_error_code;
  245. u32 idt_vectoring_info_field;
  246. u32 idt_vectoring_error_code;
  247. u32 vm_exit_instruction_len;
  248. u32 vmx_instruction_info;
  249. u32 guest_es_limit;
  250. u32 guest_cs_limit;
  251. u32 guest_ss_limit;
  252. u32 guest_ds_limit;
  253. u32 guest_fs_limit;
  254. u32 guest_gs_limit;
  255. u32 guest_ldtr_limit;
  256. u32 guest_tr_limit;
  257. u32 guest_gdtr_limit;
  258. u32 guest_idtr_limit;
  259. u32 guest_es_ar_bytes;
  260. u32 guest_cs_ar_bytes;
  261. u32 guest_ss_ar_bytes;
  262. u32 guest_ds_ar_bytes;
  263. u32 guest_fs_ar_bytes;
  264. u32 guest_gs_ar_bytes;
  265. u32 guest_ldtr_ar_bytes;
  266. u32 guest_tr_ar_bytes;
  267. u32 guest_interruptibility_info;
  268. u32 guest_activity_state;
  269. u32 guest_sysenter_cs;
  270. u32 host_ia32_sysenter_cs;
  271. u32 padding32[8]; /* room for future expansion */
  272. u16 virtual_processor_id;
  273. u16 guest_es_selector;
  274. u16 guest_cs_selector;
  275. u16 guest_ss_selector;
  276. u16 guest_ds_selector;
  277. u16 guest_fs_selector;
  278. u16 guest_gs_selector;
  279. u16 guest_ldtr_selector;
  280. u16 guest_tr_selector;
  281. u16 host_es_selector;
  282. u16 host_cs_selector;
  283. u16 host_ss_selector;
  284. u16 host_ds_selector;
  285. u16 host_fs_selector;
  286. u16 host_gs_selector;
  287. u16 host_tr_selector;
  288. };
  289. /*
  290. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  291. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  292. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  293. */
  294. #define VMCS12_REVISION 0x11e57ed0
  295. /*
  296. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  297. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  298. * current implementation, 4K are reserved to avoid future complications.
  299. */
  300. #define VMCS12_SIZE 0x1000
  301. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  302. struct vmcs02_list {
  303. struct list_head list;
  304. gpa_t vmptr;
  305. struct loaded_vmcs vmcs02;
  306. };
  307. /*
  308. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  309. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  310. */
  311. struct nested_vmx {
  312. /* Has the level1 guest done vmxon? */
  313. bool vmxon;
  314. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  315. gpa_t current_vmptr;
  316. /* The host-usable pointer to the above */
  317. struct page *current_vmcs12_page;
  318. struct vmcs12 *current_vmcs12;
  319. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  320. struct list_head vmcs02_pool;
  321. int vmcs02_num;
  322. u64 vmcs01_tsc_offset;
  323. /* L2 must run next, and mustn't decide to exit to L1. */
  324. bool nested_run_pending;
  325. /*
  326. * Guest pages referred to in vmcs02 with host-physical pointers, so
  327. * we must keep them pinned while L2 runs.
  328. */
  329. struct page *apic_access_page;
  330. };
  331. struct vcpu_vmx {
  332. struct kvm_vcpu vcpu;
  333. unsigned long host_rsp;
  334. u8 fail;
  335. u8 cpl;
  336. bool nmi_known_unmasked;
  337. u32 exit_intr_info;
  338. u32 idt_vectoring_info;
  339. ulong rflags;
  340. struct shared_msr_entry *guest_msrs;
  341. int nmsrs;
  342. int save_nmsrs;
  343. #ifdef CONFIG_X86_64
  344. u64 msr_host_kernel_gs_base;
  345. u64 msr_guest_kernel_gs_base;
  346. #endif
  347. /*
  348. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  349. * non-nested (L1) guest, it always points to vmcs01. For a nested
  350. * guest (L2), it points to a different VMCS.
  351. */
  352. struct loaded_vmcs vmcs01;
  353. struct loaded_vmcs *loaded_vmcs;
  354. bool __launched; /* temporary, used in vmx_vcpu_run */
  355. struct msr_autoload {
  356. unsigned nr;
  357. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  358. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  359. } msr_autoload;
  360. struct {
  361. int loaded;
  362. u16 fs_sel, gs_sel, ldt_sel;
  363. #ifdef CONFIG_X86_64
  364. u16 ds_sel, es_sel;
  365. #endif
  366. int gs_ldt_reload_needed;
  367. int fs_reload_needed;
  368. } host_state;
  369. struct {
  370. int vm86_active;
  371. ulong save_rflags;
  372. struct kvm_segment segs[8];
  373. } rmode;
  374. struct {
  375. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  376. struct kvm_save_segment {
  377. u16 selector;
  378. unsigned long base;
  379. u32 limit;
  380. u32 ar;
  381. } seg[8];
  382. } segment_cache;
  383. int vpid;
  384. bool emulation_required;
  385. /* Support for vnmi-less CPUs */
  386. int soft_vnmi_blocked;
  387. ktime_t entry_time;
  388. s64 vnmi_blocked_time;
  389. u32 exit_reason;
  390. bool rdtscp_enabled;
  391. /* Support for a guest hypervisor (nested VMX) */
  392. struct nested_vmx nested;
  393. };
  394. enum segment_cache_field {
  395. SEG_FIELD_SEL = 0,
  396. SEG_FIELD_BASE = 1,
  397. SEG_FIELD_LIMIT = 2,
  398. SEG_FIELD_AR = 3,
  399. SEG_FIELD_NR = 4
  400. };
  401. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  402. {
  403. return container_of(vcpu, struct vcpu_vmx, vcpu);
  404. }
  405. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  406. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  407. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  408. [number##_HIGH] = VMCS12_OFFSET(name)+4
  409. static const unsigned short vmcs_field_to_offset_table[] = {
  410. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  411. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  412. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  413. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  414. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  415. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  416. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  417. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  418. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  419. FIELD(HOST_ES_SELECTOR, host_es_selector),
  420. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  421. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  422. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  423. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  424. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  425. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  426. FIELD64(IO_BITMAP_A, io_bitmap_a),
  427. FIELD64(IO_BITMAP_B, io_bitmap_b),
  428. FIELD64(MSR_BITMAP, msr_bitmap),
  429. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  430. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  431. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  432. FIELD64(TSC_OFFSET, tsc_offset),
  433. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  434. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  435. FIELD64(EPT_POINTER, ept_pointer),
  436. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  437. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  438. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  439. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  440. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  441. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  442. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  443. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  444. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  445. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  446. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  447. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  448. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  449. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  450. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  451. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  452. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  453. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  454. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  455. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  456. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  457. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  458. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  459. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  460. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  461. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  462. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  463. FIELD(TPR_THRESHOLD, tpr_threshold),
  464. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  465. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  466. FIELD(VM_EXIT_REASON, vm_exit_reason),
  467. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  468. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  469. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  470. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  471. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  472. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  473. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  474. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  475. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  476. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  477. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  478. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  479. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  480. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  481. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  482. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  483. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  484. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  485. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  486. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  487. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  488. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  489. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  490. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  491. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  492. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  493. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  494. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  495. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  496. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  497. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  498. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  499. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  500. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  501. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  502. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  503. FIELD(EXIT_QUALIFICATION, exit_qualification),
  504. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  505. FIELD(GUEST_CR0, guest_cr0),
  506. FIELD(GUEST_CR3, guest_cr3),
  507. FIELD(GUEST_CR4, guest_cr4),
  508. FIELD(GUEST_ES_BASE, guest_es_base),
  509. FIELD(GUEST_CS_BASE, guest_cs_base),
  510. FIELD(GUEST_SS_BASE, guest_ss_base),
  511. FIELD(GUEST_DS_BASE, guest_ds_base),
  512. FIELD(GUEST_FS_BASE, guest_fs_base),
  513. FIELD(GUEST_GS_BASE, guest_gs_base),
  514. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  515. FIELD(GUEST_TR_BASE, guest_tr_base),
  516. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  517. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  518. FIELD(GUEST_DR7, guest_dr7),
  519. FIELD(GUEST_RSP, guest_rsp),
  520. FIELD(GUEST_RIP, guest_rip),
  521. FIELD(GUEST_RFLAGS, guest_rflags),
  522. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  523. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  524. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  525. FIELD(HOST_CR0, host_cr0),
  526. FIELD(HOST_CR3, host_cr3),
  527. FIELD(HOST_CR4, host_cr4),
  528. FIELD(HOST_FS_BASE, host_fs_base),
  529. FIELD(HOST_GS_BASE, host_gs_base),
  530. FIELD(HOST_TR_BASE, host_tr_base),
  531. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  532. FIELD(HOST_IDTR_BASE, host_idtr_base),
  533. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  534. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  535. FIELD(HOST_RSP, host_rsp),
  536. FIELD(HOST_RIP, host_rip),
  537. };
  538. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  539. static inline short vmcs_field_to_offset(unsigned long field)
  540. {
  541. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  542. return -1;
  543. return vmcs_field_to_offset_table[field];
  544. }
  545. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  546. {
  547. return to_vmx(vcpu)->nested.current_vmcs12;
  548. }
  549. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  550. {
  551. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  552. if (is_error_page(page))
  553. return NULL;
  554. return page;
  555. }
  556. static void nested_release_page(struct page *page)
  557. {
  558. kvm_release_page_dirty(page);
  559. }
  560. static void nested_release_page_clean(struct page *page)
  561. {
  562. kvm_release_page_clean(page);
  563. }
  564. static u64 construct_eptp(unsigned long root_hpa);
  565. static void kvm_cpu_vmxon(u64 addr);
  566. static void kvm_cpu_vmxoff(void);
  567. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  568. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  569. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  570. struct kvm_segment *var, int seg);
  571. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  572. struct kvm_segment *var, int seg);
  573. static bool guest_state_valid(struct kvm_vcpu *vcpu);
  574. static u32 vmx_segment_access_rights(struct kvm_segment *var);
  575. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  576. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  577. /*
  578. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  579. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  580. */
  581. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  582. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  583. static unsigned long *vmx_io_bitmap_a;
  584. static unsigned long *vmx_io_bitmap_b;
  585. static unsigned long *vmx_msr_bitmap_legacy;
  586. static unsigned long *vmx_msr_bitmap_longmode;
  587. static unsigned long *vmx_msr_bitmap_legacy_x2apic;
  588. static unsigned long *vmx_msr_bitmap_longmode_x2apic;
  589. static bool cpu_has_load_ia32_efer;
  590. static bool cpu_has_load_perf_global_ctrl;
  591. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  592. static DEFINE_SPINLOCK(vmx_vpid_lock);
  593. static struct vmcs_config {
  594. int size;
  595. int order;
  596. u32 revision_id;
  597. u32 pin_based_exec_ctrl;
  598. u32 cpu_based_exec_ctrl;
  599. u32 cpu_based_2nd_exec_ctrl;
  600. u32 vmexit_ctrl;
  601. u32 vmentry_ctrl;
  602. } vmcs_config;
  603. static struct vmx_capability {
  604. u32 ept;
  605. u32 vpid;
  606. } vmx_capability;
  607. #define VMX_SEGMENT_FIELD(seg) \
  608. [VCPU_SREG_##seg] = { \
  609. .selector = GUEST_##seg##_SELECTOR, \
  610. .base = GUEST_##seg##_BASE, \
  611. .limit = GUEST_##seg##_LIMIT, \
  612. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  613. }
  614. static const struct kvm_vmx_segment_field {
  615. unsigned selector;
  616. unsigned base;
  617. unsigned limit;
  618. unsigned ar_bytes;
  619. } kvm_vmx_segment_fields[] = {
  620. VMX_SEGMENT_FIELD(CS),
  621. VMX_SEGMENT_FIELD(DS),
  622. VMX_SEGMENT_FIELD(ES),
  623. VMX_SEGMENT_FIELD(FS),
  624. VMX_SEGMENT_FIELD(GS),
  625. VMX_SEGMENT_FIELD(SS),
  626. VMX_SEGMENT_FIELD(TR),
  627. VMX_SEGMENT_FIELD(LDTR),
  628. };
  629. static u64 host_efer;
  630. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  631. /*
  632. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  633. * away by decrementing the array size.
  634. */
  635. static const u32 vmx_msr_index[] = {
  636. #ifdef CONFIG_X86_64
  637. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  638. #endif
  639. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  640. };
  641. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  642. static inline bool is_page_fault(u32 intr_info)
  643. {
  644. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  645. INTR_INFO_VALID_MASK)) ==
  646. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  647. }
  648. static inline bool is_no_device(u32 intr_info)
  649. {
  650. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  651. INTR_INFO_VALID_MASK)) ==
  652. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  653. }
  654. static inline bool is_invalid_opcode(u32 intr_info)
  655. {
  656. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  657. INTR_INFO_VALID_MASK)) ==
  658. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  659. }
  660. static inline bool is_external_interrupt(u32 intr_info)
  661. {
  662. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  663. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  664. }
  665. static inline bool is_machine_check(u32 intr_info)
  666. {
  667. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  668. INTR_INFO_VALID_MASK)) ==
  669. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  670. }
  671. static inline bool cpu_has_vmx_msr_bitmap(void)
  672. {
  673. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  674. }
  675. static inline bool cpu_has_vmx_tpr_shadow(void)
  676. {
  677. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  678. }
  679. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  680. {
  681. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  682. }
  683. static inline bool cpu_has_secondary_exec_ctrls(void)
  684. {
  685. return vmcs_config.cpu_based_exec_ctrl &
  686. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  687. }
  688. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  689. {
  690. return vmcs_config.cpu_based_2nd_exec_ctrl &
  691. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  692. }
  693. static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
  694. {
  695. return vmcs_config.cpu_based_2nd_exec_ctrl &
  696. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  697. }
  698. static inline bool cpu_has_vmx_apic_register_virt(void)
  699. {
  700. return vmcs_config.cpu_based_2nd_exec_ctrl &
  701. SECONDARY_EXEC_APIC_REGISTER_VIRT;
  702. }
  703. static inline bool cpu_has_vmx_virtual_intr_delivery(void)
  704. {
  705. return vmcs_config.cpu_based_2nd_exec_ctrl &
  706. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
  707. }
  708. static inline bool cpu_has_vmx_flexpriority(void)
  709. {
  710. return cpu_has_vmx_tpr_shadow() &&
  711. cpu_has_vmx_virtualize_apic_accesses();
  712. }
  713. static inline bool cpu_has_vmx_ept_execute_only(void)
  714. {
  715. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  716. }
  717. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  718. {
  719. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  720. }
  721. static inline bool cpu_has_vmx_eptp_writeback(void)
  722. {
  723. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  724. }
  725. static inline bool cpu_has_vmx_ept_2m_page(void)
  726. {
  727. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  728. }
  729. static inline bool cpu_has_vmx_ept_1g_page(void)
  730. {
  731. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  732. }
  733. static inline bool cpu_has_vmx_ept_4levels(void)
  734. {
  735. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  736. }
  737. static inline bool cpu_has_vmx_ept_ad_bits(void)
  738. {
  739. return vmx_capability.ept & VMX_EPT_AD_BIT;
  740. }
  741. static inline bool cpu_has_vmx_invept_context(void)
  742. {
  743. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  744. }
  745. static inline bool cpu_has_vmx_invept_global(void)
  746. {
  747. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  748. }
  749. static inline bool cpu_has_vmx_invvpid_single(void)
  750. {
  751. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  752. }
  753. static inline bool cpu_has_vmx_invvpid_global(void)
  754. {
  755. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  756. }
  757. static inline bool cpu_has_vmx_ept(void)
  758. {
  759. return vmcs_config.cpu_based_2nd_exec_ctrl &
  760. SECONDARY_EXEC_ENABLE_EPT;
  761. }
  762. static inline bool cpu_has_vmx_unrestricted_guest(void)
  763. {
  764. return vmcs_config.cpu_based_2nd_exec_ctrl &
  765. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  766. }
  767. static inline bool cpu_has_vmx_ple(void)
  768. {
  769. return vmcs_config.cpu_based_2nd_exec_ctrl &
  770. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  771. }
  772. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  773. {
  774. return flexpriority_enabled && irqchip_in_kernel(kvm);
  775. }
  776. static inline bool cpu_has_vmx_vpid(void)
  777. {
  778. return vmcs_config.cpu_based_2nd_exec_ctrl &
  779. SECONDARY_EXEC_ENABLE_VPID;
  780. }
  781. static inline bool cpu_has_vmx_rdtscp(void)
  782. {
  783. return vmcs_config.cpu_based_2nd_exec_ctrl &
  784. SECONDARY_EXEC_RDTSCP;
  785. }
  786. static inline bool cpu_has_vmx_invpcid(void)
  787. {
  788. return vmcs_config.cpu_based_2nd_exec_ctrl &
  789. SECONDARY_EXEC_ENABLE_INVPCID;
  790. }
  791. static inline bool cpu_has_virtual_nmis(void)
  792. {
  793. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  794. }
  795. static inline bool cpu_has_vmx_wbinvd_exit(void)
  796. {
  797. return vmcs_config.cpu_based_2nd_exec_ctrl &
  798. SECONDARY_EXEC_WBINVD_EXITING;
  799. }
  800. static inline bool report_flexpriority(void)
  801. {
  802. return flexpriority_enabled;
  803. }
  804. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  805. {
  806. return vmcs12->cpu_based_vm_exec_control & bit;
  807. }
  808. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  809. {
  810. return (vmcs12->cpu_based_vm_exec_control &
  811. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  812. (vmcs12->secondary_vm_exec_control & bit);
  813. }
  814. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  815. struct kvm_vcpu *vcpu)
  816. {
  817. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  818. }
  819. static inline bool is_exception(u32 intr_info)
  820. {
  821. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  822. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  823. }
  824. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  825. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  826. struct vmcs12 *vmcs12,
  827. u32 reason, unsigned long qualification);
  828. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  829. {
  830. int i;
  831. for (i = 0; i < vmx->nmsrs; ++i)
  832. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  833. return i;
  834. return -1;
  835. }
  836. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  837. {
  838. struct {
  839. u64 vpid : 16;
  840. u64 rsvd : 48;
  841. u64 gva;
  842. } operand = { vpid, 0, gva };
  843. asm volatile (__ex(ASM_VMX_INVVPID)
  844. /* CF==1 or ZF==1 --> rc = -1 */
  845. "; ja 1f ; ud2 ; 1:"
  846. : : "a"(&operand), "c"(ext) : "cc", "memory");
  847. }
  848. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  849. {
  850. struct {
  851. u64 eptp, gpa;
  852. } operand = {eptp, gpa};
  853. asm volatile (__ex(ASM_VMX_INVEPT)
  854. /* CF==1 or ZF==1 --> rc = -1 */
  855. "; ja 1f ; ud2 ; 1:\n"
  856. : : "a" (&operand), "c" (ext) : "cc", "memory");
  857. }
  858. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  859. {
  860. int i;
  861. i = __find_msr_index(vmx, msr);
  862. if (i >= 0)
  863. return &vmx->guest_msrs[i];
  864. return NULL;
  865. }
  866. static void vmcs_clear(struct vmcs *vmcs)
  867. {
  868. u64 phys_addr = __pa(vmcs);
  869. u8 error;
  870. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  871. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  872. : "cc", "memory");
  873. if (error)
  874. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  875. vmcs, phys_addr);
  876. }
  877. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  878. {
  879. vmcs_clear(loaded_vmcs->vmcs);
  880. loaded_vmcs->cpu = -1;
  881. loaded_vmcs->launched = 0;
  882. }
  883. static void vmcs_load(struct vmcs *vmcs)
  884. {
  885. u64 phys_addr = __pa(vmcs);
  886. u8 error;
  887. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  888. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  889. : "cc", "memory");
  890. if (error)
  891. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  892. vmcs, phys_addr);
  893. }
  894. #ifdef CONFIG_KEXEC
  895. /*
  896. * This bitmap is used to indicate whether the vmclear
  897. * operation is enabled on all cpus. All disabled by
  898. * default.
  899. */
  900. static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
  901. static inline void crash_enable_local_vmclear(int cpu)
  902. {
  903. cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
  904. }
  905. static inline void crash_disable_local_vmclear(int cpu)
  906. {
  907. cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
  908. }
  909. static inline int crash_local_vmclear_enabled(int cpu)
  910. {
  911. return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
  912. }
  913. static void crash_vmclear_local_loaded_vmcss(void)
  914. {
  915. int cpu = raw_smp_processor_id();
  916. struct loaded_vmcs *v;
  917. if (!crash_local_vmclear_enabled(cpu))
  918. return;
  919. list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
  920. loaded_vmcss_on_cpu_link)
  921. vmcs_clear(v->vmcs);
  922. }
  923. #else
  924. static inline void crash_enable_local_vmclear(int cpu) { }
  925. static inline void crash_disable_local_vmclear(int cpu) { }
  926. #endif /* CONFIG_KEXEC */
  927. static void __loaded_vmcs_clear(void *arg)
  928. {
  929. struct loaded_vmcs *loaded_vmcs = arg;
  930. int cpu = raw_smp_processor_id();
  931. if (loaded_vmcs->cpu != cpu)
  932. return; /* vcpu migration can race with cpu offline */
  933. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  934. per_cpu(current_vmcs, cpu) = NULL;
  935. crash_disable_local_vmclear(cpu);
  936. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  937. /*
  938. * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
  939. * is before setting loaded_vmcs->vcpu to -1 which is done in
  940. * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
  941. * then adds the vmcs into percpu list before it is deleted.
  942. */
  943. smp_wmb();
  944. loaded_vmcs_init(loaded_vmcs);
  945. crash_enable_local_vmclear(cpu);
  946. }
  947. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  948. {
  949. int cpu = loaded_vmcs->cpu;
  950. if (cpu != -1)
  951. smp_call_function_single(cpu,
  952. __loaded_vmcs_clear, loaded_vmcs, 1);
  953. }
  954. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  955. {
  956. if (vmx->vpid == 0)
  957. return;
  958. if (cpu_has_vmx_invvpid_single())
  959. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  960. }
  961. static inline void vpid_sync_vcpu_global(void)
  962. {
  963. if (cpu_has_vmx_invvpid_global())
  964. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  965. }
  966. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  967. {
  968. if (cpu_has_vmx_invvpid_single())
  969. vpid_sync_vcpu_single(vmx);
  970. else
  971. vpid_sync_vcpu_global();
  972. }
  973. static inline void ept_sync_global(void)
  974. {
  975. if (cpu_has_vmx_invept_global())
  976. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  977. }
  978. static inline void ept_sync_context(u64 eptp)
  979. {
  980. if (enable_ept) {
  981. if (cpu_has_vmx_invept_context())
  982. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  983. else
  984. ept_sync_global();
  985. }
  986. }
  987. static __always_inline unsigned long vmcs_readl(unsigned long field)
  988. {
  989. unsigned long value;
  990. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  991. : "=a"(value) : "d"(field) : "cc");
  992. return value;
  993. }
  994. static __always_inline u16 vmcs_read16(unsigned long field)
  995. {
  996. return vmcs_readl(field);
  997. }
  998. static __always_inline u32 vmcs_read32(unsigned long field)
  999. {
  1000. return vmcs_readl(field);
  1001. }
  1002. static __always_inline u64 vmcs_read64(unsigned long field)
  1003. {
  1004. #ifdef CONFIG_X86_64
  1005. return vmcs_readl(field);
  1006. #else
  1007. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  1008. #endif
  1009. }
  1010. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  1011. {
  1012. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  1013. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  1014. dump_stack();
  1015. }
  1016. static void vmcs_writel(unsigned long field, unsigned long value)
  1017. {
  1018. u8 error;
  1019. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  1020. : "=q"(error) : "a"(value), "d"(field) : "cc");
  1021. if (unlikely(error))
  1022. vmwrite_error(field, value);
  1023. }
  1024. static void vmcs_write16(unsigned long field, u16 value)
  1025. {
  1026. vmcs_writel(field, value);
  1027. }
  1028. static void vmcs_write32(unsigned long field, u32 value)
  1029. {
  1030. vmcs_writel(field, value);
  1031. }
  1032. static void vmcs_write64(unsigned long field, u64 value)
  1033. {
  1034. vmcs_writel(field, value);
  1035. #ifndef CONFIG_X86_64
  1036. asm volatile ("");
  1037. vmcs_writel(field+1, value >> 32);
  1038. #endif
  1039. }
  1040. static void vmcs_clear_bits(unsigned long field, u32 mask)
  1041. {
  1042. vmcs_writel(field, vmcs_readl(field) & ~mask);
  1043. }
  1044. static void vmcs_set_bits(unsigned long field, u32 mask)
  1045. {
  1046. vmcs_writel(field, vmcs_readl(field) | mask);
  1047. }
  1048. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  1049. {
  1050. vmx->segment_cache.bitmask = 0;
  1051. }
  1052. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  1053. unsigned field)
  1054. {
  1055. bool ret;
  1056. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  1057. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  1058. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  1059. vmx->segment_cache.bitmask = 0;
  1060. }
  1061. ret = vmx->segment_cache.bitmask & mask;
  1062. vmx->segment_cache.bitmask |= mask;
  1063. return ret;
  1064. }
  1065. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  1066. {
  1067. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1068. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1069. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1070. return *p;
  1071. }
  1072. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1073. {
  1074. ulong *p = &vmx->segment_cache.seg[seg].base;
  1075. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1076. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1077. return *p;
  1078. }
  1079. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1080. {
  1081. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1082. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1083. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1084. return *p;
  1085. }
  1086. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1087. {
  1088. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1089. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1090. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1091. return *p;
  1092. }
  1093. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1094. {
  1095. u32 eb;
  1096. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1097. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1098. if ((vcpu->guest_debug &
  1099. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1100. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1101. eb |= 1u << BP_VECTOR;
  1102. if (to_vmx(vcpu)->rmode.vm86_active)
  1103. eb = ~0;
  1104. if (enable_ept)
  1105. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1106. if (vcpu->fpu_active)
  1107. eb &= ~(1u << NM_VECTOR);
  1108. /* When we are running a nested L2 guest and L1 specified for it a
  1109. * certain exception bitmap, we must trap the same exceptions and pass
  1110. * them to L1. When running L2, we will only handle the exceptions
  1111. * specified above if L1 did not want them.
  1112. */
  1113. if (is_guest_mode(vcpu))
  1114. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1115. vmcs_write32(EXCEPTION_BITMAP, eb);
  1116. }
  1117. static void clear_atomic_switch_msr_special(unsigned long entry,
  1118. unsigned long exit)
  1119. {
  1120. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1121. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1122. }
  1123. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1124. {
  1125. unsigned i;
  1126. struct msr_autoload *m = &vmx->msr_autoload;
  1127. switch (msr) {
  1128. case MSR_EFER:
  1129. if (cpu_has_load_ia32_efer) {
  1130. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1131. VM_EXIT_LOAD_IA32_EFER);
  1132. return;
  1133. }
  1134. break;
  1135. case MSR_CORE_PERF_GLOBAL_CTRL:
  1136. if (cpu_has_load_perf_global_ctrl) {
  1137. clear_atomic_switch_msr_special(
  1138. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1139. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1140. return;
  1141. }
  1142. break;
  1143. }
  1144. for (i = 0; i < m->nr; ++i)
  1145. if (m->guest[i].index == msr)
  1146. break;
  1147. if (i == m->nr)
  1148. return;
  1149. --m->nr;
  1150. m->guest[i] = m->guest[m->nr];
  1151. m->host[i] = m->host[m->nr];
  1152. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1153. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1154. }
  1155. static void add_atomic_switch_msr_special(unsigned long entry,
  1156. unsigned long exit, unsigned long guest_val_vmcs,
  1157. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1158. {
  1159. vmcs_write64(guest_val_vmcs, guest_val);
  1160. vmcs_write64(host_val_vmcs, host_val);
  1161. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1162. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1163. }
  1164. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1165. u64 guest_val, u64 host_val)
  1166. {
  1167. unsigned i;
  1168. struct msr_autoload *m = &vmx->msr_autoload;
  1169. switch (msr) {
  1170. case MSR_EFER:
  1171. if (cpu_has_load_ia32_efer) {
  1172. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1173. VM_EXIT_LOAD_IA32_EFER,
  1174. GUEST_IA32_EFER,
  1175. HOST_IA32_EFER,
  1176. guest_val, host_val);
  1177. return;
  1178. }
  1179. break;
  1180. case MSR_CORE_PERF_GLOBAL_CTRL:
  1181. if (cpu_has_load_perf_global_ctrl) {
  1182. add_atomic_switch_msr_special(
  1183. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1184. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1185. GUEST_IA32_PERF_GLOBAL_CTRL,
  1186. HOST_IA32_PERF_GLOBAL_CTRL,
  1187. guest_val, host_val);
  1188. return;
  1189. }
  1190. break;
  1191. }
  1192. for (i = 0; i < m->nr; ++i)
  1193. if (m->guest[i].index == msr)
  1194. break;
  1195. if (i == NR_AUTOLOAD_MSRS) {
  1196. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1197. "Can't add msr %x\n", msr);
  1198. return;
  1199. } else if (i == m->nr) {
  1200. ++m->nr;
  1201. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1202. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1203. }
  1204. m->guest[i].index = msr;
  1205. m->guest[i].value = guest_val;
  1206. m->host[i].index = msr;
  1207. m->host[i].value = host_val;
  1208. }
  1209. static void reload_tss(void)
  1210. {
  1211. /*
  1212. * VT restores TR but not its size. Useless.
  1213. */
  1214. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1215. struct desc_struct *descs;
  1216. descs = (void *)gdt->address;
  1217. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1218. load_TR_desc();
  1219. }
  1220. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1221. {
  1222. u64 guest_efer;
  1223. u64 ignore_bits;
  1224. guest_efer = vmx->vcpu.arch.efer;
  1225. /*
  1226. * NX is emulated; LMA and LME handled by hardware; SCE meaningless
  1227. * outside long mode
  1228. */
  1229. ignore_bits = EFER_NX | EFER_SCE;
  1230. #ifdef CONFIG_X86_64
  1231. ignore_bits |= EFER_LMA | EFER_LME;
  1232. /* SCE is meaningful only in long mode on Intel */
  1233. if (guest_efer & EFER_LMA)
  1234. ignore_bits &= ~(u64)EFER_SCE;
  1235. #endif
  1236. guest_efer &= ~ignore_bits;
  1237. guest_efer |= host_efer & ignore_bits;
  1238. vmx->guest_msrs[efer_offset].data = guest_efer;
  1239. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1240. clear_atomic_switch_msr(vmx, MSR_EFER);
  1241. /* On ept, can't emulate nx, and must switch nx atomically */
  1242. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1243. guest_efer = vmx->vcpu.arch.efer;
  1244. if (!(guest_efer & EFER_LMA))
  1245. guest_efer &= ~EFER_LME;
  1246. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1247. return false;
  1248. }
  1249. return true;
  1250. }
  1251. static unsigned long segment_base(u16 selector)
  1252. {
  1253. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1254. struct desc_struct *d;
  1255. unsigned long table_base;
  1256. unsigned long v;
  1257. if (!(selector & ~3))
  1258. return 0;
  1259. table_base = gdt->address;
  1260. if (selector & 4) { /* from ldt */
  1261. u16 ldt_selector = kvm_read_ldt();
  1262. if (!(ldt_selector & ~3))
  1263. return 0;
  1264. table_base = segment_base(ldt_selector);
  1265. }
  1266. d = (struct desc_struct *)(table_base + (selector & ~7));
  1267. v = get_desc_base(d);
  1268. #ifdef CONFIG_X86_64
  1269. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1270. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1271. #endif
  1272. return v;
  1273. }
  1274. static inline unsigned long kvm_read_tr_base(void)
  1275. {
  1276. u16 tr;
  1277. asm("str %0" : "=g"(tr));
  1278. return segment_base(tr);
  1279. }
  1280. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1281. {
  1282. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1283. int i;
  1284. if (vmx->host_state.loaded)
  1285. return;
  1286. vmx->host_state.loaded = 1;
  1287. /*
  1288. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1289. * allow segment selectors with cpl > 0 or ti == 1.
  1290. */
  1291. vmx->host_state.ldt_sel = kvm_read_ldt();
  1292. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1293. savesegment(fs, vmx->host_state.fs_sel);
  1294. if (!(vmx->host_state.fs_sel & 7)) {
  1295. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1296. vmx->host_state.fs_reload_needed = 0;
  1297. } else {
  1298. vmcs_write16(HOST_FS_SELECTOR, 0);
  1299. vmx->host_state.fs_reload_needed = 1;
  1300. }
  1301. savesegment(gs, vmx->host_state.gs_sel);
  1302. if (!(vmx->host_state.gs_sel & 7))
  1303. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1304. else {
  1305. vmcs_write16(HOST_GS_SELECTOR, 0);
  1306. vmx->host_state.gs_ldt_reload_needed = 1;
  1307. }
  1308. #ifdef CONFIG_X86_64
  1309. savesegment(ds, vmx->host_state.ds_sel);
  1310. savesegment(es, vmx->host_state.es_sel);
  1311. #endif
  1312. #ifdef CONFIG_X86_64
  1313. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1314. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1315. #else
  1316. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1317. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1318. #endif
  1319. #ifdef CONFIG_X86_64
  1320. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1321. if (is_long_mode(&vmx->vcpu))
  1322. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1323. #endif
  1324. for (i = 0; i < vmx->save_nmsrs; ++i)
  1325. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1326. vmx->guest_msrs[i].data,
  1327. vmx->guest_msrs[i].mask);
  1328. }
  1329. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1330. {
  1331. if (!vmx->host_state.loaded)
  1332. return;
  1333. ++vmx->vcpu.stat.host_state_reload;
  1334. vmx->host_state.loaded = 0;
  1335. #ifdef CONFIG_X86_64
  1336. if (is_long_mode(&vmx->vcpu))
  1337. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1338. #endif
  1339. if (vmx->host_state.gs_ldt_reload_needed) {
  1340. kvm_load_ldt(vmx->host_state.ldt_sel);
  1341. #ifdef CONFIG_X86_64
  1342. load_gs_index(vmx->host_state.gs_sel);
  1343. #else
  1344. loadsegment(gs, vmx->host_state.gs_sel);
  1345. #endif
  1346. }
  1347. if (vmx->host_state.fs_reload_needed)
  1348. loadsegment(fs, vmx->host_state.fs_sel);
  1349. #ifdef CONFIG_X86_64
  1350. if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
  1351. loadsegment(ds, vmx->host_state.ds_sel);
  1352. loadsegment(es, vmx->host_state.es_sel);
  1353. }
  1354. #endif
  1355. reload_tss();
  1356. #ifdef CONFIG_X86_64
  1357. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1358. #endif
  1359. /*
  1360. * If the FPU is not active (through the host task or
  1361. * the guest vcpu), then restore the cr0.TS bit.
  1362. */
  1363. if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
  1364. stts();
  1365. load_gdt(&__get_cpu_var(host_gdt));
  1366. }
  1367. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1368. {
  1369. preempt_disable();
  1370. __vmx_load_host_state(vmx);
  1371. preempt_enable();
  1372. }
  1373. /*
  1374. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1375. * vcpu mutex is already taken.
  1376. */
  1377. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1378. {
  1379. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1380. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1381. if (!vmm_exclusive)
  1382. kvm_cpu_vmxon(phys_addr);
  1383. else if (vmx->loaded_vmcs->cpu != cpu)
  1384. loaded_vmcs_clear(vmx->loaded_vmcs);
  1385. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1386. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1387. vmcs_load(vmx->loaded_vmcs->vmcs);
  1388. }
  1389. if (vmx->loaded_vmcs->cpu != cpu) {
  1390. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1391. unsigned long sysenter_esp;
  1392. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1393. local_irq_disable();
  1394. crash_disable_local_vmclear(cpu);
  1395. /*
  1396. * Read loaded_vmcs->cpu should be before fetching
  1397. * loaded_vmcs->loaded_vmcss_on_cpu_link.
  1398. * See the comments in __loaded_vmcs_clear().
  1399. */
  1400. smp_rmb();
  1401. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1402. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1403. crash_enable_local_vmclear(cpu);
  1404. local_irq_enable();
  1405. /*
  1406. * Linux uses per-cpu TSS and GDT, so set these when switching
  1407. * processors.
  1408. */
  1409. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1410. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1411. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1412. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1413. vmx->loaded_vmcs->cpu = cpu;
  1414. }
  1415. }
  1416. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1417. {
  1418. __vmx_load_host_state(to_vmx(vcpu));
  1419. if (!vmm_exclusive) {
  1420. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1421. vcpu->cpu = -1;
  1422. kvm_cpu_vmxoff();
  1423. }
  1424. }
  1425. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1426. {
  1427. ulong cr0;
  1428. if (vcpu->fpu_active)
  1429. return;
  1430. vcpu->fpu_active = 1;
  1431. cr0 = vmcs_readl(GUEST_CR0);
  1432. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1433. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1434. vmcs_writel(GUEST_CR0, cr0);
  1435. update_exception_bitmap(vcpu);
  1436. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1437. if (is_guest_mode(vcpu))
  1438. vcpu->arch.cr0_guest_owned_bits &=
  1439. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1440. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1441. }
  1442. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1443. /*
  1444. * Return the cr0 value that a nested guest would read. This is a combination
  1445. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1446. * its hypervisor (cr0_read_shadow).
  1447. */
  1448. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1449. {
  1450. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1451. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1452. }
  1453. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1454. {
  1455. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1456. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1457. }
  1458. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1459. {
  1460. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1461. * set this *before* calling this function.
  1462. */
  1463. vmx_decache_cr0_guest_bits(vcpu);
  1464. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1465. update_exception_bitmap(vcpu);
  1466. vcpu->arch.cr0_guest_owned_bits = 0;
  1467. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1468. if (is_guest_mode(vcpu)) {
  1469. /*
  1470. * L1's specified read shadow might not contain the TS bit,
  1471. * so now that we turned on shadowing of this bit, we need to
  1472. * set this bit of the shadow. Like in nested_vmx_run we need
  1473. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1474. * up-to-date here because we just decached cr0.TS (and we'll
  1475. * only update vmcs12->guest_cr0 on nested exit).
  1476. */
  1477. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1478. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1479. (vcpu->arch.cr0 & X86_CR0_TS);
  1480. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1481. } else
  1482. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1483. }
  1484. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1485. {
  1486. unsigned long rflags, save_rflags;
  1487. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1488. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1489. rflags = vmcs_readl(GUEST_RFLAGS);
  1490. if (to_vmx(vcpu)->rmode.vm86_active) {
  1491. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1492. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1493. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1494. }
  1495. to_vmx(vcpu)->rflags = rflags;
  1496. }
  1497. return to_vmx(vcpu)->rflags;
  1498. }
  1499. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1500. {
  1501. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1502. to_vmx(vcpu)->rflags = rflags;
  1503. if (to_vmx(vcpu)->rmode.vm86_active) {
  1504. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1505. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1506. }
  1507. vmcs_writel(GUEST_RFLAGS, rflags);
  1508. }
  1509. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1510. {
  1511. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1512. int ret = 0;
  1513. if (interruptibility & GUEST_INTR_STATE_STI)
  1514. ret |= KVM_X86_SHADOW_INT_STI;
  1515. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1516. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1517. return ret & mask;
  1518. }
  1519. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1520. {
  1521. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1522. u32 interruptibility = interruptibility_old;
  1523. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1524. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1525. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1526. else if (mask & KVM_X86_SHADOW_INT_STI)
  1527. interruptibility |= GUEST_INTR_STATE_STI;
  1528. if ((interruptibility != interruptibility_old))
  1529. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1530. }
  1531. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1532. {
  1533. unsigned long rip;
  1534. rip = kvm_rip_read(vcpu);
  1535. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1536. kvm_rip_write(vcpu, rip);
  1537. /* skipping an emulated instruction also counts */
  1538. vmx_set_interrupt_shadow(vcpu, 0);
  1539. }
  1540. /*
  1541. * KVM wants to inject page-faults which it got to the guest. This function
  1542. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1543. * This function assumes it is called with the exit reason in vmcs02 being
  1544. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1545. * is running).
  1546. */
  1547. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1548. {
  1549. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1550. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1551. if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
  1552. return 0;
  1553. nested_vmx_vmexit(vcpu);
  1554. return 1;
  1555. }
  1556. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1557. bool has_error_code, u32 error_code,
  1558. bool reinject)
  1559. {
  1560. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1561. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1562. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1563. nested_pf_handled(vcpu))
  1564. return;
  1565. if (has_error_code) {
  1566. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1567. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1568. }
  1569. if (vmx->rmode.vm86_active) {
  1570. int inc_eip = 0;
  1571. if (kvm_exception_is_soft(nr))
  1572. inc_eip = vcpu->arch.event_exit_inst_len;
  1573. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1574. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1575. return;
  1576. }
  1577. if (kvm_exception_is_soft(nr)) {
  1578. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1579. vmx->vcpu.arch.event_exit_inst_len);
  1580. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1581. } else
  1582. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1583. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1584. }
  1585. static bool vmx_rdtscp_supported(void)
  1586. {
  1587. return cpu_has_vmx_rdtscp();
  1588. }
  1589. static bool vmx_invpcid_supported(void)
  1590. {
  1591. return cpu_has_vmx_invpcid() && enable_ept;
  1592. }
  1593. /*
  1594. * Swap MSR entry in host/guest MSR entry array.
  1595. */
  1596. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1597. {
  1598. struct shared_msr_entry tmp;
  1599. tmp = vmx->guest_msrs[to];
  1600. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1601. vmx->guest_msrs[from] = tmp;
  1602. }
  1603. static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
  1604. {
  1605. unsigned long *msr_bitmap;
  1606. if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
  1607. if (is_long_mode(vcpu))
  1608. msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
  1609. else
  1610. msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
  1611. } else {
  1612. if (is_long_mode(vcpu))
  1613. msr_bitmap = vmx_msr_bitmap_longmode;
  1614. else
  1615. msr_bitmap = vmx_msr_bitmap_legacy;
  1616. }
  1617. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1618. }
  1619. /*
  1620. * Set up the vmcs to automatically save and restore system
  1621. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1622. * mode, as fiddling with msrs is very expensive.
  1623. */
  1624. static void setup_msrs(struct vcpu_vmx *vmx)
  1625. {
  1626. int save_nmsrs, index;
  1627. save_nmsrs = 0;
  1628. #ifdef CONFIG_X86_64
  1629. if (is_long_mode(&vmx->vcpu)) {
  1630. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1631. if (index >= 0)
  1632. move_msr_up(vmx, index, save_nmsrs++);
  1633. index = __find_msr_index(vmx, MSR_LSTAR);
  1634. if (index >= 0)
  1635. move_msr_up(vmx, index, save_nmsrs++);
  1636. index = __find_msr_index(vmx, MSR_CSTAR);
  1637. if (index >= 0)
  1638. move_msr_up(vmx, index, save_nmsrs++);
  1639. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1640. if (index >= 0 && vmx->rdtscp_enabled)
  1641. move_msr_up(vmx, index, save_nmsrs++);
  1642. /*
  1643. * MSR_STAR is only needed on long mode guests, and only
  1644. * if efer.sce is enabled.
  1645. */
  1646. index = __find_msr_index(vmx, MSR_STAR);
  1647. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1648. move_msr_up(vmx, index, save_nmsrs++);
  1649. }
  1650. #endif
  1651. index = __find_msr_index(vmx, MSR_EFER);
  1652. if (index >= 0 && update_transition_efer(vmx, index))
  1653. move_msr_up(vmx, index, save_nmsrs++);
  1654. vmx->save_nmsrs = save_nmsrs;
  1655. if (cpu_has_vmx_msr_bitmap())
  1656. vmx_set_msr_bitmap(&vmx->vcpu);
  1657. }
  1658. /*
  1659. * reads and returns guest's timestamp counter "register"
  1660. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1661. */
  1662. static u64 guest_read_tsc(void)
  1663. {
  1664. u64 host_tsc, tsc_offset;
  1665. rdtscll(host_tsc);
  1666. tsc_offset = vmcs_read64(TSC_OFFSET);
  1667. return host_tsc + tsc_offset;
  1668. }
  1669. /*
  1670. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1671. * counter, even if a nested guest (L2) is currently running.
  1672. */
  1673. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
  1674. {
  1675. u64 tsc_offset;
  1676. tsc_offset = is_guest_mode(vcpu) ?
  1677. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1678. vmcs_read64(TSC_OFFSET);
  1679. return host_tsc + tsc_offset;
  1680. }
  1681. /*
  1682. * Engage any workarounds for mis-matched TSC rates. Currently limited to
  1683. * software catchup for faster rates on slower CPUs.
  1684. */
  1685. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
  1686. {
  1687. if (!scale)
  1688. return;
  1689. if (user_tsc_khz > tsc_khz) {
  1690. vcpu->arch.tsc_catchup = 1;
  1691. vcpu->arch.tsc_always_catchup = 1;
  1692. } else
  1693. WARN(1, "user requested TSC rate below hardware speed\n");
  1694. }
  1695. static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
  1696. {
  1697. return vmcs_read64(TSC_OFFSET);
  1698. }
  1699. /*
  1700. * writes 'offset' into guest's timestamp counter offset register
  1701. */
  1702. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1703. {
  1704. if (is_guest_mode(vcpu)) {
  1705. /*
  1706. * We're here if L1 chose not to trap WRMSR to TSC. According
  1707. * to the spec, this should set L1's TSC; The offset that L1
  1708. * set for L2 remains unchanged, and still needs to be added
  1709. * to the newly set TSC to get L2's TSC.
  1710. */
  1711. struct vmcs12 *vmcs12;
  1712. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1713. /* recalculate vmcs02.TSC_OFFSET: */
  1714. vmcs12 = get_vmcs12(vcpu);
  1715. vmcs_write64(TSC_OFFSET, offset +
  1716. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1717. vmcs12->tsc_offset : 0));
  1718. } else {
  1719. vmcs_write64(TSC_OFFSET, offset);
  1720. }
  1721. }
  1722. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
  1723. {
  1724. u64 offset = vmcs_read64(TSC_OFFSET);
  1725. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1726. if (is_guest_mode(vcpu)) {
  1727. /* Even when running L2, the adjustment needs to apply to L1 */
  1728. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1729. }
  1730. }
  1731. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1732. {
  1733. return target_tsc - native_read_tsc();
  1734. }
  1735. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1736. {
  1737. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1738. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1739. }
  1740. /*
  1741. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1742. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1743. * all guests if the "nested" module option is off, and can also be disabled
  1744. * for a single guest by disabling its VMX cpuid bit.
  1745. */
  1746. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1747. {
  1748. return nested && guest_cpuid_has_vmx(vcpu);
  1749. }
  1750. /*
  1751. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1752. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1753. * The same values should also be used to verify that vmcs12 control fields are
  1754. * valid during nested entry from L1 to L2.
  1755. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1756. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1757. * bit in the high half is on if the corresponding bit in the control field
  1758. * may be on. See also vmx_control_verify().
  1759. * TODO: allow these variables to be modified (downgraded) by module options
  1760. * or other means.
  1761. */
  1762. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1763. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1764. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1765. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1766. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1767. static __init void nested_vmx_setup_ctls_msrs(void)
  1768. {
  1769. /*
  1770. * Note that as a general rule, the high half of the MSRs (bits in
  1771. * the control fields which may be 1) should be initialized by the
  1772. * intersection of the underlying hardware's MSR (i.e., features which
  1773. * can be supported) and the list of features we want to expose -
  1774. * because they are known to be properly supported in our code.
  1775. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1776. * be set to 0, meaning that L1 may turn off any of these bits. The
  1777. * reason is that if one of these bits is necessary, it will appear
  1778. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1779. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1780. * nested_vmx_exit_handled() will not pass related exits to L1.
  1781. * These rules have exceptions below.
  1782. */
  1783. /* pin-based controls */
  1784. /*
  1785. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1786. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1787. */
  1788. nested_vmx_pinbased_ctls_low = 0x16 ;
  1789. nested_vmx_pinbased_ctls_high = 0x16 |
  1790. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1791. PIN_BASED_VIRTUAL_NMIS;
  1792. /* exit controls */
  1793. nested_vmx_exit_ctls_low = 0;
  1794. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1795. #ifdef CONFIG_X86_64
  1796. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1797. #else
  1798. nested_vmx_exit_ctls_high = 0;
  1799. #endif
  1800. /* entry controls */
  1801. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1802. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1803. nested_vmx_entry_ctls_low = 0;
  1804. nested_vmx_entry_ctls_high &=
  1805. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1806. /* cpu-based controls */
  1807. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1808. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1809. nested_vmx_procbased_ctls_low = 0;
  1810. nested_vmx_procbased_ctls_high &=
  1811. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1812. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1813. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1814. CPU_BASED_CR3_STORE_EXITING |
  1815. #ifdef CONFIG_X86_64
  1816. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1817. #endif
  1818. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1819. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1820. CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
  1821. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1822. /*
  1823. * We can allow some features even when not supported by the
  1824. * hardware. For example, L1 can specify an MSR bitmap - and we
  1825. * can use it to avoid exits to L1 - even when L0 runs L2
  1826. * without MSR bitmaps.
  1827. */
  1828. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1829. /* secondary cpu-based controls */
  1830. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1831. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1832. nested_vmx_secondary_ctls_low = 0;
  1833. nested_vmx_secondary_ctls_high &=
  1834. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1835. }
  1836. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1837. {
  1838. /*
  1839. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1840. */
  1841. return ((control & high) | low) == control;
  1842. }
  1843. static inline u64 vmx_control_msr(u32 low, u32 high)
  1844. {
  1845. return low | ((u64)high << 32);
  1846. }
  1847. /*
  1848. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1849. * also let it use VMX-specific MSRs.
  1850. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1851. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1852. * like all other MSRs).
  1853. */
  1854. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1855. {
  1856. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1857. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1858. /*
  1859. * According to the spec, processors which do not support VMX
  1860. * should throw a #GP(0) when VMX capability MSRs are read.
  1861. */
  1862. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1863. return 1;
  1864. }
  1865. switch (msr_index) {
  1866. case MSR_IA32_FEATURE_CONTROL:
  1867. *pdata = 0;
  1868. break;
  1869. case MSR_IA32_VMX_BASIC:
  1870. /*
  1871. * This MSR reports some information about VMX support. We
  1872. * should return information about the VMX we emulate for the
  1873. * guest, and the VMCS structure we give it - not about the
  1874. * VMX support of the underlying hardware.
  1875. */
  1876. *pdata = VMCS12_REVISION |
  1877. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1878. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1879. break;
  1880. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1881. case MSR_IA32_VMX_PINBASED_CTLS:
  1882. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1883. nested_vmx_pinbased_ctls_high);
  1884. break;
  1885. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1886. case MSR_IA32_VMX_PROCBASED_CTLS:
  1887. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1888. nested_vmx_procbased_ctls_high);
  1889. break;
  1890. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1891. case MSR_IA32_VMX_EXIT_CTLS:
  1892. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1893. nested_vmx_exit_ctls_high);
  1894. break;
  1895. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1896. case MSR_IA32_VMX_ENTRY_CTLS:
  1897. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1898. nested_vmx_entry_ctls_high);
  1899. break;
  1900. case MSR_IA32_VMX_MISC:
  1901. *pdata = 0;
  1902. break;
  1903. /*
  1904. * These MSRs specify bits which the guest must keep fixed (on or off)
  1905. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1906. * We picked the standard core2 setting.
  1907. */
  1908. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1909. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1910. case MSR_IA32_VMX_CR0_FIXED0:
  1911. *pdata = VMXON_CR0_ALWAYSON;
  1912. break;
  1913. case MSR_IA32_VMX_CR0_FIXED1:
  1914. *pdata = -1ULL;
  1915. break;
  1916. case MSR_IA32_VMX_CR4_FIXED0:
  1917. *pdata = VMXON_CR4_ALWAYSON;
  1918. break;
  1919. case MSR_IA32_VMX_CR4_FIXED1:
  1920. *pdata = -1ULL;
  1921. break;
  1922. case MSR_IA32_VMX_VMCS_ENUM:
  1923. *pdata = 0x1f;
  1924. break;
  1925. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1926. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1927. nested_vmx_secondary_ctls_high);
  1928. break;
  1929. case MSR_IA32_VMX_EPT_VPID_CAP:
  1930. /* Currently, no nested ept or nested vpid */
  1931. *pdata = 0;
  1932. break;
  1933. default:
  1934. return 0;
  1935. }
  1936. return 1;
  1937. }
  1938. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1939. {
  1940. if (!nested_vmx_allowed(vcpu))
  1941. return 0;
  1942. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1943. /* TODO: the right thing. */
  1944. return 1;
  1945. /*
  1946. * No need to treat VMX capability MSRs specially: If we don't handle
  1947. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1948. */
  1949. return 0;
  1950. }
  1951. /*
  1952. * Reads an msr value (of 'msr_index') into 'pdata'.
  1953. * Returns 0 on success, non-0 otherwise.
  1954. * Assumes vcpu_load() was already called.
  1955. */
  1956. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1957. {
  1958. u64 data;
  1959. struct shared_msr_entry *msr;
  1960. if (!pdata) {
  1961. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1962. return -EINVAL;
  1963. }
  1964. switch (msr_index) {
  1965. #ifdef CONFIG_X86_64
  1966. case MSR_FS_BASE:
  1967. data = vmcs_readl(GUEST_FS_BASE);
  1968. break;
  1969. case MSR_GS_BASE:
  1970. data = vmcs_readl(GUEST_GS_BASE);
  1971. break;
  1972. case MSR_KERNEL_GS_BASE:
  1973. vmx_load_host_state(to_vmx(vcpu));
  1974. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1975. break;
  1976. #endif
  1977. case MSR_EFER:
  1978. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1979. case MSR_IA32_TSC:
  1980. data = guest_read_tsc();
  1981. break;
  1982. case MSR_IA32_SYSENTER_CS:
  1983. data = vmcs_read32(GUEST_SYSENTER_CS);
  1984. break;
  1985. case MSR_IA32_SYSENTER_EIP:
  1986. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1987. break;
  1988. case MSR_IA32_SYSENTER_ESP:
  1989. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1990. break;
  1991. case MSR_TSC_AUX:
  1992. if (!to_vmx(vcpu)->rdtscp_enabled)
  1993. return 1;
  1994. /* Otherwise falls through */
  1995. default:
  1996. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1997. return 0;
  1998. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1999. if (msr) {
  2000. data = msr->data;
  2001. break;
  2002. }
  2003. return kvm_get_msr_common(vcpu, msr_index, pdata);
  2004. }
  2005. *pdata = data;
  2006. return 0;
  2007. }
  2008. /*
  2009. * Writes msr value into into the appropriate "register".
  2010. * Returns 0 on success, non-0 otherwise.
  2011. * Assumes vcpu_load() was already called.
  2012. */
  2013. static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  2014. {
  2015. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2016. struct shared_msr_entry *msr;
  2017. int ret = 0;
  2018. u32 msr_index = msr_info->index;
  2019. u64 data = msr_info->data;
  2020. switch (msr_index) {
  2021. case MSR_EFER:
  2022. ret = kvm_set_msr_common(vcpu, msr_info);
  2023. break;
  2024. #ifdef CONFIG_X86_64
  2025. case MSR_FS_BASE:
  2026. vmx_segment_cache_clear(vmx);
  2027. vmcs_writel(GUEST_FS_BASE, data);
  2028. break;
  2029. case MSR_GS_BASE:
  2030. vmx_segment_cache_clear(vmx);
  2031. vmcs_writel(GUEST_GS_BASE, data);
  2032. break;
  2033. case MSR_KERNEL_GS_BASE:
  2034. vmx_load_host_state(vmx);
  2035. vmx->msr_guest_kernel_gs_base = data;
  2036. break;
  2037. #endif
  2038. case MSR_IA32_SYSENTER_CS:
  2039. vmcs_write32(GUEST_SYSENTER_CS, data);
  2040. break;
  2041. case MSR_IA32_SYSENTER_EIP:
  2042. vmcs_writel(GUEST_SYSENTER_EIP, data);
  2043. break;
  2044. case MSR_IA32_SYSENTER_ESP:
  2045. vmcs_writel(GUEST_SYSENTER_ESP, data);
  2046. break;
  2047. case MSR_IA32_TSC:
  2048. kvm_write_tsc(vcpu, msr_info);
  2049. break;
  2050. case MSR_IA32_CR_PAT:
  2051. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2052. vmcs_write64(GUEST_IA32_PAT, data);
  2053. vcpu->arch.pat = data;
  2054. break;
  2055. }
  2056. ret = kvm_set_msr_common(vcpu, msr_info);
  2057. break;
  2058. case MSR_IA32_TSC_ADJUST:
  2059. ret = kvm_set_msr_common(vcpu, msr_info);
  2060. break;
  2061. case MSR_TSC_AUX:
  2062. if (!vmx->rdtscp_enabled)
  2063. return 1;
  2064. /* Check reserved bit, higher 32 bits should be zero */
  2065. if ((data >> 32) != 0)
  2066. return 1;
  2067. /* Otherwise falls through */
  2068. default:
  2069. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  2070. break;
  2071. msr = find_msr_entry(vmx, msr_index);
  2072. if (msr) {
  2073. msr->data = data;
  2074. if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
  2075. preempt_disable();
  2076. kvm_set_shared_msr(msr->index, msr->data,
  2077. msr->mask);
  2078. preempt_enable();
  2079. }
  2080. break;
  2081. }
  2082. ret = kvm_set_msr_common(vcpu, msr_info);
  2083. }
  2084. return ret;
  2085. }
  2086. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  2087. {
  2088. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  2089. switch (reg) {
  2090. case VCPU_REGS_RSP:
  2091. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  2092. break;
  2093. case VCPU_REGS_RIP:
  2094. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  2095. break;
  2096. case VCPU_EXREG_PDPTR:
  2097. if (enable_ept)
  2098. ept_save_pdptrs(vcpu);
  2099. break;
  2100. default:
  2101. break;
  2102. }
  2103. }
  2104. static __init int cpu_has_kvm_support(void)
  2105. {
  2106. return cpu_has_vmx();
  2107. }
  2108. static __init int vmx_disabled_by_bios(void)
  2109. {
  2110. u64 msr;
  2111. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2112. if (msr & FEATURE_CONTROL_LOCKED) {
  2113. /* launched w/ TXT and VMX disabled */
  2114. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2115. && tboot_enabled())
  2116. return 1;
  2117. /* launched w/o TXT and VMX only enabled w/ TXT */
  2118. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2119. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2120. && !tboot_enabled()) {
  2121. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2122. "activate TXT before enabling KVM\n");
  2123. return 1;
  2124. }
  2125. /* launched w/o TXT and VMX disabled */
  2126. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2127. && !tboot_enabled())
  2128. return 1;
  2129. }
  2130. return 0;
  2131. }
  2132. static void kvm_cpu_vmxon(u64 addr)
  2133. {
  2134. asm volatile (ASM_VMX_VMXON_RAX
  2135. : : "a"(&addr), "m"(addr)
  2136. : "memory", "cc");
  2137. }
  2138. static int hardware_enable(void *garbage)
  2139. {
  2140. int cpu = raw_smp_processor_id();
  2141. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2142. u64 old, test_bits;
  2143. if (read_cr4() & X86_CR4_VMXE)
  2144. return -EBUSY;
  2145. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2146. /*
  2147. * Now we can enable the vmclear operation in kdump
  2148. * since the loaded_vmcss_on_cpu list on this cpu
  2149. * has been initialized.
  2150. *
  2151. * Though the cpu is not in VMX operation now, there
  2152. * is no problem to enable the vmclear operation
  2153. * for the loaded_vmcss_on_cpu list is empty!
  2154. */
  2155. crash_enable_local_vmclear(cpu);
  2156. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2157. test_bits = FEATURE_CONTROL_LOCKED;
  2158. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2159. if (tboot_enabled())
  2160. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2161. if ((old & test_bits) != test_bits) {
  2162. /* enable and lock */
  2163. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2164. }
  2165. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2166. if (vmm_exclusive) {
  2167. kvm_cpu_vmxon(phys_addr);
  2168. ept_sync_global();
  2169. }
  2170. store_gdt(&__get_cpu_var(host_gdt));
  2171. return 0;
  2172. }
  2173. static void vmclear_local_loaded_vmcss(void)
  2174. {
  2175. int cpu = raw_smp_processor_id();
  2176. struct loaded_vmcs *v, *n;
  2177. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2178. loaded_vmcss_on_cpu_link)
  2179. __loaded_vmcs_clear(v);
  2180. }
  2181. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2182. * tricks.
  2183. */
  2184. static void kvm_cpu_vmxoff(void)
  2185. {
  2186. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2187. }
  2188. static void hardware_disable(void *garbage)
  2189. {
  2190. if (vmm_exclusive) {
  2191. vmclear_local_loaded_vmcss();
  2192. kvm_cpu_vmxoff();
  2193. }
  2194. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2195. }
  2196. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2197. u32 msr, u32 *result)
  2198. {
  2199. u32 vmx_msr_low, vmx_msr_high;
  2200. u32 ctl = ctl_min | ctl_opt;
  2201. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2202. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2203. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2204. /* Ensure minimum (required) set of control bits are supported. */
  2205. if (ctl_min & ~ctl)
  2206. return -EIO;
  2207. *result = ctl;
  2208. return 0;
  2209. }
  2210. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2211. {
  2212. u32 vmx_msr_low, vmx_msr_high;
  2213. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2214. return vmx_msr_high & ctl;
  2215. }
  2216. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2217. {
  2218. u32 vmx_msr_low, vmx_msr_high;
  2219. u32 min, opt, min2, opt2;
  2220. u32 _pin_based_exec_control = 0;
  2221. u32 _cpu_based_exec_control = 0;
  2222. u32 _cpu_based_2nd_exec_control = 0;
  2223. u32 _vmexit_control = 0;
  2224. u32 _vmentry_control = 0;
  2225. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2226. opt = PIN_BASED_VIRTUAL_NMIS;
  2227. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2228. &_pin_based_exec_control) < 0)
  2229. return -EIO;
  2230. min = CPU_BASED_HLT_EXITING |
  2231. #ifdef CONFIG_X86_64
  2232. CPU_BASED_CR8_LOAD_EXITING |
  2233. CPU_BASED_CR8_STORE_EXITING |
  2234. #endif
  2235. CPU_BASED_CR3_LOAD_EXITING |
  2236. CPU_BASED_CR3_STORE_EXITING |
  2237. CPU_BASED_USE_IO_BITMAPS |
  2238. CPU_BASED_MOV_DR_EXITING |
  2239. CPU_BASED_USE_TSC_OFFSETING |
  2240. CPU_BASED_MWAIT_EXITING |
  2241. CPU_BASED_MONITOR_EXITING |
  2242. CPU_BASED_INVLPG_EXITING |
  2243. CPU_BASED_RDPMC_EXITING;
  2244. opt = CPU_BASED_TPR_SHADOW |
  2245. CPU_BASED_USE_MSR_BITMAPS |
  2246. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2247. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2248. &_cpu_based_exec_control) < 0)
  2249. return -EIO;
  2250. #ifdef CONFIG_X86_64
  2251. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2252. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2253. ~CPU_BASED_CR8_STORE_EXITING;
  2254. #endif
  2255. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2256. min2 = 0;
  2257. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2258. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2259. SECONDARY_EXEC_WBINVD_EXITING |
  2260. SECONDARY_EXEC_ENABLE_VPID |
  2261. SECONDARY_EXEC_ENABLE_EPT |
  2262. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2263. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2264. SECONDARY_EXEC_RDTSCP |
  2265. SECONDARY_EXEC_ENABLE_INVPCID |
  2266. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2267. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
  2268. if (adjust_vmx_controls(min2, opt2,
  2269. MSR_IA32_VMX_PROCBASED_CTLS2,
  2270. &_cpu_based_2nd_exec_control) < 0)
  2271. return -EIO;
  2272. }
  2273. #ifndef CONFIG_X86_64
  2274. if (!(_cpu_based_2nd_exec_control &
  2275. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2276. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2277. #endif
  2278. if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2279. _cpu_based_2nd_exec_control &= ~(
  2280. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2281. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2282. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  2283. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2284. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2285. enabled */
  2286. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2287. CPU_BASED_CR3_STORE_EXITING |
  2288. CPU_BASED_INVLPG_EXITING);
  2289. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2290. vmx_capability.ept, vmx_capability.vpid);
  2291. }
  2292. min = 0;
  2293. #ifdef CONFIG_X86_64
  2294. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2295. #endif
  2296. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2297. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2298. &_vmexit_control) < 0)
  2299. return -EIO;
  2300. min = 0;
  2301. opt = VM_ENTRY_LOAD_IA32_PAT;
  2302. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2303. &_vmentry_control) < 0)
  2304. return -EIO;
  2305. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2306. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2307. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2308. return -EIO;
  2309. #ifdef CONFIG_X86_64
  2310. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2311. if (vmx_msr_high & (1u<<16))
  2312. return -EIO;
  2313. #endif
  2314. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2315. if (((vmx_msr_high >> 18) & 15) != 6)
  2316. return -EIO;
  2317. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2318. vmcs_conf->order = get_order(vmcs_config.size);
  2319. vmcs_conf->revision_id = vmx_msr_low;
  2320. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2321. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2322. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2323. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2324. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2325. cpu_has_load_ia32_efer =
  2326. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2327. VM_ENTRY_LOAD_IA32_EFER)
  2328. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2329. VM_EXIT_LOAD_IA32_EFER);
  2330. cpu_has_load_perf_global_ctrl =
  2331. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2332. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2333. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2334. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2335. /*
  2336. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2337. * but due to arrata below it can't be used. Workaround is to use
  2338. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2339. *
  2340. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2341. *
  2342. * AAK155 (model 26)
  2343. * AAP115 (model 30)
  2344. * AAT100 (model 37)
  2345. * BC86,AAY89,BD102 (model 44)
  2346. * BA97 (model 46)
  2347. *
  2348. */
  2349. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2350. switch (boot_cpu_data.x86_model) {
  2351. case 26:
  2352. case 30:
  2353. case 37:
  2354. case 44:
  2355. case 46:
  2356. cpu_has_load_perf_global_ctrl = false;
  2357. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2358. "does not work properly. Using workaround\n");
  2359. break;
  2360. default:
  2361. break;
  2362. }
  2363. }
  2364. return 0;
  2365. }
  2366. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2367. {
  2368. int node = cpu_to_node(cpu);
  2369. struct page *pages;
  2370. struct vmcs *vmcs;
  2371. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2372. if (!pages)
  2373. return NULL;
  2374. vmcs = page_address(pages);
  2375. memset(vmcs, 0, vmcs_config.size);
  2376. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2377. return vmcs;
  2378. }
  2379. static struct vmcs *alloc_vmcs(void)
  2380. {
  2381. return alloc_vmcs_cpu(raw_smp_processor_id());
  2382. }
  2383. static void free_vmcs(struct vmcs *vmcs)
  2384. {
  2385. free_pages((unsigned long)vmcs, vmcs_config.order);
  2386. }
  2387. /*
  2388. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2389. */
  2390. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2391. {
  2392. if (!loaded_vmcs->vmcs)
  2393. return;
  2394. loaded_vmcs_clear(loaded_vmcs);
  2395. free_vmcs(loaded_vmcs->vmcs);
  2396. loaded_vmcs->vmcs = NULL;
  2397. }
  2398. static void free_kvm_area(void)
  2399. {
  2400. int cpu;
  2401. for_each_possible_cpu(cpu) {
  2402. free_vmcs(per_cpu(vmxarea, cpu));
  2403. per_cpu(vmxarea, cpu) = NULL;
  2404. }
  2405. }
  2406. static __init int alloc_kvm_area(void)
  2407. {
  2408. int cpu;
  2409. for_each_possible_cpu(cpu) {
  2410. struct vmcs *vmcs;
  2411. vmcs = alloc_vmcs_cpu(cpu);
  2412. if (!vmcs) {
  2413. free_kvm_area();
  2414. return -ENOMEM;
  2415. }
  2416. per_cpu(vmxarea, cpu) = vmcs;
  2417. }
  2418. return 0;
  2419. }
  2420. static __init int hardware_setup(void)
  2421. {
  2422. if (setup_vmcs_config(&vmcs_config) < 0)
  2423. return -EIO;
  2424. if (boot_cpu_has(X86_FEATURE_NX))
  2425. kvm_enable_efer_bits(EFER_NX);
  2426. if (!cpu_has_vmx_vpid())
  2427. enable_vpid = 0;
  2428. if (!cpu_has_vmx_ept() ||
  2429. !cpu_has_vmx_ept_4levels()) {
  2430. enable_ept = 0;
  2431. enable_unrestricted_guest = 0;
  2432. enable_ept_ad_bits = 0;
  2433. }
  2434. if (!cpu_has_vmx_ept_ad_bits())
  2435. enable_ept_ad_bits = 0;
  2436. if (!cpu_has_vmx_unrestricted_guest())
  2437. enable_unrestricted_guest = 0;
  2438. if (!cpu_has_vmx_flexpriority())
  2439. flexpriority_enabled = 0;
  2440. if (!cpu_has_vmx_tpr_shadow())
  2441. kvm_x86_ops->update_cr8_intercept = NULL;
  2442. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2443. kvm_disable_largepages();
  2444. if (!cpu_has_vmx_ple())
  2445. ple_gap = 0;
  2446. if (!cpu_has_vmx_apic_register_virt() ||
  2447. !cpu_has_vmx_virtual_intr_delivery())
  2448. enable_apicv_reg_vid = 0;
  2449. if (enable_apicv_reg_vid)
  2450. kvm_x86_ops->update_cr8_intercept = NULL;
  2451. else
  2452. kvm_x86_ops->hwapic_irr_update = NULL;
  2453. if (nested)
  2454. nested_vmx_setup_ctls_msrs();
  2455. return alloc_kvm_area();
  2456. }
  2457. static __exit void hardware_unsetup(void)
  2458. {
  2459. free_kvm_area();
  2460. }
  2461. static bool emulation_required(struct kvm_vcpu *vcpu)
  2462. {
  2463. return emulate_invalid_guest_state && !guest_state_valid(vcpu);
  2464. }
  2465. static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
  2466. struct kvm_segment *save)
  2467. {
  2468. if (!emulate_invalid_guest_state) {
  2469. /*
  2470. * CS and SS RPL should be equal during guest entry according
  2471. * to VMX spec, but in reality it is not always so. Since vcpu
  2472. * is in the middle of the transition from real mode to
  2473. * protected mode it is safe to assume that RPL 0 is a good
  2474. * default value.
  2475. */
  2476. if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
  2477. save->selector &= ~SELECTOR_RPL_MASK;
  2478. save->dpl = save->selector & SELECTOR_RPL_MASK;
  2479. save->s = 1;
  2480. }
  2481. vmx_set_segment(vcpu, save, seg);
  2482. }
  2483. static void enter_pmode(struct kvm_vcpu *vcpu)
  2484. {
  2485. unsigned long flags;
  2486. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2487. /*
  2488. * Update real mode segment cache. It may be not up-to-date if sement
  2489. * register was written while vcpu was in a guest mode.
  2490. */
  2491. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2492. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2493. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2494. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2495. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2496. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2497. vmx->rmode.vm86_active = 0;
  2498. vmx_segment_cache_clear(vmx);
  2499. vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2500. flags = vmcs_readl(GUEST_RFLAGS);
  2501. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2502. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2503. vmcs_writel(GUEST_RFLAGS, flags);
  2504. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2505. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2506. update_exception_bitmap(vcpu);
  2507. fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2508. fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2509. fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2510. fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2511. fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2512. fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2513. /* CPL is always 0 when CPU enters protected mode */
  2514. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2515. vmx->cpl = 0;
  2516. }
  2517. static gva_t rmode_tss_base(struct kvm *kvm)
  2518. {
  2519. if (!kvm->arch.tss_addr) {
  2520. struct kvm_memslots *slots;
  2521. struct kvm_memory_slot *slot;
  2522. gfn_t base_gfn;
  2523. slots = kvm_memslots(kvm);
  2524. slot = id_to_memslot(slots, 0);
  2525. base_gfn = slot->base_gfn + slot->npages - 3;
  2526. return base_gfn << PAGE_SHIFT;
  2527. }
  2528. return kvm->arch.tss_addr;
  2529. }
  2530. static void fix_rmode_seg(int seg, struct kvm_segment *save)
  2531. {
  2532. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2533. struct kvm_segment var = *save;
  2534. var.dpl = 0x3;
  2535. if (seg == VCPU_SREG_CS)
  2536. var.type = 0x3;
  2537. if (!emulate_invalid_guest_state) {
  2538. var.selector = var.base >> 4;
  2539. var.base = var.base & 0xffff0;
  2540. var.limit = 0xffff;
  2541. var.g = 0;
  2542. var.db = 0;
  2543. var.present = 1;
  2544. var.s = 1;
  2545. var.l = 0;
  2546. var.unusable = 0;
  2547. var.type = 0x3;
  2548. var.avl = 0;
  2549. if (save->base & 0xf)
  2550. printk_once(KERN_WARNING "kvm: segment base is not "
  2551. "paragraph aligned when entering "
  2552. "protected mode (seg=%d)", seg);
  2553. }
  2554. vmcs_write16(sf->selector, var.selector);
  2555. vmcs_write32(sf->base, var.base);
  2556. vmcs_write32(sf->limit, var.limit);
  2557. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
  2558. }
  2559. static void enter_rmode(struct kvm_vcpu *vcpu)
  2560. {
  2561. unsigned long flags;
  2562. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2563. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2564. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2565. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2566. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2567. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2568. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2569. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2570. vmx->rmode.vm86_active = 1;
  2571. /*
  2572. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2573. * vcpu. Call it here with phys address pointing 16M below 4G.
  2574. */
  2575. if (!vcpu->kvm->arch.tss_addr) {
  2576. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2577. "called before entering vcpu\n");
  2578. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2579. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2580. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2581. }
  2582. vmx_segment_cache_clear(vmx);
  2583. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2584. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2585. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2586. flags = vmcs_readl(GUEST_RFLAGS);
  2587. vmx->rmode.save_rflags = flags;
  2588. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2589. vmcs_writel(GUEST_RFLAGS, flags);
  2590. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2591. update_exception_bitmap(vcpu);
  2592. fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2593. fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2594. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2595. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2596. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2597. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2598. kvm_mmu_reset_context(vcpu);
  2599. }
  2600. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2601. {
  2602. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2603. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2604. if (!msr)
  2605. return;
  2606. /*
  2607. * Force kernel_gs_base reloading before EFER changes, as control
  2608. * of this msr depends on is_long_mode().
  2609. */
  2610. vmx_load_host_state(to_vmx(vcpu));
  2611. vcpu->arch.efer = efer;
  2612. if (efer & EFER_LMA) {
  2613. vmcs_write32(VM_ENTRY_CONTROLS,
  2614. vmcs_read32(VM_ENTRY_CONTROLS) |
  2615. VM_ENTRY_IA32E_MODE);
  2616. msr->data = efer;
  2617. } else {
  2618. vmcs_write32(VM_ENTRY_CONTROLS,
  2619. vmcs_read32(VM_ENTRY_CONTROLS) &
  2620. ~VM_ENTRY_IA32E_MODE);
  2621. msr->data = efer & ~EFER_LME;
  2622. }
  2623. setup_msrs(vmx);
  2624. }
  2625. #ifdef CONFIG_X86_64
  2626. static void enter_lmode(struct kvm_vcpu *vcpu)
  2627. {
  2628. u32 guest_tr_ar;
  2629. vmx_segment_cache_clear(to_vmx(vcpu));
  2630. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2631. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2632. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2633. __func__);
  2634. vmcs_write32(GUEST_TR_AR_BYTES,
  2635. (guest_tr_ar & ~AR_TYPE_MASK)
  2636. | AR_TYPE_BUSY_64_TSS);
  2637. }
  2638. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2639. }
  2640. static void exit_lmode(struct kvm_vcpu *vcpu)
  2641. {
  2642. vmcs_write32(VM_ENTRY_CONTROLS,
  2643. vmcs_read32(VM_ENTRY_CONTROLS)
  2644. & ~VM_ENTRY_IA32E_MODE);
  2645. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2646. }
  2647. #endif
  2648. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2649. {
  2650. vpid_sync_context(to_vmx(vcpu));
  2651. if (enable_ept) {
  2652. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2653. return;
  2654. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2655. }
  2656. }
  2657. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2658. {
  2659. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2660. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2661. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2662. }
  2663. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2664. {
  2665. if (enable_ept && is_paging(vcpu))
  2666. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2667. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2668. }
  2669. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2670. {
  2671. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2672. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2673. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2674. }
  2675. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2676. {
  2677. if (!test_bit(VCPU_EXREG_PDPTR,
  2678. (unsigned long *)&vcpu->arch.regs_dirty))
  2679. return;
  2680. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2681. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2682. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2683. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2684. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2685. }
  2686. }
  2687. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2688. {
  2689. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2690. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2691. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2692. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2693. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2694. }
  2695. __set_bit(VCPU_EXREG_PDPTR,
  2696. (unsigned long *)&vcpu->arch.regs_avail);
  2697. __set_bit(VCPU_EXREG_PDPTR,
  2698. (unsigned long *)&vcpu->arch.regs_dirty);
  2699. }
  2700. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2701. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2702. unsigned long cr0,
  2703. struct kvm_vcpu *vcpu)
  2704. {
  2705. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2706. vmx_decache_cr3(vcpu);
  2707. if (!(cr0 & X86_CR0_PG)) {
  2708. /* From paging/starting to nonpaging */
  2709. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2710. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2711. (CPU_BASED_CR3_LOAD_EXITING |
  2712. CPU_BASED_CR3_STORE_EXITING));
  2713. vcpu->arch.cr0 = cr0;
  2714. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2715. } else if (!is_paging(vcpu)) {
  2716. /* From nonpaging to paging */
  2717. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2718. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2719. ~(CPU_BASED_CR3_LOAD_EXITING |
  2720. CPU_BASED_CR3_STORE_EXITING));
  2721. vcpu->arch.cr0 = cr0;
  2722. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2723. }
  2724. if (!(cr0 & X86_CR0_WP))
  2725. *hw_cr0 &= ~X86_CR0_WP;
  2726. }
  2727. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2728. {
  2729. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2730. unsigned long hw_cr0;
  2731. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
  2732. if (enable_unrestricted_guest)
  2733. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2734. else {
  2735. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
  2736. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2737. enter_pmode(vcpu);
  2738. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2739. enter_rmode(vcpu);
  2740. }
  2741. #ifdef CONFIG_X86_64
  2742. if (vcpu->arch.efer & EFER_LME) {
  2743. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2744. enter_lmode(vcpu);
  2745. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2746. exit_lmode(vcpu);
  2747. }
  2748. #endif
  2749. if (enable_ept)
  2750. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2751. if (!vcpu->fpu_active)
  2752. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2753. vmcs_writel(CR0_READ_SHADOW, cr0);
  2754. vmcs_writel(GUEST_CR0, hw_cr0);
  2755. vcpu->arch.cr0 = cr0;
  2756. /* depends on vcpu->arch.cr0 to be set to a new value */
  2757. vmx->emulation_required = emulation_required(vcpu);
  2758. }
  2759. static u64 construct_eptp(unsigned long root_hpa)
  2760. {
  2761. u64 eptp;
  2762. /* TODO write the value reading from MSR */
  2763. eptp = VMX_EPT_DEFAULT_MT |
  2764. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2765. if (enable_ept_ad_bits)
  2766. eptp |= VMX_EPT_AD_ENABLE_BIT;
  2767. eptp |= (root_hpa & PAGE_MASK);
  2768. return eptp;
  2769. }
  2770. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2771. {
  2772. unsigned long guest_cr3;
  2773. u64 eptp;
  2774. guest_cr3 = cr3;
  2775. if (enable_ept) {
  2776. eptp = construct_eptp(cr3);
  2777. vmcs_write64(EPT_POINTER, eptp);
  2778. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2779. vcpu->kvm->arch.ept_identity_map_addr;
  2780. ept_load_pdptrs(vcpu);
  2781. }
  2782. vmx_flush_tlb(vcpu);
  2783. vmcs_writel(GUEST_CR3, guest_cr3);
  2784. }
  2785. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2786. {
  2787. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2788. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2789. if (cr4 & X86_CR4_VMXE) {
  2790. /*
  2791. * To use VMXON (and later other VMX instructions), a guest
  2792. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2793. * So basically the check on whether to allow nested VMX
  2794. * is here.
  2795. */
  2796. if (!nested_vmx_allowed(vcpu))
  2797. return 1;
  2798. } else if (to_vmx(vcpu)->nested.vmxon)
  2799. return 1;
  2800. vcpu->arch.cr4 = cr4;
  2801. if (enable_ept) {
  2802. if (!is_paging(vcpu)) {
  2803. hw_cr4 &= ~X86_CR4_PAE;
  2804. hw_cr4 |= X86_CR4_PSE;
  2805. /*
  2806. * SMEP is disabled if CPU is in non-paging mode in
  2807. * hardware. However KVM always uses paging mode to
  2808. * emulate guest non-paging mode with TDP.
  2809. * To emulate this behavior, SMEP needs to be manually
  2810. * disabled when guest switches to non-paging mode.
  2811. */
  2812. hw_cr4 &= ~X86_CR4_SMEP;
  2813. } else if (!(cr4 & X86_CR4_PAE)) {
  2814. hw_cr4 &= ~X86_CR4_PAE;
  2815. }
  2816. }
  2817. vmcs_writel(CR4_READ_SHADOW, cr4);
  2818. vmcs_writel(GUEST_CR4, hw_cr4);
  2819. return 0;
  2820. }
  2821. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2822. struct kvm_segment *var, int seg)
  2823. {
  2824. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2825. u32 ar;
  2826. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  2827. *var = vmx->rmode.segs[seg];
  2828. if (seg == VCPU_SREG_TR
  2829. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2830. return;
  2831. var->base = vmx_read_guest_seg_base(vmx, seg);
  2832. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2833. return;
  2834. }
  2835. var->base = vmx_read_guest_seg_base(vmx, seg);
  2836. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2837. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2838. ar = vmx_read_guest_seg_ar(vmx, seg);
  2839. var->type = ar & 15;
  2840. var->s = (ar >> 4) & 1;
  2841. var->dpl = (ar >> 5) & 3;
  2842. var->present = (ar >> 7) & 1;
  2843. var->avl = (ar >> 12) & 1;
  2844. var->l = (ar >> 13) & 1;
  2845. var->db = (ar >> 14) & 1;
  2846. var->g = (ar >> 15) & 1;
  2847. var->unusable = (ar >> 16) & 1;
  2848. }
  2849. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2850. {
  2851. struct kvm_segment s;
  2852. if (to_vmx(vcpu)->rmode.vm86_active) {
  2853. vmx_get_segment(vcpu, &s, seg);
  2854. return s.base;
  2855. }
  2856. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2857. }
  2858. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2859. {
  2860. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2861. if (!is_protmode(vcpu))
  2862. return 0;
  2863. if (!is_long_mode(vcpu)
  2864. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2865. return 3;
  2866. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2867. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2868. vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
  2869. }
  2870. return vmx->cpl;
  2871. }
  2872. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2873. {
  2874. u32 ar;
  2875. if (var->unusable || !var->present)
  2876. ar = 1 << 16;
  2877. else {
  2878. ar = var->type & 15;
  2879. ar |= (var->s & 1) << 4;
  2880. ar |= (var->dpl & 3) << 5;
  2881. ar |= (var->present & 1) << 7;
  2882. ar |= (var->avl & 1) << 12;
  2883. ar |= (var->l & 1) << 13;
  2884. ar |= (var->db & 1) << 14;
  2885. ar |= (var->g & 1) << 15;
  2886. }
  2887. return ar;
  2888. }
  2889. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2890. struct kvm_segment *var, int seg)
  2891. {
  2892. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2893. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2894. vmx_segment_cache_clear(vmx);
  2895. if (seg == VCPU_SREG_CS)
  2896. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2897. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  2898. vmx->rmode.segs[seg] = *var;
  2899. if (seg == VCPU_SREG_TR)
  2900. vmcs_write16(sf->selector, var->selector);
  2901. else if (var->s)
  2902. fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
  2903. goto out;
  2904. }
  2905. vmcs_writel(sf->base, var->base);
  2906. vmcs_write32(sf->limit, var->limit);
  2907. vmcs_write16(sf->selector, var->selector);
  2908. /*
  2909. * Fix the "Accessed" bit in AR field of segment registers for older
  2910. * qemu binaries.
  2911. * IA32 arch specifies that at the time of processor reset the
  2912. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2913. * is setting it to 0 in the userland code. This causes invalid guest
  2914. * state vmexit when "unrestricted guest" mode is turned on.
  2915. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2916. * tree. Newer qemu binaries with that qemu fix would not need this
  2917. * kvm hack.
  2918. */
  2919. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2920. var->type |= 0x1; /* Accessed */
  2921. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
  2922. out:
  2923. vmx->emulation_required |= emulation_required(vcpu);
  2924. }
  2925. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2926. {
  2927. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2928. *db = (ar >> 14) & 1;
  2929. *l = (ar >> 13) & 1;
  2930. }
  2931. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2932. {
  2933. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2934. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2935. }
  2936. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2937. {
  2938. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2939. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2940. }
  2941. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2942. {
  2943. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2944. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2945. }
  2946. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2947. {
  2948. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2949. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2950. }
  2951. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2952. {
  2953. struct kvm_segment var;
  2954. u32 ar;
  2955. vmx_get_segment(vcpu, &var, seg);
  2956. var.dpl = 0x3;
  2957. if (seg == VCPU_SREG_CS)
  2958. var.type = 0x3;
  2959. ar = vmx_segment_access_rights(&var);
  2960. if (var.base != (var.selector << 4))
  2961. return false;
  2962. if (var.limit != 0xffff)
  2963. return false;
  2964. if (ar != 0xf3)
  2965. return false;
  2966. return true;
  2967. }
  2968. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2969. {
  2970. struct kvm_segment cs;
  2971. unsigned int cs_rpl;
  2972. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2973. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2974. if (cs.unusable)
  2975. return false;
  2976. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2977. return false;
  2978. if (!cs.s)
  2979. return false;
  2980. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2981. if (cs.dpl > cs_rpl)
  2982. return false;
  2983. } else {
  2984. if (cs.dpl != cs_rpl)
  2985. return false;
  2986. }
  2987. if (!cs.present)
  2988. return false;
  2989. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2990. return true;
  2991. }
  2992. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2993. {
  2994. struct kvm_segment ss;
  2995. unsigned int ss_rpl;
  2996. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2997. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2998. if (ss.unusable)
  2999. return true;
  3000. if (ss.type != 3 && ss.type != 7)
  3001. return false;
  3002. if (!ss.s)
  3003. return false;
  3004. if (ss.dpl != ss_rpl) /* DPL != RPL */
  3005. return false;
  3006. if (!ss.present)
  3007. return false;
  3008. return true;
  3009. }
  3010. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  3011. {
  3012. struct kvm_segment var;
  3013. unsigned int rpl;
  3014. vmx_get_segment(vcpu, &var, seg);
  3015. rpl = var.selector & SELECTOR_RPL_MASK;
  3016. if (var.unusable)
  3017. return true;
  3018. if (!var.s)
  3019. return false;
  3020. if (!var.present)
  3021. return false;
  3022. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  3023. if (var.dpl < rpl) /* DPL < RPL */
  3024. return false;
  3025. }
  3026. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  3027. * rights flags
  3028. */
  3029. return true;
  3030. }
  3031. static bool tr_valid(struct kvm_vcpu *vcpu)
  3032. {
  3033. struct kvm_segment tr;
  3034. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  3035. if (tr.unusable)
  3036. return false;
  3037. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3038. return false;
  3039. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  3040. return false;
  3041. if (!tr.present)
  3042. return false;
  3043. return true;
  3044. }
  3045. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  3046. {
  3047. struct kvm_segment ldtr;
  3048. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  3049. if (ldtr.unusable)
  3050. return true;
  3051. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3052. return false;
  3053. if (ldtr.type != 2)
  3054. return false;
  3055. if (!ldtr.present)
  3056. return false;
  3057. return true;
  3058. }
  3059. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  3060. {
  3061. struct kvm_segment cs, ss;
  3062. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3063. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3064. return ((cs.selector & SELECTOR_RPL_MASK) ==
  3065. (ss.selector & SELECTOR_RPL_MASK));
  3066. }
  3067. /*
  3068. * Check if guest state is valid. Returns true if valid, false if
  3069. * not.
  3070. * We assume that registers are always usable
  3071. */
  3072. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  3073. {
  3074. if (enable_unrestricted_guest)
  3075. return true;
  3076. /* real mode guest state checks */
  3077. if (!is_protmode(vcpu)) {
  3078. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  3079. return false;
  3080. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  3081. return false;
  3082. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  3083. return false;
  3084. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  3085. return false;
  3086. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  3087. return false;
  3088. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  3089. return false;
  3090. } else {
  3091. /* protected mode guest state checks */
  3092. if (!cs_ss_rpl_check(vcpu))
  3093. return false;
  3094. if (!code_segment_valid(vcpu))
  3095. return false;
  3096. if (!stack_segment_valid(vcpu))
  3097. return false;
  3098. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  3099. return false;
  3100. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  3101. return false;
  3102. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  3103. return false;
  3104. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  3105. return false;
  3106. if (!tr_valid(vcpu))
  3107. return false;
  3108. if (!ldtr_valid(vcpu))
  3109. return false;
  3110. }
  3111. /* TODO:
  3112. * - Add checks on RIP
  3113. * - Add checks on RFLAGS
  3114. */
  3115. return true;
  3116. }
  3117. static int init_rmode_tss(struct kvm *kvm)
  3118. {
  3119. gfn_t fn;
  3120. u16 data = 0;
  3121. int r, idx, ret = 0;
  3122. idx = srcu_read_lock(&kvm->srcu);
  3123. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  3124. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3125. if (r < 0)
  3126. goto out;
  3127. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  3128. r = kvm_write_guest_page(kvm, fn++, &data,
  3129. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  3130. if (r < 0)
  3131. goto out;
  3132. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  3133. if (r < 0)
  3134. goto out;
  3135. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3136. if (r < 0)
  3137. goto out;
  3138. data = ~0;
  3139. r = kvm_write_guest_page(kvm, fn, &data,
  3140. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3141. sizeof(u8));
  3142. if (r < 0)
  3143. goto out;
  3144. ret = 1;
  3145. out:
  3146. srcu_read_unlock(&kvm->srcu, idx);
  3147. return ret;
  3148. }
  3149. static int init_rmode_identity_map(struct kvm *kvm)
  3150. {
  3151. int i, idx, r, ret;
  3152. pfn_t identity_map_pfn;
  3153. u32 tmp;
  3154. if (!enable_ept)
  3155. return 1;
  3156. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3157. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3158. "haven't been allocated!\n");
  3159. return 0;
  3160. }
  3161. if (likely(kvm->arch.ept_identity_pagetable_done))
  3162. return 1;
  3163. ret = 0;
  3164. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3165. idx = srcu_read_lock(&kvm->srcu);
  3166. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3167. if (r < 0)
  3168. goto out;
  3169. /* Set up identity-mapping pagetable for EPT in real mode */
  3170. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3171. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3172. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3173. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3174. &tmp, i * sizeof(tmp), sizeof(tmp));
  3175. if (r < 0)
  3176. goto out;
  3177. }
  3178. kvm->arch.ept_identity_pagetable_done = true;
  3179. ret = 1;
  3180. out:
  3181. srcu_read_unlock(&kvm->srcu, idx);
  3182. return ret;
  3183. }
  3184. static void seg_setup(int seg)
  3185. {
  3186. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3187. unsigned int ar;
  3188. vmcs_write16(sf->selector, 0);
  3189. vmcs_writel(sf->base, 0);
  3190. vmcs_write32(sf->limit, 0xffff);
  3191. ar = 0x93;
  3192. if (seg == VCPU_SREG_CS)
  3193. ar |= 0x08; /* code segment */
  3194. vmcs_write32(sf->ar_bytes, ar);
  3195. }
  3196. static int alloc_apic_access_page(struct kvm *kvm)
  3197. {
  3198. struct page *page;
  3199. struct kvm_userspace_memory_region kvm_userspace_mem;
  3200. int r = 0;
  3201. mutex_lock(&kvm->slots_lock);
  3202. if (kvm->arch.apic_access_page)
  3203. goto out;
  3204. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3205. kvm_userspace_mem.flags = 0;
  3206. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3207. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3208. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, false);
  3209. if (r)
  3210. goto out;
  3211. page = gfn_to_page(kvm, 0xfee00);
  3212. if (is_error_page(page)) {
  3213. r = -EFAULT;
  3214. goto out;
  3215. }
  3216. kvm->arch.apic_access_page = page;
  3217. out:
  3218. mutex_unlock(&kvm->slots_lock);
  3219. return r;
  3220. }
  3221. static int alloc_identity_pagetable(struct kvm *kvm)
  3222. {
  3223. struct page *page;
  3224. struct kvm_userspace_memory_region kvm_userspace_mem;
  3225. int r = 0;
  3226. mutex_lock(&kvm->slots_lock);
  3227. if (kvm->arch.ept_identity_pagetable)
  3228. goto out;
  3229. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3230. kvm_userspace_mem.flags = 0;
  3231. kvm_userspace_mem.guest_phys_addr =
  3232. kvm->arch.ept_identity_map_addr;
  3233. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3234. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, false);
  3235. if (r)
  3236. goto out;
  3237. page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3238. if (is_error_page(page)) {
  3239. r = -EFAULT;
  3240. goto out;
  3241. }
  3242. kvm->arch.ept_identity_pagetable = page;
  3243. out:
  3244. mutex_unlock(&kvm->slots_lock);
  3245. return r;
  3246. }
  3247. static void allocate_vpid(struct vcpu_vmx *vmx)
  3248. {
  3249. int vpid;
  3250. vmx->vpid = 0;
  3251. if (!enable_vpid)
  3252. return;
  3253. spin_lock(&vmx_vpid_lock);
  3254. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3255. if (vpid < VMX_NR_VPIDS) {
  3256. vmx->vpid = vpid;
  3257. __set_bit(vpid, vmx_vpid_bitmap);
  3258. }
  3259. spin_unlock(&vmx_vpid_lock);
  3260. }
  3261. static void free_vpid(struct vcpu_vmx *vmx)
  3262. {
  3263. if (!enable_vpid)
  3264. return;
  3265. spin_lock(&vmx_vpid_lock);
  3266. if (vmx->vpid != 0)
  3267. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3268. spin_unlock(&vmx_vpid_lock);
  3269. }
  3270. #define MSR_TYPE_R 1
  3271. #define MSR_TYPE_W 2
  3272. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
  3273. u32 msr, int type)
  3274. {
  3275. int f = sizeof(unsigned long);
  3276. if (!cpu_has_vmx_msr_bitmap())
  3277. return;
  3278. /*
  3279. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3280. * have the write-low and read-high bitmap offsets the wrong way round.
  3281. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3282. */
  3283. if (msr <= 0x1fff) {
  3284. if (type & MSR_TYPE_R)
  3285. /* read-low */
  3286. __clear_bit(msr, msr_bitmap + 0x000 / f);
  3287. if (type & MSR_TYPE_W)
  3288. /* write-low */
  3289. __clear_bit(msr, msr_bitmap + 0x800 / f);
  3290. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3291. msr &= 0x1fff;
  3292. if (type & MSR_TYPE_R)
  3293. /* read-high */
  3294. __clear_bit(msr, msr_bitmap + 0x400 / f);
  3295. if (type & MSR_TYPE_W)
  3296. /* write-high */
  3297. __clear_bit(msr, msr_bitmap + 0xc00 / f);
  3298. }
  3299. }
  3300. static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
  3301. u32 msr, int type)
  3302. {
  3303. int f = sizeof(unsigned long);
  3304. if (!cpu_has_vmx_msr_bitmap())
  3305. return;
  3306. /*
  3307. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3308. * have the write-low and read-high bitmap offsets the wrong way round.
  3309. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3310. */
  3311. if (msr <= 0x1fff) {
  3312. if (type & MSR_TYPE_R)
  3313. /* read-low */
  3314. __set_bit(msr, msr_bitmap + 0x000 / f);
  3315. if (type & MSR_TYPE_W)
  3316. /* write-low */
  3317. __set_bit(msr, msr_bitmap + 0x800 / f);
  3318. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3319. msr &= 0x1fff;
  3320. if (type & MSR_TYPE_R)
  3321. /* read-high */
  3322. __set_bit(msr, msr_bitmap + 0x400 / f);
  3323. if (type & MSR_TYPE_W)
  3324. /* write-high */
  3325. __set_bit(msr, msr_bitmap + 0xc00 / f);
  3326. }
  3327. }
  3328. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3329. {
  3330. if (!longmode_only)
  3331. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
  3332. msr, MSR_TYPE_R | MSR_TYPE_W);
  3333. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
  3334. msr, MSR_TYPE_R | MSR_TYPE_W);
  3335. }
  3336. static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
  3337. {
  3338. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3339. msr, MSR_TYPE_R);
  3340. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3341. msr, MSR_TYPE_R);
  3342. }
  3343. static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
  3344. {
  3345. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3346. msr, MSR_TYPE_R);
  3347. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3348. msr, MSR_TYPE_R);
  3349. }
  3350. static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
  3351. {
  3352. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3353. msr, MSR_TYPE_W);
  3354. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3355. msr, MSR_TYPE_W);
  3356. }
  3357. /*
  3358. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3359. * will not change in the lifetime of the guest.
  3360. * Note that host-state that does change is set elsewhere. E.g., host-state
  3361. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3362. */
  3363. static void vmx_set_constant_host_state(void)
  3364. {
  3365. u32 low32, high32;
  3366. unsigned long tmpl;
  3367. struct desc_ptr dt;
  3368. vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
  3369. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3370. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3371. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3372. #ifdef CONFIG_X86_64
  3373. /*
  3374. * Load null selectors, so we can avoid reloading them in
  3375. * __vmx_load_host_state(), in case userspace uses the null selectors
  3376. * too (the expected case).
  3377. */
  3378. vmcs_write16(HOST_DS_SELECTOR, 0);
  3379. vmcs_write16(HOST_ES_SELECTOR, 0);
  3380. #else
  3381. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3382. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3383. #endif
  3384. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3385. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3386. native_store_idt(&dt);
  3387. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3388. vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
  3389. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3390. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3391. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3392. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3393. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3394. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3395. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3396. }
  3397. }
  3398. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3399. {
  3400. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3401. if (enable_ept)
  3402. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3403. if (is_guest_mode(&vmx->vcpu))
  3404. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3405. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3406. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3407. }
  3408. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3409. {
  3410. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3411. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3412. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3413. #ifdef CONFIG_X86_64
  3414. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3415. CPU_BASED_CR8_LOAD_EXITING;
  3416. #endif
  3417. }
  3418. if (!enable_ept)
  3419. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3420. CPU_BASED_CR3_LOAD_EXITING |
  3421. CPU_BASED_INVLPG_EXITING;
  3422. return exec_control;
  3423. }
  3424. static int vmx_vm_has_apicv(struct kvm *kvm)
  3425. {
  3426. return enable_apicv_reg_vid && irqchip_in_kernel(kvm);
  3427. }
  3428. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3429. {
  3430. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3431. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3432. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3433. if (vmx->vpid == 0)
  3434. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3435. if (!enable_ept) {
  3436. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3437. enable_unrestricted_guest = 0;
  3438. /* Enable INVPCID for non-ept guests may cause performance regression. */
  3439. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  3440. }
  3441. if (!enable_unrestricted_guest)
  3442. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3443. if (!ple_gap)
  3444. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3445. if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
  3446. exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
  3447. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  3448. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  3449. return exec_control;
  3450. }
  3451. static void ept_set_mmio_spte_mask(void)
  3452. {
  3453. /*
  3454. * EPT Misconfigurations can be generated if the value of bits 2:0
  3455. * of an EPT paging-structure entry is 110b (write/execute).
  3456. * Also, magic bits (0xffull << 49) is set to quickly identify mmio
  3457. * spte.
  3458. */
  3459. kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
  3460. }
  3461. /*
  3462. * Sets up the vmcs for emulated real mode.
  3463. */
  3464. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3465. {
  3466. #ifdef CONFIG_X86_64
  3467. unsigned long a;
  3468. #endif
  3469. int i;
  3470. /* I/O */
  3471. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3472. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3473. if (cpu_has_vmx_msr_bitmap())
  3474. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3475. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3476. /* Control */
  3477. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3478. vmcs_config.pin_based_exec_ctrl);
  3479. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3480. if (cpu_has_secondary_exec_ctrls()) {
  3481. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3482. vmx_secondary_exec_control(vmx));
  3483. }
  3484. if (enable_apicv_reg_vid) {
  3485. vmcs_write64(EOI_EXIT_BITMAP0, 0);
  3486. vmcs_write64(EOI_EXIT_BITMAP1, 0);
  3487. vmcs_write64(EOI_EXIT_BITMAP2, 0);
  3488. vmcs_write64(EOI_EXIT_BITMAP3, 0);
  3489. vmcs_write16(GUEST_INTR_STATUS, 0);
  3490. }
  3491. if (ple_gap) {
  3492. vmcs_write32(PLE_GAP, ple_gap);
  3493. vmcs_write32(PLE_WINDOW, ple_window);
  3494. }
  3495. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3496. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3497. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3498. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3499. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3500. vmx_set_constant_host_state();
  3501. #ifdef CONFIG_X86_64
  3502. rdmsrl(MSR_FS_BASE, a);
  3503. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3504. rdmsrl(MSR_GS_BASE, a);
  3505. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3506. #else
  3507. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3508. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3509. #endif
  3510. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3511. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3512. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3513. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3514. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3515. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3516. u32 msr_low, msr_high;
  3517. u64 host_pat;
  3518. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3519. host_pat = msr_low | ((u64) msr_high << 32);
  3520. /* Write the default value follow host pat */
  3521. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3522. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3523. vmx->vcpu.arch.pat = host_pat;
  3524. }
  3525. for (i = 0; i < NR_VMX_MSR; ++i) {
  3526. u32 index = vmx_msr_index[i];
  3527. u32 data_low, data_high;
  3528. int j = vmx->nmsrs;
  3529. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3530. continue;
  3531. if (wrmsr_safe(index, data_low, data_high) < 0)
  3532. continue;
  3533. vmx->guest_msrs[j].index = i;
  3534. vmx->guest_msrs[j].data = 0;
  3535. vmx->guest_msrs[j].mask = -1ull;
  3536. ++vmx->nmsrs;
  3537. }
  3538. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3539. /* 22.2.1, 20.8.1 */
  3540. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3541. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3542. set_cr4_guest_host_mask(vmx);
  3543. return 0;
  3544. }
  3545. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3546. {
  3547. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3548. u64 msr;
  3549. int ret;
  3550. vmx->rmode.vm86_active = 0;
  3551. vmx->soft_vnmi_blocked = 0;
  3552. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3553. kvm_set_cr8(&vmx->vcpu, 0);
  3554. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3555. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3556. msr |= MSR_IA32_APICBASE_BSP;
  3557. kvm_set_apic_base(&vmx->vcpu, msr);
  3558. vmx_segment_cache_clear(vmx);
  3559. seg_setup(VCPU_SREG_CS);
  3560. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3561. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3562. else {
  3563. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3564. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3565. }
  3566. seg_setup(VCPU_SREG_DS);
  3567. seg_setup(VCPU_SREG_ES);
  3568. seg_setup(VCPU_SREG_FS);
  3569. seg_setup(VCPU_SREG_GS);
  3570. seg_setup(VCPU_SREG_SS);
  3571. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3572. vmcs_writel(GUEST_TR_BASE, 0);
  3573. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3574. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3575. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3576. vmcs_writel(GUEST_LDTR_BASE, 0);
  3577. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3578. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3579. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3580. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3581. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3582. vmcs_writel(GUEST_RFLAGS, 0x02);
  3583. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3584. kvm_rip_write(vcpu, 0xfff0);
  3585. else
  3586. kvm_rip_write(vcpu, 0);
  3587. vmcs_writel(GUEST_GDTR_BASE, 0);
  3588. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3589. vmcs_writel(GUEST_IDTR_BASE, 0);
  3590. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3591. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3592. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3593. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3594. /* Special registers */
  3595. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3596. setup_msrs(vmx);
  3597. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3598. if (cpu_has_vmx_tpr_shadow()) {
  3599. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3600. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3601. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3602. __pa(vmx->vcpu.arch.apic->regs));
  3603. vmcs_write32(TPR_THRESHOLD, 0);
  3604. }
  3605. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3606. vmcs_write64(APIC_ACCESS_ADDR,
  3607. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3608. if (vmx->vpid != 0)
  3609. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3610. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3611. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3612. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3613. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3614. vmx_set_cr4(&vmx->vcpu, 0);
  3615. vmx_set_efer(&vmx->vcpu, 0);
  3616. vmx_fpu_activate(&vmx->vcpu);
  3617. update_exception_bitmap(&vmx->vcpu);
  3618. vpid_sync_context(vmx);
  3619. ret = 0;
  3620. return ret;
  3621. }
  3622. /*
  3623. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3624. * For most existing hypervisors, this will always return true.
  3625. */
  3626. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3627. {
  3628. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3629. PIN_BASED_EXT_INTR_MASK;
  3630. }
  3631. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3632. {
  3633. u32 cpu_based_vm_exec_control;
  3634. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3635. /*
  3636. * We get here if vmx_interrupt_allowed() said we can't
  3637. * inject to L1 now because L2 must run. Ask L2 to exit
  3638. * right after entry, so we can inject to L1 more promptly.
  3639. */
  3640. kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  3641. return;
  3642. }
  3643. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3644. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3645. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3646. }
  3647. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3648. {
  3649. u32 cpu_based_vm_exec_control;
  3650. if (!cpu_has_virtual_nmis()) {
  3651. enable_irq_window(vcpu);
  3652. return;
  3653. }
  3654. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3655. enable_irq_window(vcpu);
  3656. return;
  3657. }
  3658. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3659. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3660. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3661. }
  3662. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3663. {
  3664. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3665. uint32_t intr;
  3666. int irq = vcpu->arch.interrupt.nr;
  3667. trace_kvm_inj_virq(irq);
  3668. ++vcpu->stat.irq_injections;
  3669. if (vmx->rmode.vm86_active) {
  3670. int inc_eip = 0;
  3671. if (vcpu->arch.interrupt.soft)
  3672. inc_eip = vcpu->arch.event_exit_inst_len;
  3673. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3674. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3675. return;
  3676. }
  3677. intr = irq | INTR_INFO_VALID_MASK;
  3678. if (vcpu->arch.interrupt.soft) {
  3679. intr |= INTR_TYPE_SOFT_INTR;
  3680. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3681. vmx->vcpu.arch.event_exit_inst_len);
  3682. } else
  3683. intr |= INTR_TYPE_EXT_INTR;
  3684. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3685. }
  3686. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3687. {
  3688. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3689. if (is_guest_mode(vcpu))
  3690. return;
  3691. if (!cpu_has_virtual_nmis()) {
  3692. /*
  3693. * Tracking the NMI-blocked state in software is built upon
  3694. * finding the next open IRQ window. This, in turn, depends on
  3695. * well-behaving guests: They have to keep IRQs disabled at
  3696. * least as long as the NMI handler runs. Otherwise we may
  3697. * cause NMI nesting, maybe breaking the guest. But as this is
  3698. * highly unlikely, we can live with the residual risk.
  3699. */
  3700. vmx->soft_vnmi_blocked = 1;
  3701. vmx->vnmi_blocked_time = 0;
  3702. }
  3703. ++vcpu->stat.nmi_injections;
  3704. vmx->nmi_known_unmasked = false;
  3705. if (vmx->rmode.vm86_active) {
  3706. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3707. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3708. return;
  3709. }
  3710. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3711. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3712. }
  3713. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3714. {
  3715. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3716. return 0;
  3717. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3718. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3719. | GUEST_INTR_STATE_NMI));
  3720. }
  3721. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3722. {
  3723. if (!cpu_has_virtual_nmis())
  3724. return to_vmx(vcpu)->soft_vnmi_blocked;
  3725. if (to_vmx(vcpu)->nmi_known_unmasked)
  3726. return false;
  3727. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3728. }
  3729. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3730. {
  3731. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3732. if (!cpu_has_virtual_nmis()) {
  3733. if (vmx->soft_vnmi_blocked != masked) {
  3734. vmx->soft_vnmi_blocked = masked;
  3735. vmx->vnmi_blocked_time = 0;
  3736. }
  3737. } else {
  3738. vmx->nmi_known_unmasked = !masked;
  3739. if (masked)
  3740. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3741. GUEST_INTR_STATE_NMI);
  3742. else
  3743. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3744. GUEST_INTR_STATE_NMI);
  3745. }
  3746. }
  3747. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3748. {
  3749. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3750. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3751. if (to_vmx(vcpu)->nested.nested_run_pending ||
  3752. (vmcs12->idt_vectoring_info_field &
  3753. VECTORING_INFO_VALID_MASK))
  3754. return 0;
  3755. nested_vmx_vmexit(vcpu);
  3756. vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
  3757. vmcs12->vm_exit_intr_info = 0;
  3758. /* fall through to normal code, but now in L1, not L2 */
  3759. }
  3760. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3761. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3762. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3763. }
  3764. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3765. {
  3766. int ret;
  3767. struct kvm_userspace_memory_region tss_mem = {
  3768. .slot = TSS_PRIVATE_MEMSLOT,
  3769. .guest_phys_addr = addr,
  3770. .memory_size = PAGE_SIZE * 3,
  3771. .flags = 0,
  3772. };
  3773. ret = kvm_set_memory_region(kvm, &tss_mem, false);
  3774. if (ret)
  3775. return ret;
  3776. kvm->arch.tss_addr = addr;
  3777. if (!init_rmode_tss(kvm))
  3778. return -ENOMEM;
  3779. return 0;
  3780. }
  3781. static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
  3782. {
  3783. switch (vec) {
  3784. case BP_VECTOR:
  3785. /*
  3786. * Update instruction length as we may reinject the exception
  3787. * from user space while in guest debugging mode.
  3788. */
  3789. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3790. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3791. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3792. return false;
  3793. /* fall through */
  3794. case DB_VECTOR:
  3795. if (vcpu->guest_debug &
  3796. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3797. return false;
  3798. /* fall through */
  3799. case DE_VECTOR:
  3800. case OF_VECTOR:
  3801. case BR_VECTOR:
  3802. case UD_VECTOR:
  3803. case DF_VECTOR:
  3804. case SS_VECTOR:
  3805. case GP_VECTOR:
  3806. case MF_VECTOR:
  3807. return true;
  3808. break;
  3809. }
  3810. return false;
  3811. }
  3812. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3813. int vec, u32 err_code)
  3814. {
  3815. /*
  3816. * Instruction with address size override prefix opcode 0x67
  3817. * Cause the #SS fault with 0 error code in VM86 mode.
  3818. */
  3819. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
  3820. if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
  3821. if (vcpu->arch.halt_request) {
  3822. vcpu->arch.halt_request = 0;
  3823. return kvm_emulate_halt(vcpu);
  3824. }
  3825. return 1;
  3826. }
  3827. return 0;
  3828. }
  3829. /*
  3830. * Forward all other exceptions that are valid in real mode.
  3831. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3832. * the required debugging infrastructure rework.
  3833. */
  3834. kvm_queue_exception(vcpu, vec);
  3835. return 1;
  3836. }
  3837. /*
  3838. * Trigger machine check on the host. We assume all the MSRs are already set up
  3839. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3840. * We pass a fake environment to the machine check handler because we want
  3841. * the guest to be always treated like user space, no matter what context
  3842. * it used internally.
  3843. */
  3844. static void kvm_machine_check(void)
  3845. {
  3846. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3847. struct pt_regs regs = {
  3848. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3849. .flags = X86_EFLAGS_IF,
  3850. };
  3851. do_machine_check(&regs, 0);
  3852. #endif
  3853. }
  3854. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3855. {
  3856. /* already handled by vcpu_run */
  3857. return 1;
  3858. }
  3859. static int handle_exception(struct kvm_vcpu *vcpu)
  3860. {
  3861. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3862. struct kvm_run *kvm_run = vcpu->run;
  3863. u32 intr_info, ex_no, error_code;
  3864. unsigned long cr2, rip, dr6;
  3865. u32 vect_info;
  3866. enum emulation_result er;
  3867. vect_info = vmx->idt_vectoring_info;
  3868. intr_info = vmx->exit_intr_info;
  3869. if (is_machine_check(intr_info))
  3870. return handle_machine_check(vcpu);
  3871. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3872. return 1; /* already handled by vmx_vcpu_run() */
  3873. if (is_no_device(intr_info)) {
  3874. vmx_fpu_activate(vcpu);
  3875. return 1;
  3876. }
  3877. if (is_invalid_opcode(intr_info)) {
  3878. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3879. if (er != EMULATE_DONE)
  3880. kvm_queue_exception(vcpu, UD_VECTOR);
  3881. return 1;
  3882. }
  3883. error_code = 0;
  3884. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3885. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3886. /*
  3887. * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
  3888. * MMIO, it is better to report an internal error.
  3889. * See the comments in vmx_handle_exit.
  3890. */
  3891. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3892. !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
  3893. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3894. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3895. vcpu->run->internal.ndata = 2;
  3896. vcpu->run->internal.data[0] = vect_info;
  3897. vcpu->run->internal.data[1] = intr_info;
  3898. return 0;
  3899. }
  3900. if (is_page_fault(intr_info)) {
  3901. /* EPT won't cause page fault directly */
  3902. BUG_ON(enable_ept);
  3903. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3904. trace_kvm_page_fault(cr2, error_code);
  3905. if (kvm_event_needs_reinjection(vcpu))
  3906. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3907. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3908. }
  3909. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3910. if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
  3911. return handle_rmode_exception(vcpu, ex_no, error_code);
  3912. switch (ex_no) {
  3913. case DB_VECTOR:
  3914. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3915. if (!(vcpu->guest_debug &
  3916. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3917. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3918. kvm_queue_exception(vcpu, DB_VECTOR);
  3919. return 1;
  3920. }
  3921. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3922. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3923. /* fall through */
  3924. case BP_VECTOR:
  3925. /*
  3926. * Update instruction length as we may reinject #BP from
  3927. * user space while in guest debugging mode. Reading it for
  3928. * #DB as well causes no harm, it is not used in that case.
  3929. */
  3930. vmx->vcpu.arch.event_exit_inst_len =
  3931. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3932. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3933. rip = kvm_rip_read(vcpu);
  3934. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3935. kvm_run->debug.arch.exception = ex_no;
  3936. break;
  3937. default:
  3938. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3939. kvm_run->ex.exception = ex_no;
  3940. kvm_run->ex.error_code = error_code;
  3941. break;
  3942. }
  3943. return 0;
  3944. }
  3945. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3946. {
  3947. ++vcpu->stat.irq_exits;
  3948. return 1;
  3949. }
  3950. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3951. {
  3952. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3953. return 0;
  3954. }
  3955. static int handle_io(struct kvm_vcpu *vcpu)
  3956. {
  3957. unsigned long exit_qualification;
  3958. int size, in, string;
  3959. unsigned port;
  3960. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3961. string = (exit_qualification & 16) != 0;
  3962. in = (exit_qualification & 8) != 0;
  3963. ++vcpu->stat.io_exits;
  3964. if (string || in)
  3965. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3966. port = exit_qualification >> 16;
  3967. size = (exit_qualification & 7) + 1;
  3968. skip_emulated_instruction(vcpu);
  3969. return kvm_fast_pio_out(vcpu, size, port);
  3970. }
  3971. static void
  3972. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3973. {
  3974. /*
  3975. * Patch in the VMCALL instruction:
  3976. */
  3977. hypercall[0] = 0x0f;
  3978. hypercall[1] = 0x01;
  3979. hypercall[2] = 0xc1;
  3980. }
  3981. /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
  3982. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  3983. {
  3984. if (to_vmx(vcpu)->nested.vmxon &&
  3985. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  3986. return 1;
  3987. if (is_guest_mode(vcpu)) {
  3988. /*
  3989. * We get here when L2 changed cr0 in a way that did not change
  3990. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  3991. * but did change L0 shadowed bits. This can currently happen
  3992. * with the TS bit: L0 may want to leave TS on (for lazy fpu
  3993. * loading) while pretending to allow the guest to change it.
  3994. */
  3995. if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
  3996. (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
  3997. return 1;
  3998. vmcs_writel(CR0_READ_SHADOW, val);
  3999. return 0;
  4000. } else
  4001. return kvm_set_cr0(vcpu, val);
  4002. }
  4003. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  4004. {
  4005. if (is_guest_mode(vcpu)) {
  4006. if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
  4007. (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
  4008. return 1;
  4009. vmcs_writel(CR4_READ_SHADOW, val);
  4010. return 0;
  4011. } else
  4012. return kvm_set_cr4(vcpu, val);
  4013. }
  4014. /* called to set cr0 as approriate for clts instruction exit. */
  4015. static void handle_clts(struct kvm_vcpu *vcpu)
  4016. {
  4017. if (is_guest_mode(vcpu)) {
  4018. /*
  4019. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  4020. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  4021. * just pretend it's off (also in arch.cr0 for fpu_activate).
  4022. */
  4023. vmcs_writel(CR0_READ_SHADOW,
  4024. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  4025. vcpu->arch.cr0 &= ~X86_CR0_TS;
  4026. } else
  4027. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  4028. }
  4029. static int handle_cr(struct kvm_vcpu *vcpu)
  4030. {
  4031. unsigned long exit_qualification, val;
  4032. int cr;
  4033. int reg;
  4034. int err;
  4035. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4036. cr = exit_qualification & 15;
  4037. reg = (exit_qualification >> 8) & 15;
  4038. switch ((exit_qualification >> 4) & 3) {
  4039. case 0: /* mov to cr */
  4040. val = kvm_register_read(vcpu, reg);
  4041. trace_kvm_cr_write(cr, val);
  4042. switch (cr) {
  4043. case 0:
  4044. err = handle_set_cr0(vcpu, val);
  4045. kvm_complete_insn_gp(vcpu, err);
  4046. return 1;
  4047. case 3:
  4048. err = kvm_set_cr3(vcpu, val);
  4049. kvm_complete_insn_gp(vcpu, err);
  4050. return 1;
  4051. case 4:
  4052. err = handle_set_cr4(vcpu, val);
  4053. kvm_complete_insn_gp(vcpu, err);
  4054. return 1;
  4055. case 8: {
  4056. u8 cr8_prev = kvm_get_cr8(vcpu);
  4057. u8 cr8 = kvm_register_read(vcpu, reg);
  4058. err = kvm_set_cr8(vcpu, cr8);
  4059. kvm_complete_insn_gp(vcpu, err);
  4060. if (irqchip_in_kernel(vcpu->kvm))
  4061. return 1;
  4062. if (cr8_prev <= cr8)
  4063. return 1;
  4064. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  4065. return 0;
  4066. }
  4067. }
  4068. break;
  4069. case 2: /* clts */
  4070. handle_clts(vcpu);
  4071. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  4072. skip_emulated_instruction(vcpu);
  4073. vmx_fpu_activate(vcpu);
  4074. return 1;
  4075. case 1: /*mov from cr*/
  4076. switch (cr) {
  4077. case 3:
  4078. val = kvm_read_cr3(vcpu);
  4079. kvm_register_write(vcpu, reg, val);
  4080. trace_kvm_cr_read(cr, val);
  4081. skip_emulated_instruction(vcpu);
  4082. return 1;
  4083. case 8:
  4084. val = kvm_get_cr8(vcpu);
  4085. kvm_register_write(vcpu, reg, val);
  4086. trace_kvm_cr_read(cr, val);
  4087. skip_emulated_instruction(vcpu);
  4088. return 1;
  4089. }
  4090. break;
  4091. case 3: /* lmsw */
  4092. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  4093. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  4094. kvm_lmsw(vcpu, val);
  4095. skip_emulated_instruction(vcpu);
  4096. return 1;
  4097. default:
  4098. break;
  4099. }
  4100. vcpu->run->exit_reason = 0;
  4101. vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  4102. (int)(exit_qualification >> 4) & 3, cr);
  4103. return 0;
  4104. }
  4105. static int handle_dr(struct kvm_vcpu *vcpu)
  4106. {
  4107. unsigned long exit_qualification;
  4108. int dr, reg;
  4109. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  4110. if (!kvm_require_cpl(vcpu, 0))
  4111. return 1;
  4112. dr = vmcs_readl(GUEST_DR7);
  4113. if (dr & DR7_GD) {
  4114. /*
  4115. * As the vm-exit takes precedence over the debug trap, we
  4116. * need to emulate the latter, either for the host or the
  4117. * guest debugging itself.
  4118. */
  4119. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4120. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  4121. vcpu->run->debug.arch.dr7 = dr;
  4122. vcpu->run->debug.arch.pc =
  4123. vmcs_readl(GUEST_CS_BASE) +
  4124. vmcs_readl(GUEST_RIP);
  4125. vcpu->run->debug.arch.exception = DB_VECTOR;
  4126. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  4127. return 0;
  4128. } else {
  4129. vcpu->arch.dr7 &= ~DR7_GD;
  4130. vcpu->arch.dr6 |= DR6_BD;
  4131. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  4132. kvm_queue_exception(vcpu, DB_VECTOR);
  4133. return 1;
  4134. }
  4135. }
  4136. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4137. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  4138. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  4139. if (exit_qualification & TYPE_MOV_FROM_DR) {
  4140. unsigned long val;
  4141. if (!kvm_get_dr(vcpu, dr, &val))
  4142. kvm_register_write(vcpu, reg, val);
  4143. } else
  4144. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  4145. skip_emulated_instruction(vcpu);
  4146. return 1;
  4147. }
  4148. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  4149. {
  4150. vmcs_writel(GUEST_DR7, val);
  4151. }
  4152. static int handle_cpuid(struct kvm_vcpu *vcpu)
  4153. {
  4154. kvm_emulate_cpuid(vcpu);
  4155. return 1;
  4156. }
  4157. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  4158. {
  4159. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4160. u64 data;
  4161. if (vmx_get_msr(vcpu, ecx, &data)) {
  4162. trace_kvm_msr_read_ex(ecx);
  4163. kvm_inject_gp(vcpu, 0);
  4164. return 1;
  4165. }
  4166. trace_kvm_msr_read(ecx, data);
  4167. /* FIXME: handling of bits 32:63 of rax, rdx */
  4168. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  4169. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  4170. skip_emulated_instruction(vcpu);
  4171. return 1;
  4172. }
  4173. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  4174. {
  4175. struct msr_data msr;
  4176. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4177. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  4178. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  4179. msr.data = data;
  4180. msr.index = ecx;
  4181. msr.host_initiated = false;
  4182. if (vmx_set_msr(vcpu, &msr) != 0) {
  4183. trace_kvm_msr_write_ex(ecx, data);
  4184. kvm_inject_gp(vcpu, 0);
  4185. return 1;
  4186. }
  4187. trace_kvm_msr_write(ecx, data);
  4188. skip_emulated_instruction(vcpu);
  4189. return 1;
  4190. }
  4191. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  4192. {
  4193. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4194. return 1;
  4195. }
  4196. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  4197. {
  4198. u32 cpu_based_vm_exec_control;
  4199. /* clear pending irq */
  4200. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4201. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  4202. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4203. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4204. ++vcpu->stat.irq_window_exits;
  4205. /*
  4206. * If the user space waits to inject interrupts, exit as soon as
  4207. * possible
  4208. */
  4209. if (!irqchip_in_kernel(vcpu->kvm) &&
  4210. vcpu->run->request_interrupt_window &&
  4211. !kvm_cpu_has_interrupt(vcpu)) {
  4212. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  4213. return 0;
  4214. }
  4215. return 1;
  4216. }
  4217. static int handle_halt(struct kvm_vcpu *vcpu)
  4218. {
  4219. skip_emulated_instruction(vcpu);
  4220. return kvm_emulate_halt(vcpu);
  4221. }
  4222. static int handle_vmcall(struct kvm_vcpu *vcpu)
  4223. {
  4224. skip_emulated_instruction(vcpu);
  4225. kvm_emulate_hypercall(vcpu);
  4226. return 1;
  4227. }
  4228. static int handle_invd(struct kvm_vcpu *vcpu)
  4229. {
  4230. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4231. }
  4232. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4233. {
  4234. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4235. kvm_mmu_invlpg(vcpu, exit_qualification);
  4236. skip_emulated_instruction(vcpu);
  4237. return 1;
  4238. }
  4239. static int handle_rdpmc(struct kvm_vcpu *vcpu)
  4240. {
  4241. int err;
  4242. err = kvm_rdpmc(vcpu);
  4243. kvm_complete_insn_gp(vcpu, err);
  4244. return 1;
  4245. }
  4246. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4247. {
  4248. skip_emulated_instruction(vcpu);
  4249. kvm_emulate_wbinvd(vcpu);
  4250. return 1;
  4251. }
  4252. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4253. {
  4254. u64 new_bv = kvm_read_edx_eax(vcpu);
  4255. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4256. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4257. skip_emulated_instruction(vcpu);
  4258. return 1;
  4259. }
  4260. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4261. {
  4262. if (likely(fasteoi)) {
  4263. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4264. int access_type, offset;
  4265. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4266. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4267. /*
  4268. * Sane guest uses MOV to write EOI, with written value
  4269. * not cared. So make a short-circuit here by avoiding
  4270. * heavy instruction emulation.
  4271. */
  4272. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4273. (offset == APIC_EOI)) {
  4274. kvm_lapic_set_eoi(vcpu);
  4275. skip_emulated_instruction(vcpu);
  4276. return 1;
  4277. }
  4278. }
  4279. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4280. }
  4281. static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
  4282. {
  4283. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4284. int vector = exit_qualification & 0xff;
  4285. /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
  4286. kvm_apic_set_eoi_accelerated(vcpu, vector);
  4287. return 1;
  4288. }
  4289. static int handle_apic_write(struct kvm_vcpu *vcpu)
  4290. {
  4291. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4292. u32 offset = exit_qualification & 0xfff;
  4293. /* APIC-write VM exit is trap-like and thus no need to adjust IP */
  4294. kvm_apic_write_nodecode(vcpu, offset);
  4295. return 1;
  4296. }
  4297. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4298. {
  4299. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4300. unsigned long exit_qualification;
  4301. bool has_error_code = false;
  4302. u32 error_code = 0;
  4303. u16 tss_selector;
  4304. int reason, type, idt_v, idt_index;
  4305. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4306. idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
  4307. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4308. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4309. reason = (u32)exit_qualification >> 30;
  4310. if (reason == TASK_SWITCH_GATE && idt_v) {
  4311. switch (type) {
  4312. case INTR_TYPE_NMI_INTR:
  4313. vcpu->arch.nmi_injected = false;
  4314. vmx_set_nmi_mask(vcpu, true);
  4315. break;
  4316. case INTR_TYPE_EXT_INTR:
  4317. case INTR_TYPE_SOFT_INTR:
  4318. kvm_clear_interrupt_queue(vcpu);
  4319. break;
  4320. case INTR_TYPE_HARD_EXCEPTION:
  4321. if (vmx->idt_vectoring_info &
  4322. VECTORING_INFO_DELIVER_CODE_MASK) {
  4323. has_error_code = true;
  4324. error_code =
  4325. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4326. }
  4327. /* fall through */
  4328. case INTR_TYPE_SOFT_EXCEPTION:
  4329. kvm_clear_exception_queue(vcpu);
  4330. break;
  4331. default:
  4332. break;
  4333. }
  4334. }
  4335. tss_selector = exit_qualification;
  4336. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4337. type != INTR_TYPE_EXT_INTR &&
  4338. type != INTR_TYPE_NMI_INTR))
  4339. skip_emulated_instruction(vcpu);
  4340. if (kvm_task_switch(vcpu, tss_selector,
  4341. type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
  4342. has_error_code, error_code) == EMULATE_FAIL) {
  4343. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4344. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4345. vcpu->run->internal.ndata = 0;
  4346. return 0;
  4347. }
  4348. /* clear all local breakpoint enable flags */
  4349. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4350. /*
  4351. * TODO: What about debug traps on tss switch?
  4352. * Are we supposed to inject them and update dr6?
  4353. */
  4354. return 1;
  4355. }
  4356. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4357. {
  4358. unsigned long exit_qualification;
  4359. gpa_t gpa;
  4360. u32 error_code;
  4361. int gla_validity;
  4362. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4363. gla_validity = (exit_qualification >> 7) & 0x3;
  4364. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4365. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4366. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4367. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4368. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4369. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4370. (long unsigned int)exit_qualification);
  4371. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4372. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4373. return 0;
  4374. }
  4375. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4376. trace_kvm_page_fault(gpa, exit_qualification);
  4377. /* It is a write fault? */
  4378. error_code = exit_qualification & (1U << 1);
  4379. /* ept page table is present? */
  4380. error_code |= (exit_qualification >> 3) & 0x1;
  4381. return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
  4382. }
  4383. static u64 ept_rsvd_mask(u64 spte, int level)
  4384. {
  4385. int i;
  4386. u64 mask = 0;
  4387. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4388. mask |= (1ULL << i);
  4389. if (level > 2)
  4390. /* bits 7:3 reserved */
  4391. mask |= 0xf8;
  4392. else if (level == 2) {
  4393. if (spte & (1ULL << 7))
  4394. /* 2MB ref, bits 20:12 reserved */
  4395. mask |= 0x1ff000;
  4396. else
  4397. /* bits 6:3 reserved */
  4398. mask |= 0x78;
  4399. }
  4400. return mask;
  4401. }
  4402. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4403. int level)
  4404. {
  4405. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4406. /* 010b (write-only) */
  4407. WARN_ON((spte & 0x7) == 0x2);
  4408. /* 110b (write/execute) */
  4409. WARN_ON((spte & 0x7) == 0x6);
  4410. /* 100b (execute-only) and value not supported by logical processor */
  4411. if (!cpu_has_vmx_ept_execute_only())
  4412. WARN_ON((spte & 0x7) == 0x4);
  4413. /* not 000b */
  4414. if ((spte & 0x7)) {
  4415. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4416. if (rsvd_bits != 0) {
  4417. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4418. __func__, rsvd_bits);
  4419. WARN_ON(1);
  4420. }
  4421. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4422. u64 ept_mem_type = (spte & 0x38) >> 3;
  4423. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4424. ept_mem_type == 7) {
  4425. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4426. __func__, ept_mem_type);
  4427. WARN_ON(1);
  4428. }
  4429. }
  4430. }
  4431. }
  4432. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4433. {
  4434. u64 sptes[4];
  4435. int nr_sptes, i, ret;
  4436. gpa_t gpa;
  4437. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4438. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4439. if (likely(ret == 1))
  4440. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4441. EMULATE_DONE;
  4442. if (unlikely(!ret))
  4443. return 1;
  4444. /* It is the real ept misconfig */
  4445. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4446. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4447. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4448. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4449. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4450. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4451. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4452. return 0;
  4453. }
  4454. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4455. {
  4456. u32 cpu_based_vm_exec_control;
  4457. /* clear pending NMI */
  4458. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4459. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4460. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4461. ++vcpu->stat.nmi_window_exits;
  4462. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4463. return 1;
  4464. }
  4465. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4466. {
  4467. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4468. enum emulation_result err = EMULATE_DONE;
  4469. int ret = 1;
  4470. u32 cpu_exec_ctrl;
  4471. bool intr_window_requested;
  4472. unsigned count = 130;
  4473. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4474. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4475. while (!guest_state_valid(vcpu) && count-- != 0) {
  4476. if (intr_window_requested && vmx_interrupt_allowed(vcpu))
  4477. return handle_interrupt_window(&vmx->vcpu);
  4478. if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
  4479. return 1;
  4480. err = emulate_instruction(vcpu, 0);
  4481. if (err == EMULATE_DO_MMIO) {
  4482. ret = 0;
  4483. goto out;
  4484. }
  4485. if (err != EMULATE_DONE) {
  4486. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4487. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4488. vcpu->run->internal.ndata = 0;
  4489. return 0;
  4490. }
  4491. if (signal_pending(current))
  4492. goto out;
  4493. if (need_resched())
  4494. schedule();
  4495. }
  4496. vmx->emulation_required = emulation_required(vcpu);
  4497. out:
  4498. return ret;
  4499. }
  4500. /*
  4501. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4502. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4503. */
  4504. static int handle_pause(struct kvm_vcpu *vcpu)
  4505. {
  4506. skip_emulated_instruction(vcpu);
  4507. kvm_vcpu_on_spin(vcpu);
  4508. return 1;
  4509. }
  4510. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4511. {
  4512. kvm_queue_exception(vcpu, UD_VECTOR);
  4513. return 1;
  4514. }
  4515. /*
  4516. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4517. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4518. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4519. * allows keeping them loaded on the processor, and in the future will allow
  4520. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4521. * every entry if they never change.
  4522. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4523. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4524. *
  4525. * The following functions allocate and free a vmcs02 in this pool.
  4526. */
  4527. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4528. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4529. {
  4530. struct vmcs02_list *item;
  4531. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4532. if (item->vmptr == vmx->nested.current_vmptr) {
  4533. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4534. return &item->vmcs02;
  4535. }
  4536. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4537. /* Recycle the least recently used VMCS. */
  4538. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4539. struct vmcs02_list, list);
  4540. item->vmptr = vmx->nested.current_vmptr;
  4541. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4542. return &item->vmcs02;
  4543. }
  4544. /* Create a new VMCS */
  4545. item = (struct vmcs02_list *)
  4546. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4547. if (!item)
  4548. return NULL;
  4549. item->vmcs02.vmcs = alloc_vmcs();
  4550. if (!item->vmcs02.vmcs) {
  4551. kfree(item);
  4552. return NULL;
  4553. }
  4554. loaded_vmcs_init(&item->vmcs02);
  4555. item->vmptr = vmx->nested.current_vmptr;
  4556. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4557. vmx->nested.vmcs02_num++;
  4558. return &item->vmcs02;
  4559. }
  4560. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4561. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4562. {
  4563. struct vmcs02_list *item;
  4564. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4565. if (item->vmptr == vmptr) {
  4566. free_loaded_vmcs(&item->vmcs02);
  4567. list_del(&item->list);
  4568. kfree(item);
  4569. vmx->nested.vmcs02_num--;
  4570. return;
  4571. }
  4572. }
  4573. /*
  4574. * Free all VMCSs saved for this vcpu, except the one pointed by
  4575. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4576. * currently used, if running L2), and vmcs01 when running L2.
  4577. */
  4578. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4579. {
  4580. struct vmcs02_list *item, *n;
  4581. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4582. if (vmx->loaded_vmcs != &item->vmcs02)
  4583. free_loaded_vmcs(&item->vmcs02);
  4584. list_del(&item->list);
  4585. kfree(item);
  4586. }
  4587. vmx->nested.vmcs02_num = 0;
  4588. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4589. free_loaded_vmcs(&vmx->vmcs01);
  4590. }
  4591. /*
  4592. * Emulate the VMXON instruction.
  4593. * Currently, we just remember that VMX is active, and do not save or even
  4594. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4595. * do not currently need to store anything in that guest-allocated memory
  4596. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4597. * argument is different from the VMXON pointer (which the spec says they do).
  4598. */
  4599. static int handle_vmon(struct kvm_vcpu *vcpu)
  4600. {
  4601. struct kvm_segment cs;
  4602. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4603. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4604. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4605. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4606. * Otherwise, we should fail with #UD. We test these now:
  4607. */
  4608. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4609. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4610. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4611. kvm_queue_exception(vcpu, UD_VECTOR);
  4612. return 1;
  4613. }
  4614. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4615. if (is_long_mode(vcpu) && !cs.l) {
  4616. kvm_queue_exception(vcpu, UD_VECTOR);
  4617. return 1;
  4618. }
  4619. if (vmx_get_cpl(vcpu)) {
  4620. kvm_inject_gp(vcpu, 0);
  4621. return 1;
  4622. }
  4623. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4624. vmx->nested.vmcs02_num = 0;
  4625. vmx->nested.vmxon = true;
  4626. skip_emulated_instruction(vcpu);
  4627. return 1;
  4628. }
  4629. /*
  4630. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4631. * for running VMX instructions (except VMXON, whose prerequisites are
  4632. * slightly different). It also specifies what exception to inject otherwise.
  4633. */
  4634. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4635. {
  4636. struct kvm_segment cs;
  4637. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4638. if (!vmx->nested.vmxon) {
  4639. kvm_queue_exception(vcpu, UD_VECTOR);
  4640. return 0;
  4641. }
  4642. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4643. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4644. (is_long_mode(vcpu) && !cs.l)) {
  4645. kvm_queue_exception(vcpu, UD_VECTOR);
  4646. return 0;
  4647. }
  4648. if (vmx_get_cpl(vcpu)) {
  4649. kvm_inject_gp(vcpu, 0);
  4650. return 0;
  4651. }
  4652. return 1;
  4653. }
  4654. /*
  4655. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4656. * just stops using VMX.
  4657. */
  4658. static void free_nested(struct vcpu_vmx *vmx)
  4659. {
  4660. if (!vmx->nested.vmxon)
  4661. return;
  4662. vmx->nested.vmxon = false;
  4663. if (vmx->nested.current_vmptr != -1ull) {
  4664. kunmap(vmx->nested.current_vmcs12_page);
  4665. nested_release_page(vmx->nested.current_vmcs12_page);
  4666. vmx->nested.current_vmptr = -1ull;
  4667. vmx->nested.current_vmcs12 = NULL;
  4668. }
  4669. /* Unpin physical memory we referred to in current vmcs02 */
  4670. if (vmx->nested.apic_access_page) {
  4671. nested_release_page(vmx->nested.apic_access_page);
  4672. vmx->nested.apic_access_page = 0;
  4673. }
  4674. nested_free_all_saved_vmcss(vmx);
  4675. }
  4676. /* Emulate the VMXOFF instruction */
  4677. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4678. {
  4679. if (!nested_vmx_check_permission(vcpu))
  4680. return 1;
  4681. free_nested(to_vmx(vcpu));
  4682. skip_emulated_instruction(vcpu);
  4683. return 1;
  4684. }
  4685. /*
  4686. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4687. * exit caused by such an instruction (run by a guest hypervisor).
  4688. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4689. * #UD or #GP.
  4690. */
  4691. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4692. unsigned long exit_qualification,
  4693. u32 vmx_instruction_info, gva_t *ret)
  4694. {
  4695. /*
  4696. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4697. * Execution", on an exit, vmx_instruction_info holds most of the
  4698. * addressing components of the operand. Only the displacement part
  4699. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4700. * For how an actual address is calculated from all these components,
  4701. * refer to Vol. 1, "Operand Addressing".
  4702. */
  4703. int scaling = vmx_instruction_info & 3;
  4704. int addr_size = (vmx_instruction_info >> 7) & 7;
  4705. bool is_reg = vmx_instruction_info & (1u << 10);
  4706. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4707. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4708. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4709. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4710. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4711. if (is_reg) {
  4712. kvm_queue_exception(vcpu, UD_VECTOR);
  4713. return 1;
  4714. }
  4715. /* Addr = segment_base + offset */
  4716. /* offset = base + [index * scale] + displacement */
  4717. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4718. if (base_is_valid)
  4719. *ret += kvm_register_read(vcpu, base_reg);
  4720. if (index_is_valid)
  4721. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4722. *ret += exit_qualification; /* holds the displacement */
  4723. if (addr_size == 1) /* 32 bit */
  4724. *ret &= 0xffffffff;
  4725. /*
  4726. * TODO: throw #GP (and return 1) in various cases that the VM*
  4727. * instructions require it - e.g., offset beyond segment limit,
  4728. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4729. * address, and so on. Currently these are not checked.
  4730. */
  4731. return 0;
  4732. }
  4733. /*
  4734. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4735. * set the success or error code of an emulated VMX instruction, as specified
  4736. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4737. */
  4738. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4739. {
  4740. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4741. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4742. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4743. }
  4744. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4745. {
  4746. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4747. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4748. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4749. | X86_EFLAGS_CF);
  4750. }
  4751. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4752. u32 vm_instruction_error)
  4753. {
  4754. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4755. /*
  4756. * failValid writes the error number to the current VMCS, which
  4757. * can't be done there isn't a current VMCS.
  4758. */
  4759. nested_vmx_failInvalid(vcpu);
  4760. return;
  4761. }
  4762. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4763. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4764. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4765. | X86_EFLAGS_ZF);
  4766. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4767. }
  4768. /* Emulate the VMCLEAR instruction */
  4769. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4770. {
  4771. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4772. gva_t gva;
  4773. gpa_t vmptr;
  4774. struct vmcs12 *vmcs12;
  4775. struct page *page;
  4776. struct x86_exception e;
  4777. if (!nested_vmx_check_permission(vcpu))
  4778. return 1;
  4779. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4780. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4781. return 1;
  4782. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4783. sizeof(vmptr), &e)) {
  4784. kvm_inject_page_fault(vcpu, &e);
  4785. return 1;
  4786. }
  4787. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4788. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4789. skip_emulated_instruction(vcpu);
  4790. return 1;
  4791. }
  4792. if (vmptr == vmx->nested.current_vmptr) {
  4793. kunmap(vmx->nested.current_vmcs12_page);
  4794. nested_release_page(vmx->nested.current_vmcs12_page);
  4795. vmx->nested.current_vmptr = -1ull;
  4796. vmx->nested.current_vmcs12 = NULL;
  4797. }
  4798. page = nested_get_page(vcpu, vmptr);
  4799. if (page == NULL) {
  4800. /*
  4801. * For accurate processor emulation, VMCLEAR beyond available
  4802. * physical memory should do nothing at all. However, it is
  4803. * possible that a nested vmx bug, not a guest hypervisor bug,
  4804. * resulted in this case, so let's shut down before doing any
  4805. * more damage:
  4806. */
  4807. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4808. return 1;
  4809. }
  4810. vmcs12 = kmap(page);
  4811. vmcs12->launch_state = 0;
  4812. kunmap(page);
  4813. nested_release_page(page);
  4814. nested_free_vmcs02(vmx, vmptr);
  4815. skip_emulated_instruction(vcpu);
  4816. nested_vmx_succeed(vcpu);
  4817. return 1;
  4818. }
  4819. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4820. /* Emulate the VMLAUNCH instruction */
  4821. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4822. {
  4823. return nested_vmx_run(vcpu, true);
  4824. }
  4825. /* Emulate the VMRESUME instruction */
  4826. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4827. {
  4828. return nested_vmx_run(vcpu, false);
  4829. }
  4830. enum vmcs_field_type {
  4831. VMCS_FIELD_TYPE_U16 = 0,
  4832. VMCS_FIELD_TYPE_U64 = 1,
  4833. VMCS_FIELD_TYPE_U32 = 2,
  4834. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4835. };
  4836. static inline int vmcs_field_type(unsigned long field)
  4837. {
  4838. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4839. return VMCS_FIELD_TYPE_U32;
  4840. return (field >> 13) & 0x3 ;
  4841. }
  4842. static inline int vmcs_field_readonly(unsigned long field)
  4843. {
  4844. return (((field >> 10) & 0x3) == 1);
  4845. }
  4846. /*
  4847. * Read a vmcs12 field. Since these can have varying lengths and we return
  4848. * one type, we chose the biggest type (u64) and zero-extend the return value
  4849. * to that size. Note that the caller, handle_vmread, might need to use only
  4850. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4851. * 64-bit fields are to be returned).
  4852. */
  4853. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4854. unsigned long field, u64 *ret)
  4855. {
  4856. short offset = vmcs_field_to_offset(field);
  4857. char *p;
  4858. if (offset < 0)
  4859. return 0;
  4860. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4861. switch (vmcs_field_type(field)) {
  4862. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4863. *ret = *((natural_width *)p);
  4864. return 1;
  4865. case VMCS_FIELD_TYPE_U16:
  4866. *ret = *((u16 *)p);
  4867. return 1;
  4868. case VMCS_FIELD_TYPE_U32:
  4869. *ret = *((u32 *)p);
  4870. return 1;
  4871. case VMCS_FIELD_TYPE_U64:
  4872. *ret = *((u64 *)p);
  4873. return 1;
  4874. default:
  4875. return 0; /* can never happen. */
  4876. }
  4877. }
  4878. /*
  4879. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4880. * used before) all generate the same failure when it is missing.
  4881. */
  4882. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4883. {
  4884. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4885. if (vmx->nested.current_vmptr == -1ull) {
  4886. nested_vmx_failInvalid(vcpu);
  4887. skip_emulated_instruction(vcpu);
  4888. return 0;
  4889. }
  4890. return 1;
  4891. }
  4892. static int handle_vmread(struct kvm_vcpu *vcpu)
  4893. {
  4894. unsigned long field;
  4895. u64 field_value;
  4896. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4897. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4898. gva_t gva = 0;
  4899. if (!nested_vmx_check_permission(vcpu) ||
  4900. !nested_vmx_check_vmcs12(vcpu))
  4901. return 1;
  4902. /* Decode instruction info and find the field to read */
  4903. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4904. /* Read the field, zero-extended to a u64 field_value */
  4905. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4906. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4907. skip_emulated_instruction(vcpu);
  4908. return 1;
  4909. }
  4910. /*
  4911. * Now copy part of this value to register or memory, as requested.
  4912. * Note that the number of bits actually copied is 32 or 64 depending
  4913. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4914. */
  4915. if (vmx_instruction_info & (1u << 10)) {
  4916. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4917. field_value);
  4918. } else {
  4919. if (get_vmx_mem_address(vcpu, exit_qualification,
  4920. vmx_instruction_info, &gva))
  4921. return 1;
  4922. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4923. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4924. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4925. }
  4926. nested_vmx_succeed(vcpu);
  4927. skip_emulated_instruction(vcpu);
  4928. return 1;
  4929. }
  4930. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4931. {
  4932. unsigned long field;
  4933. gva_t gva;
  4934. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4935. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4936. char *p;
  4937. short offset;
  4938. /* The value to write might be 32 or 64 bits, depending on L1's long
  4939. * mode, and eventually we need to write that into a field of several
  4940. * possible lengths. The code below first zero-extends the value to 64
  4941. * bit (field_value), and then copies only the approriate number of
  4942. * bits into the vmcs12 field.
  4943. */
  4944. u64 field_value = 0;
  4945. struct x86_exception e;
  4946. if (!nested_vmx_check_permission(vcpu) ||
  4947. !nested_vmx_check_vmcs12(vcpu))
  4948. return 1;
  4949. if (vmx_instruction_info & (1u << 10))
  4950. field_value = kvm_register_read(vcpu,
  4951. (((vmx_instruction_info) >> 3) & 0xf));
  4952. else {
  4953. if (get_vmx_mem_address(vcpu, exit_qualification,
  4954. vmx_instruction_info, &gva))
  4955. return 1;
  4956. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4957. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4958. kvm_inject_page_fault(vcpu, &e);
  4959. return 1;
  4960. }
  4961. }
  4962. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4963. if (vmcs_field_readonly(field)) {
  4964. nested_vmx_failValid(vcpu,
  4965. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4966. skip_emulated_instruction(vcpu);
  4967. return 1;
  4968. }
  4969. offset = vmcs_field_to_offset(field);
  4970. if (offset < 0) {
  4971. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4972. skip_emulated_instruction(vcpu);
  4973. return 1;
  4974. }
  4975. p = ((char *) get_vmcs12(vcpu)) + offset;
  4976. switch (vmcs_field_type(field)) {
  4977. case VMCS_FIELD_TYPE_U16:
  4978. *(u16 *)p = field_value;
  4979. break;
  4980. case VMCS_FIELD_TYPE_U32:
  4981. *(u32 *)p = field_value;
  4982. break;
  4983. case VMCS_FIELD_TYPE_U64:
  4984. *(u64 *)p = field_value;
  4985. break;
  4986. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4987. *(natural_width *)p = field_value;
  4988. break;
  4989. default:
  4990. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4991. skip_emulated_instruction(vcpu);
  4992. return 1;
  4993. }
  4994. nested_vmx_succeed(vcpu);
  4995. skip_emulated_instruction(vcpu);
  4996. return 1;
  4997. }
  4998. /* Emulate the VMPTRLD instruction */
  4999. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  5000. {
  5001. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5002. gva_t gva;
  5003. gpa_t vmptr;
  5004. struct x86_exception e;
  5005. if (!nested_vmx_check_permission(vcpu))
  5006. return 1;
  5007. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  5008. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  5009. return 1;
  5010. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  5011. sizeof(vmptr), &e)) {
  5012. kvm_inject_page_fault(vcpu, &e);
  5013. return 1;
  5014. }
  5015. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  5016. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  5017. skip_emulated_instruction(vcpu);
  5018. return 1;
  5019. }
  5020. if (vmx->nested.current_vmptr != vmptr) {
  5021. struct vmcs12 *new_vmcs12;
  5022. struct page *page;
  5023. page = nested_get_page(vcpu, vmptr);
  5024. if (page == NULL) {
  5025. nested_vmx_failInvalid(vcpu);
  5026. skip_emulated_instruction(vcpu);
  5027. return 1;
  5028. }
  5029. new_vmcs12 = kmap(page);
  5030. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  5031. kunmap(page);
  5032. nested_release_page_clean(page);
  5033. nested_vmx_failValid(vcpu,
  5034. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  5035. skip_emulated_instruction(vcpu);
  5036. return 1;
  5037. }
  5038. if (vmx->nested.current_vmptr != -1ull) {
  5039. kunmap(vmx->nested.current_vmcs12_page);
  5040. nested_release_page(vmx->nested.current_vmcs12_page);
  5041. }
  5042. vmx->nested.current_vmptr = vmptr;
  5043. vmx->nested.current_vmcs12 = new_vmcs12;
  5044. vmx->nested.current_vmcs12_page = page;
  5045. }
  5046. nested_vmx_succeed(vcpu);
  5047. skip_emulated_instruction(vcpu);
  5048. return 1;
  5049. }
  5050. /* Emulate the VMPTRST instruction */
  5051. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  5052. {
  5053. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5054. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5055. gva_t vmcs_gva;
  5056. struct x86_exception e;
  5057. if (!nested_vmx_check_permission(vcpu))
  5058. return 1;
  5059. if (get_vmx_mem_address(vcpu, exit_qualification,
  5060. vmx_instruction_info, &vmcs_gva))
  5061. return 1;
  5062. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  5063. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  5064. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  5065. sizeof(u64), &e)) {
  5066. kvm_inject_page_fault(vcpu, &e);
  5067. return 1;
  5068. }
  5069. nested_vmx_succeed(vcpu);
  5070. skip_emulated_instruction(vcpu);
  5071. return 1;
  5072. }
  5073. /*
  5074. * The exit handlers return 1 if the exit was handled fully and guest execution
  5075. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  5076. * to be done to userspace and return 0.
  5077. */
  5078. static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  5079. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  5080. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  5081. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  5082. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  5083. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  5084. [EXIT_REASON_CR_ACCESS] = handle_cr,
  5085. [EXIT_REASON_DR_ACCESS] = handle_dr,
  5086. [EXIT_REASON_CPUID] = handle_cpuid,
  5087. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  5088. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  5089. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  5090. [EXIT_REASON_HLT] = handle_halt,
  5091. [EXIT_REASON_INVD] = handle_invd,
  5092. [EXIT_REASON_INVLPG] = handle_invlpg,
  5093. [EXIT_REASON_RDPMC] = handle_rdpmc,
  5094. [EXIT_REASON_VMCALL] = handle_vmcall,
  5095. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  5096. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  5097. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  5098. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  5099. [EXIT_REASON_VMREAD] = handle_vmread,
  5100. [EXIT_REASON_VMRESUME] = handle_vmresume,
  5101. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  5102. [EXIT_REASON_VMOFF] = handle_vmoff,
  5103. [EXIT_REASON_VMON] = handle_vmon,
  5104. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  5105. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  5106. [EXIT_REASON_APIC_WRITE] = handle_apic_write,
  5107. [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
  5108. [EXIT_REASON_WBINVD] = handle_wbinvd,
  5109. [EXIT_REASON_XSETBV] = handle_xsetbv,
  5110. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  5111. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  5112. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  5113. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  5114. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  5115. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  5116. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  5117. };
  5118. static const int kvm_vmx_max_exit_handlers =
  5119. ARRAY_SIZE(kvm_vmx_exit_handlers);
  5120. /*
  5121. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  5122. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  5123. * disinterest in the current event (read or write a specific MSR) by using an
  5124. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  5125. */
  5126. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  5127. struct vmcs12 *vmcs12, u32 exit_reason)
  5128. {
  5129. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  5130. gpa_t bitmap;
  5131. if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
  5132. return 1;
  5133. /*
  5134. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  5135. * for the four combinations of read/write and low/high MSR numbers.
  5136. * First we need to figure out which of the four to use:
  5137. */
  5138. bitmap = vmcs12->msr_bitmap;
  5139. if (exit_reason == EXIT_REASON_MSR_WRITE)
  5140. bitmap += 2048;
  5141. if (msr_index >= 0xc0000000) {
  5142. msr_index -= 0xc0000000;
  5143. bitmap += 1024;
  5144. }
  5145. /* Then read the msr_index'th bit from this bitmap: */
  5146. if (msr_index < 1024*8) {
  5147. unsigned char b;
  5148. kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
  5149. return 1 & (b >> (msr_index & 7));
  5150. } else
  5151. return 1; /* let L1 handle the wrong parameter */
  5152. }
  5153. /*
  5154. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  5155. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  5156. * intercept (via guest_host_mask etc.) the current event.
  5157. */
  5158. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  5159. struct vmcs12 *vmcs12)
  5160. {
  5161. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5162. int cr = exit_qualification & 15;
  5163. int reg = (exit_qualification >> 8) & 15;
  5164. unsigned long val = kvm_register_read(vcpu, reg);
  5165. switch ((exit_qualification >> 4) & 3) {
  5166. case 0: /* mov to cr */
  5167. switch (cr) {
  5168. case 0:
  5169. if (vmcs12->cr0_guest_host_mask &
  5170. (val ^ vmcs12->cr0_read_shadow))
  5171. return 1;
  5172. break;
  5173. case 3:
  5174. if ((vmcs12->cr3_target_count >= 1 &&
  5175. vmcs12->cr3_target_value0 == val) ||
  5176. (vmcs12->cr3_target_count >= 2 &&
  5177. vmcs12->cr3_target_value1 == val) ||
  5178. (vmcs12->cr3_target_count >= 3 &&
  5179. vmcs12->cr3_target_value2 == val) ||
  5180. (vmcs12->cr3_target_count >= 4 &&
  5181. vmcs12->cr3_target_value3 == val))
  5182. return 0;
  5183. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  5184. return 1;
  5185. break;
  5186. case 4:
  5187. if (vmcs12->cr4_guest_host_mask &
  5188. (vmcs12->cr4_read_shadow ^ val))
  5189. return 1;
  5190. break;
  5191. case 8:
  5192. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  5193. return 1;
  5194. break;
  5195. }
  5196. break;
  5197. case 2: /* clts */
  5198. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  5199. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  5200. return 1;
  5201. break;
  5202. case 1: /* mov from cr */
  5203. switch (cr) {
  5204. case 3:
  5205. if (vmcs12->cpu_based_vm_exec_control &
  5206. CPU_BASED_CR3_STORE_EXITING)
  5207. return 1;
  5208. break;
  5209. case 8:
  5210. if (vmcs12->cpu_based_vm_exec_control &
  5211. CPU_BASED_CR8_STORE_EXITING)
  5212. return 1;
  5213. break;
  5214. }
  5215. break;
  5216. case 3: /* lmsw */
  5217. /*
  5218. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  5219. * cr0. Other attempted changes are ignored, with no exit.
  5220. */
  5221. if (vmcs12->cr0_guest_host_mask & 0xe &
  5222. (val ^ vmcs12->cr0_read_shadow))
  5223. return 1;
  5224. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  5225. !(vmcs12->cr0_read_shadow & 0x1) &&
  5226. (val & 0x1))
  5227. return 1;
  5228. break;
  5229. }
  5230. return 0;
  5231. }
  5232. /*
  5233. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  5234. * should handle it ourselves in L0 (and then continue L2). Only call this
  5235. * when in is_guest_mode (L2).
  5236. */
  5237. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  5238. {
  5239. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  5240. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5241. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5242. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5243. if (vmx->nested.nested_run_pending)
  5244. return 0;
  5245. if (unlikely(vmx->fail)) {
  5246. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  5247. vmcs_read32(VM_INSTRUCTION_ERROR));
  5248. return 1;
  5249. }
  5250. switch (exit_reason) {
  5251. case EXIT_REASON_EXCEPTION_NMI:
  5252. if (!is_exception(intr_info))
  5253. return 0;
  5254. else if (is_page_fault(intr_info))
  5255. return enable_ept;
  5256. return vmcs12->exception_bitmap &
  5257. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  5258. case EXIT_REASON_EXTERNAL_INTERRUPT:
  5259. return 0;
  5260. case EXIT_REASON_TRIPLE_FAULT:
  5261. return 1;
  5262. case EXIT_REASON_PENDING_INTERRUPT:
  5263. case EXIT_REASON_NMI_WINDOW:
  5264. /*
  5265. * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
  5266. * (aka Interrupt Window Exiting) only when L1 turned it on,
  5267. * so if we got a PENDING_INTERRUPT exit, this must be for L1.
  5268. * Same for NMI Window Exiting.
  5269. */
  5270. return 1;
  5271. case EXIT_REASON_TASK_SWITCH:
  5272. return 1;
  5273. case EXIT_REASON_CPUID:
  5274. return 1;
  5275. case EXIT_REASON_HLT:
  5276. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5277. case EXIT_REASON_INVD:
  5278. return 1;
  5279. case EXIT_REASON_INVLPG:
  5280. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5281. case EXIT_REASON_RDPMC:
  5282. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5283. case EXIT_REASON_RDTSC:
  5284. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5285. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5286. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5287. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5288. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5289. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5290. /*
  5291. * VMX instructions trap unconditionally. This allows L1 to
  5292. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5293. */
  5294. return 1;
  5295. case EXIT_REASON_CR_ACCESS:
  5296. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5297. case EXIT_REASON_DR_ACCESS:
  5298. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5299. case EXIT_REASON_IO_INSTRUCTION:
  5300. /* TODO: support IO bitmaps */
  5301. return 1;
  5302. case EXIT_REASON_MSR_READ:
  5303. case EXIT_REASON_MSR_WRITE:
  5304. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5305. case EXIT_REASON_INVALID_STATE:
  5306. return 1;
  5307. case EXIT_REASON_MWAIT_INSTRUCTION:
  5308. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5309. case EXIT_REASON_MONITOR_INSTRUCTION:
  5310. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5311. case EXIT_REASON_PAUSE_INSTRUCTION:
  5312. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5313. nested_cpu_has2(vmcs12,
  5314. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5315. case EXIT_REASON_MCE_DURING_VMENTRY:
  5316. return 0;
  5317. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5318. return 1;
  5319. case EXIT_REASON_APIC_ACCESS:
  5320. return nested_cpu_has2(vmcs12,
  5321. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5322. case EXIT_REASON_EPT_VIOLATION:
  5323. case EXIT_REASON_EPT_MISCONFIG:
  5324. return 0;
  5325. case EXIT_REASON_WBINVD:
  5326. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5327. case EXIT_REASON_XSETBV:
  5328. return 1;
  5329. default:
  5330. return 1;
  5331. }
  5332. }
  5333. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5334. {
  5335. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5336. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5337. }
  5338. /*
  5339. * The guest has exited. See if we can fix it or if we need userspace
  5340. * assistance.
  5341. */
  5342. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5343. {
  5344. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5345. u32 exit_reason = vmx->exit_reason;
  5346. u32 vectoring_info = vmx->idt_vectoring_info;
  5347. /* If guest state is invalid, start emulating */
  5348. if (vmx->emulation_required)
  5349. return handle_invalid_guest_state(vcpu);
  5350. /*
  5351. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5352. * we did not inject a still-pending event to L1 now because of
  5353. * nested_run_pending, we need to re-enable this bit.
  5354. */
  5355. if (vmx->nested.nested_run_pending)
  5356. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5357. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5358. exit_reason == EXIT_REASON_VMRESUME))
  5359. vmx->nested.nested_run_pending = 1;
  5360. else
  5361. vmx->nested.nested_run_pending = 0;
  5362. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5363. nested_vmx_vmexit(vcpu);
  5364. return 1;
  5365. }
  5366. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5367. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5368. vcpu->run->fail_entry.hardware_entry_failure_reason
  5369. = exit_reason;
  5370. return 0;
  5371. }
  5372. if (unlikely(vmx->fail)) {
  5373. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5374. vcpu->run->fail_entry.hardware_entry_failure_reason
  5375. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5376. return 0;
  5377. }
  5378. /*
  5379. * Note:
  5380. * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
  5381. * delivery event since it indicates guest is accessing MMIO.
  5382. * The vm-exit can be triggered again after return to guest that
  5383. * will cause infinite loop.
  5384. */
  5385. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5386. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5387. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5388. exit_reason != EXIT_REASON_TASK_SWITCH)) {
  5389. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  5390. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
  5391. vcpu->run->internal.ndata = 2;
  5392. vcpu->run->internal.data[0] = vectoring_info;
  5393. vcpu->run->internal.data[1] = exit_reason;
  5394. return 0;
  5395. }
  5396. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5397. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5398. get_vmcs12(vcpu), vcpu)))) {
  5399. if (vmx_interrupt_allowed(vcpu)) {
  5400. vmx->soft_vnmi_blocked = 0;
  5401. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5402. vcpu->arch.nmi_pending) {
  5403. /*
  5404. * This CPU don't support us in finding the end of an
  5405. * NMI-blocked window if the guest runs with IRQs
  5406. * disabled. So we pull the trigger after 1 s of
  5407. * futile waiting, but inform the user about this.
  5408. */
  5409. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5410. "state on VCPU %d after 1 s timeout\n",
  5411. __func__, vcpu->vcpu_id);
  5412. vmx->soft_vnmi_blocked = 0;
  5413. }
  5414. }
  5415. if (exit_reason < kvm_vmx_max_exit_handlers
  5416. && kvm_vmx_exit_handlers[exit_reason])
  5417. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5418. else {
  5419. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5420. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5421. }
  5422. return 0;
  5423. }
  5424. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5425. {
  5426. if (irr == -1 || tpr < irr) {
  5427. vmcs_write32(TPR_THRESHOLD, 0);
  5428. return;
  5429. }
  5430. vmcs_write32(TPR_THRESHOLD, irr);
  5431. }
  5432. static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
  5433. {
  5434. u32 sec_exec_control;
  5435. /*
  5436. * There is not point to enable virtualize x2apic without enable
  5437. * apicv
  5438. */
  5439. if (!cpu_has_vmx_virtualize_x2apic_mode() ||
  5440. !vmx_vm_has_apicv(vcpu->kvm))
  5441. return;
  5442. if (!vm_need_tpr_shadow(vcpu->kvm))
  5443. return;
  5444. sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5445. if (set) {
  5446. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5447. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5448. } else {
  5449. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5450. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5451. }
  5452. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
  5453. vmx_set_msr_bitmap(vcpu);
  5454. }
  5455. static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
  5456. {
  5457. u16 status;
  5458. u8 old;
  5459. if (!vmx_vm_has_apicv(kvm))
  5460. return;
  5461. if (isr == -1)
  5462. isr = 0;
  5463. status = vmcs_read16(GUEST_INTR_STATUS);
  5464. old = status >> 8;
  5465. if (isr != old) {
  5466. status &= 0xff;
  5467. status |= isr << 8;
  5468. vmcs_write16(GUEST_INTR_STATUS, status);
  5469. }
  5470. }
  5471. static void vmx_set_rvi(int vector)
  5472. {
  5473. u16 status;
  5474. u8 old;
  5475. status = vmcs_read16(GUEST_INTR_STATUS);
  5476. old = (u8)status & 0xff;
  5477. if ((u8)vector != old) {
  5478. status &= ~0xff;
  5479. status |= (u8)vector;
  5480. vmcs_write16(GUEST_INTR_STATUS, status);
  5481. }
  5482. }
  5483. static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
  5484. {
  5485. if (max_irr == -1)
  5486. return;
  5487. vmx_set_rvi(max_irr);
  5488. }
  5489. static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
  5490. {
  5491. vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
  5492. vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
  5493. vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
  5494. vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
  5495. }
  5496. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5497. {
  5498. u32 exit_intr_info;
  5499. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5500. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5501. return;
  5502. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5503. exit_intr_info = vmx->exit_intr_info;
  5504. /* Handle machine checks before interrupts are enabled */
  5505. if (is_machine_check(exit_intr_info))
  5506. kvm_machine_check();
  5507. /* We need to handle NMIs before interrupts are enabled */
  5508. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5509. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5510. kvm_before_handle_nmi(&vmx->vcpu);
  5511. asm("int $2");
  5512. kvm_after_handle_nmi(&vmx->vcpu);
  5513. }
  5514. }
  5515. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5516. {
  5517. u32 exit_intr_info;
  5518. bool unblock_nmi;
  5519. u8 vector;
  5520. bool idtv_info_valid;
  5521. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5522. if (cpu_has_virtual_nmis()) {
  5523. if (vmx->nmi_known_unmasked)
  5524. return;
  5525. /*
  5526. * Can't use vmx->exit_intr_info since we're not sure what
  5527. * the exit reason is.
  5528. */
  5529. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5530. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5531. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5532. /*
  5533. * SDM 3: 27.7.1.2 (September 2008)
  5534. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5535. * a guest IRET fault.
  5536. * SDM 3: 23.2.2 (September 2008)
  5537. * Bit 12 is undefined in any of the following cases:
  5538. * If the VM exit sets the valid bit in the IDT-vectoring
  5539. * information field.
  5540. * If the VM exit is due to a double fault.
  5541. */
  5542. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5543. vector != DF_VECTOR && !idtv_info_valid)
  5544. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5545. GUEST_INTR_STATE_NMI);
  5546. else
  5547. vmx->nmi_known_unmasked =
  5548. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5549. & GUEST_INTR_STATE_NMI);
  5550. } else if (unlikely(vmx->soft_vnmi_blocked))
  5551. vmx->vnmi_blocked_time +=
  5552. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5553. }
  5554. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  5555. u32 idt_vectoring_info,
  5556. int instr_len_field,
  5557. int error_code_field)
  5558. {
  5559. u8 vector;
  5560. int type;
  5561. bool idtv_info_valid;
  5562. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5563. vmx->vcpu.arch.nmi_injected = false;
  5564. kvm_clear_exception_queue(&vmx->vcpu);
  5565. kvm_clear_interrupt_queue(&vmx->vcpu);
  5566. if (!idtv_info_valid)
  5567. return;
  5568. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  5569. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5570. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5571. switch (type) {
  5572. case INTR_TYPE_NMI_INTR:
  5573. vmx->vcpu.arch.nmi_injected = true;
  5574. /*
  5575. * SDM 3: 27.7.1.2 (September 2008)
  5576. * Clear bit "block by NMI" before VM entry if a NMI
  5577. * delivery faulted.
  5578. */
  5579. vmx_set_nmi_mask(&vmx->vcpu, false);
  5580. break;
  5581. case INTR_TYPE_SOFT_EXCEPTION:
  5582. vmx->vcpu.arch.event_exit_inst_len =
  5583. vmcs_read32(instr_len_field);
  5584. /* fall through */
  5585. case INTR_TYPE_HARD_EXCEPTION:
  5586. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5587. u32 err = vmcs_read32(error_code_field);
  5588. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  5589. } else
  5590. kvm_queue_exception(&vmx->vcpu, vector);
  5591. break;
  5592. case INTR_TYPE_SOFT_INTR:
  5593. vmx->vcpu.arch.event_exit_inst_len =
  5594. vmcs_read32(instr_len_field);
  5595. /* fall through */
  5596. case INTR_TYPE_EXT_INTR:
  5597. kvm_queue_interrupt(&vmx->vcpu, vector,
  5598. type == INTR_TYPE_SOFT_INTR);
  5599. break;
  5600. default:
  5601. break;
  5602. }
  5603. }
  5604. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5605. {
  5606. if (is_guest_mode(&vmx->vcpu))
  5607. return;
  5608. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  5609. VM_EXIT_INSTRUCTION_LEN,
  5610. IDT_VECTORING_ERROR_CODE);
  5611. }
  5612. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5613. {
  5614. if (is_guest_mode(vcpu))
  5615. return;
  5616. __vmx_complete_interrupts(to_vmx(vcpu),
  5617. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5618. VM_ENTRY_INSTRUCTION_LEN,
  5619. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5620. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5621. }
  5622. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  5623. {
  5624. int i, nr_msrs;
  5625. struct perf_guest_switch_msr *msrs;
  5626. msrs = perf_guest_get_msrs(&nr_msrs);
  5627. if (!msrs)
  5628. return;
  5629. for (i = 0; i < nr_msrs; i++)
  5630. if (msrs[i].host == msrs[i].guest)
  5631. clear_atomic_switch_msr(vmx, msrs[i].msr);
  5632. else
  5633. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  5634. msrs[i].host);
  5635. }
  5636. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5637. {
  5638. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5639. unsigned long debugctlmsr;
  5640. if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
  5641. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5642. if (vmcs12->idt_vectoring_info_field &
  5643. VECTORING_INFO_VALID_MASK) {
  5644. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5645. vmcs12->idt_vectoring_info_field);
  5646. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5647. vmcs12->vm_exit_instruction_len);
  5648. if (vmcs12->idt_vectoring_info_field &
  5649. VECTORING_INFO_DELIVER_CODE_MASK)
  5650. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5651. vmcs12->idt_vectoring_error_code);
  5652. }
  5653. }
  5654. /* Record the guest's net vcpu time for enforced NMI injections. */
  5655. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5656. vmx->entry_time = ktime_get();
  5657. /* Don't enter VMX if guest state is invalid, let the exit handler
  5658. start emulation until we arrive back to a valid state */
  5659. if (vmx->emulation_required)
  5660. return;
  5661. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5662. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5663. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5664. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5665. /* When single-stepping over STI and MOV SS, we must clear the
  5666. * corresponding interruptibility bits in the guest state. Otherwise
  5667. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5668. * exceptions being set, but that's not correct for the guest debugging
  5669. * case. */
  5670. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5671. vmx_set_interrupt_shadow(vcpu, 0);
  5672. atomic_switch_perf_msrs(vmx);
  5673. debugctlmsr = get_debugctlmsr();
  5674. vmx->__launched = vmx->loaded_vmcs->launched;
  5675. asm(
  5676. /* Store host registers */
  5677. "push %%" _ASM_DX "; push %%" _ASM_BP ";"
  5678. "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
  5679. "push %%" _ASM_CX " \n\t"
  5680. "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  5681. "je 1f \n\t"
  5682. "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  5683. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5684. "1: \n\t"
  5685. /* Reload cr2 if changed */
  5686. "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
  5687. "mov %%cr2, %%" _ASM_DX " \n\t"
  5688. "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
  5689. "je 2f \n\t"
  5690. "mov %%" _ASM_AX", %%cr2 \n\t"
  5691. "2: \n\t"
  5692. /* Check if vmlaunch of vmresume is needed */
  5693. "cmpl $0, %c[launched](%0) \n\t"
  5694. /* Load guest registers. Don't clobber flags. */
  5695. "mov %c[rax](%0), %%" _ASM_AX " \n\t"
  5696. "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
  5697. "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
  5698. "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
  5699. "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
  5700. "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
  5701. #ifdef CONFIG_X86_64
  5702. "mov %c[r8](%0), %%r8 \n\t"
  5703. "mov %c[r9](%0), %%r9 \n\t"
  5704. "mov %c[r10](%0), %%r10 \n\t"
  5705. "mov %c[r11](%0), %%r11 \n\t"
  5706. "mov %c[r12](%0), %%r12 \n\t"
  5707. "mov %c[r13](%0), %%r13 \n\t"
  5708. "mov %c[r14](%0), %%r14 \n\t"
  5709. "mov %c[r15](%0), %%r15 \n\t"
  5710. #endif
  5711. "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
  5712. /* Enter guest mode */
  5713. "jne 1f \n\t"
  5714. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5715. "jmp 2f \n\t"
  5716. "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5717. "2: "
  5718. /* Save guest registers, load host registers, keep flags */
  5719. "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
  5720. "pop %0 \n\t"
  5721. "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
  5722. "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
  5723. __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
  5724. "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
  5725. "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
  5726. "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
  5727. "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
  5728. #ifdef CONFIG_X86_64
  5729. "mov %%r8, %c[r8](%0) \n\t"
  5730. "mov %%r9, %c[r9](%0) \n\t"
  5731. "mov %%r10, %c[r10](%0) \n\t"
  5732. "mov %%r11, %c[r11](%0) \n\t"
  5733. "mov %%r12, %c[r12](%0) \n\t"
  5734. "mov %%r13, %c[r13](%0) \n\t"
  5735. "mov %%r14, %c[r14](%0) \n\t"
  5736. "mov %%r15, %c[r15](%0) \n\t"
  5737. #endif
  5738. "mov %%cr2, %%" _ASM_AX " \n\t"
  5739. "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
  5740. "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
  5741. "setbe %c[fail](%0) \n\t"
  5742. ".pushsection .rodata \n\t"
  5743. ".global vmx_return \n\t"
  5744. "vmx_return: " _ASM_PTR " 2b \n\t"
  5745. ".popsection"
  5746. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5747. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5748. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5749. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5750. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5751. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5752. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5753. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5754. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5755. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5756. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5757. #ifdef CONFIG_X86_64
  5758. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5759. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5760. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5761. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5762. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5763. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5764. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5765. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5766. #endif
  5767. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5768. [wordsize]"i"(sizeof(ulong))
  5769. : "cc", "memory"
  5770. #ifdef CONFIG_X86_64
  5771. , "rax", "rbx", "rdi", "rsi"
  5772. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5773. #else
  5774. , "eax", "ebx", "edi", "esi"
  5775. #endif
  5776. );
  5777. /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
  5778. if (debugctlmsr)
  5779. update_debugctlmsr(debugctlmsr);
  5780. #ifndef CONFIG_X86_64
  5781. /*
  5782. * The sysexit path does not restore ds/es, so we must set them to
  5783. * a reasonable value ourselves.
  5784. *
  5785. * We can't defer this to vmx_load_host_state() since that function
  5786. * may be executed in interrupt context, which saves and restore segments
  5787. * around it, nullifying its effect.
  5788. */
  5789. loadsegment(ds, __USER_DS);
  5790. loadsegment(es, __USER_DS);
  5791. #endif
  5792. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5793. | (1 << VCPU_EXREG_RFLAGS)
  5794. | (1 << VCPU_EXREG_CPL)
  5795. | (1 << VCPU_EXREG_PDPTR)
  5796. | (1 << VCPU_EXREG_SEGMENTS)
  5797. | (1 << VCPU_EXREG_CR3));
  5798. vcpu->arch.regs_dirty = 0;
  5799. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5800. if (is_guest_mode(vcpu)) {
  5801. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5802. vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
  5803. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  5804. vmcs12->idt_vectoring_error_code =
  5805. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5806. vmcs12->vm_exit_instruction_len =
  5807. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5808. }
  5809. }
  5810. vmx->loaded_vmcs->launched = 1;
  5811. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5812. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  5813. vmx_complete_atomic_exit(vmx);
  5814. vmx_recover_nmi_blocking(vmx);
  5815. vmx_complete_interrupts(vmx);
  5816. }
  5817. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5818. {
  5819. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5820. free_vpid(vmx);
  5821. free_nested(vmx);
  5822. free_loaded_vmcs(vmx->loaded_vmcs);
  5823. kfree(vmx->guest_msrs);
  5824. kvm_vcpu_uninit(vcpu);
  5825. kmem_cache_free(kvm_vcpu_cache, vmx);
  5826. }
  5827. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5828. {
  5829. int err;
  5830. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5831. int cpu;
  5832. if (!vmx)
  5833. return ERR_PTR(-ENOMEM);
  5834. allocate_vpid(vmx);
  5835. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5836. if (err)
  5837. goto free_vcpu;
  5838. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5839. err = -ENOMEM;
  5840. if (!vmx->guest_msrs) {
  5841. goto uninit_vcpu;
  5842. }
  5843. vmx->loaded_vmcs = &vmx->vmcs01;
  5844. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5845. if (!vmx->loaded_vmcs->vmcs)
  5846. goto free_msrs;
  5847. if (!vmm_exclusive)
  5848. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5849. loaded_vmcs_init(vmx->loaded_vmcs);
  5850. if (!vmm_exclusive)
  5851. kvm_cpu_vmxoff();
  5852. cpu = get_cpu();
  5853. vmx_vcpu_load(&vmx->vcpu, cpu);
  5854. vmx->vcpu.cpu = cpu;
  5855. err = vmx_vcpu_setup(vmx);
  5856. vmx_vcpu_put(&vmx->vcpu);
  5857. put_cpu();
  5858. if (err)
  5859. goto free_vmcs;
  5860. if (vm_need_virtualize_apic_accesses(kvm))
  5861. err = alloc_apic_access_page(kvm);
  5862. if (err)
  5863. goto free_vmcs;
  5864. if (enable_ept) {
  5865. if (!kvm->arch.ept_identity_map_addr)
  5866. kvm->arch.ept_identity_map_addr =
  5867. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  5868. err = -ENOMEM;
  5869. if (alloc_identity_pagetable(kvm) != 0)
  5870. goto free_vmcs;
  5871. if (!init_rmode_identity_map(kvm))
  5872. goto free_vmcs;
  5873. }
  5874. vmx->nested.current_vmptr = -1ull;
  5875. vmx->nested.current_vmcs12 = NULL;
  5876. return &vmx->vcpu;
  5877. free_vmcs:
  5878. free_loaded_vmcs(vmx->loaded_vmcs);
  5879. free_msrs:
  5880. kfree(vmx->guest_msrs);
  5881. uninit_vcpu:
  5882. kvm_vcpu_uninit(&vmx->vcpu);
  5883. free_vcpu:
  5884. free_vpid(vmx);
  5885. kmem_cache_free(kvm_vcpu_cache, vmx);
  5886. return ERR_PTR(err);
  5887. }
  5888. static void __init vmx_check_processor_compat(void *rtn)
  5889. {
  5890. struct vmcs_config vmcs_conf;
  5891. *(int *)rtn = 0;
  5892. if (setup_vmcs_config(&vmcs_conf) < 0)
  5893. *(int *)rtn = -EIO;
  5894. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  5895. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  5896. smp_processor_id());
  5897. *(int *)rtn = -EIO;
  5898. }
  5899. }
  5900. static int get_ept_level(void)
  5901. {
  5902. return VMX_EPT_DEFAULT_GAW + 1;
  5903. }
  5904. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  5905. {
  5906. u64 ret;
  5907. /* For VT-d and EPT combination
  5908. * 1. MMIO: always map as UC
  5909. * 2. EPT with VT-d:
  5910. * a. VT-d without snooping control feature: can't guarantee the
  5911. * result, try to trust guest.
  5912. * b. VT-d with snooping control feature: snooping control feature of
  5913. * VT-d engine can guarantee the cache correctness. Just set it
  5914. * to WB to keep consistent with host. So the same as item 3.
  5915. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5916. * consistent with host MTRR
  5917. */
  5918. if (is_mmio)
  5919. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5920. else if (vcpu->kvm->arch.iommu_domain &&
  5921. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5922. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5923. VMX_EPT_MT_EPTE_SHIFT;
  5924. else
  5925. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5926. | VMX_EPT_IPAT_BIT;
  5927. return ret;
  5928. }
  5929. static int vmx_get_lpage_level(void)
  5930. {
  5931. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5932. return PT_DIRECTORY_LEVEL;
  5933. else
  5934. /* For shadow and EPT supported 1GB page */
  5935. return PT_PDPE_LEVEL;
  5936. }
  5937. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5938. {
  5939. struct kvm_cpuid_entry2 *best;
  5940. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5941. u32 exec_control;
  5942. vmx->rdtscp_enabled = false;
  5943. if (vmx_rdtscp_supported()) {
  5944. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5945. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5946. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5947. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5948. vmx->rdtscp_enabled = true;
  5949. else {
  5950. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5951. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5952. exec_control);
  5953. }
  5954. }
  5955. }
  5956. /* Exposing INVPCID only when PCID is exposed */
  5957. best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
  5958. if (vmx_invpcid_supported() &&
  5959. best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
  5960. guest_cpuid_has_pcid(vcpu)) {
  5961. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5962. exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
  5963. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5964. exec_control);
  5965. } else {
  5966. if (cpu_has_secondary_exec_ctrls()) {
  5967. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5968. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  5969. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5970. exec_control);
  5971. }
  5972. if (best)
  5973. best->ebx &= ~bit(X86_FEATURE_INVPCID);
  5974. }
  5975. }
  5976. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  5977. {
  5978. if (func == 1 && nested)
  5979. entry->ecx |= bit(X86_FEATURE_VMX);
  5980. }
  5981. /*
  5982. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  5983. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  5984. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  5985. * guest in a way that will both be appropriate to L1's requests, and our
  5986. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  5987. * function also has additional necessary side-effects, like setting various
  5988. * vcpu->arch fields.
  5989. */
  5990. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5991. {
  5992. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5993. u32 exec_control;
  5994. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  5995. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  5996. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  5997. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  5998. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  5999. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  6000. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  6001. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  6002. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  6003. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  6004. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  6005. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  6006. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  6007. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  6008. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  6009. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  6010. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  6011. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  6012. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  6013. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  6014. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  6015. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  6016. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  6017. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  6018. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  6019. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  6020. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  6021. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  6022. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  6023. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  6024. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  6025. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  6026. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  6027. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  6028. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  6029. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  6030. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  6031. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  6032. vmcs12->vm_entry_intr_info_field);
  6033. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  6034. vmcs12->vm_entry_exception_error_code);
  6035. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  6036. vmcs12->vm_entry_instruction_len);
  6037. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  6038. vmcs12->guest_interruptibility_info);
  6039. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  6040. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  6041. vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
  6042. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  6043. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  6044. vmcs12->guest_pending_dbg_exceptions);
  6045. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  6046. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  6047. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  6048. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  6049. (vmcs_config.pin_based_exec_ctrl |
  6050. vmcs12->pin_based_vm_exec_control));
  6051. /*
  6052. * Whether page-faults are trapped is determined by a combination of
  6053. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  6054. * If enable_ept, L0 doesn't care about page faults and we should
  6055. * set all of these to L1's desires. However, if !enable_ept, L0 does
  6056. * care about (at least some) page faults, and because it is not easy
  6057. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  6058. * to exit on each and every L2 page fault. This is done by setting
  6059. * MASK=MATCH=0 and (see below) EB.PF=1.
  6060. * Note that below we don't need special code to set EB.PF beyond the
  6061. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  6062. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  6063. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  6064. *
  6065. * A problem with this approach (when !enable_ept) is that L1 may be
  6066. * injected with more page faults than it asked for. This could have
  6067. * caused problems, but in practice existing hypervisors don't care.
  6068. * To fix this, we will need to emulate the PFEC checking (on the L1
  6069. * page tables), using walk_addr(), when injecting PFs to L1.
  6070. */
  6071. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  6072. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  6073. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  6074. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  6075. if (cpu_has_secondary_exec_ctrls()) {
  6076. u32 exec_control = vmx_secondary_exec_control(vmx);
  6077. if (!vmx->rdtscp_enabled)
  6078. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  6079. /* Take the following fields only from vmcs12 */
  6080. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6081. if (nested_cpu_has(vmcs12,
  6082. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  6083. exec_control |= vmcs12->secondary_vm_exec_control;
  6084. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  6085. /*
  6086. * Translate L1 physical address to host physical
  6087. * address for vmcs02. Keep the page pinned, so this
  6088. * physical address remains valid. We keep a reference
  6089. * to it so we can release it later.
  6090. */
  6091. if (vmx->nested.apic_access_page) /* shouldn't happen */
  6092. nested_release_page(vmx->nested.apic_access_page);
  6093. vmx->nested.apic_access_page =
  6094. nested_get_page(vcpu, vmcs12->apic_access_addr);
  6095. /*
  6096. * If translation failed, no matter: This feature asks
  6097. * to exit when accessing the given address, and if it
  6098. * can never be accessed, this feature won't do
  6099. * anything anyway.
  6100. */
  6101. if (!vmx->nested.apic_access_page)
  6102. exec_control &=
  6103. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6104. else
  6105. vmcs_write64(APIC_ACCESS_ADDR,
  6106. page_to_phys(vmx->nested.apic_access_page));
  6107. }
  6108. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  6109. }
  6110. /*
  6111. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  6112. * Some constant fields are set here by vmx_set_constant_host_state().
  6113. * Other fields are different per CPU, and will be set later when
  6114. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  6115. */
  6116. vmx_set_constant_host_state();
  6117. /*
  6118. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  6119. * entry, but only if the current (host) sp changed from the value
  6120. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  6121. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  6122. * here we just force the write to happen on entry.
  6123. */
  6124. vmx->host_rsp = 0;
  6125. exec_control = vmx_exec_control(vmx); /* L0's desires */
  6126. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  6127. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  6128. exec_control &= ~CPU_BASED_TPR_SHADOW;
  6129. exec_control |= vmcs12->cpu_based_vm_exec_control;
  6130. /*
  6131. * Merging of IO and MSR bitmaps not currently supported.
  6132. * Rather, exit every time.
  6133. */
  6134. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  6135. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  6136. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  6137. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  6138. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  6139. * bitwise-or of what L1 wants to trap for L2, and what we want to
  6140. * trap. Note that CR0.TS also needs updating - we do this later.
  6141. */
  6142. update_exception_bitmap(vcpu);
  6143. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  6144. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6145. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  6146. vmcs_write32(VM_EXIT_CONTROLS,
  6147. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  6148. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  6149. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  6150. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  6151. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  6152. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  6153. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  6154. set_cr4_guest_host_mask(vmx);
  6155. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  6156. vmcs_write64(TSC_OFFSET,
  6157. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  6158. else
  6159. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6160. if (enable_vpid) {
  6161. /*
  6162. * Trivially support vpid by letting L2s share their parent
  6163. * L1's vpid. TODO: move to a more elaborate solution, giving
  6164. * each L2 its own vpid and exposing the vpid feature to L1.
  6165. */
  6166. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  6167. vmx_flush_tlb(vcpu);
  6168. }
  6169. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  6170. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  6171. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  6172. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6173. else
  6174. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6175. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  6176. vmx_set_efer(vcpu, vcpu->arch.efer);
  6177. /*
  6178. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  6179. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  6180. * The CR0_READ_SHADOW is what L2 should have expected to read given
  6181. * the specifications by L1; It's not enough to take
  6182. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  6183. * have more bits than L1 expected.
  6184. */
  6185. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  6186. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  6187. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  6188. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  6189. /* shadow page tables on either EPT or shadow page tables */
  6190. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  6191. kvm_mmu_reset_context(vcpu);
  6192. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  6193. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  6194. }
  6195. /*
  6196. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  6197. * for running an L2 nested guest.
  6198. */
  6199. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  6200. {
  6201. struct vmcs12 *vmcs12;
  6202. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6203. int cpu;
  6204. struct loaded_vmcs *vmcs02;
  6205. if (!nested_vmx_check_permission(vcpu) ||
  6206. !nested_vmx_check_vmcs12(vcpu))
  6207. return 1;
  6208. skip_emulated_instruction(vcpu);
  6209. vmcs12 = get_vmcs12(vcpu);
  6210. /*
  6211. * The nested entry process starts with enforcing various prerequisites
  6212. * on vmcs12 as required by the Intel SDM, and act appropriately when
  6213. * they fail: As the SDM explains, some conditions should cause the
  6214. * instruction to fail, while others will cause the instruction to seem
  6215. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  6216. * To speed up the normal (success) code path, we should avoid checking
  6217. * for misconfigurations which will anyway be caught by the processor
  6218. * when using the merged vmcs02.
  6219. */
  6220. if (vmcs12->launch_state == launch) {
  6221. nested_vmx_failValid(vcpu,
  6222. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  6223. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  6224. return 1;
  6225. }
  6226. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  6227. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  6228. /*TODO: Also verify bits beyond physical address width are 0*/
  6229. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6230. return 1;
  6231. }
  6232. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  6233. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  6234. /*TODO: Also verify bits beyond physical address width are 0*/
  6235. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6236. return 1;
  6237. }
  6238. if (vmcs12->vm_entry_msr_load_count > 0 ||
  6239. vmcs12->vm_exit_msr_load_count > 0 ||
  6240. vmcs12->vm_exit_msr_store_count > 0) {
  6241. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  6242. __func__);
  6243. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6244. return 1;
  6245. }
  6246. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  6247. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  6248. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  6249. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  6250. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  6251. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  6252. !vmx_control_verify(vmcs12->vm_exit_controls,
  6253. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  6254. !vmx_control_verify(vmcs12->vm_entry_controls,
  6255. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  6256. {
  6257. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6258. return 1;
  6259. }
  6260. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6261. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6262. nested_vmx_failValid(vcpu,
  6263. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  6264. return 1;
  6265. }
  6266. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6267. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6268. nested_vmx_entry_failure(vcpu, vmcs12,
  6269. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6270. return 1;
  6271. }
  6272. if (vmcs12->vmcs_link_pointer != -1ull) {
  6273. nested_vmx_entry_failure(vcpu, vmcs12,
  6274. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  6275. return 1;
  6276. }
  6277. /*
  6278. * We're finally done with prerequisite checking, and can start with
  6279. * the nested entry.
  6280. */
  6281. vmcs02 = nested_get_current_vmcs02(vmx);
  6282. if (!vmcs02)
  6283. return -ENOMEM;
  6284. enter_guest_mode(vcpu);
  6285. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  6286. cpu = get_cpu();
  6287. vmx->loaded_vmcs = vmcs02;
  6288. vmx_vcpu_put(vcpu);
  6289. vmx_vcpu_load(vcpu, cpu);
  6290. vcpu->cpu = cpu;
  6291. put_cpu();
  6292. vmcs12->launch_state = 1;
  6293. prepare_vmcs02(vcpu, vmcs12);
  6294. /*
  6295. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  6296. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  6297. * returned as far as L1 is concerned. It will only return (and set
  6298. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  6299. */
  6300. return 1;
  6301. }
  6302. /*
  6303. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  6304. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  6305. * This function returns the new value we should put in vmcs12.guest_cr0.
  6306. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  6307. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  6308. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  6309. * didn't trap the bit, because if L1 did, so would L0).
  6310. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  6311. * been modified by L2, and L1 knows it. So just leave the old value of
  6312. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  6313. * isn't relevant, because if L0 traps this bit it can set it to anything.
  6314. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  6315. * changed these bits, and therefore they need to be updated, but L0
  6316. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  6317. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  6318. */
  6319. static inline unsigned long
  6320. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6321. {
  6322. return
  6323. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  6324. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  6325. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  6326. vcpu->arch.cr0_guest_owned_bits));
  6327. }
  6328. static inline unsigned long
  6329. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6330. {
  6331. return
  6332. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  6333. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  6334. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  6335. vcpu->arch.cr4_guest_owned_bits));
  6336. }
  6337. /*
  6338. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  6339. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  6340. * and this function updates it to reflect the changes to the guest state while
  6341. * L2 was running (and perhaps made some exits which were handled directly by L0
  6342. * without going back to L1), and to reflect the exit reason.
  6343. * Note that we do not have to copy here all VMCS fields, just those that
  6344. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  6345. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  6346. * which already writes to vmcs12 directly.
  6347. */
  6348. void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6349. {
  6350. /* update guest state fields: */
  6351. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  6352. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  6353. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  6354. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  6355. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  6356. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  6357. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  6358. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  6359. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  6360. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  6361. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  6362. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  6363. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  6364. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  6365. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  6366. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  6367. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  6368. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  6369. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  6370. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  6371. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  6372. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  6373. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  6374. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  6375. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  6376. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  6377. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  6378. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  6379. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  6380. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  6381. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  6382. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  6383. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  6384. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  6385. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  6386. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  6387. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  6388. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  6389. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  6390. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  6391. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  6392. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  6393. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  6394. vmcs12->guest_interruptibility_info =
  6395. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  6396. vmcs12->guest_pending_dbg_exceptions =
  6397. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  6398. /* TODO: These cannot have changed unless we have MSR bitmaps and
  6399. * the relevant bit asks not to trap the change */
  6400. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  6401. if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
  6402. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  6403. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  6404. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  6405. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  6406. /* update exit information fields: */
  6407. vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
  6408. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  6409. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6410. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  6411. vmcs12->idt_vectoring_info_field =
  6412. vmcs_read32(IDT_VECTORING_INFO_FIELD);
  6413. vmcs12->idt_vectoring_error_code =
  6414. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  6415. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  6416. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  6417. /* clear vm-entry fields which are to be cleared on exit */
  6418. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  6419. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  6420. }
  6421. /*
  6422. * A part of what we need to when the nested L2 guest exits and we want to
  6423. * run its L1 parent, is to reset L1's guest state to the host state specified
  6424. * in vmcs12.
  6425. * This function is to be called not only on normal nested exit, but also on
  6426. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  6427. * Failures During or After Loading Guest State").
  6428. * This function should be called when the active VMCS is L1's (vmcs01).
  6429. */
  6430. void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6431. {
  6432. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  6433. vcpu->arch.efer = vmcs12->host_ia32_efer;
  6434. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  6435. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6436. else
  6437. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6438. vmx_set_efer(vcpu, vcpu->arch.efer);
  6439. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  6440. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  6441. /*
  6442. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  6443. * actually changed, because it depends on the current state of
  6444. * fpu_active (which may have changed).
  6445. * Note that vmx_set_cr0 refers to efer set above.
  6446. */
  6447. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  6448. /*
  6449. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  6450. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  6451. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  6452. */
  6453. update_exception_bitmap(vcpu);
  6454. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  6455. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6456. /*
  6457. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  6458. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  6459. */
  6460. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  6461. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  6462. /* shadow page tables on either EPT or shadow page tables */
  6463. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  6464. kvm_mmu_reset_context(vcpu);
  6465. if (enable_vpid) {
  6466. /*
  6467. * Trivially support vpid by letting L2s share their parent
  6468. * L1's vpid. TODO: move to a more elaborate solution, giving
  6469. * each L2 its own vpid and exposing the vpid feature to L1.
  6470. */
  6471. vmx_flush_tlb(vcpu);
  6472. }
  6473. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6474. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6475. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6476. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6477. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6478. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6479. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6480. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6481. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6482. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6483. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6484. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6485. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6486. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6487. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6488. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6489. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6490. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6491. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6492. vmcs12->host_ia32_perf_global_ctrl);
  6493. }
  6494. /*
  6495. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6496. * and modify vmcs12 to make it see what it would expect to see there if
  6497. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6498. */
  6499. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6500. {
  6501. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6502. int cpu;
  6503. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6504. leave_guest_mode(vcpu);
  6505. prepare_vmcs12(vcpu, vmcs12);
  6506. cpu = get_cpu();
  6507. vmx->loaded_vmcs = &vmx->vmcs01;
  6508. vmx_vcpu_put(vcpu);
  6509. vmx_vcpu_load(vcpu, cpu);
  6510. vcpu->cpu = cpu;
  6511. put_cpu();
  6512. /* if no vmcs02 cache requested, remove the one we used */
  6513. if (VMCS02_POOL_SIZE == 0)
  6514. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6515. load_vmcs12_host_state(vcpu, vmcs12);
  6516. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  6517. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6518. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6519. vmx->host_rsp = 0;
  6520. /* Unpin physical memory we referred to in vmcs02 */
  6521. if (vmx->nested.apic_access_page) {
  6522. nested_release_page(vmx->nested.apic_access_page);
  6523. vmx->nested.apic_access_page = 0;
  6524. }
  6525. /*
  6526. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6527. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6528. * success or failure flag accordingly.
  6529. */
  6530. if (unlikely(vmx->fail)) {
  6531. vmx->fail = 0;
  6532. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6533. } else
  6534. nested_vmx_succeed(vcpu);
  6535. }
  6536. /*
  6537. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6538. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6539. * lists the acceptable exit-reason and exit-qualification parameters).
  6540. * It should only be called before L2 actually succeeded to run, and when
  6541. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6542. */
  6543. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6544. struct vmcs12 *vmcs12,
  6545. u32 reason, unsigned long qualification)
  6546. {
  6547. load_vmcs12_host_state(vcpu, vmcs12);
  6548. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6549. vmcs12->exit_qualification = qualification;
  6550. nested_vmx_succeed(vcpu);
  6551. }
  6552. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6553. struct x86_instruction_info *info,
  6554. enum x86_intercept_stage stage)
  6555. {
  6556. return X86EMUL_CONTINUE;
  6557. }
  6558. static struct kvm_x86_ops vmx_x86_ops = {
  6559. .cpu_has_kvm_support = cpu_has_kvm_support,
  6560. .disabled_by_bios = vmx_disabled_by_bios,
  6561. .hardware_setup = hardware_setup,
  6562. .hardware_unsetup = hardware_unsetup,
  6563. .check_processor_compatibility = vmx_check_processor_compat,
  6564. .hardware_enable = hardware_enable,
  6565. .hardware_disable = hardware_disable,
  6566. .cpu_has_accelerated_tpr = report_flexpriority,
  6567. .vcpu_create = vmx_create_vcpu,
  6568. .vcpu_free = vmx_free_vcpu,
  6569. .vcpu_reset = vmx_vcpu_reset,
  6570. .prepare_guest_switch = vmx_save_host_state,
  6571. .vcpu_load = vmx_vcpu_load,
  6572. .vcpu_put = vmx_vcpu_put,
  6573. .update_db_bp_intercept = update_exception_bitmap,
  6574. .get_msr = vmx_get_msr,
  6575. .set_msr = vmx_set_msr,
  6576. .get_segment_base = vmx_get_segment_base,
  6577. .get_segment = vmx_get_segment,
  6578. .set_segment = vmx_set_segment,
  6579. .get_cpl = vmx_get_cpl,
  6580. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6581. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6582. .decache_cr3 = vmx_decache_cr3,
  6583. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6584. .set_cr0 = vmx_set_cr0,
  6585. .set_cr3 = vmx_set_cr3,
  6586. .set_cr4 = vmx_set_cr4,
  6587. .set_efer = vmx_set_efer,
  6588. .get_idt = vmx_get_idt,
  6589. .set_idt = vmx_set_idt,
  6590. .get_gdt = vmx_get_gdt,
  6591. .set_gdt = vmx_set_gdt,
  6592. .set_dr7 = vmx_set_dr7,
  6593. .cache_reg = vmx_cache_reg,
  6594. .get_rflags = vmx_get_rflags,
  6595. .set_rflags = vmx_set_rflags,
  6596. .fpu_activate = vmx_fpu_activate,
  6597. .fpu_deactivate = vmx_fpu_deactivate,
  6598. .tlb_flush = vmx_flush_tlb,
  6599. .run = vmx_vcpu_run,
  6600. .handle_exit = vmx_handle_exit,
  6601. .skip_emulated_instruction = skip_emulated_instruction,
  6602. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6603. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6604. .patch_hypercall = vmx_patch_hypercall,
  6605. .set_irq = vmx_inject_irq,
  6606. .set_nmi = vmx_inject_nmi,
  6607. .queue_exception = vmx_queue_exception,
  6608. .cancel_injection = vmx_cancel_injection,
  6609. .interrupt_allowed = vmx_interrupt_allowed,
  6610. .nmi_allowed = vmx_nmi_allowed,
  6611. .get_nmi_mask = vmx_get_nmi_mask,
  6612. .set_nmi_mask = vmx_set_nmi_mask,
  6613. .enable_nmi_window = enable_nmi_window,
  6614. .enable_irq_window = enable_irq_window,
  6615. .update_cr8_intercept = update_cr8_intercept,
  6616. .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
  6617. .vm_has_apicv = vmx_vm_has_apicv,
  6618. .load_eoi_exitmap = vmx_load_eoi_exitmap,
  6619. .hwapic_irr_update = vmx_hwapic_irr_update,
  6620. .hwapic_isr_update = vmx_hwapic_isr_update,
  6621. .set_tss_addr = vmx_set_tss_addr,
  6622. .get_tdp_level = get_ept_level,
  6623. .get_mt_mask = vmx_get_mt_mask,
  6624. .get_exit_info = vmx_get_exit_info,
  6625. .get_lpage_level = vmx_get_lpage_level,
  6626. .cpuid_update = vmx_cpuid_update,
  6627. .rdtscp_supported = vmx_rdtscp_supported,
  6628. .invpcid_supported = vmx_invpcid_supported,
  6629. .set_supported_cpuid = vmx_set_supported_cpuid,
  6630. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6631. .set_tsc_khz = vmx_set_tsc_khz,
  6632. .read_tsc_offset = vmx_read_tsc_offset,
  6633. .write_tsc_offset = vmx_write_tsc_offset,
  6634. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6635. .compute_tsc_offset = vmx_compute_tsc_offset,
  6636. .read_l1_tsc = vmx_read_l1_tsc,
  6637. .set_tdp_cr3 = vmx_set_cr3,
  6638. .check_intercept = vmx_check_intercept,
  6639. };
  6640. static int __init vmx_init(void)
  6641. {
  6642. int r, i, msr;
  6643. rdmsrl_safe(MSR_EFER, &host_efer);
  6644. for (i = 0; i < NR_VMX_MSR; ++i)
  6645. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6646. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6647. if (!vmx_io_bitmap_a)
  6648. return -ENOMEM;
  6649. r = -ENOMEM;
  6650. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6651. if (!vmx_io_bitmap_b)
  6652. goto out;
  6653. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6654. if (!vmx_msr_bitmap_legacy)
  6655. goto out1;
  6656. vmx_msr_bitmap_legacy_x2apic =
  6657. (unsigned long *)__get_free_page(GFP_KERNEL);
  6658. if (!vmx_msr_bitmap_legacy_x2apic)
  6659. goto out2;
  6660. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6661. if (!vmx_msr_bitmap_longmode)
  6662. goto out3;
  6663. vmx_msr_bitmap_longmode_x2apic =
  6664. (unsigned long *)__get_free_page(GFP_KERNEL);
  6665. if (!vmx_msr_bitmap_longmode_x2apic)
  6666. goto out4;
  6667. /*
  6668. * Allow direct access to the PC debug port (it is often used for I/O
  6669. * delays, but the vmexits simply slow things down).
  6670. */
  6671. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6672. clear_bit(0x80, vmx_io_bitmap_a);
  6673. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6674. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6675. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6676. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6677. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6678. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6679. if (r)
  6680. goto out3;
  6681. #ifdef CONFIG_KEXEC
  6682. rcu_assign_pointer(crash_vmclear_loaded_vmcss,
  6683. crash_vmclear_local_loaded_vmcss);
  6684. #endif
  6685. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6686. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6687. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6688. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6689. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6690. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6691. memcpy(vmx_msr_bitmap_legacy_x2apic,
  6692. vmx_msr_bitmap_legacy, PAGE_SIZE);
  6693. memcpy(vmx_msr_bitmap_longmode_x2apic,
  6694. vmx_msr_bitmap_longmode, PAGE_SIZE);
  6695. if (enable_apicv_reg_vid) {
  6696. for (msr = 0x800; msr <= 0x8ff; msr++)
  6697. vmx_disable_intercept_msr_read_x2apic(msr);
  6698. /* According SDM, in x2apic mode, the whole id reg is used.
  6699. * But in KVM, it only use the highest eight bits. Need to
  6700. * intercept it */
  6701. vmx_enable_intercept_msr_read_x2apic(0x802);
  6702. /* TMCCT */
  6703. vmx_enable_intercept_msr_read_x2apic(0x839);
  6704. /* TPR */
  6705. vmx_disable_intercept_msr_write_x2apic(0x808);
  6706. /* EOI */
  6707. vmx_disable_intercept_msr_write_x2apic(0x80b);
  6708. /* SELF-IPI */
  6709. vmx_disable_intercept_msr_write_x2apic(0x83f);
  6710. }
  6711. if (enable_ept) {
  6712. kvm_mmu_set_mask_ptes(0ull,
  6713. (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
  6714. (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
  6715. 0ull, VMX_EPT_EXECUTABLE_MASK);
  6716. ept_set_mmio_spte_mask();
  6717. kvm_enable_tdp();
  6718. } else
  6719. kvm_disable_tdp();
  6720. return 0;
  6721. out4:
  6722. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6723. out3:
  6724. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  6725. out2:
  6726. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6727. out1:
  6728. free_page((unsigned long)vmx_io_bitmap_b);
  6729. out:
  6730. free_page((unsigned long)vmx_io_bitmap_a);
  6731. return r;
  6732. }
  6733. static void __exit vmx_exit(void)
  6734. {
  6735. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  6736. free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
  6737. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6738. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6739. free_page((unsigned long)vmx_io_bitmap_b);
  6740. free_page((unsigned long)vmx_io_bitmap_a);
  6741. #ifdef CONFIG_KEXEC
  6742. rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
  6743. synchronize_rcu();
  6744. #endif
  6745. kvm_exit();
  6746. }
  6747. module_init(vmx_init)
  6748. module_exit(vmx_exit)