paging_tmpl.h 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. /*
  21. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  22. * so the code in this file is compiled twice, once per pte size.
  23. */
  24. #if PTTYPE == 64
  25. #define pt_element_t u64
  26. #define guest_walker guest_walker64
  27. #define FNAME(name) paging##64_##name
  28. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  29. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  30. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  31. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define FNAME(name) paging##32_##name
  44. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  45. #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  46. #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  47. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  48. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  49. #define PT_MAX_FULL_LEVELS 2
  50. #define CMPXCHG cmpxchg
  51. #else
  52. #error Invalid PTTYPE value
  53. #endif
  54. #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  55. #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  56. /*
  57. * The guest_walker structure emulates the behavior of the hardware page
  58. * table walker.
  59. */
  60. struct guest_walker {
  61. int level;
  62. unsigned max_level;
  63. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  64. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  65. pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  66. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  67. pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
  68. unsigned pt_access;
  69. unsigned pte_access;
  70. gfn_t gfn;
  71. struct x86_exception fault;
  72. };
  73. static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
  74. {
  75. return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
  76. }
  77. static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  78. pt_element_t __user *ptep_user, unsigned index,
  79. pt_element_t orig_pte, pt_element_t new_pte)
  80. {
  81. int npages;
  82. pt_element_t ret;
  83. pt_element_t *table;
  84. struct page *page;
  85. npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
  86. /* Check if the user is doing something meaningless. */
  87. if (unlikely(npages != 1))
  88. return -EFAULT;
  89. table = kmap_atomic(page);
  90. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  91. kunmap_atomic(table);
  92. kvm_release_page_dirty(page);
  93. return (ret != orig_pte);
  94. }
  95. static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
  96. struct kvm_mmu *mmu,
  97. struct guest_walker *walker,
  98. int write_fault)
  99. {
  100. unsigned level, index;
  101. pt_element_t pte, orig_pte;
  102. pt_element_t __user *ptep_user;
  103. gfn_t table_gfn;
  104. int ret;
  105. for (level = walker->max_level; level >= walker->level; --level) {
  106. pte = orig_pte = walker->ptes[level - 1];
  107. table_gfn = walker->table_gfn[level - 1];
  108. ptep_user = walker->ptep_user[level - 1];
  109. index = offset_in_page(ptep_user) / sizeof(pt_element_t);
  110. if (!(pte & PT_ACCESSED_MASK)) {
  111. trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
  112. pte |= PT_ACCESSED_MASK;
  113. }
  114. if (level == walker->level && write_fault && !is_dirty_gpte(pte)) {
  115. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  116. pte |= PT_DIRTY_MASK;
  117. }
  118. if (pte == orig_pte)
  119. continue;
  120. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
  121. if (ret)
  122. return ret;
  123. mark_page_dirty(vcpu->kvm, table_gfn);
  124. walker->ptes[level] = pte;
  125. }
  126. return 0;
  127. }
  128. /*
  129. * Fetch a guest pte for a guest virtual address
  130. */
  131. static int FNAME(walk_addr_generic)(struct guest_walker *walker,
  132. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  133. gva_t addr, u32 access)
  134. {
  135. int ret;
  136. pt_element_t pte;
  137. pt_element_t __user *uninitialized_var(ptep_user);
  138. gfn_t table_gfn;
  139. unsigned index, pt_access, pte_access, accessed_dirty;
  140. gpa_t pte_gpa;
  141. int offset;
  142. const int write_fault = access & PFERR_WRITE_MASK;
  143. const int user_fault = access & PFERR_USER_MASK;
  144. const int fetch_fault = access & PFERR_FETCH_MASK;
  145. u16 errcode = 0;
  146. gpa_t real_gpa;
  147. gfn_t gfn;
  148. trace_kvm_mmu_pagetable_walk(addr, access);
  149. retry_walk:
  150. walker->level = mmu->root_level;
  151. pte = mmu->get_cr3(vcpu);
  152. #if PTTYPE == 64
  153. if (walker->level == PT32E_ROOT_LEVEL) {
  154. pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
  155. trace_kvm_mmu_paging_element(pte, walker->level);
  156. if (!is_present_gpte(pte))
  157. goto error;
  158. --walker->level;
  159. }
  160. #endif
  161. walker->max_level = walker->level;
  162. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  163. (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
  164. accessed_dirty = PT_ACCESSED_MASK;
  165. pt_access = pte_access = ACC_ALL;
  166. ++walker->level;
  167. do {
  168. gfn_t real_gfn;
  169. unsigned long host_addr;
  170. pt_access &= pte_access;
  171. --walker->level;
  172. index = PT_INDEX(addr, walker->level);
  173. table_gfn = gpte_to_gfn(pte);
  174. offset = index * sizeof(pt_element_t);
  175. pte_gpa = gfn_to_gpa(table_gfn) + offset;
  176. walker->table_gfn[walker->level - 1] = table_gfn;
  177. walker->pte_gpa[walker->level - 1] = pte_gpa;
  178. real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
  179. PFERR_USER_MASK|PFERR_WRITE_MASK);
  180. if (unlikely(real_gfn == UNMAPPED_GVA))
  181. goto error;
  182. real_gfn = gpa_to_gfn(real_gfn);
  183. host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
  184. if (unlikely(kvm_is_error_hva(host_addr)))
  185. goto error;
  186. ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
  187. if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
  188. goto error;
  189. walker->ptep_user[walker->level - 1] = ptep_user;
  190. trace_kvm_mmu_paging_element(pte, walker->level);
  191. if (unlikely(!is_present_gpte(pte)))
  192. goto error;
  193. if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
  194. walker->level))) {
  195. errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
  196. goto error;
  197. }
  198. accessed_dirty &= pte;
  199. pte_access = pt_access & gpte_access(vcpu, pte);
  200. walker->ptes[walker->level - 1] = pte;
  201. } while (!is_last_gpte(mmu, walker->level, pte));
  202. if (unlikely(permission_fault(mmu, pte_access, access))) {
  203. errcode |= PFERR_PRESENT_MASK;
  204. goto error;
  205. }
  206. gfn = gpte_to_gfn_lvl(pte, walker->level);
  207. gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
  208. if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
  209. gfn += pse36_gfn_delta(pte);
  210. real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access);
  211. if (real_gpa == UNMAPPED_GVA)
  212. return 0;
  213. walker->gfn = real_gpa >> PAGE_SHIFT;
  214. if (!write_fault)
  215. protect_clean_gpte(&pte_access, pte);
  216. else
  217. /*
  218. * On a write fault, fold the dirty bit into accessed_dirty by
  219. * shifting it one place right.
  220. */
  221. accessed_dirty &= pte >> (PT_DIRTY_SHIFT - PT_ACCESSED_SHIFT);
  222. if (unlikely(!accessed_dirty)) {
  223. ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
  224. if (unlikely(ret < 0))
  225. goto error;
  226. else if (ret)
  227. goto retry_walk;
  228. }
  229. walker->pt_access = pt_access;
  230. walker->pte_access = pte_access;
  231. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  232. __func__, (u64)pte, pte_access, pt_access);
  233. return 1;
  234. error:
  235. errcode |= write_fault | user_fault;
  236. if (fetch_fault && (mmu->nx ||
  237. kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
  238. errcode |= PFERR_FETCH_MASK;
  239. walker->fault.vector = PF_VECTOR;
  240. walker->fault.error_code_valid = true;
  241. walker->fault.error_code = errcode;
  242. walker->fault.address = addr;
  243. walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
  244. trace_kvm_mmu_walker_error(walker->fault.error_code);
  245. return 0;
  246. }
  247. static int FNAME(walk_addr)(struct guest_walker *walker,
  248. struct kvm_vcpu *vcpu, gva_t addr, u32 access)
  249. {
  250. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
  251. access);
  252. }
  253. static int FNAME(walk_addr_nested)(struct guest_walker *walker,
  254. struct kvm_vcpu *vcpu, gva_t addr,
  255. u32 access)
  256. {
  257. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
  258. addr, access);
  259. }
  260. static bool
  261. FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  262. u64 *spte, pt_element_t gpte, bool no_dirty_log)
  263. {
  264. unsigned pte_access;
  265. gfn_t gfn;
  266. pfn_t pfn;
  267. if (prefetch_invalid_gpte(vcpu, sp, spte, gpte))
  268. return false;
  269. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  270. gfn = gpte_to_gfn(gpte);
  271. pte_access = sp->role.access & gpte_access(vcpu, gpte);
  272. protect_clean_gpte(&pte_access, gpte);
  273. pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
  274. no_dirty_log && (pte_access & ACC_WRITE_MASK));
  275. if (is_error_pfn(pfn))
  276. return false;
  277. /*
  278. * we call mmu_set_spte() with host_writable = true because
  279. * pte_prefetch_gfn_to_pfn always gets a writable pfn.
  280. */
  281. mmu_set_spte(vcpu, spte, pte_access, 0, NULL, PT_PAGE_TABLE_LEVEL,
  282. gfn, pfn, true, true);
  283. return true;
  284. }
  285. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  286. u64 *spte, const void *pte)
  287. {
  288. pt_element_t gpte = *(const pt_element_t *)pte;
  289. FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
  290. }
  291. static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
  292. struct guest_walker *gw, int level)
  293. {
  294. pt_element_t curr_pte;
  295. gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
  296. u64 mask;
  297. int r, index;
  298. if (level == PT_PAGE_TABLE_LEVEL) {
  299. mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
  300. base_gpa = pte_gpa & ~mask;
  301. index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
  302. r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
  303. gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
  304. curr_pte = gw->prefetch_ptes[index];
  305. } else
  306. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
  307. &curr_pte, sizeof(curr_pte));
  308. return r || curr_pte != gw->ptes[level - 1];
  309. }
  310. static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
  311. u64 *sptep)
  312. {
  313. struct kvm_mmu_page *sp;
  314. pt_element_t *gptep = gw->prefetch_ptes;
  315. u64 *spte;
  316. int i;
  317. sp = page_header(__pa(sptep));
  318. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  319. return;
  320. if (sp->role.direct)
  321. return __direct_pte_prefetch(vcpu, sp, sptep);
  322. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  323. spte = sp->spt + i;
  324. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  325. if (spte == sptep)
  326. continue;
  327. if (is_shadow_present_pte(*spte))
  328. continue;
  329. if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
  330. break;
  331. }
  332. }
  333. /*
  334. * Fetch a shadow pte for a specific level in the paging hierarchy.
  335. * If the guest tries to write a write-protected page, we need to
  336. * emulate this operation, return 1 to indicate this case.
  337. */
  338. static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  339. struct guest_walker *gw,
  340. int write_fault, int hlevel,
  341. pfn_t pfn, bool map_writable, bool prefault)
  342. {
  343. struct kvm_mmu_page *sp = NULL;
  344. struct kvm_shadow_walk_iterator it;
  345. unsigned direct_access, access = gw->pt_access;
  346. int top_level, emulate = 0;
  347. direct_access = gw->pte_access;
  348. top_level = vcpu->arch.mmu.root_level;
  349. if (top_level == PT32E_ROOT_LEVEL)
  350. top_level = PT32_ROOT_LEVEL;
  351. /*
  352. * Verify that the top-level gpte is still there. Since the page
  353. * is a root page, it is either write protected (and cannot be
  354. * changed from now on) or it is invalid (in which case, we don't
  355. * really care if it changes underneath us after this point).
  356. */
  357. if (FNAME(gpte_changed)(vcpu, gw, top_level))
  358. goto out_gpte_changed;
  359. for (shadow_walk_init(&it, vcpu, addr);
  360. shadow_walk_okay(&it) && it.level > gw->level;
  361. shadow_walk_next(&it)) {
  362. gfn_t table_gfn;
  363. clear_sp_write_flooding_count(it.sptep);
  364. drop_large_spte(vcpu, it.sptep);
  365. sp = NULL;
  366. if (!is_shadow_present_pte(*it.sptep)) {
  367. table_gfn = gw->table_gfn[it.level - 2];
  368. sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
  369. false, access, it.sptep);
  370. }
  371. /*
  372. * Verify that the gpte in the page we've just write
  373. * protected is still there.
  374. */
  375. if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
  376. goto out_gpte_changed;
  377. if (sp)
  378. link_shadow_page(it.sptep, sp);
  379. }
  380. for (;
  381. shadow_walk_okay(&it) && it.level > hlevel;
  382. shadow_walk_next(&it)) {
  383. gfn_t direct_gfn;
  384. clear_sp_write_flooding_count(it.sptep);
  385. validate_direct_spte(vcpu, it.sptep, direct_access);
  386. drop_large_spte(vcpu, it.sptep);
  387. if (is_shadow_present_pte(*it.sptep))
  388. continue;
  389. direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
  390. sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
  391. true, direct_access, it.sptep);
  392. link_shadow_page(it.sptep, sp);
  393. }
  394. clear_sp_write_flooding_count(it.sptep);
  395. mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, &emulate,
  396. it.level, gw->gfn, pfn, prefault, map_writable);
  397. FNAME(pte_prefetch)(vcpu, gw, it.sptep);
  398. return emulate;
  399. out_gpte_changed:
  400. if (sp)
  401. kvm_mmu_put_page(sp, it.sptep);
  402. kvm_release_pfn_clean(pfn);
  403. return 0;
  404. }
  405. /*
  406. * To see whether the mapped gfn can write its page table in the current
  407. * mapping.
  408. *
  409. * It is the helper function of FNAME(page_fault). When guest uses large page
  410. * size to map the writable gfn which is used as current page table, we should
  411. * force kvm to use small page size to map it because new shadow page will be
  412. * created when kvm establishes shadow page table that stop kvm using large
  413. * page size. Do it early can avoid unnecessary #PF and emulation.
  414. *
  415. * @write_fault_to_shadow_pgtable will return true if the fault gfn is
  416. * currently used as its page table.
  417. *
  418. * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
  419. * since the PDPT is always shadowed, that means, we can not use large page
  420. * size to map the gfn which is used as PDPT.
  421. */
  422. static bool
  423. FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
  424. struct guest_walker *walker, int user_fault,
  425. bool *write_fault_to_shadow_pgtable)
  426. {
  427. int level;
  428. gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
  429. bool self_changed = false;
  430. if (!(walker->pte_access & ACC_WRITE_MASK ||
  431. (!is_write_protection(vcpu) && !user_fault)))
  432. return false;
  433. for (level = walker->level; level <= walker->max_level; level++) {
  434. gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
  435. self_changed |= !(gfn & mask);
  436. *write_fault_to_shadow_pgtable |= !gfn;
  437. }
  438. return self_changed;
  439. }
  440. /*
  441. * Page fault handler. There are several causes for a page fault:
  442. * - there is no shadow pte for the guest pte
  443. * - write access through a shadow pte marked read only so that we can set
  444. * the dirty bit
  445. * - write access to a shadow pte marked read only so we can update the page
  446. * dirty bitmap, when userspace requests it
  447. * - mmio access; in this case we will never install a present shadow pte
  448. * - normal guest page fault due to the guest pte marked not present, not
  449. * writable, or not executable
  450. *
  451. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  452. * a negative value on error.
  453. */
  454. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
  455. bool prefault)
  456. {
  457. int write_fault = error_code & PFERR_WRITE_MASK;
  458. int user_fault = error_code & PFERR_USER_MASK;
  459. struct guest_walker walker;
  460. int r;
  461. pfn_t pfn;
  462. int level = PT_PAGE_TABLE_LEVEL;
  463. int force_pt_level;
  464. unsigned long mmu_seq;
  465. bool map_writable, is_self_change_mapping;
  466. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  467. if (unlikely(error_code & PFERR_RSVD_MASK))
  468. return handle_mmio_page_fault(vcpu, addr, error_code,
  469. mmu_is_nested(vcpu));
  470. r = mmu_topup_memory_caches(vcpu);
  471. if (r)
  472. return r;
  473. /*
  474. * Look up the guest pte for the faulting address.
  475. */
  476. r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
  477. /*
  478. * The page is not mapped by the guest. Let the guest handle it.
  479. */
  480. if (!r) {
  481. pgprintk("%s: guest page fault\n", __func__);
  482. if (!prefault)
  483. inject_page_fault(vcpu, &walker.fault);
  484. return 0;
  485. }
  486. vcpu->arch.write_fault_to_shadow_pgtable = false;
  487. is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
  488. &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
  489. if (walker.level >= PT_DIRECTORY_LEVEL)
  490. force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn)
  491. || is_self_change_mapping;
  492. else
  493. force_pt_level = 1;
  494. if (!force_pt_level) {
  495. level = min(walker.level, mapping_level(vcpu, walker.gfn));
  496. walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
  497. }
  498. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  499. smp_rmb();
  500. if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
  501. &map_writable))
  502. return 0;
  503. if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
  504. walker.gfn, pfn, walker.pte_access, &r))
  505. return r;
  506. /*
  507. * Do not change pte_access if the pfn is a mmio page, otherwise
  508. * we will cache the incorrect access into mmio spte.
  509. */
  510. if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
  511. !is_write_protection(vcpu) && !user_fault &&
  512. !is_noslot_pfn(pfn)) {
  513. walker.pte_access |= ACC_WRITE_MASK;
  514. walker.pte_access &= ~ACC_USER_MASK;
  515. /*
  516. * If we converted a user page to a kernel page,
  517. * so that the kernel can write to it when cr0.wp=0,
  518. * then we should prevent the kernel from executing it
  519. * if SMEP is enabled.
  520. */
  521. if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  522. walker.pte_access &= ~ACC_EXEC_MASK;
  523. }
  524. spin_lock(&vcpu->kvm->mmu_lock);
  525. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  526. goto out_unlock;
  527. kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
  528. kvm_mmu_free_some_pages(vcpu);
  529. if (!force_pt_level)
  530. transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
  531. r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
  532. level, pfn, map_writable, prefault);
  533. ++vcpu->stat.pf_fixed;
  534. kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
  535. spin_unlock(&vcpu->kvm->mmu_lock);
  536. return r;
  537. out_unlock:
  538. spin_unlock(&vcpu->kvm->mmu_lock);
  539. kvm_release_pfn_clean(pfn);
  540. return 0;
  541. }
  542. static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
  543. {
  544. int offset = 0;
  545. WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
  546. if (PTTYPE == 32)
  547. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  548. return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
  549. }
  550. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  551. {
  552. struct kvm_shadow_walk_iterator iterator;
  553. struct kvm_mmu_page *sp;
  554. int level;
  555. u64 *sptep;
  556. vcpu_clear_mmio_info(vcpu, gva);
  557. /*
  558. * No need to check return value here, rmap_can_add() can
  559. * help us to skip pte prefetch later.
  560. */
  561. mmu_topup_memory_caches(vcpu);
  562. spin_lock(&vcpu->kvm->mmu_lock);
  563. for_each_shadow_entry(vcpu, gva, iterator) {
  564. level = iterator.level;
  565. sptep = iterator.sptep;
  566. sp = page_header(__pa(sptep));
  567. if (is_last_spte(*sptep, level)) {
  568. pt_element_t gpte;
  569. gpa_t pte_gpa;
  570. if (!sp->unsync)
  571. break;
  572. pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  573. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  574. if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
  575. kvm_flush_remote_tlbs(vcpu->kvm);
  576. if (!rmap_can_add(vcpu))
  577. break;
  578. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  579. sizeof(pt_element_t)))
  580. break;
  581. FNAME(update_pte)(vcpu, sp, sptep, &gpte);
  582. }
  583. if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
  584. break;
  585. }
  586. spin_unlock(&vcpu->kvm->mmu_lock);
  587. }
  588. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
  589. struct x86_exception *exception)
  590. {
  591. struct guest_walker walker;
  592. gpa_t gpa = UNMAPPED_GVA;
  593. int r;
  594. r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
  595. if (r) {
  596. gpa = gfn_to_gpa(walker.gfn);
  597. gpa |= vaddr & ~PAGE_MASK;
  598. } else if (exception)
  599. *exception = walker.fault;
  600. return gpa;
  601. }
  602. static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
  603. u32 access,
  604. struct x86_exception *exception)
  605. {
  606. struct guest_walker walker;
  607. gpa_t gpa = UNMAPPED_GVA;
  608. int r;
  609. r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
  610. if (r) {
  611. gpa = gfn_to_gpa(walker.gfn);
  612. gpa |= vaddr & ~PAGE_MASK;
  613. } else if (exception)
  614. *exception = walker.fault;
  615. return gpa;
  616. }
  617. /*
  618. * Using the cached information from sp->gfns is safe because:
  619. * - The spte has a reference to the struct page, so the pfn for a given gfn
  620. * can't change unless all sptes pointing to it are nuked first.
  621. *
  622. * Note:
  623. * We should flush all tlbs if spte is dropped even though guest is
  624. * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
  625. * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
  626. * used by guest then tlbs are not flushed, so guest is allowed to access the
  627. * freed pages.
  628. * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
  629. */
  630. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  631. {
  632. int i, nr_present = 0;
  633. bool host_writable;
  634. gpa_t first_pte_gpa;
  635. /* direct kvm_mmu_page can not be unsync. */
  636. BUG_ON(sp->role.direct);
  637. first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  638. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  639. unsigned pte_access;
  640. pt_element_t gpte;
  641. gpa_t pte_gpa;
  642. gfn_t gfn;
  643. if (!sp->spt[i])
  644. continue;
  645. pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
  646. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  647. sizeof(pt_element_t)))
  648. return -EINVAL;
  649. if (prefetch_invalid_gpte(vcpu, sp, &sp->spt[i], gpte)) {
  650. vcpu->kvm->tlbs_dirty++;
  651. continue;
  652. }
  653. gfn = gpte_to_gfn(gpte);
  654. pte_access = sp->role.access;
  655. pte_access &= gpte_access(vcpu, gpte);
  656. protect_clean_gpte(&pte_access, gpte);
  657. if (sync_mmio_spte(&sp->spt[i], gfn, pte_access, &nr_present))
  658. continue;
  659. if (gfn != sp->gfns[i]) {
  660. drop_spte(vcpu->kvm, &sp->spt[i]);
  661. vcpu->kvm->tlbs_dirty++;
  662. continue;
  663. }
  664. nr_present++;
  665. host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
  666. set_spte(vcpu, &sp->spt[i], pte_access,
  667. PT_PAGE_TABLE_LEVEL, gfn,
  668. spte_to_pfn(sp->spt[i]), true, false,
  669. host_writable);
  670. }
  671. return !nr_present;
  672. }
  673. #undef pt_element_t
  674. #undef guest_walker
  675. #undef FNAME
  676. #undef PT_BASE_ADDR_MASK
  677. #undef PT_INDEX
  678. #undef PT_LVL_ADDR_MASK
  679. #undef PT_LVL_OFFSET_MASK
  680. #undef PT_LEVEL_BITS
  681. #undef PT_MAX_FULL_LEVELS
  682. #undef gpte_to_gfn
  683. #undef gpte_to_gfn_lvl
  684. #undef CMPXCHG