spinlock.h 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240
  1. #ifndef _ASM_X86_SPINLOCK_H
  2. #define _ASM_X86_SPINLOCK_H
  3. #include <linux/atomic.h>
  4. #include <asm/page.h>
  5. #include <asm/processor.h>
  6. #include <linux/compiler.h>
  7. #include <asm/paravirt.h>
  8. /*
  9. * Your basic SMP spinlocks, allowing only a single CPU anywhere
  10. *
  11. * Simple spin lock operations. There are two variants, one clears IRQ's
  12. * on the local processor, one does not.
  13. *
  14. * These are fair FIFO ticket locks, which support up to 2^16 CPUs.
  15. *
  16. * (the type definitions are in asm/spinlock_types.h)
  17. */
  18. #ifdef CONFIG_X86_32
  19. # define LOCK_PTR_REG "a"
  20. #else
  21. # define LOCK_PTR_REG "D"
  22. #endif
  23. #if defined(CONFIG_X86_32) && \
  24. (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
  25. /*
  26. * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
  27. * (PPro errata 66, 92)
  28. */
  29. # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
  30. #else
  31. # define UNLOCK_LOCK_PREFIX
  32. #endif
  33. /*
  34. * Ticket locks are conceptually two parts, one indicating the current head of
  35. * the queue, and the other indicating the current tail. The lock is acquired
  36. * by atomically noting the tail and incrementing it by one (thus adding
  37. * ourself to the queue and noting our position), then waiting until the head
  38. * becomes equal to the the initial value of the tail.
  39. *
  40. * We use an xadd covering *both* parts of the lock, to increment the tail and
  41. * also load the position of the head, which takes care of memory ordering
  42. * issues and should be optimal for the uncontended case. Note the tail must be
  43. * in the high part, because a wide xadd increment of the low part would carry
  44. * up and contaminate the high part.
  45. */
  46. static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)
  47. {
  48. register struct __raw_tickets inc = { .tail = 1 };
  49. inc = xadd(&lock->tickets, inc);
  50. for (;;) {
  51. if (inc.head == inc.tail)
  52. break;
  53. cpu_relax();
  54. inc.head = ACCESS_ONCE(lock->tickets.head);
  55. }
  56. barrier(); /* make sure nothing creeps before the lock is taken */
  57. }
  58. static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
  59. {
  60. arch_spinlock_t old, new;
  61. old.tickets = ACCESS_ONCE(lock->tickets);
  62. if (old.tickets.head != old.tickets.tail)
  63. return 0;
  64. new.head_tail = old.head_tail + (1 << TICKET_SHIFT);
  65. /* cmpxchg is a full barrier, so nothing can move before it */
  66. return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
  67. }
  68. static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
  69. {
  70. __add(&lock->tickets.head, 1, UNLOCK_LOCK_PREFIX);
  71. }
  72. static inline int __ticket_spin_is_locked(arch_spinlock_t *lock)
  73. {
  74. struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
  75. return tmp.tail != tmp.head;
  76. }
  77. static inline int __ticket_spin_is_contended(arch_spinlock_t *lock)
  78. {
  79. struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
  80. return (__ticket_t)(tmp.tail - tmp.head) > 1;
  81. }
  82. #ifndef CONFIG_PARAVIRT_SPINLOCKS
  83. static inline int arch_spin_is_locked(arch_spinlock_t *lock)
  84. {
  85. return __ticket_spin_is_locked(lock);
  86. }
  87. static inline int arch_spin_is_contended(arch_spinlock_t *lock)
  88. {
  89. return __ticket_spin_is_contended(lock);
  90. }
  91. #define arch_spin_is_contended arch_spin_is_contended
  92. static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
  93. {
  94. __ticket_spin_lock(lock);
  95. }
  96. static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
  97. {
  98. return __ticket_spin_trylock(lock);
  99. }
  100. static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
  101. {
  102. __ticket_spin_unlock(lock);
  103. }
  104. static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
  105. unsigned long flags)
  106. {
  107. arch_spin_lock(lock);
  108. }
  109. #endif /* CONFIG_PARAVIRT_SPINLOCKS */
  110. static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
  111. {
  112. while (arch_spin_is_locked(lock))
  113. cpu_relax();
  114. }
  115. /*
  116. * Read-write spinlocks, allowing multiple readers
  117. * but only one writer.
  118. *
  119. * NOTE! it is quite common to have readers in interrupts
  120. * but no interrupt writers. For those circumstances we
  121. * can "mix" irq-safe locks - any writer needs to get a
  122. * irq-safe write-lock, but readers can get non-irqsafe
  123. * read-locks.
  124. *
  125. * On x86, we implement read-write locks as a 32-bit counter
  126. * with the high bit (sign) being the "contended" bit.
  127. */
  128. /**
  129. * read_can_lock - would read_trylock() succeed?
  130. * @lock: the rwlock in question.
  131. */
  132. static inline int arch_read_can_lock(arch_rwlock_t *lock)
  133. {
  134. return lock->lock > 0;
  135. }
  136. /**
  137. * write_can_lock - would write_trylock() succeed?
  138. * @lock: the rwlock in question.
  139. */
  140. static inline int arch_write_can_lock(arch_rwlock_t *lock)
  141. {
  142. return lock->write == WRITE_LOCK_CMP;
  143. }
  144. static inline void arch_read_lock(arch_rwlock_t *rw)
  145. {
  146. asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
  147. "jns 1f\n"
  148. "call __read_lock_failed\n\t"
  149. "1:\n"
  150. ::LOCK_PTR_REG (rw) : "memory");
  151. }
  152. static inline void arch_write_lock(arch_rwlock_t *rw)
  153. {
  154. asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
  155. "jz 1f\n"
  156. "call __write_lock_failed\n\t"
  157. "1:\n"
  158. ::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
  159. : "memory");
  160. }
  161. static inline int arch_read_trylock(arch_rwlock_t *lock)
  162. {
  163. READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
  164. if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
  165. return 1;
  166. READ_LOCK_ATOMIC(inc)(count);
  167. return 0;
  168. }
  169. static inline int arch_write_trylock(arch_rwlock_t *lock)
  170. {
  171. atomic_t *count = (atomic_t *)&lock->write;
  172. if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
  173. return 1;
  174. atomic_add(WRITE_LOCK_CMP, count);
  175. return 0;
  176. }
  177. static inline void arch_read_unlock(arch_rwlock_t *rw)
  178. {
  179. asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
  180. :"+m" (rw->lock) : : "memory");
  181. }
  182. static inline void arch_write_unlock(arch_rwlock_t *rw)
  183. {
  184. asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
  185. : "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
  186. }
  187. #define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
  188. #define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
  189. #undef READ_LOCK_SIZE
  190. #undef READ_LOCK_ATOMIC
  191. #undef WRITE_LOCK_ADD
  192. #undef WRITE_LOCK_SUB
  193. #undef WRITE_LOCK_CMP
  194. #define arch_spin_relax(lock) cpu_relax()
  195. #define arch_read_relax(lock) cpu_relax()
  196. #define arch_write_relax(lock) cpu_relax()
  197. /* The {read|write|spin}_lock() on x86 are full memory barriers. */
  198. static inline void smp_mb__after_lock(void) { }
  199. #define ARCH_HAS_SMP_MB_AFTER_LOCK
  200. #endif /* _ASM_X86_SPINLOCK_H */