123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- /*
- * Copyright (C) 1994 Linus Torvalds
- *
- * Pentium III FXSR, SSE support
- * General FPU state handling cleanups
- * Gareth Hughes <gareth@valinux.com>, May 2000
- * x86-64 work by Andi Kleen 2002
- */
- #ifndef _ASM_X86_I387_H
- #define _ASM_X86_I387_H
- #ifndef __ASSEMBLY__
- #include <linux/sched.h>
- #include <linux/hardirq.h>
- struct pt_regs;
- struct user_i387_struct;
- extern int init_fpu(struct task_struct *child);
- extern void fpu_finit(struct fpu *fpu);
- extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
- extern void math_state_restore(void);
- extern bool irq_fpu_usable(void);
- /*
- * Careful: __kernel_fpu_begin/end() must be called with preempt disabled
- * and they don't touch the preempt state on their own.
- * If you enable preemption after __kernel_fpu_begin(), preempt notifier
- * should call the __kernel_fpu_end() to prevent the kernel/user FPU
- * state from getting corrupted. KVM for example uses this model.
- *
- * All other cases use kernel_fpu_begin/end() which disable preemption
- * during kernel FPU usage.
- */
- extern void __kernel_fpu_begin(void);
- extern void __kernel_fpu_end(void);
- static inline void kernel_fpu_begin(void)
- {
- WARN_ON_ONCE(!irq_fpu_usable());
- preempt_disable();
- __kernel_fpu_begin();
- }
- static inline void kernel_fpu_end(void)
- {
- __kernel_fpu_end();
- preempt_enable();
- }
- /*
- * Some instructions like VIA's padlock instructions generate a spurious
- * DNA fault but don't modify SSE registers. And these instructions
- * get used from interrupt context as well. To prevent these kernel instructions
- * in interrupt context interacting wrongly with other user/kernel fpu usage, we
- * should use them only in the context of irq_ts_save/restore()
- */
- static inline int irq_ts_save(void)
- {
- /*
- * If in process context and not atomic, we can take a spurious DNA fault.
- * Otherwise, doing clts() in process context requires disabling preemption
- * or some heavy lifting like kernel_fpu_begin()
- */
- if (!in_atomic())
- return 0;
- if (read_cr0() & X86_CR0_TS) {
- clts();
- return 1;
- }
- return 0;
- }
- static inline void irq_ts_restore(int TS_state)
- {
- if (TS_state)
- stts();
- }
- /*
- * The question "does this thread have fpu access?"
- * is slightly racy, since preemption could come in
- * and revoke it immediately after the test.
- *
- * However, even in that very unlikely scenario,
- * we can just assume we have FPU access - typically
- * to save the FP state - we'll just take a #NM
- * fault and get the FPU access back.
- */
- static inline int user_has_fpu(void)
- {
- return current->thread.fpu.has_fpu;
- }
- extern void unlazy_fpu(struct task_struct *tsk);
- #endif /* __ASSEMBLY__ */
- #endif /* _ASM_X86_I387_H */
|