process.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. /*
  2. * linux/arch/unicore32/kernel/process.c
  3. *
  4. * Code specific to PKUnity SoC and UniCore ISA
  5. *
  6. * Copyright (C) 2001-2010 GUAN Xue-tao
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <stdarg.h>
  13. #include <linux/module.h>
  14. #include <linux/sched.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/stddef.h>
  18. #include <linux/unistd.h>
  19. #include <linux/delay.h>
  20. #include <linux/reboot.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/init.h>
  24. #include <linux/cpu.h>
  25. #include <linux/elfcore.h>
  26. #include <linux/pm.h>
  27. #include <linux/tick.h>
  28. #include <linux/utsname.h>
  29. #include <linux/uaccess.h>
  30. #include <linux/random.h>
  31. #include <linux/gpio.h>
  32. #include <linux/stacktrace.h>
  33. #include <asm/cacheflush.h>
  34. #include <asm/processor.h>
  35. #include <asm/stacktrace.h>
  36. #include "setup.h"
  37. static const char * const processor_modes[] = {
  38. "UK00", "UK01", "UK02", "UK03", "UK04", "UK05", "UK06", "UK07",
  39. "UK08", "UK09", "UK0A", "UK0B", "UK0C", "UK0D", "UK0E", "UK0F",
  40. "USER", "REAL", "INTR", "PRIV", "UK14", "UK15", "UK16", "ABRT",
  41. "UK18", "UK19", "UK1A", "EXTN", "UK1C", "UK1D", "UK1E", "SUSR"
  42. };
  43. void cpu_idle(void)
  44. {
  45. /* endless idle loop with no priority at all */
  46. while (1) {
  47. tick_nohz_idle_enter();
  48. rcu_idle_enter();
  49. while (!need_resched()) {
  50. local_irq_disable();
  51. stop_critical_timings();
  52. cpu_do_idle();
  53. local_irq_enable();
  54. start_critical_timings();
  55. }
  56. rcu_idle_exit();
  57. tick_nohz_idle_exit();
  58. preempt_enable_no_resched();
  59. schedule();
  60. preempt_disable();
  61. }
  62. }
  63. static char reboot_mode = 'h';
  64. int __init reboot_setup(char *str)
  65. {
  66. reboot_mode = str[0];
  67. return 1;
  68. }
  69. __setup("reboot=", reboot_setup);
  70. void machine_halt(void)
  71. {
  72. gpio_set_value(GPO_SOFT_OFF, 0);
  73. }
  74. /*
  75. * Function pointers to optional machine specific functions
  76. */
  77. void (*pm_power_off)(void) = NULL;
  78. void machine_power_off(void)
  79. {
  80. if (pm_power_off)
  81. pm_power_off();
  82. machine_halt();
  83. }
  84. void machine_restart(char *cmd)
  85. {
  86. /* Disable interrupts first */
  87. local_irq_disable();
  88. /*
  89. * Tell the mm system that we are going to reboot -
  90. * we may need it to insert some 1:1 mappings so that
  91. * soft boot works.
  92. */
  93. setup_mm_for_reboot(reboot_mode);
  94. /* Clean and invalidate caches */
  95. flush_cache_all();
  96. /* Turn off caching */
  97. cpu_proc_fin();
  98. /* Push out any further dirty data, and ensure cache is empty */
  99. flush_cache_all();
  100. /*
  101. * Now handle reboot code.
  102. */
  103. if (reboot_mode == 's') {
  104. /* Jump into ROM at address 0xffff0000 */
  105. cpu_reset(VECTORS_BASE);
  106. } else {
  107. writel(0x00002001, PM_PLLSYSCFG); /* cpu clk = 250M */
  108. writel(0x00100800, PM_PLLDDRCFG); /* ddr clk = 44M */
  109. writel(0x00002001, PM_PLLVGACFG); /* vga clk = 250M */
  110. /* Use on-chip reset capability */
  111. /* following instructions must be in one icache line */
  112. __asm__ __volatile__(
  113. " .align 5\n\t"
  114. " stw %1, [%0]\n\t"
  115. "201: ldw r0, [%0]\n\t"
  116. " cmpsub.a r0, #0\n\t"
  117. " bne 201b\n\t"
  118. " stw %3, [%2]\n\t"
  119. " nop; nop; nop\n\t"
  120. /* prefetch 3 instructions at most */
  121. :
  122. : "r" (PM_PMCR),
  123. "r" (PM_PMCR_CFBSYS | PM_PMCR_CFBDDR
  124. | PM_PMCR_CFBVGA),
  125. "r" (RESETC_SWRR),
  126. "r" (RESETC_SWRR_SRB)
  127. : "r0", "memory");
  128. }
  129. /*
  130. * Whoops - the architecture was unable to reboot.
  131. * Tell the user!
  132. */
  133. mdelay(1000);
  134. printk(KERN_EMERG "Reboot failed -- System halted\n");
  135. do { } while (1);
  136. }
  137. void __show_regs(struct pt_regs *regs)
  138. {
  139. unsigned long flags;
  140. char buf[64];
  141. printk(KERN_DEFAULT "CPU: %d %s (%s %.*s)\n",
  142. raw_smp_processor_id(), print_tainted(),
  143. init_utsname()->release,
  144. (int)strcspn(init_utsname()->version, " "),
  145. init_utsname()->version);
  146. print_symbol("PC is at %s\n", instruction_pointer(regs));
  147. print_symbol("LR is at %s\n", regs->UCreg_lr);
  148. printk(KERN_DEFAULT "pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  149. "sp : %08lx ip : %08lx fp : %08lx\n",
  150. regs->UCreg_pc, regs->UCreg_lr, regs->UCreg_asr,
  151. regs->UCreg_sp, regs->UCreg_ip, regs->UCreg_fp);
  152. printk(KERN_DEFAULT "r26: %08lx r25: %08lx r24: %08lx\n",
  153. regs->UCreg_26, regs->UCreg_25,
  154. regs->UCreg_24);
  155. printk(KERN_DEFAULT "r23: %08lx r22: %08lx r21: %08lx r20: %08lx\n",
  156. regs->UCreg_23, regs->UCreg_22,
  157. regs->UCreg_21, regs->UCreg_20);
  158. printk(KERN_DEFAULT "r19: %08lx r18: %08lx r17: %08lx r16: %08lx\n",
  159. regs->UCreg_19, regs->UCreg_18,
  160. regs->UCreg_17, regs->UCreg_16);
  161. printk(KERN_DEFAULT "r15: %08lx r14: %08lx r13: %08lx r12: %08lx\n",
  162. regs->UCreg_15, regs->UCreg_14,
  163. regs->UCreg_13, regs->UCreg_12);
  164. printk(KERN_DEFAULT "r11: %08lx r10: %08lx r9 : %08lx r8 : %08lx\n",
  165. regs->UCreg_11, regs->UCreg_10,
  166. regs->UCreg_09, regs->UCreg_08);
  167. printk(KERN_DEFAULT "r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  168. regs->UCreg_07, regs->UCreg_06,
  169. regs->UCreg_05, regs->UCreg_04);
  170. printk(KERN_DEFAULT "r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  171. regs->UCreg_03, regs->UCreg_02,
  172. regs->UCreg_01, regs->UCreg_00);
  173. flags = regs->UCreg_asr;
  174. buf[0] = flags & PSR_S_BIT ? 'S' : 's';
  175. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  176. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  177. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  178. buf[4] = '\0';
  179. printk(KERN_DEFAULT "Flags: %s INTR o%s REAL o%s Mode %s Segment %s\n",
  180. buf, interrupts_enabled(regs) ? "n" : "ff",
  181. fast_interrupts_enabled(regs) ? "n" : "ff",
  182. processor_modes[processor_mode(regs)],
  183. segment_eq(get_fs(), get_ds()) ? "kernel" : "user");
  184. {
  185. unsigned int ctrl;
  186. buf[0] = '\0';
  187. {
  188. unsigned int transbase;
  189. asm("movc %0, p0.c2, #0\n"
  190. : "=r" (transbase));
  191. snprintf(buf, sizeof(buf), " Table: %08x", transbase);
  192. }
  193. asm("movc %0, p0.c1, #0\n" : "=r" (ctrl));
  194. printk(KERN_DEFAULT "Control: %08x%s\n", ctrl, buf);
  195. }
  196. }
  197. void show_regs(struct pt_regs *regs)
  198. {
  199. printk(KERN_DEFAULT "\n");
  200. printk(KERN_DEFAULT "Pid: %d, comm: %20s\n",
  201. task_pid_nr(current), current->comm);
  202. __show_regs(regs);
  203. __backtrace();
  204. }
  205. /*
  206. * Free current thread data structures etc..
  207. */
  208. void exit_thread(void)
  209. {
  210. }
  211. void flush_thread(void)
  212. {
  213. struct thread_info *thread = current_thread_info();
  214. struct task_struct *tsk = current;
  215. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  216. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  217. #ifdef CONFIG_UNICORE_FPU_F64
  218. memset(&thread->fpstate, 0, sizeof(struct fp_state));
  219. #endif
  220. }
  221. void release_thread(struct task_struct *dead_task)
  222. {
  223. }
  224. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  225. asmlinkage void ret_from_kernel_thread(void) __asm__("ret_from_kernel_thread");
  226. int
  227. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  228. unsigned long stk_sz, struct task_struct *p)
  229. {
  230. struct thread_info *thread = task_thread_info(p);
  231. struct pt_regs *childregs = task_pt_regs(p);
  232. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  233. thread->cpu_context.sp = (unsigned long)childregs;
  234. if (unlikely(p->flags & PF_KTHREAD)) {
  235. thread->cpu_context.pc = (unsigned long)ret_from_kernel_thread;
  236. thread->cpu_context.r4 = stack_start;
  237. thread->cpu_context.r5 = stk_sz;
  238. memset(childregs, 0, sizeof(struct pt_regs));
  239. } else {
  240. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  241. *childregs = *current_pt_regs();
  242. childregs->UCreg_00 = 0;
  243. if (stack_start)
  244. childregs->UCreg_sp = stack_start;
  245. if (clone_flags & CLONE_SETTLS)
  246. childregs->UCreg_16 = childregs->UCreg_03;
  247. }
  248. return 0;
  249. }
  250. /*
  251. * Fill in the task's elfregs structure for a core dump.
  252. */
  253. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  254. {
  255. elf_core_copy_regs(elfregs, task_pt_regs(t));
  256. return 1;
  257. }
  258. /*
  259. * fill in the fpe structure for a core dump...
  260. */
  261. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fp)
  262. {
  263. struct thread_info *thread = current_thread_info();
  264. int used_math = thread->used_cp[1] | thread->used_cp[2];
  265. #ifdef CONFIG_UNICORE_FPU_F64
  266. if (used_math)
  267. memcpy(fp, &thread->fpstate, sizeof(*fp));
  268. #endif
  269. return used_math != 0;
  270. }
  271. EXPORT_SYMBOL(dump_fpu);
  272. unsigned long get_wchan(struct task_struct *p)
  273. {
  274. struct stackframe frame;
  275. int count = 0;
  276. if (!p || p == current || p->state == TASK_RUNNING)
  277. return 0;
  278. frame.fp = thread_saved_fp(p);
  279. frame.sp = thread_saved_sp(p);
  280. frame.lr = 0; /* recovered from the stack */
  281. frame.pc = thread_saved_pc(p);
  282. do {
  283. int ret = unwind_frame(&frame);
  284. if (ret < 0)
  285. return 0;
  286. if (!in_sched_functions(frame.pc))
  287. return frame.pc;
  288. } while ((count++) < 16);
  289. return 0;
  290. }
  291. unsigned long arch_randomize_brk(struct mm_struct *mm)
  292. {
  293. unsigned long range_end = mm->brk + 0x02000000;
  294. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  295. }
  296. /*
  297. * The vectors page is always readable from user space for the
  298. * atomic helpers and the signal restart code. Let's declare a mapping
  299. * for it so it is visible through ptrace and /proc/<pid>/mem.
  300. */
  301. int vectors_user_mapping(void)
  302. {
  303. struct mm_struct *mm = current->mm;
  304. return install_special_mapping(mm, 0xffff0000, PAGE_SIZE,
  305. VM_READ | VM_EXEC |
  306. VM_MAYREAD | VM_MAYEXEC |
  307. VM_DONTEXPAND | VM_DONTDUMP,
  308. NULL);
  309. }
  310. const char *arch_vma_name(struct vm_area_struct *vma)
  311. {
  312. return (vma->vm_start == 0xffff0000) ? "[vectors]" : NULL;
  313. }