hugetlbpage.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408
  1. /*
  2. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation, version 2.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11. * NON INFRINGEMENT. See the GNU General Public License for
  12. * more details.
  13. *
  14. * TILE Huge TLB Page Support for Kernel.
  15. * Taken from i386 hugetlb implementation:
  16. * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  17. */
  18. #include <linux/init.h>
  19. #include <linux/fs.h>
  20. #include <linux/mm.h>
  21. #include <linux/hugetlb.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/slab.h>
  24. #include <linux/err.h>
  25. #include <linux/sysctl.h>
  26. #include <linux/mman.h>
  27. #include <asm/tlb.h>
  28. #include <asm/tlbflush.h>
  29. #include <asm/setup.h>
  30. #ifdef CONFIG_HUGETLB_SUPER_PAGES
  31. /*
  32. * Provide an additional huge page size (in addition to the regular default
  33. * huge page size) if no "hugepagesz" arguments are specified.
  34. * Note that it must be smaller than the default huge page size so
  35. * that it's possible to allocate them on demand from the buddy allocator.
  36. * You can change this to 64K (on a 16K build), 256K, 1M, or 4M,
  37. * or not define it at all.
  38. */
  39. #define ADDITIONAL_HUGE_SIZE (1024 * 1024UL)
  40. /* "Extra" page-size multipliers, one per level of the page table. */
  41. int huge_shift[HUGE_SHIFT_ENTRIES] = {
  42. #ifdef ADDITIONAL_HUGE_SIZE
  43. #define ADDITIONAL_HUGE_SHIFT __builtin_ctzl(ADDITIONAL_HUGE_SIZE / PAGE_SIZE)
  44. [HUGE_SHIFT_PAGE] = ADDITIONAL_HUGE_SHIFT
  45. #endif
  46. };
  47. /*
  48. * This routine is a hybrid of pte_alloc_map() and pte_alloc_kernel().
  49. * It assumes that L2 PTEs are never in HIGHMEM (we don't support that).
  50. * It locks the user pagetable, and bumps up the mm->nr_ptes field,
  51. * but otherwise allocate the page table using the kernel versions.
  52. */
  53. static pte_t *pte_alloc_hugetlb(struct mm_struct *mm, pmd_t *pmd,
  54. unsigned long address)
  55. {
  56. pte_t *new;
  57. if (pmd_none(*pmd)) {
  58. new = pte_alloc_one_kernel(mm, address);
  59. if (!new)
  60. return NULL;
  61. smp_wmb(); /* See comment in __pte_alloc */
  62. spin_lock(&mm->page_table_lock);
  63. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  64. mm->nr_ptes++;
  65. pmd_populate_kernel(mm, pmd, new);
  66. new = NULL;
  67. } else
  68. VM_BUG_ON(pmd_trans_splitting(*pmd));
  69. spin_unlock(&mm->page_table_lock);
  70. if (new)
  71. pte_free_kernel(mm, new);
  72. }
  73. return pte_offset_kernel(pmd, address);
  74. }
  75. #endif
  76. pte_t *huge_pte_alloc(struct mm_struct *mm,
  77. unsigned long addr, unsigned long sz)
  78. {
  79. pgd_t *pgd;
  80. pud_t *pud;
  81. addr &= -sz; /* Mask off any low bits in the address. */
  82. pgd = pgd_offset(mm, addr);
  83. pud = pud_alloc(mm, pgd, addr);
  84. #ifdef CONFIG_HUGETLB_SUPER_PAGES
  85. if (sz >= PGDIR_SIZE) {
  86. BUG_ON(sz != PGDIR_SIZE &&
  87. sz != PGDIR_SIZE << huge_shift[HUGE_SHIFT_PGDIR]);
  88. return (pte_t *)pud;
  89. } else {
  90. pmd_t *pmd = pmd_alloc(mm, pud, addr);
  91. if (sz >= PMD_SIZE) {
  92. BUG_ON(sz != PMD_SIZE &&
  93. sz != (PMD_SIZE << huge_shift[HUGE_SHIFT_PMD]));
  94. return (pte_t *)pmd;
  95. }
  96. else {
  97. if (sz != PAGE_SIZE << huge_shift[HUGE_SHIFT_PAGE])
  98. panic("Unexpected page size %#lx\n", sz);
  99. return pte_alloc_hugetlb(mm, pmd, addr);
  100. }
  101. }
  102. #else
  103. BUG_ON(sz != PMD_SIZE);
  104. return (pte_t *) pmd_alloc(mm, pud, addr);
  105. #endif
  106. }
  107. static pte_t *get_pte(pte_t *base, int index, int level)
  108. {
  109. pte_t *ptep = base + index;
  110. #ifdef CONFIG_HUGETLB_SUPER_PAGES
  111. if (!pte_present(*ptep) && huge_shift[level] != 0) {
  112. unsigned long mask = -1UL << huge_shift[level];
  113. pte_t *super_ptep = base + (index & mask);
  114. pte_t pte = *super_ptep;
  115. if (pte_present(pte) && pte_super(pte))
  116. ptep = super_ptep;
  117. }
  118. #endif
  119. return ptep;
  120. }
  121. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  122. {
  123. pgd_t *pgd;
  124. pud_t *pud;
  125. pmd_t *pmd;
  126. #ifdef CONFIG_HUGETLB_SUPER_PAGES
  127. pte_t *pte;
  128. #endif
  129. /* Get the top-level page table entry. */
  130. pgd = (pgd_t *)get_pte((pte_t *)mm->pgd, pgd_index(addr), 0);
  131. if (!pgd_present(*pgd))
  132. return NULL;
  133. /* We don't have four levels. */
  134. pud = pud_offset(pgd, addr);
  135. #ifndef __PAGETABLE_PUD_FOLDED
  136. # error support fourth page table level
  137. #endif
  138. /* Check for an L0 huge PTE, if we have three levels. */
  139. #ifndef __PAGETABLE_PMD_FOLDED
  140. if (pud_huge(*pud))
  141. return (pte_t *)pud;
  142. pmd = (pmd_t *)get_pte((pte_t *)pud_page_vaddr(*pud),
  143. pmd_index(addr), 1);
  144. if (!pmd_present(*pmd))
  145. return NULL;
  146. #else
  147. pmd = pmd_offset(pud, addr);
  148. #endif
  149. /* Check for an L1 huge PTE. */
  150. if (pmd_huge(*pmd))
  151. return (pte_t *)pmd;
  152. #ifdef CONFIG_HUGETLB_SUPER_PAGES
  153. /* Check for an L2 huge PTE. */
  154. pte = get_pte((pte_t *)pmd_page_vaddr(*pmd), pte_index(addr), 2);
  155. if (!pte_present(*pte))
  156. return NULL;
  157. if (pte_super(*pte))
  158. return pte;
  159. #endif
  160. return NULL;
  161. }
  162. struct page *follow_huge_addr(struct mm_struct *mm, unsigned long address,
  163. int write)
  164. {
  165. return ERR_PTR(-EINVAL);
  166. }
  167. int pmd_huge(pmd_t pmd)
  168. {
  169. return !!(pmd_val(pmd) & _PAGE_HUGE_PAGE);
  170. }
  171. int pud_huge(pud_t pud)
  172. {
  173. return !!(pud_val(pud) & _PAGE_HUGE_PAGE);
  174. }
  175. struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  176. pmd_t *pmd, int write)
  177. {
  178. struct page *page;
  179. page = pte_page(*(pte_t *)pmd);
  180. if (page)
  181. page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
  182. return page;
  183. }
  184. struct page *follow_huge_pud(struct mm_struct *mm, unsigned long address,
  185. pud_t *pud, int write)
  186. {
  187. struct page *page;
  188. page = pte_page(*(pte_t *)pud);
  189. if (page)
  190. page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
  191. return page;
  192. }
  193. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  194. {
  195. return 0;
  196. }
  197. #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
  198. static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
  199. unsigned long addr, unsigned long len,
  200. unsigned long pgoff, unsigned long flags)
  201. {
  202. struct hstate *h = hstate_file(file);
  203. struct vm_unmapped_area_info info;
  204. info.flags = 0;
  205. info.length = len;
  206. info.low_limit = TASK_UNMAPPED_BASE;
  207. info.high_limit = TASK_SIZE;
  208. info.align_mask = PAGE_MASK & ~huge_page_mask(h);
  209. info.align_offset = 0;
  210. return vm_unmapped_area(&info);
  211. }
  212. static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
  213. unsigned long addr0, unsigned long len,
  214. unsigned long pgoff, unsigned long flags)
  215. {
  216. struct hstate *h = hstate_file(file);
  217. struct vm_unmapped_area_info info;
  218. unsigned long addr;
  219. info.flags = VM_UNMAPPED_AREA_TOPDOWN;
  220. info.length = len;
  221. info.low_limit = PAGE_SIZE;
  222. info.high_limit = current->mm->mmap_base;
  223. info.align_mask = PAGE_MASK & ~huge_page_mask(h);
  224. info.align_offset = 0;
  225. addr = vm_unmapped_area(&info);
  226. /*
  227. * A failed mmap() very likely causes application failure,
  228. * so fall back to the bottom-up function here. This scenario
  229. * can happen with large stack limits and large mmap()
  230. * allocations.
  231. */
  232. if (addr & ~PAGE_MASK) {
  233. VM_BUG_ON(addr != -ENOMEM);
  234. info.flags = 0;
  235. info.low_limit = TASK_UNMAPPED_BASE;
  236. info.high_limit = TASK_SIZE;
  237. addr = vm_unmapped_area(&info);
  238. }
  239. return addr;
  240. }
  241. unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  242. unsigned long len, unsigned long pgoff, unsigned long flags)
  243. {
  244. struct hstate *h = hstate_file(file);
  245. struct mm_struct *mm = current->mm;
  246. struct vm_area_struct *vma;
  247. if (len & ~huge_page_mask(h))
  248. return -EINVAL;
  249. if (len > TASK_SIZE)
  250. return -ENOMEM;
  251. if (flags & MAP_FIXED) {
  252. if (prepare_hugepage_range(file, addr, len))
  253. return -EINVAL;
  254. return addr;
  255. }
  256. if (addr) {
  257. addr = ALIGN(addr, huge_page_size(h));
  258. vma = find_vma(mm, addr);
  259. if (TASK_SIZE - len >= addr &&
  260. (!vma || addr + len <= vma->vm_start))
  261. return addr;
  262. }
  263. if (current->mm->get_unmapped_area == arch_get_unmapped_area)
  264. return hugetlb_get_unmapped_area_bottomup(file, addr, len,
  265. pgoff, flags);
  266. else
  267. return hugetlb_get_unmapped_area_topdown(file, addr, len,
  268. pgoff, flags);
  269. }
  270. #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
  271. #ifdef CONFIG_HUGETLB_SUPER_PAGES
  272. static __init int __setup_hugepagesz(unsigned long ps)
  273. {
  274. int log_ps = __builtin_ctzl(ps);
  275. int level, base_shift;
  276. if ((1UL << log_ps) != ps || (log_ps & 1) != 0) {
  277. pr_warn("Not enabling %ld byte huge pages;"
  278. " must be a power of four.\n", ps);
  279. return -EINVAL;
  280. }
  281. if (ps > 64*1024*1024*1024UL) {
  282. pr_warn("Not enabling %ld MB huge pages;"
  283. " largest legal value is 64 GB .\n", ps >> 20);
  284. return -EINVAL;
  285. } else if (ps >= PUD_SIZE) {
  286. static long hv_jpage_size;
  287. if (hv_jpage_size == 0)
  288. hv_jpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_JUMBO);
  289. if (hv_jpage_size != PUD_SIZE) {
  290. pr_warn("Not enabling >= %ld MB huge pages:"
  291. " hypervisor reports size %ld\n",
  292. PUD_SIZE >> 20, hv_jpage_size);
  293. return -EINVAL;
  294. }
  295. level = 0;
  296. base_shift = PUD_SHIFT;
  297. } else if (ps >= PMD_SIZE) {
  298. level = 1;
  299. base_shift = PMD_SHIFT;
  300. } else if (ps > PAGE_SIZE) {
  301. level = 2;
  302. base_shift = PAGE_SHIFT;
  303. } else {
  304. pr_err("hugepagesz: huge page size %ld too small\n", ps);
  305. return -EINVAL;
  306. }
  307. if (log_ps != base_shift) {
  308. int shift_val = log_ps - base_shift;
  309. if (huge_shift[level] != 0) {
  310. int old_shift = base_shift + huge_shift[level];
  311. pr_warn("Not enabling %ld MB huge pages;"
  312. " already have size %ld MB.\n",
  313. ps >> 20, (1UL << old_shift) >> 20);
  314. return -EINVAL;
  315. }
  316. if (hv_set_pte_super_shift(level, shift_val) != 0) {
  317. pr_warn("Not enabling %ld MB huge pages;"
  318. " no hypervisor support.\n", ps >> 20);
  319. return -EINVAL;
  320. }
  321. printk(KERN_DEBUG "Enabled %ld MB huge pages\n", ps >> 20);
  322. huge_shift[level] = shift_val;
  323. }
  324. hugetlb_add_hstate(log_ps - PAGE_SHIFT);
  325. return 0;
  326. }
  327. static bool saw_hugepagesz;
  328. static __init int setup_hugepagesz(char *opt)
  329. {
  330. if (!saw_hugepagesz) {
  331. saw_hugepagesz = true;
  332. memset(huge_shift, 0, sizeof(huge_shift));
  333. }
  334. return __setup_hugepagesz(memparse(opt, NULL));
  335. }
  336. __setup("hugepagesz=", setup_hugepagesz);
  337. #ifdef ADDITIONAL_HUGE_SIZE
  338. /*
  339. * Provide an additional huge page size if no "hugepagesz" args are given.
  340. * In that case, all the cores have properly set up their hv super_shift
  341. * already, but we need to notify the hugetlb code to enable the
  342. * new huge page size from the Linux point of view.
  343. */
  344. static __init int add_default_hugepagesz(void)
  345. {
  346. if (!saw_hugepagesz) {
  347. BUILD_BUG_ON(ADDITIONAL_HUGE_SIZE >= PMD_SIZE ||
  348. ADDITIONAL_HUGE_SIZE <= PAGE_SIZE);
  349. BUILD_BUG_ON((PAGE_SIZE << ADDITIONAL_HUGE_SHIFT) !=
  350. ADDITIONAL_HUGE_SIZE);
  351. BUILD_BUG_ON(ADDITIONAL_HUGE_SHIFT & 1);
  352. hugetlb_add_hstate(ADDITIONAL_HUGE_SHIFT);
  353. }
  354. return 0;
  355. }
  356. arch_initcall(add_default_hugepagesz);
  357. #endif
  358. #endif /* CONFIG_HUGETLB_SUPER_PAGES */