unaligned_64.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686
  1. /*
  2. * unaligned.c: Unaligned load/store trap handling with special
  3. * cases for the kernel to do them more quickly.
  4. *
  5. * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
  6. * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7. */
  8. #include <linux/jiffies.h>
  9. #include <linux/kernel.h>
  10. #include <linux/sched.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <asm/asi.h>
  14. #include <asm/ptrace.h>
  15. #include <asm/pstate.h>
  16. #include <asm/processor.h>
  17. #include <asm/uaccess.h>
  18. #include <linux/smp.h>
  19. #include <linux/bitops.h>
  20. #include <linux/perf_event.h>
  21. #include <linux/ratelimit.h>
  22. #include <asm/fpumacro.h>
  23. #include <asm/cacheflush.h>
  24. enum direction {
  25. load, /* ld, ldd, ldh, ldsh */
  26. store, /* st, std, sth, stsh */
  27. both, /* Swap, ldstub, cas, ... */
  28. fpld,
  29. fpst,
  30. invalid,
  31. };
  32. static inline enum direction decode_direction(unsigned int insn)
  33. {
  34. unsigned long tmp = (insn >> 21) & 1;
  35. if (!tmp)
  36. return load;
  37. else {
  38. switch ((insn>>19)&0xf) {
  39. case 15: /* swap* */
  40. return both;
  41. default:
  42. return store;
  43. }
  44. }
  45. }
  46. /* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
  47. static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
  48. {
  49. unsigned int tmp;
  50. tmp = ((insn >> 19) & 0xf);
  51. if (tmp == 11 || tmp == 14) /* ldx/stx */
  52. return 8;
  53. tmp &= 3;
  54. if (!tmp)
  55. return 4;
  56. else if (tmp == 3)
  57. return 16; /* ldd/std - Although it is actually 8 */
  58. else if (tmp == 2)
  59. return 2;
  60. else {
  61. printk("Impossible unaligned trap. insn=%08x\n", insn);
  62. die_if_kernel("Byte sized unaligned access?!?!", regs);
  63. /* GCC should never warn that control reaches the end
  64. * of this function without returning a value because
  65. * die_if_kernel() is marked with attribute 'noreturn'.
  66. * Alas, some versions do...
  67. */
  68. return 0;
  69. }
  70. }
  71. static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
  72. {
  73. if (insn & 0x800000) {
  74. if (insn & 0x2000)
  75. return (unsigned char)(regs->tstate >> 24); /* %asi */
  76. else
  77. return (unsigned char)(insn >> 5); /* imm_asi */
  78. } else
  79. return ASI_P;
  80. }
  81. /* 0x400000 = signed, 0 = unsigned */
  82. static inline int decode_signedness(unsigned int insn)
  83. {
  84. return (insn & 0x400000);
  85. }
  86. static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
  87. unsigned int rd, int from_kernel)
  88. {
  89. if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
  90. if (from_kernel != 0)
  91. __asm__ __volatile__("flushw");
  92. else
  93. flushw_user();
  94. }
  95. }
  96. static inline long sign_extend_imm13(long imm)
  97. {
  98. return imm << 51 >> 51;
  99. }
  100. static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
  101. {
  102. unsigned long value, fp;
  103. if (reg < 16)
  104. return (!reg ? 0 : regs->u_regs[reg]);
  105. fp = regs->u_regs[UREG_FP];
  106. if (regs->tstate & TSTATE_PRIV) {
  107. struct reg_window *win;
  108. win = (struct reg_window *)(fp + STACK_BIAS);
  109. value = win->locals[reg - 16];
  110. } else if (!test_thread_64bit_stack(fp)) {
  111. struct reg_window32 __user *win32;
  112. win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
  113. get_user(value, &win32->locals[reg - 16]);
  114. } else {
  115. struct reg_window __user *win;
  116. win = (struct reg_window __user *)(fp + STACK_BIAS);
  117. get_user(value, &win->locals[reg - 16]);
  118. }
  119. return value;
  120. }
  121. static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
  122. {
  123. unsigned long fp;
  124. if (reg < 16)
  125. return &regs->u_regs[reg];
  126. fp = regs->u_regs[UREG_FP];
  127. if (regs->tstate & TSTATE_PRIV) {
  128. struct reg_window *win;
  129. win = (struct reg_window *)(fp + STACK_BIAS);
  130. return &win->locals[reg - 16];
  131. } else if (!test_thread_64bit_stack(fp)) {
  132. struct reg_window32 *win32;
  133. win32 = (struct reg_window32 *)((unsigned long)((u32)fp));
  134. return (unsigned long *)&win32->locals[reg - 16];
  135. } else {
  136. struct reg_window *win;
  137. win = (struct reg_window *)(fp + STACK_BIAS);
  138. return &win->locals[reg - 16];
  139. }
  140. }
  141. unsigned long compute_effective_address(struct pt_regs *regs,
  142. unsigned int insn, unsigned int rd)
  143. {
  144. unsigned int rs1 = (insn >> 14) & 0x1f;
  145. unsigned int rs2 = insn & 0x1f;
  146. int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
  147. if (insn & 0x2000) {
  148. maybe_flush_windows(rs1, 0, rd, from_kernel);
  149. return (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
  150. } else {
  151. maybe_flush_windows(rs1, rs2, rd, from_kernel);
  152. return (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
  153. }
  154. }
  155. /* This is just to make gcc think die_if_kernel does return... */
  156. static void __used unaligned_panic(char *str, struct pt_regs *regs)
  157. {
  158. die_if_kernel(str, regs);
  159. }
  160. extern int do_int_load(unsigned long *dest_reg, int size,
  161. unsigned long *saddr, int is_signed, int asi);
  162. extern int __do_int_store(unsigned long *dst_addr, int size,
  163. unsigned long src_val, int asi);
  164. static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
  165. struct pt_regs *regs, int asi, int orig_asi)
  166. {
  167. unsigned long zero = 0;
  168. unsigned long *src_val_p = &zero;
  169. unsigned long src_val;
  170. if (size == 16) {
  171. size = 8;
  172. zero = (((long)(reg_num ?
  173. (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
  174. (unsigned)fetch_reg(reg_num + 1, regs);
  175. } else if (reg_num) {
  176. src_val_p = fetch_reg_addr(reg_num, regs);
  177. }
  178. src_val = *src_val_p;
  179. if (unlikely(asi != orig_asi)) {
  180. switch (size) {
  181. case 2:
  182. src_val = swab16(src_val);
  183. break;
  184. case 4:
  185. src_val = swab32(src_val);
  186. break;
  187. case 8:
  188. src_val = swab64(src_val);
  189. break;
  190. case 16:
  191. default:
  192. BUG();
  193. break;
  194. }
  195. }
  196. return __do_int_store(dst_addr, size, src_val, asi);
  197. }
  198. static inline void advance(struct pt_regs *regs)
  199. {
  200. regs->tpc = regs->tnpc;
  201. regs->tnpc += 4;
  202. if (test_thread_flag(TIF_32BIT)) {
  203. regs->tpc &= 0xffffffff;
  204. regs->tnpc &= 0xffffffff;
  205. }
  206. }
  207. static inline int floating_point_load_or_store_p(unsigned int insn)
  208. {
  209. return (insn >> 24) & 1;
  210. }
  211. static inline int ok_for_kernel(unsigned int insn)
  212. {
  213. return !floating_point_load_or_store_p(insn);
  214. }
  215. static void kernel_mna_trap_fault(int fixup_tstate_asi)
  216. {
  217. struct pt_regs *regs = current_thread_info()->kern_una_regs;
  218. unsigned int insn = current_thread_info()->kern_una_insn;
  219. const struct exception_table_entry *entry;
  220. entry = search_exception_tables(regs->tpc);
  221. if (!entry) {
  222. unsigned long address;
  223. address = compute_effective_address(regs, insn,
  224. ((insn >> 25) & 0x1f));
  225. if (address < PAGE_SIZE) {
  226. printk(KERN_ALERT "Unable to handle kernel NULL "
  227. "pointer dereference in mna handler");
  228. } else
  229. printk(KERN_ALERT "Unable to handle kernel paging "
  230. "request in mna handler");
  231. printk(KERN_ALERT " at virtual address %016lx\n",address);
  232. printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
  233. (current->mm ? CTX_HWBITS(current->mm->context) :
  234. CTX_HWBITS(current->active_mm->context)));
  235. printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
  236. (current->mm ? (unsigned long) current->mm->pgd :
  237. (unsigned long) current->active_mm->pgd));
  238. die_if_kernel("Oops", regs);
  239. /* Not reached */
  240. }
  241. regs->tpc = entry->fixup;
  242. regs->tnpc = regs->tpc + 4;
  243. if (fixup_tstate_asi) {
  244. regs->tstate &= ~TSTATE_ASI;
  245. regs->tstate |= (ASI_AIUS << 24UL);
  246. }
  247. }
  248. static void log_unaligned(struct pt_regs *regs)
  249. {
  250. static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
  251. if (__ratelimit(&ratelimit)) {
  252. printk("Kernel unaligned access at TPC[%lx] %pS\n",
  253. regs->tpc, (void *) regs->tpc);
  254. }
  255. }
  256. asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
  257. {
  258. enum direction dir = decode_direction(insn);
  259. int size = decode_access_size(regs, insn);
  260. int orig_asi, asi;
  261. current_thread_info()->kern_una_regs = regs;
  262. current_thread_info()->kern_una_insn = insn;
  263. orig_asi = asi = decode_asi(insn, regs);
  264. /* If this is a {get,put}_user() on an unaligned userspace pointer,
  265. * just signal a fault and do not log the event.
  266. */
  267. if (asi == ASI_AIUS) {
  268. kernel_mna_trap_fault(0);
  269. return;
  270. }
  271. log_unaligned(regs);
  272. if (!ok_for_kernel(insn) || dir == both) {
  273. printk("Unsupported unaligned load/store trap for kernel "
  274. "at <%016lx>.\n", regs->tpc);
  275. unaligned_panic("Kernel does fpu/atomic "
  276. "unaligned load/store.", regs);
  277. kernel_mna_trap_fault(0);
  278. } else {
  279. unsigned long addr, *reg_addr;
  280. int err;
  281. addr = compute_effective_address(regs, insn,
  282. ((insn >> 25) & 0x1f));
  283. perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
  284. switch (asi) {
  285. case ASI_NL:
  286. case ASI_AIUPL:
  287. case ASI_AIUSL:
  288. case ASI_PL:
  289. case ASI_SL:
  290. case ASI_PNFL:
  291. case ASI_SNFL:
  292. asi &= ~0x08;
  293. break;
  294. }
  295. switch (dir) {
  296. case load:
  297. reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
  298. err = do_int_load(reg_addr, size,
  299. (unsigned long *) addr,
  300. decode_signedness(insn), asi);
  301. if (likely(!err) && unlikely(asi != orig_asi)) {
  302. unsigned long val_in = *reg_addr;
  303. switch (size) {
  304. case 2:
  305. val_in = swab16(val_in);
  306. break;
  307. case 4:
  308. val_in = swab32(val_in);
  309. break;
  310. case 8:
  311. val_in = swab64(val_in);
  312. break;
  313. case 16:
  314. default:
  315. BUG();
  316. break;
  317. }
  318. *reg_addr = val_in;
  319. }
  320. break;
  321. case store:
  322. err = do_int_store(((insn>>25)&0x1f), size,
  323. (unsigned long *) addr, regs,
  324. asi, orig_asi);
  325. break;
  326. default:
  327. panic("Impossible kernel unaligned trap.");
  328. /* Not reached... */
  329. }
  330. if (unlikely(err))
  331. kernel_mna_trap_fault(1);
  332. else
  333. advance(regs);
  334. }
  335. }
  336. int handle_popc(u32 insn, struct pt_regs *regs)
  337. {
  338. int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
  339. int ret, rd = ((insn >> 25) & 0x1f);
  340. u64 value;
  341. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
  342. if (insn & 0x2000) {
  343. maybe_flush_windows(0, 0, rd, from_kernel);
  344. value = sign_extend_imm13(insn);
  345. } else {
  346. maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
  347. value = fetch_reg(insn & 0x1f, regs);
  348. }
  349. ret = hweight64(value);
  350. if (rd < 16) {
  351. if (rd)
  352. regs->u_regs[rd] = ret;
  353. } else {
  354. unsigned long fp = regs->u_regs[UREG_FP];
  355. if (!test_thread_64bit_stack(fp)) {
  356. struct reg_window32 __user *win32;
  357. win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
  358. put_user(ret, &win32->locals[rd - 16]);
  359. } else {
  360. struct reg_window __user *win;
  361. win = (struct reg_window __user *)(fp + STACK_BIAS);
  362. put_user(ret, &win->locals[rd - 16]);
  363. }
  364. }
  365. advance(regs);
  366. return 1;
  367. }
  368. extern void do_fpother(struct pt_regs *regs);
  369. extern void do_privact(struct pt_regs *regs);
  370. extern void spitfire_data_access_exception(struct pt_regs *regs,
  371. unsigned long sfsr,
  372. unsigned long sfar);
  373. extern void sun4v_data_access_exception(struct pt_regs *regs,
  374. unsigned long addr,
  375. unsigned long type_ctx);
  376. int handle_ldf_stq(u32 insn, struct pt_regs *regs)
  377. {
  378. unsigned long addr = compute_effective_address(regs, insn, 0);
  379. int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
  380. struct fpustate *f = FPUSTATE;
  381. int asi = decode_asi(insn, regs);
  382. int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
  383. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
  384. save_and_clear_fpu();
  385. current_thread_info()->xfsr[0] &= ~0x1c000;
  386. if (freg & 3) {
  387. current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
  388. do_fpother(regs);
  389. return 0;
  390. }
  391. if (insn & 0x200000) {
  392. /* STQ */
  393. u64 first = 0, second = 0;
  394. if (current_thread_info()->fpsaved[0] & flag) {
  395. first = *(u64 *)&f->regs[freg];
  396. second = *(u64 *)&f->regs[freg+2];
  397. }
  398. if (asi < 0x80) {
  399. do_privact(regs);
  400. return 1;
  401. }
  402. switch (asi) {
  403. case ASI_P:
  404. case ASI_S: break;
  405. case ASI_PL:
  406. case ASI_SL:
  407. {
  408. /* Need to convert endians */
  409. u64 tmp = __swab64p(&first);
  410. first = __swab64p(&second);
  411. second = tmp;
  412. break;
  413. }
  414. default:
  415. if (tlb_type == hypervisor)
  416. sun4v_data_access_exception(regs, addr, 0);
  417. else
  418. spitfire_data_access_exception(regs, 0, addr);
  419. return 1;
  420. }
  421. if (put_user (first >> 32, (u32 __user *)addr) ||
  422. __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
  423. __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
  424. __put_user ((u32)second, (u32 __user *)(addr + 12))) {
  425. if (tlb_type == hypervisor)
  426. sun4v_data_access_exception(regs, addr, 0);
  427. else
  428. spitfire_data_access_exception(regs, 0, addr);
  429. return 1;
  430. }
  431. } else {
  432. /* LDF, LDDF, LDQF */
  433. u32 data[4] __attribute__ ((aligned(8)));
  434. int size, i;
  435. int err;
  436. if (asi < 0x80) {
  437. do_privact(regs);
  438. return 1;
  439. } else if (asi > ASI_SNFL) {
  440. if (tlb_type == hypervisor)
  441. sun4v_data_access_exception(regs, addr, 0);
  442. else
  443. spitfire_data_access_exception(regs, 0, addr);
  444. return 1;
  445. }
  446. switch (insn & 0x180000) {
  447. case 0x000000: size = 1; break;
  448. case 0x100000: size = 4; break;
  449. default: size = 2; break;
  450. }
  451. for (i = 0; i < size; i++)
  452. data[i] = 0;
  453. err = get_user (data[0], (u32 __user *) addr);
  454. if (!err) {
  455. for (i = 1; i < size; i++)
  456. err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
  457. }
  458. if (err && !(asi & 0x2 /* NF */)) {
  459. if (tlb_type == hypervisor)
  460. sun4v_data_access_exception(regs, addr, 0);
  461. else
  462. spitfire_data_access_exception(regs, 0, addr);
  463. return 1;
  464. }
  465. if (asi & 0x8) /* Little */ {
  466. u64 tmp;
  467. switch (size) {
  468. case 1: data[0] = le32_to_cpup(data + 0); break;
  469. default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
  470. break;
  471. case 4: tmp = le64_to_cpup((u64 *)(data + 0));
  472. *(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
  473. *(u64 *)(data + 2) = tmp;
  474. break;
  475. }
  476. }
  477. if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
  478. current_thread_info()->fpsaved[0] = FPRS_FEF;
  479. current_thread_info()->gsr[0] = 0;
  480. }
  481. if (!(current_thread_info()->fpsaved[0] & flag)) {
  482. if (freg < 32)
  483. memset(f->regs, 0, 32*sizeof(u32));
  484. else
  485. memset(f->regs+32, 0, 32*sizeof(u32));
  486. }
  487. memcpy(f->regs + freg, data, size * 4);
  488. current_thread_info()->fpsaved[0] |= flag;
  489. }
  490. advance(regs);
  491. return 1;
  492. }
  493. void handle_ld_nf(u32 insn, struct pt_regs *regs)
  494. {
  495. int rd = ((insn >> 25) & 0x1f);
  496. int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
  497. unsigned long *reg;
  498. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
  499. maybe_flush_windows(0, 0, rd, from_kernel);
  500. reg = fetch_reg_addr(rd, regs);
  501. if (from_kernel || rd < 16) {
  502. reg[0] = 0;
  503. if ((insn & 0x780000) == 0x180000)
  504. reg[1] = 0;
  505. } else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
  506. put_user(0, (int __user *) reg);
  507. if ((insn & 0x780000) == 0x180000)
  508. put_user(0, ((int __user *) reg) + 1);
  509. } else {
  510. put_user(0, (unsigned long __user *) reg);
  511. if ((insn & 0x780000) == 0x180000)
  512. put_user(0, (unsigned long __user *) reg + 1);
  513. }
  514. advance(regs);
  515. }
  516. void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
  517. {
  518. unsigned long pc = regs->tpc;
  519. unsigned long tstate = regs->tstate;
  520. u32 insn;
  521. u64 value;
  522. u8 freg;
  523. int flag;
  524. struct fpustate *f = FPUSTATE;
  525. if (tstate & TSTATE_PRIV)
  526. die_if_kernel("lddfmna from kernel", regs);
  527. perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
  528. if (test_thread_flag(TIF_32BIT))
  529. pc = (u32)pc;
  530. if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
  531. int asi = decode_asi(insn, regs);
  532. u32 first, second;
  533. int err;
  534. if ((asi > ASI_SNFL) ||
  535. (asi < ASI_P))
  536. goto daex;
  537. first = second = 0;
  538. err = get_user(first, (u32 __user *)sfar);
  539. if (!err)
  540. err = get_user(second, (u32 __user *)(sfar + 4));
  541. if (err) {
  542. if (!(asi & 0x2))
  543. goto daex;
  544. first = second = 0;
  545. }
  546. save_and_clear_fpu();
  547. freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
  548. value = (((u64)first) << 32) | second;
  549. if (asi & 0x8) /* Little */
  550. value = __swab64p(&value);
  551. flag = (freg < 32) ? FPRS_DL : FPRS_DU;
  552. if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
  553. current_thread_info()->fpsaved[0] = FPRS_FEF;
  554. current_thread_info()->gsr[0] = 0;
  555. }
  556. if (!(current_thread_info()->fpsaved[0] & flag)) {
  557. if (freg < 32)
  558. memset(f->regs, 0, 32*sizeof(u32));
  559. else
  560. memset(f->regs+32, 0, 32*sizeof(u32));
  561. }
  562. *(u64 *)(f->regs + freg) = value;
  563. current_thread_info()->fpsaved[0] |= flag;
  564. } else {
  565. daex:
  566. if (tlb_type == hypervisor)
  567. sun4v_data_access_exception(regs, sfar, sfsr);
  568. else
  569. spitfire_data_access_exception(regs, sfsr, sfar);
  570. return;
  571. }
  572. advance(regs);
  573. }
  574. void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
  575. {
  576. unsigned long pc = regs->tpc;
  577. unsigned long tstate = regs->tstate;
  578. u32 insn;
  579. u64 value;
  580. u8 freg;
  581. int flag;
  582. struct fpustate *f = FPUSTATE;
  583. if (tstate & TSTATE_PRIV)
  584. die_if_kernel("stdfmna from kernel", regs);
  585. perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
  586. if (test_thread_flag(TIF_32BIT))
  587. pc = (u32)pc;
  588. if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
  589. int asi = decode_asi(insn, regs);
  590. freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
  591. value = 0;
  592. flag = (freg < 32) ? FPRS_DL : FPRS_DU;
  593. if ((asi > ASI_SNFL) ||
  594. (asi < ASI_P))
  595. goto daex;
  596. save_and_clear_fpu();
  597. if (current_thread_info()->fpsaved[0] & flag)
  598. value = *(u64 *)&f->regs[freg];
  599. switch (asi) {
  600. case ASI_P:
  601. case ASI_S: break;
  602. case ASI_PL:
  603. case ASI_SL:
  604. value = __swab64p(&value); break;
  605. default: goto daex;
  606. }
  607. if (put_user (value >> 32, (u32 __user *) sfar) ||
  608. __put_user ((u32)value, (u32 __user *)(sfar + 4)))
  609. goto daex;
  610. } else {
  611. daex:
  612. if (tlb_type == hypervisor)
  613. sun4v_data_access_exception(regs, sfar, sfsr);
  614. else
  615. spitfire_data_access_exception(regs, sfsr, sfar);
  616. return;
  617. }
  618. advance(regs);
  619. }