smp_64.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493
  1. /* smp.c: Sparc64 SMP support.
  2. *
  3. * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/export.h>
  6. #include <linux/kernel.h>
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/delay.h>
  15. #include <linux/init.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/cache.h>
  20. #include <linux/jiffies.h>
  21. #include <linux/profile.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/ftrace.h>
  25. #include <linux/cpu.h>
  26. #include <linux/slab.h>
  27. #include <asm/head.h>
  28. #include <asm/ptrace.h>
  29. #include <linux/atomic.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/mmu_context.h>
  32. #include <asm/cpudata.h>
  33. #include <asm/hvtramp.h>
  34. #include <asm/io.h>
  35. #include <asm/timer.h>
  36. #include <asm/irq.h>
  37. #include <asm/irq_regs.h>
  38. #include <asm/page.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/oplib.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/starfire.h>
  43. #include <asm/tlb.h>
  44. #include <asm/sections.h>
  45. #include <asm/prom.h>
  46. #include <asm/mdesc.h>
  47. #include <asm/ldc.h>
  48. #include <asm/hypervisor.h>
  49. #include <asm/pcr.h>
  50. #include "cpumap.h"
  51. int sparc64_multi_core __read_mostly;
  52. DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  53. cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  54. { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  55. EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  56. EXPORT_SYMBOL(cpu_core_map);
  57. static cpumask_t smp_commenced_mask;
  58. void smp_info(struct seq_file *m)
  59. {
  60. int i;
  61. seq_printf(m, "State:\n");
  62. for_each_online_cpu(i)
  63. seq_printf(m, "CPU%d:\t\tonline\n", i);
  64. }
  65. void smp_bogo(struct seq_file *m)
  66. {
  67. int i;
  68. for_each_online_cpu(i)
  69. seq_printf(m,
  70. "Cpu%dClkTck\t: %016lx\n",
  71. i, cpu_data(i).clock_tick);
  72. }
  73. extern void setup_sparc64_timer(void);
  74. static volatile unsigned long callin_flag = 0;
  75. void __cpuinit smp_callin(void)
  76. {
  77. int cpuid = hard_smp_processor_id();
  78. __local_per_cpu_offset = __per_cpu_offset(cpuid);
  79. if (tlb_type == hypervisor)
  80. sun4v_ktsb_register();
  81. __flush_tlb_all();
  82. setup_sparc64_timer();
  83. if (cheetah_pcache_forced_on)
  84. cheetah_enable_pcache();
  85. callin_flag = 1;
  86. __asm__ __volatile__("membar #Sync\n\t"
  87. "flush %%g6" : : : "memory");
  88. /* Clear this or we will die instantly when we
  89. * schedule back to this idler...
  90. */
  91. current_thread_info()->new_child = 0;
  92. /* Attach to the address space of init_task. */
  93. atomic_inc(&init_mm.mm_count);
  94. current->active_mm = &init_mm;
  95. /* inform the notifiers about the new cpu */
  96. notify_cpu_starting(cpuid);
  97. while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
  98. rmb();
  99. set_cpu_online(cpuid, true);
  100. local_irq_enable();
  101. /* idle thread is expected to have preempt disabled */
  102. preempt_disable();
  103. }
  104. void cpu_panic(void)
  105. {
  106. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  107. panic("SMP bolixed\n");
  108. }
  109. /* This tick register synchronization scheme is taken entirely from
  110. * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
  111. *
  112. * The only change I've made is to rework it so that the master
  113. * initiates the synchonization instead of the slave. -DaveM
  114. */
  115. #define MASTER 0
  116. #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
  117. #define NUM_ROUNDS 64 /* magic value */
  118. #define NUM_ITERS 5 /* likewise */
  119. static DEFINE_SPINLOCK(itc_sync_lock);
  120. static unsigned long go[SLAVE + 1];
  121. #define DEBUG_TICK_SYNC 0
  122. static inline long get_delta (long *rt, long *master)
  123. {
  124. unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
  125. unsigned long tcenter, t0, t1, tm;
  126. unsigned long i;
  127. for (i = 0; i < NUM_ITERS; i++) {
  128. t0 = tick_ops->get_tick();
  129. go[MASTER] = 1;
  130. membar_safe("#StoreLoad");
  131. while (!(tm = go[SLAVE]))
  132. rmb();
  133. go[SLAVE] = 0;
  134. wmb();
  135. t1 = tick_ops->get_tick();
  136. if (t1 - t0 < best_t1 - best_t0)
  137. best_t0 = t0, best_t1 = t1, best_tm = tm;
  138. }
  139. *rt = best_t1 - best_t0;
  140. *master = best_tm - best_t0;
  141. /* average best_t0 and best_t1 without overflow: */
  142. tcenter = (best_t0/2 + best_t1/2);
  143. if (best_t0 % 2 + best_t1 % 2 == 2)
  144. tcenter++;
  145. return tcenter - best_tm;
  146. }
  147. void smp_synchronize_tick_client(void)
  148. {
  149. long i, delta, adj, adjust_latency = 0, done = 0;
  150. unsigned long flags, rt, master_time_stamp;
  151. #if DEBUG_TICK_SYNC
  152. struct {
  153. long rt; /* roundtrip time */
  154. long master; /* master's timestamp */
  155. long diff; /* difference between midpoint and master's timestamp */
  156. long lat; /* estimate of itc adjustment latency */
  157. } t[NUM_ROUNDS];
  158. #endif
  159. go[MASTER] = 1;
  160. while (go[MASTER])
  161. rmb();
  162. local_irq_save(flags);
  163. {
  164. for (i = 0; i < NUM_ROUNDS; i++) {
  165. delta = get_delta(&rt, &master_time_stamp);
  166. if (delta == 0)
  167. done = 1; /* let's lock on to this... */
  168. if (!done) {
  169. if (i > 0) {
  170. adjust_latency += -delta;
  171. adj = -delta + adjust_latency/4;
  172. } else
  173. adj = -delta;
  174. tick_ops->add_tick(adj);
  175. }
  176. #if DEBUG_TICK_SYNC
  177. t[i].rt = rt;
  178. t[i].master = master_time_stamp;
  179. t[i].diff = delta;
  180. t[i].lat = adjust_latency/4;
  181. #endif
  182. }
  183. }
  184. local_irq_restore(flags);
  185. #if DEBUG_TICK_SYNC
  186. for (i = 0; i < NUM_ROUNDS; i++)
  187. printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
  188. t[i].rt, t[i].master, t[i].diff, t[i].lat);
  189. #endif
  190. printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
  191. "(last diff %ld cycles, maxerr %lu cycles)\n",
  192. smp_processor_id(), delta, rt);
  193. }
  194. static void smp_start_sync_tick_client(int cpu);
  195. static void smp_synchronize_one_tick(int cpu)
  196. {
  197. unsigned long flags, i;
  198. go[MASTER] = 0;
  199. smp_start_sync_tick_client(cpu);
  200. /* wait for client to be ready */
  201. while (!go[MASTER])
  202. rmb();
  203. /* now let the client proceed into his loop */
  204. go[MASTER] = 0;
  205. membar_safe("#StoreLoad");
  206. spin_lock_irqsave(&itc_sync_lock, flags);
  207. {
  208. for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
  209. while (!go[MASTER])
  210. rmb();
  211. go[MASTER] = 0;
  212. wmb();
  213. go[SLAVE] = tick_ops->get_tick();
  214. membar_safe("#StoreLoad");
  215. }
  216. }
  217. spin_unlock_irqrestore(&itc_sync_lock, flags);
  218. }
  219. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  220. /* XXX Put this in some common place. XXX */
  221. static unsigned long kimage_addr_to_ra(void *p)
  222. {
  223. unsigned long val = (unsigned long) p;
  224. return kern_base + (val - KERNBASE);
  225. }
  226. static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
  227. {
  228. extern unsigned long sparc64_ttable_tl0;
  229. extern unsigned long kern_locked_tte_data;
  230. struct hvtramp_descr *hdesc;
  231. unsigned long trampoline_ra;
  232. struct trap_per_cpu *tb;
  233. u64 tte_vaddr, tte_data;
  234. unsigned long hv_err;
  235. int i;
  236. hdesc = kzalloc(sizeof(*hdesc) +
  237. (sizeof(struct hvtramp_mapping) *
  238. num_kernel_image_mappings - 1),
  239. GFP_KERNEL);
  240. if (!hdesc) {
  241. printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
  242. "hvtramp_descr.\n");
  243. return;
  244. }
  245. *descrp = hdesc;
  246. hdesc->cpu = cpu;
  247. hdesc->num_mappings = num_kernel_image_mappings;
  248. tb = &trap_block[cpu];
  249. hdesc->fault_info_va = (unsigned long) &tb->fault_info;
  250. hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
  251. hdesc->thread_reg = thread_reg;
  252. tte_vaddr = (unsigned long) KERNBASE;
  253. tte_data = kern_locked_tte_data;
  254. for (i = 0; i < hdesc->num_mappings; i++) {
  255. hdesc->maps[i].vaddr = tte_vaddr;
  256. hdesc->maps[i].tte = tte_data;
  257. tte_vaddr += 0x400000;
  258. tte_data += 0x400000;
  259. }
  260. trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
  261. hv_err = sun4v_cpu_start(cpu, trampoline_ra,
  262. kimage_addr_to_ra(&sparc64_ttable_tl0),
  263. __pa(hdesc));
  264. if (hv_err)
  265. printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
  266. "gives error %lu\n", hv_err);
  267. }
  268. #endif
  269. extern unsigned long sparc64_cpu_startup;
  270. /* The OBP cpu startup callback truncates the 3rd arg cookie to
  271. * 32-bits (I think) so to be safe we have it read the pointer
  272. * contained here so we work on >4GB machines. -DaveM
  273. */
  274. static struct thread_info *cpu_new_thread = NULL;
  275. static int __cpuinit smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
  276. {
  277. unsigned long entry =
  278. (unsigned long)(&sparc64_cpu_startup);
  279. unsigned long cookie =
  280. (unsigned long)(&cpu_new_thread);
  281. void *descr = NULL;
  282. int timeout, ret;
  283. callin_flag = 0;
  284. cpu_new_thread = task_thread_info(idle);
  285. if (tlb_type == hypervisor) {
  286. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  287. if (ldom_domaining_enabled)
  288. ldom_startcpu_cpuid(cpu,
  289. (unsigned long) cpu_new_thread,
  290. &descr);
  291. else
  292. #endif
  293. prom_startcpu_cpuid(cpu, entry, cookie);
  294. } else {
  295. struct device_node *dp = of_find_node_by_cpuid(cpu);
  296. prom_startcpu(dp->phandle, entry, cookie);
  297. }
  298. for (timeout = 0; timeout < 50000; timeout++) {
  299. if (callin_flag)
  300. break;
  301. udelay(100);
  302. }
  303. if (callin_flag) {
  304. ret = 0;
  305. } else {
  306. printk("Processor %d is stuck.\n", cpu);
  307. ret = -ENODEV;
  308. }
  309. cpu_new_thread = NULL;
  310. kfree(descr);
  311. return ret;
  312. }
  313. static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
  314. {
  315. u64 result, target;
  316. int stuck, tmp;
  317. if (this_is_starfire) {
  318. /* map to real upaid */
  319. cpu = (((cpu & 0x3c) << 1) |
  320. ((cpu & 0x40) >> 4) |
  321. (cpu & 0x3));
  322. }
  323. target = (cpu << 14) | 0x70;
  324. again:
  325. /* Ok, this is the real Spitfire Errata #54.
  326. * One must read back from a UDB internal register
  327. * after writes to the UDB interrupt dispatch, but
  328. * before the membar Sync for that write.
  329. * So we use the high UDB control register (ASI 0x7f,
  330. * ADDR 0x20) for the dummy read. -DaveM
  331. */
  332. tmp = 0x40;
  333. __asm__ __volatile__(
  334. "wrpr %1, %2, %%pstate\n\t"
  335. "stxa %4, [%0] %3\n\t"
  336. "stxa %5, [%0+%8] %3\n\t"
  337. "add %0, %8, %0\n\t"
  338. "stxa %6, [%0+%8] %3\n\t"
  339. "membar #Sync\n\t"
  340. "stxa %%g0, [%7] %3\n\t"
  341. "membar #Sync\n\t"
  342. "mov 0x20, %%g1\n\t"
  343. "ldxa [%%g1] 0x7f, %%g0\n\t"
  344. "membar #Sync"
  345. : "=r" (tmp)
  346. : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
  347. "r" (data0), "r" (data1), "r" (data2), "r" (target),
  348. "r" (0x10), "0" (tmp)
  349. : "g1");
  350. /* NOTE: PSTATE_IE is still clear. */
  351. stuck = 100000;
  352. do {
  353. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  354. : "=r" (result)
  355. : "i" (ASI_INTR_DISPATCH_STAT));
  356. if (result == 0) {
  357. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  358. : : "r" (pstate));
  359. return;
  360. }
  361. stuck -= 1;
  362. if (stuck == 0)
  363. break;
  364. } while (result & 0x1);
  365. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  366. : : "r" (pstate));
  367. if (stuck == 0) {
  368. printk("CPU[%d]: mondo stuckage result[%016llx]\n",
  369. smp_processor_id(), result);
  370. } else {
  371. udelay(2);
  372. goto again;
  373. }
  374. }
  375. static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
  376. {
  377. u64 *mondo, data0, data1, data2;
  378. u16 *cpu_list;
  379. u64 pstate;
  380. int i;
  381. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  382. cpu_list = __va(tb->cpu_list_pa);
  383. mondo = __va(tb->cpu_mondo_block_pa);
  384. data0 = mondo[0];
  385. data1 = mondo[1];
  386. data2 = mondo[2];
  387. for (i = 0; i < cnt; i++)
  388. spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
  389. }
  390. /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
  391. * packet, but we have no use for that. However we do take advantage of
  392. * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
  393. */
  394. static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
  395. {
  396. int nack_busy_id, is_jbus, need_more;
  397. u64 *mondo, pstate, ver, busy_mask;
  398. u16 *cpu_list;
  399. cpu_list = __va(tb->cpu_list_pa);
  400. mondo = __va(tb->cpu_mondo_block_pa);
  401. /* Unfortunately, someone at Sun had the brilliant idea to make the
  402. * busy/nack fields hard-coded by ITID number for this Ultra-III
  403. * derivative processor.
  404. */
  405. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  406. is_jbus = ((ver >> 32) == __JALAPENO_ID ||
  407. (ver >> 32) == __SERRANO_ID);
  408. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  409. retry:
  410. need_more = 0;
  411. __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
  412. : : "r" (pstate), "i" (PSTATE_IE));
  413. /* Setup the dispatch data registers. */
  414. __asm__ __volatile__("stxa %0, [%3] %6\n\t"
  415. "stxa %1, [%4] %6\n\t"
  416. "stxa %2, [%5] %6\n\t"
  417. "membar #Sync\n\t"
  418. : /* no outputs */
  419. : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
  420. "r" (0x40), "r" (0x50), "r" (0x60),
  421. "i" (ASI_INTR_W));
  422. nack_busy_id = 0;
  423. busy_mask = 0;
  424. {
  425. int i;
  426. for (i = 0; i < cnt; i++) {
  427. u64 target, nr;
  428. nr = cpu_list[i];
  429. if (nr == 0xffff)
  430. continue;
  431. target = (nr << 14) | 0x70;
  432. if (is_jbus) {
  433. busy_mask |= (0x1UL << (nr * 2));
  434. } else {
  435. target |= (nack_busy_id << 24);
  436. busy_mask |= (0x1UL <<
  437. (nack_busy_id * 2));
  438. }
  439. __asm__ __volatile__(
  440. "stxa %%g0, [%0] %1\n\t"
  441. "membar #Sync\n\t"
  442. : /* no outputs */
  443. : "r" (target), "i" (ASI_INTR_W));
  444. nack_busy_id++;
  445. if (nack_busy_id == 32) {
  446. need_more = 1;
  447. break;
  448. }
  449. }
  450. }
  451. /* Now, poll for completion. */
  452. {
  453. u64 dispatch_stat, nack_mask;
  454. long stuck;
  455. stuck = 100000 * nack_busy_id;
  456. nack_mask = busy_mask << 1;
  457. do {
  458. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  459. : "=r" (dispatch_stat)
  460. : "i" (ASI_INTR_DISPATCH_STAT));
  461. if (!(dispatch_stat & (busy_mask | nack_mask))) {
  462. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  463. : : "r" (pstate));
  464. if (unlikely(need_more)) {
  465. int i, this_cnt = 0;
  466. for (i = 0; i < cnt; i++) {
  467. if (cpu_list[i] == 0xffff)
  468. continue;
  469. cpu_list[i] = 0xffff;
  470. this_cnt++;
  471. if (this_cnt == 32)
  472. break;
  473. }
  474. goto retry;
  475. }
  476. return;
  477. }
  478. if (!--stuck)
  479. break;
  480. } while (dispatch_stat & busy_mask);
  481. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  482. : : "r" (pstate));
  483. if (dispatch_stat & busy_mask) {
  484. /* Busy bits will not clear, continue instead
  485. * of freezing up on this cpu.
  486. */
  487. printk("CPU[%d]: mondo stuckage result[%016llx]\n",
  488. smp_processor_id(), dispatch_stat);
  489. } else {
  490. int i, this_busy_nack = 0;
  491. /* Delay some random time with interrupts enabled
  492. * to prevent deadlock.
  493. */
  494. udelay(2 * nack_busy_id);
  495. /* Clear out the mask bits for cpus which did not
  496. * NACK us.
  497. */
  498. for (i = 0; i < cnt; i++) {
  499. u64 check_mask, nr;
  500. nr = cpu_list[i];
  501. if (nr == 0xffff)
  502. continue;
  503. if (is_jbus)
  504. check_mask = (0x2UL << (2*nr));
  505. else
  506. check_mask = (0x2UL <<
  507. this_busy_nack);
  508. if ((dispatch_stat & check_mask) == 0)
  509. cpu_list[i] = 0xffff;
  510. this_busy_nack += 2;
  511. if (this_busy_nack == 64)
  512. break;
  513. }
  514. goto retry;
  515. }
  516. }
  517. }
  518. /* Multi-cpu list version. */
  519. static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
  520. {
  521. int retries, this_cpu, prev_sent, i, saw_cpu_error;
  522. unsigned long status;
  523. u16 *cpu_list;
  524. this_cpu = smp_processor_id();
  525. cpu_list = __va(tb->cpu_list_pa);
  526. saw_cpu_error = 0;
  527. retries = 0;
  528. prev_sent = 0;
  529. do {
  530. int forward_progress, n_sent;
  531. status = sun4v_cpu_mondo_send(cnt,
  532. tb->cpu_list_pa,
  533. tb->cpu_mondo_block_pa);
  534. /* HV_EOK means all cpus received the xcall, we're done. */
  535. if (likely(status == HV_EOK))
  536. break;
  537. /* First, see if we made any forward progress.
  538. *
  539. * The hypervisor indicates successful sends by setting
  540. * cpu list entries to the value 0xffff.
  541. */
  542. n_sent = 0;
  543. for (i = 0; i < cnt; i++) {
  544. if (likely(cpu_list[i] == 0xffff))
  545. n_sent++;
  546. }
  547. forward_progress = 0;
  548. if (n_sent > prev_sent)
  549. forward_progress = 1;
  550. prev_sent = n_sent;
  551. /* If we get a HV_ECPUERROR, then one or more of the cpus
  552. * in the list are in error state. Use the cpu_state()
  553. * hypervisor call to find out which cpus are in error state.
  554. */
  555. if (unlikely(status == HV_ECPUERROR)) {
  556. for (i = 0; i < cnt; i++) {
  557. long err;
  558. u16 cpu;
  559. cpu = cpu_list[i];
  560. if (cpu == 0xffff)
  561. continue;
  562. err = sun4v_cpu_state(cpu);
  563. if (err == HV_CPU_STATE_ERROR) {
  564. saw_cpu_error = (cpu + 1);
  565. cpu_list[i] = 0xffff;
  566. }
  567. }
  568. } else if (unlikely(status != HV_EWOULDBLOCK))
  569. goto fatal_mondo_error;
  570. /* Don't bother rewriting the CPU list, just leave the
  571. * 0xffff and non-0xffff entries in there and the
  572. * hypervisor will do the right thing.
  573. *
  574. * Only advance timeout state if we didn't make any
  575. * forward progress.
  576. */
  577. if (unlikely(!forward_progress)) {
  578. if (unlikely(++retries > 10000))
  579. goto fatal_mondo_timeout;
  580. /* Delay a little bit to let other cpus catch up
  581. * on their cpu mondo queue work.
  582. */
  583. udelay(2 * cnt);
  584. }
  585. } while (1);
  586. if (unlikely(saw_cpu_error))
  587. goto fatal_mondo_cpu_error;
  588. return;
  589. fatal_mondo_cpu_error:
  590. printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
  591. "(including %d) were in error state\n",
  592. this_cpu, saw_cpu_error - 1);
  593. return;
  594. fatal_mondo_timeout:
  595. printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
  596. " progress after %d retries.\n",
  597. this_cpu, retries);
  598. goto dump_cpu_list_and_out;
  599. fatal_mondo_error:
  600. printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
  601. this_cpu, status);
  602. printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
  603. "mondo_block_pa(%lx)\n",
  604. this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
  605. dump_cpu_list_and_out:
  606. printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
  607. for (i = 0; i < cnt; i++)
  608. printk("%u ", cpu_list[i]);
  609. printk("]\n");
  610. }
  611. static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
  612. static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
  613. {
  614. struct trap_per_cpu *tb;
  615. int this_cpu, i, cnt;
  616. unsigned long flags;
  617. u16 *cpu_list;
  618. u64 *mondo;
  619. /* We have to do this whole thing with interrupts fully disabled.
  620. * Otherwise if we send an xcall from interrupt context it will
  621. * corrupt both our mondo block and cpu list state.
  622. *
  623. * One consequence of this is that we cannot use timeout mechanisms
  624. * that depend upon interrupts being delivered locally. So, for
  625. * example, we cannot sample jiffies and expect it to advance.
  626. *
  627. * Fortunately, udelay() uses %stick/%tick so we can use that.
  628. */
  629. local_irq_save(flags);
  630. this_cpu = smp_processor_id();
  631. tb = &trap_block[this_cpu];
  632. mondo = __va(tb->cpu_mondo_block_pa);
  633. mondo[0] = data0;
  634. mondo[1] = data1;
  635. mondo[2] = data2;
  636. wmb();
  637. cpu_list = __va(tb->cpu_list_pa);
  638. /* Setup the initial cpu list. */
  639. cnt = 0;
  640. for_each_cpu(i, mask) {
  641. if (i == this_cpu || !cpu_online(i))
  642. continue;
  643. cpu_list[cnt++] = i;
  644. }
  645. if (cnt)
  646. xcall_deliver_impl(tb, cnt);
  647. local_irq_restore(flags);
  648. }
  649. /* Send cross call to all processors mentioned in MASK_P
  650. * except self. Really, there are only two cases currently,
  651. * "cpu_online_mask" and "mm_cpumask(mm)".
  652. */
  653. static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
  654. {
  655. u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
  656. xcall_deliver(data0, data1, data2, mask);
  657. }
  658. /* Send cross call to all processors except self. */
  659. static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
  660. {
  661. smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
  662. }
  663. extern unsigned long xcall_sync_tick;
  664. static void smp_start_sync_tick_client(int cpu)
  665. {
  666. xcall_deliver((u64) &xcall_sync_tick, 0, 0,
  667. cpumask_of(cpu));
  668. }
  669. extern unsigned long xcall_call_function;
  670. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  671. {
  672. xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
  673. }
  674. extern unsigned long xcall_call_function_single;
  675. void arch_send_call_function_single_ipi(int cpu)
  676. {
  677. xcall_deliver((u64) &xcall_call_function_single, 0, 0,
  678. cpumask_of(cpu));
  679. }
  680. void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
  681. {
  682. clear_softint(1 << irq);
  683. generic_smp_call_function_interrupt();
  684. }
  685. void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
  686. {
  687. clear_softint(1 << irq);
  688. generic_smp_call_function_single_interrupt();
  689. }
  690. static void tsb_sync(void *info)
  691. {
  692. struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
  693. struct mm_struct *mm = info;
  694. /* It is not valid to test "current->active_mm == mm" here.
  695. *
  696. * The value of "current" is not changed atomically with
  697. * switch_mm(). But that's OK, we just need to check the
  698. * current cpu's trap block PGD physical address.
  699. */
  700. if (tp->pgd_paddr == __pa(mm->pgd))
  701. tsb_context_switch(mm);
  702. }
  703. void smp_tsb_sync(struct mm_struct *mm)
  704. {
  705. smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
  706. }
  707. extern unsigned long xcall_flush_tlb_mm;
  708. extern unsigned long xcall_flush_tlb_pending;
  709. extern unsigned long xcall_flush_tlb_kernel_range;
  710. extern unsigned long xcall_fetch_glob_regs;
  711. extern unsigned long xcall_fetch_glob_pmu;
  712. extern unsigned long xcall_fetch_glob_pmu_n4;
  713. extern unsigned long xcall_receive_signal;
  714. extern unsigned long xcall_new_mmu_context_version;
  715. #ifdef CONFIG_KGDB
  716. extern unsigned long xcall_kgdb_capture;
  717. #endif
  718. #ifdef DCACHE_ALIASING_POSSIBLE
  719. extern unsigned long xcall_flush_dcache_page_cheetah;
  720. #endif
  721. extern unsigned long xcall_flush_dcache_page_spitfire;
  722. #ifdef CONFIG_DEBUG_DCFLUSH
  723. extern atomic_t dcpage_flushes;
  724. extern atomic_t dcpage_flushes_xcall;
  725. #endif
  726. static inline void __local_flush_dcache_page(struct page *page)
  727. {
  728. #ifdef DCACHE_ALIASING_POSSIBLE
  729. __flush_dcache_page(page_address(page),
  730. ((tlb_type == spitfire) &&
  731. page_mapping(page) != NULL));
  732. #else
  733. if (page_mapping(page) != NULL &&
  734. tlb_type == spitfire)
  735. __flush_icache_page(__pa(page_address(page)));
  736. #endif
  737. }
  738. void smp_flush_dcache_page_impl(struct page *page, int cpu)
  739. {
  740. int this_cpu;
  741. if (tlb_type == hypervisor)
  742. return;
  743. #ifdef CONFIG_DEBUG_DCFLUSH
  744. atomic_inc(&dcpage_flushes);
  745. #endif
  746. this_cpu = get_cpu();
  747. if (cpu == this_cpu) {
  748. __local_flush_dcache_page(page);
  749. } else if (cpu_online(cpu)) {
  750. void *pg_addr = page_address(page);
  751. u64 data0 = 0;
  752. if (tlb_type == spitfire) {
  753. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  754. if (page_mapping(page) != NULL)
  755. data0 |= ((u64)1 << 32);
  756. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  757. #ifdef DCACHE_ALIASING_POSSIBLE
  758. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  759. #endif
  760. }
  761. if (data0) {
  762. xcall_deliver(data0, __pa(pg_addr),
  763. (u64) pg_addr, cpumask_of(cpu));
  764. #ifdef CONFIG_DEBUG_DCFLUSH
  765. atomic_inc(&dcpage_flushes_xcall);
  766. #endif
  767. }
  768. }
  769. put_cpu();
  770. }
  771. void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
  772. {
  773. void *pg_addr;
  774. u64 data0;
  775. if (tlb_type == hypervisor)
  776. return;
  777. preempt_disable();
  778. #ifdef CONFIG_DEBUG_DCFLUSH
  779. atomic_inc(&dcpage_flushes);
  780. #endif
  781. data0 = 0;
  782. pg_addr = page_address(page);
  783. if (tlb_type == spitfire) {
  784. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  785. if (page_mapping(page) != NULL)
  786. data0 |= ((u64)1 << 32);
  787. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  788. #ifdef DCACHE_ALIASING_POSSIBLE
  789. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  790. #endif
  791. }
  792. if (data0) {
  793. xcall_deliver(data0, __pa(pg_addr),
  794. (u64) pg_addr, cpu_online_mask);
  795. #ifdef CONFIG_DEBUG_DCFLUSH
  796. atomic_inc(&dcpage_flushes_xcall);
  797. #endif
  798. }
  799. __local_flush_dcache_page(page);
  800. preempt_enable();
  801. }
  802. void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
  803. {
  804. struct mm_struct *mm;
  805. unsigned long flags;
  806. clear_softint(1 << irq);
  807. /* See if we need to allocate a new TLB context because
  808. * the version of the one we are using is now out of date.
  809. */
  810. mm = current->active_mm;
  811. if (unlikely(!mm || (mm == &init_mm)))
  812. return;
  813. spin_lock_irqsave(&mm->context.lock, flags);
  814. if (unlikely(!CTX_VALID(mm->context)))
  815. get_new_mmu_context(mm);
  816. spin_unlock_irqrestore(&mm->context.lock, flags);
  817. load_secondary_context(mm);
  818. __flush_tlb_mm(CTX_HWBITS(mm->context),
  819. SECONDARY_CONTEXT);
  820. }
  821. void smp_new_mmu_context_version(void)
  822. {
  823. smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
  824. }
  825. #ifdef CONFIG_KGDB
  826. void kgdb_roundup_cpus(unsigned long flags)
  827. {
  828. smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
  829. }
  830. #endif
  831. void smp_fetch_global_regs(void)
  832. {
  833. smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
  834. }
  835. void smp_fetch_global_pmu(void)
  836. {
  837. if (tlb_type == hypervisor &&
  838. sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
  839. smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
  840. else
  841. smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
  842. }
  843. /* We know that the window frames of the user have been flushed
  844. * to the stack before we get here because all callers of us
  845. * are flush_tlb_*() routines, and these run after flush_cache_*()
  846. * which performs the flushw.
  847. *
  848. * The SMP TLB coherency scheme we use works as follows:
  849. *
  850. * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
  851. * space has (potentially) executed on, this is the heuristic
  852. * we use to avoid doing cross calls.
  853. *
  854. * Also, for flushing from kswapd and also for clones, we
  855. * use cpu_vm_mask as the list of cpus to make run the TLB.
  856. *
  857. * 2) TLB context numbers are shared globally across all processors
  858. * in the system, this allows us to play several games to avoid
  859. * cross calls.
  860. *
  861. * One invariant is that when a cpu switches to a process, and
  862. * that processes tsk->active_mm->cpu_vm_mask does not have the
  863. * current cpu's bit set, that tlb context is flushed locally.
  864. *
  865. * If the address space is non-shared (ie. mm->count == 1) we avoid
  866. * cross calls when we want to flush the currently running process's
  867. * tlb state. This is done by clearing all cpu bits except the current
  868. * processor's in current->mm->cpu_vm_mask and performing the
  869. * flush locally only. This will force any subsequent cpus which run
  870. * this task to flush the context from the local tlb if the process
  871. * migrates to another cpu (again).
  872. *
  873. * 3) For shared address spaces (threads) and swapping we bite the
  874. * bullet for most cases and perform the cross call (but only to
  875. * the cpus listed in cpu_vm_mask).
  876. *
  877. * The performance gain from "optimizing" away the cross call for threads is
  878. * questionable (in theory the big win for threads is the massive sharing of
  879. * address space state across processors).
  880. */
  881. /* This currently is only used by the hugetlb arch pre-fault
  882. * hook on UltraSPARC-III+ and later when changing the pagesize
  883. * bits of the context register for an address space.
  884. */
  885. void smp_flush_tlb_mm(struct mm_struct *mm)
  886. {
  887. u32 ctx = CTX_HWBITS(mm->context);
  888. int cpu = get_cpu();
  889. if (atomic_read(&mm->mm_users) == 1) {
  890. cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
  891. goto local_flush_and_out;
  892. }
  893. smp_cross_call_masked(&xcall_flush_tlb_mm,
  894. ctx, 0, 0,
  895. mm_cpumask(mm));
  896. local_flush_and_out:
  897. __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
  898. put_cpu();
  899. }
  900. void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
  901. {
  902. u32 ctx = CTX_HWBITS(mm->context);
  903. int cpu = get_cpu();
  904. if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
  905. cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
  906. else
  907. smp_cross_call_masked(&xcall_flush_tlb_pending,
  908. ctx, nr, (unsigned long) vaddrs,
  909. mm_cpumask(mm));
  910. __flush_tlb_pending(ctx, nr, vaddrs);
  911. put_cpu();
  912. }
  913. void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
  914. {
  915. start &= PAGE_MASK;
  916. end = PAGE_ALIGN(end);
  917. if (start != end) {
  918. smp_cross_call(&xcall_flush_tlb_kernel_range,
  919. 0, start, end);
  920. __flush_tlb_kernel_range(start, end);
  921. }
  922. }
  923. /* CPU capture. */
  924. /* #define CAPTURE_DEBUG */
  925. extern unsigned long xcall_capture;
  926. static atomic_t smp_capture_depth = ATOMIC_INIT(0);
  927. static atomic_t smp_capture_registry = ATOMIC_INIT(0);
  928. static unsigned long penguins_are_doing_time;
  929. void smp_capture(void)
  930. {
  931. int result = atomic_add_ret(1, &smp_capture_depth);
  932. if (result == 1) {
  933. int ncpus = num_online_cpus();
  934. #ifdef CAPTURE_DEBUG
  935. printk("CPU[%d]: Sending penguins to jail...",
  936. smp_processor_id());
  937. #endif
  938. penguins_are_doing_time = 1;
  939. atomic_inc(&smp_capture_registry);
  940. smp_cross_call(&xcall_capture, 0, 0, 0);
  941. while (atomic_read(&smp_capture_registry) != ncpus)
  942. rmb();
  943. #ifdef CAPTURE_DEBUG
  944. printk("done\n");
  945. #endif
  946. }
  947. }
  948. void smp_release(void)
  949. {
  950. if (atomic_dec_and_test(&smp_capture_depth)) {
  951. #ifdef CAPTURE_DEBUG
  952. printk("CPU[%d]: Giving pardon to "
  953. "imprisoned penguins\n",
  954. smp_processor_id());
  955. #endif
  956. penguins_are_doing_time = 0;
  957. membar_safe("#StoreLoad");
  958. atomic_dec(&smp_capture_registry);
  959. }
  960. }
  961. /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
  962. * set, so they can service tlb flush xcalls...
  963. */
  964. extern void prom_world(int);
  965. void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
  966. {
  967. clear_softint(1 << irq);
  968. preempt_disable();
  969. __asm__ __volatile__("flushw");
  970. prom_world(1);
  971. atomic_inc(&smp_capture_registry);
  972. membar_safe("#StoreLoad");
  973. while (penguins_are_doing_time)
  974. rmb();
  975. atomic_dec(&smp_capture_registry);
  976. prom_world(0);
  977. preempt_enable();
  978. }
  979. /* /proc/profile writes can call this, don't __init it please. */
  980. int setup_profiling_timer(unsigned int multiplier)
  981. {
  982. return -EINVAL;
  983. }
  984. void __init smp_prepare_cpus(unsigned int max_cpus)
  985. {
  986. }
  987. void smp_prepare_boot_cpu(void)
  988. {
  989. }
  990. void __init smp_setup_processor_id(void)
  991. {
  992. if (tlb_type == spitfire)
  993. xcall_deliver_impl = spitfire_xcall_deliver;
  994. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  995. xcall_deliver_impl = cheetah_xcall_deliver;
  996. else
  997. xcall_deliver_impl = hypervisor_xcall_deliver;
  998. }
  999. void smp_fill_in_sib_core_maps(void)
  1000. {
  1001. unsigned int i;
  1002. for_each_present_cpu(i) {
  1003. unsigned int j;
  1004. cpumask_clear(&cpu_core_map[i]);
  1005. if (cpu_data(i).core_id == 0) {
  1006. cpumask_set_cpu(i, &cpu_core_map[i]);
  1007. continue;
  1008. }
  1009. for_each_present_cpu(j) {
  1010. if (cpu_data(i).core_id ==
  1011. cpu_data(j).core_id)
  1012. cpumask_set_cpu(j, &cpu_core_map[i]);
  1013. }
  1014. }
  1015. for_each_present_cpu(i) {
  1016. unsigned int j;
  1017. cpumask_clear(&per_cpu(cpu_sibling_map, i));
  1018. if (cpu_data(i).proc_id == -1) {
  1019. cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
  1020. continue;
  1021. }
  1022. for_each_present_cpu(j) {
  1023. if (cpu_data(i).proc_id ==
  1024. cpu_data(j).proc_id)
  1025. cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
  1026. }
  1027. }
  1028. }
  1029. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
  1030. {
  1031. int ret = smp_boot_one_cpu(cpu, tidle);
  1032. if (!ret) {
  1033. cpumask_set_cpu(cpu, &smp_commenced_mask);
  1034. while (!cpu_online(cpu))
  1035. mb();
  1036. if (!cpu_online(cpu)) {
  1037. ret = -ENODEV;
  1038. } else {
  1039. /* On SUN4V, writes to %tick and %stick are
  1040. * not allowed.
  1041. */
  1042. if (tlb_type != hypervisor)
  1043. smp_synchronize_one_tick(cpu);
  1044. }
  1045. }
  1046. return ret;
  1047. }
  1048. #ifdef CONFIG_HOTPLUG_CPU
  1049. void cpu_play_dead(void)
  1050. {
  1051. int cpu = smp_processor_id();
  1052. unsigned long pstate;
  1053. idle_task_exit();
  1054. if (tlb_type == hypervisor) {
  1055. struct trap_per_cpu *tb = &trap_block[cpu];
  1056. sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
  1057. tb->cpu_mondo_pa, 0);
  1058. sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
  1059. tb->dev_mondo_pa, 0);
  1060. sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
  1061. tb->resum_mondo_pa, 0);
  1062. sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
  1063. tb->nonresum_mondo_pa, 0);
  1064. }
  1065. cpumask_clear_cpu(cpu, &smp_commenced_mask);
  1066. membar_safe("#Sync");
  1067. local_irq_disable();
  1068. __asm__ __volatile__(
  1069. "rdpr %%pstate, %0\n\t"
  1070. "wrpr %0, %1, %%pstate"
  1071. : "=r" (pstate)
  1072. : "i" (PSTATE_IE));
  1073. while (1)
  1074. barrier();
  1075. }
  1076. int __cpu_disable(void)
  1077. {
  1078. int cpu = smp_processor_id();
  1079. cpuinfo_sparc *c;
  1080. int i;
  1081. for_each_cpu(i, &cpu_core_map[cpu])
  1082. cpumask_clear_cpu(cpu, &cpu_core_map[i]);
  1083. cpumask_clear(&cpu_core_map[cpu]);
  1084. for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
  1085. cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
  1086. cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
  1087. c = &cpu_data(cpu);
  1088. c->core_id = 0;
  1089. c->proc_id = -1;
  1090. smp_wmb();
  1091. /* Make sure no interrupts point to this cpu. */
  1092. fixup_irqs();
  1093. local_irq_enable();
  1094. mdelay(1);
  1095. local_irq_disable();
  1096. set_cpu_online(cpu, false);
  1097. cpu_map_rebuild();
  1098. return 0;
  1099. }
  1100. void __cpu_die(unsigned int cpu)
  1101. {
  1102. int i;
  1103. for (i = 0; i < 100; i++) {
  1104. smp_rmb();
  1105. if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
  1106. break;
  1107. msleep(100);
  1108. }
  1109. if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
  1110. printk(KERN_ERR "CPU %u didn't die...\n", cpu);
  1111. } else {
  1112. #if defined(CONFIG_SUN_LDOMS)
  1113. unsigned long hv_err;
  1114. int limit = 100;
  1115. do {
  1116. hv_err = sun4v_cpu_stop(cpu);
  1117. if (hv_err == HV_EOK) {
  1118. set_cpu_present(cpu, false);
  1119. break;
  1120. }
  1121. } while (--limit > 0);
  1122. if (limit <= 0) {
  1123. printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
  1124. hv_err);
  1125. }
  1126. #endif
  1127. }
  1128. }
  1129. #endif
  1130. void __init smp_cpus_done(unsigned int max_cpus)
  1131. {
  1132. pcr_arch_init();
  1133. }
  1134. void smp_send_reschedule(int cpu)
  1135. {
  1136. xcall_deliver((u64) &xcall_receive_signal, 0, 0,
  1137. cpumask_of(cpu));
  1138. }
  1139. void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
  1140. {
  1141. clear_softint(1 << irq);
  1142. scheduler_ipi();
  1143. }
  1144. /* This is a nop because we capture all other cpus
  1145. * anyways when making the PROM active.
  1146. */
  1147. void smp_send_stop(void)
  1148. {
  1149. }
  1150. /**
  1151. * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
  1152. * @cpu: cpu to allocate for
  1153. * @size: size allocation in bytes
  1154. * @align: alignment
  1155. *
  1156. * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
  1157. * does the right thing for NUMA regardless of the current
  1158. * configuration.
  1159. *
  1160. * RETURNS:
  1161. * Pointer to the allocated area on success, NULL on failure.
  1162. */
  1163. static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
  1164. size_t align)
  1165. {
  1166. const unsigned long goal = __pa(MAX_DMA_ADDRESS);
  1167. #ifdef CONFIG_NEED_MULTIPLE_NODES
  1168. int node = cpu_to_node(cpu);
  1169. void *ptr;
  1170. if (!node_online(node) || !NODE_DATA(node)) {
  1171. ptr = __alloc_bootmem(size, align, goal);
  1172. pr_info("cpu %d has no node %d or node-local memory\n",
  1173. cpu, node);
  1174. pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
  1175. cpu, size, __pa(ptr));
  1176. } else {
  1177. ptr = __alloc_bootmem_node(NODE_DATA(node),
  1178. size, align, goal);
  1179. pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
  1180. "%016lx\n", cpu, size, node, __pa(ptr));
  1181. }
  1182. return ptr;
  1183. #else
  1184. return __alloc_bootmem(size, align, goal);
  1185. #endif
  1186. }
  1187. static void __init pcpu_free_bootmem(void *ptr, size_t size)
  1188. {
  1189. free_bootmem(__pa(ptr), size);
  1190. }
  1191. static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
  1192. {
  1193. if (cpu_to_node(from) == cpu_to_node(to))
  1194. return LOCAL_DISTANCE;
  1195. else
  1196. return REMOTE_DISTANCE;
  1197. }
  1198. static void __init pcpu_populate_pte(unsigned long addr)
  1199. {
  1200. pgd_t *pgd = pgd_offset_k(addr);
  1201. pud_t *pud;
  1202. pmd_t *pmd;
  1203. pud = pud_offset(pgd, addr);
  1204. if (pud_none(*pud)) {
  1205. pmd_t *new;
  1206. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1207. pud_populate(&init_mm, pud, new);
  1208. }
  1209. pmd = pmd_offset(pud, addr);
  1210. if (!pmd_present(*pmd)) {
  1211. pte_t *new;
  1212. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1213. pmd_populate_kernel(&init_mm, pmd, new);
  1214. }
  1215. }
  1216. void __init setup_per_cpu_areas(void)
  1217. {
  1218. unsigned long delta;
  1219. unsigned int cpu;
  1220. int rc = -EINVAL;
  1221. if (pcpu_chosen_fc != PCPU_FC_PAGE) {
  1222. rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
  1223. PERCPU_DYNAMIC_RESERVE, 4 << 20,
  1224. pcpu_cpu_distance,
  1225. pcpu_alloc_bootmem,
  1226. pcpu_free_bootmem);
  1227. if (rc)
  1228. pr_warning("PERCPU: %s allocator failed (%d), "
  1229. "falling back to page size\n",
  1230. pcpu_fc_names[pcpu_chosen_fc], rc);
  1231. }
  1232. if (rc < 0)
  1233. rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
  1234. pcpu_alloc_bootmem,
  1235. pcpu_free_bootmem,
  1236. pcpu_populate_pte);
  1237. if (rc < 0)
  1238. panic("cannot initialize percpu area (err=%d)", rc);
  1239. delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
  1240. for_each_possible_cpu(cpu)
  1241. __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
  1242. /* Setup %g5 for the boot cpu. */
  1243. __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
  1244. of_fill_in_cpu_data();
  1245. if (tlb_type == hypervisor)
  1246. mdesc_fill_in_cpu_data(cpu_all_mask);
  1247. }