pci_dma.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510
  1. /*
  2. * Copyright IBM Corp. 2012
  3. *
  4. * Author(s):
  5. * Jan Glauber <jang@linux.vnet.ibm.com>
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/slab.h>
  9. #include <linux/export.h>
  10. #include <linux/iommu-helper.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/pci.h>
  13. #include <asm/pci_dma.h>
  14. static struct kmem_cache *dma_region_table_cache;
  15. static struct kmem_cache *dma_page_table_cache;
  16. static unsigned long *dma_alloc_cpu_table(void)
  17. {
  18. unsigned long *table, *entry;
  19. table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC);
  20. if (!table)
  21. return NULL;
  22. for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++)
  23. *entry = ZPCI_TABLE_INVALID | ZPCI_TABLE_PROTECTED;
  24. return table;
  25. }
  26. static void dma_free_cpu_table(void *table)
  27. {
  28. kmem_cache_free(dma_region_table_cache, table);
  29. }
  30. static unsigned long *dma_alloc_page_table(void)
  31. {
  32. unsigned long *table, *entry;
  33. table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC);
  34. if (!table)
  35. return NULL;
  36. for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++)
  37. *entry = ZPCI_PTE_INVALID | ZPCI_TABLE_PROTECTED;
  38. return table;
  39. }
  40. static void dma_free_page_table(void *table)
  41. {
  42. kmem_cache_free(dma_page_table_cache, table);
  43. }
  44. static unsigned long *dma_get_seg_table_origin(unsigned long *entry)
  45. {
  46. unsigned long *sto;
  47. if (reg_entry_isvalid(*entry))
  48. sto = get_rt_sto(*entry);
  49. else {
  50. sto = dma_alloc_cpu_table();
  51. if (!sto)
  52. return NULL;
  53. set_rt_sto(entry, sto);
  54. validate_rt_entry(entry);
  55. entry_clr_protected(entry);
  56. }
  57. return sto;
  58. }
  59. static unsigned long *dma_get_page_table_origin(unsigned long *entry)
  60. {
  61. unsigned long *pto;
  62. if (reg_entry_isvalid(*entry))
  63. pto = get_st_pto(*entry);
  64. else {
  65. pto = dma_alloc_page_table();
  66. if (!pto)
  67. return NULL;
  68. set_st_pto(entry, pto);
  69. validate_st_entry(entry);
  70. entry_clr_protected(entry);
  71. }
  72. return pto;
  73. }
  74. static unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr)
  75. {
  76. unsigned long *sto, *pto;
  77. unsigned int rtx, sx, px;
  78. rtx = calc_rtx(dma_addr);
  79. sto = dma_get_seg_table_origin(&rto[rtx]);
  80. if (!sto)
  81. return NULL;
  82. sx = calc_sx(dma_addr);
  83. pto = dma_get_page_table_origin(&sto[sx]);
  84. if (!pto)
  85. return NULL;
  86. px = calc_px(dma_addr);
  87. return &pto[px];
  88. }
  89. static void dma_update_cpu_trans(struct zpci_dev *zdev, void *page_addr,
  90. dma_addr_t dma_addr, int flags)
  91. {
  92. unsigned long *entry;
  93. entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
  94. if (!entry) {
  95. WARN_ON_ONCE(1);
  96. return;
  97. }
  98. if (flags & ZPCI_PTE_INVALID) {
  99. invalidate_pt_entry(entry);
  100. return;
  101. } else {
  102. set_pt_pfaa(entry, page_addr);
  103. validate_pt_entry(entry);
  104. }
  105. if (flags & ZPCI_TABLE_PROTECTED)
  106. entry_set_protected(entry);
  107. else
  108. entry_clr_protected(entry);
  109. }
  110. static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
  111. dma_addr_t dma_addr, size_t size, int flags)
  112. {
  113. unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  114. u8 *page_addr = (u8 *) (pa & PAGE_MASK);
  115. dma_addr_t start_dma_addr = dma_addr;
  116. unsigned long irq_flags;
  117. int i, rc = 0;
  118. if (!nr_pages)
  119. return -EINVAL;
  120. spin_lock_irqsave(&zdev->dma_table_lock, irq_flags);
  121. if (!zdev->dma_table) {
  122. dev_err(&zdev->pdev->dev, "Missing DMA table\n");
  123. goto no_refresh;
  124. }
  125. for (i = 0; i < nr_pages; i++) {
  126. dma_update_cpu_trans(zdev, page_addr, dma_addr, flags);
  127. page_addr += PAGE_SIZE;
  128. dma_addr += PAGE_SIZE;
  129. }
  130. /*
  131. * rpcit is not required to establish new translations when previously
  132. * invalid translation-table entries are validated, however it is
  133. * required when altering previously valid entries.
  134. */
  135. if (!zdev->tlb_refresh &&
  136. ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID))
  137. /*
  138. * TODO: also need to check that the old entry is indeed INVALID
  139. * and not only for one page but for the whole range...
  140. * -> now we WARN_ON in that case but with lazy unmap that
  141. * needs to be redone!
  142. */
  143. goto no_refresh;
  144. rc = rpcit_instr((u64) zdev->fh << 32, start_dma_addr,
  145. nr_pages * PAGE_SIZE);
  146. no_refresh:
  147. spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags);
  148. return rc;
  149. }
  150. static void dma_free_seg_table(unsigned long entry)
  151. {
  152. unsigned long *sto = get_rt_sto(entry);
  153. int sx;
  154. for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++)
  155. if (reg_entry_isvalid(sto[sx]))
  156. dma_free_page_table(get_st_pto(sto[sx]));
  157. dma_free_cpu_table(sto);
  158. }
  159. static void dma_cleanup_tables(struct zpci_dev *zdev)
  160. {
  161. unsigned long *table;
  162. int rtx;
  163. if (!zdev || !zdev->dma_table)
  164. return;
  165. table = zdev->dma_table;
  166. for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++)
  167. if (reg_entry_isvalid(table[rtx]))
  168. dma_free_seg_table(table[rtx]);
  169. dma_free_cpu_table(table);
  170. zdev->dma_table = NULL;
  171. }
  172. static unsigned long __dma_alloc_iommu(struct zpci_dev *zdev, unsigned long start,
  173. int size)
  174. {
  175. unsigned long boundary_size = 0x1000000;
  176. return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages,
  177. start, size, 0, boundary_size, 0);
  178. }
  179. static unsigned long dma_alloc_iommu(struct zpci_dev *zdev, int size)
  180. {
  181. unsigned long offset, flags;
  182. spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
  183. offset = __dma_alloc_iommu(zdev, zdev->next_bit, size);
  184. if (offset == -1)
  185. offset = __dma_alloc_iommu(zdev, 0, size);
  186. if (offset != -1) {
  187. zdev->next_bit = offset + size;
  188. if (zdev->next_bit >= zdev->iommu_pages)
  189. zdev->next_bit = 0;
  190. }
  191. spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
  192. return offset;
  193. }
  194. static void dma_free_iommu(struct zpci_dev *zdev, unsigned long offset, int size)
  195. {
  196. unsigned long flags;
  197. spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
  198. if (!zdev->iommu_bitmap)
  199. goto out;
  200. bitmap_clear(zdev->iommu_bitmap, offset, size);
  201. if (offset >= zdev->next_bit)
  202. zdev->next_bit = offset + size;
  203. out:
  204. spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
  205. }
  206. int dma_set_mask(struct device *dev, u64 mask)
  207. {
  208. if (!dev->dma_mask || !dma_supported(dev, mask))
  209. return -EIO;
  210. *dev->dma_mask = mask;
  211. return 0;
  212. }
  213. EXPORT_SYMBOL_GPL(dma_set_mask);
  214. static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page,
  215. unsigned long offset, size_t size,
  216. enum dma_data_direction direction,
  217. struct dma_attrs *attrs)
  218. {
  219. struct zpci_dev *zdev = get_zdev(container_of(dev, struct pci_dev, dev));
  220. unsigned long nr_pages, iommu_page_index;
  221. unsigned long pa = page_to_phys(page) + offset;
  222. int flags = ZPCI_PTE_VALID;
  223. dma_addr_t dma_addr;
  224. WARN_ON_ONCE(offset > PAGE_SIZE);
  225. /* This rounds up number of pages based on size and offset */
  226. nr_pages = iommu_num_pages(pa, size, PAGE_SIZE);
  227. iommu_page_index = dma_alloc_iommu(zdev, nr_pages);
  228. if (iommu_page_index == -1)
  229. goto out_err;
  230. /* Use rounded up size */
  231. size = nr_pages * PAGE_SIZE;
  232. dma_addr = zdev->start_dma + iommu_page_index * PAGE_SIZE;
  233. if (dma_addr + size > zdev->end_dma) {
  234. dev_err(dev, "(dma_addr: 0x%16.16LX + size: 0x%16.16lx) > end_dma: 0x%16.16Lx\n",
  235. dma_addr, size, zdev->end_dma);
  236. goto out_free;
  237. }
  238. if (direction == DMA_NONE || direction == DMA_TO_DEVICE)
  239. flags |= ZPCI_TABLE_PROTECTED;
  240. if (!dma_update_trans(zdev, pa, dma_addr, size, flags)) {
  241. atomic64_add(nr_pages, (atomic64_t *) &zdev->fmb->mapped_pages);
  242. return dma_addr + offset;
  243. }
  244. out_free:
  245. dma_free_iommu(zdev, iommu_page_index, nr_pages);
  246. out_err:
  247. dev_err(dev, "Failed to map addr: %lx\n", pa);
  248. return DMA_ERROR_CODE;
  249. }
  250. static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr,
  251. size_t size, enum dma_data_direction direction,
  252. struct dma_attrs *attrs)
  253. {
  254. struct zpci_dev *zdev = get_zdev(container_of(dev, struct pci_dev, dev));
  255. unsigned long iommu_page_index;
  256. int npages;
  257. npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  258. dma_addr = dma_addr & PAGE_MASK;
  259. if (dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE,
  260. ZPCI_TABLE_PROTECTED | ZPCI_PTE_INVALID))
  261. dev_err(dev, "Failed to unmap addr: %Lx\n", dma_addr);
  262. atomic64_add(npages, (atomic64_t *) &zdev->fmb->unmapped_pages);
  263. iommu_page_index = (dma_addr - zdev->start_dma) >> PAGE_SHIFT;
  264. dma_free_iommu(zdev, iommu_page_index, npages);
  265. }
  266. static void *s390_dma_alloc(struct device *dev, size_t size,
  267. dma_addr_t *dma_handle, gfp_t flag,
  268. struct dma_attrs *attrs)
  269. {
  270. struct zpci_dev *zdev = get_zdev(container_of(dev, struct pci_dev, dev));
  271. struct page *page;
  272. unsigned long pa;
  273. dma_addr_t map;
  274. size = PAGE_ALIGN(size);
  275. page = alloc_pages(flag, get_order(size));
  276. if (!page)
  277. return NULL;
  278. atomic64_add(size / PAGE_SIZE, (atomic64_t *) &zdev->fmb->allocated_pages);
  279. pa = page_to_phys(page);
  280. memset((void *) pa, 0, size);
  281. map = s390_dma_map_pages(dev, page, pa % PAGE_SIZE,
  282. size, DMA_BIDIRECTIONAL, NULL);
  283. if (dma_mapping_error(dev, map)) {
  284. free_pages(pa, get_order(size));
  285. return NULL;
  286. }
  287. if (dma_handle)
  288. *dma_handle = map;
  289. return (void *) pa;
  290. }
  291. static void s390_dma_free(struct device *dev, size_t size,
  292. void *pa, dma_addr_t dma_handle,
  293. struct dma_attrs *attrs)
  294. {
  295. s390_dma_unmap_pages(dev, dma_handle, PAGE_ALIGN(size),
  296. DMA_BIDIRECTIONAL, NULL);
  297. free_pages((unsigned long) pa, get_order(size));
  298. }
  299. static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
  300. int nr_elements, enum dma_data_direction dir,
  301. struct dma_attrs *attrs)
  302. {
  303. int mapped_elements = 0;
  304. struct scatterlist *s;
  305. int i;
  306. for_each_sg(sg, s, nr_elements, i) {
  307. struct page *page = sg_page(s);
  308. s->dma_address = s390_dma_map_pages(dev, page, s->offset,
  309. s->length, dir, NULL);
  310. if (!dma_mapping_error(dev, s->dma_address)) {
  311. s->dma_length = s->length;
  312. mapped_elements++;
  313. } else
  314. goto unmap;
  315. }
  316. out:
  317. return mapped_elements;
  318. unmap:
  319. for_each_sg(sg, s, mapped_elements, i) {
  320. if (s->dma_address)
  321. s390_dma_unmap_pages(dev, s->dma_address, s->dma_length,
  322. dir, NULL);
  323. s->dma_address = 0;
  324. s->dma_length = 0;
  325. }
  326. mapped_elements = 0;
  327. goto out;
  328. }
  329. static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
  330. int nr_elements, enum dma_data_direction dir,
  331. struct dma_attrs *attrs)
  332. {
  333. struct scatterlist *s;
  334. int i;
  335. for_each_sg(sg, s, nr_elements, i) {
  336. s390_dma_unmap_pages(dev, s->dma_address, s->dma_length, dir, NULL);
  337. s->dma_address = 0;
  338. s->dma_length = 0;
  339. }
  340. }
  341. int zpci_dma_init_device(struct zpci_dev *zdev)
  342. {
  343. unsigned int bitmap_order;
  344. int rc;
  345. spin_lock_init(&zdev->iommu_bitmap_lock);
  346. spin_lock_init(&zdev->dma_table_lock);
  347. zdev->dma_table = dma_alloc_cpu_table();
  348. if (!zdev->dma_table) {
  349. rc = -ENOMEM;
  350. goto out_clean;
  351. }
  352. zdev->iommu_size = (unsigned long) high_memory - PAGE_OFFSET;
  353. zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT;
  354. bitmap_order = get_order(zdev->iommu_pages / 8);
  355. pr_info("iommu_size: 0x%lx iommu_pages: 0x%lx bitmap_order: %i\n",
  356. zdev->iommu_size, zdev->iommu_pages, bitmap_order);
  357. zdev->iommu_bitmap = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO,
  358. bitmap_order);
  359. if (!zdev->iommu_bitmap) {
  360. rc = -ENOMEM;
  361. goto out_reg;
  362. }
  363. rc = zpci_register_ioat(zdev,
  364. 0,
  365. zdev->start_dma + PAGE_OFFSET,
  366. zdev->start_dma + zdev->iommu_size - 1,
  367. (u64) zdev->dma_table);
  368. if (rc)
  369. goto out_reg;
  370. return 0;
  371. out_reg:
  372. dma_free_cpu_table(zdev->dma_table);
  373. out_clean:
  374. return rc;
  375. }
  376. void zpci_dma_exit_device(struct zpci_dev *zdev)
  377. {
  378. zpci_unregister_ioat(zdev, 0);
  379. dma_cleanup_tables(zdev);
  380. free_pages((unsigned long) zdev->iommu_bitmap,
  381. get_order(zdev->iommu_pages / 8));
  382. zdev->iommu_bitmap = NULL;
  383. zdev->next_bit = 0;
  384. }
  385. static int __init dma_alloc_cpu_table_caches(void)
  386. {
  387. dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables",
  388. ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN,
  389. 0, NULL);
  390. if (!dma_region_table_cache)
  391. return -ENOMEM;
  392. dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables",
  393. ZPCI_PT_SIZE, ZPCI_PT_ALIGN,
  394. 0, NULL);
  395. if (!dma_page_table_cache) {
  396. kmem_cache_destroy(dma_region_table_cache);
  397. return -ENOMEM;
  398. }
  399. return 0;
  400. }
  401. int __init zpci_dma_init(void)
  402. {
  403. return dma_alloc_cpu_table_caches();
  404. }
  405. void zpci_dma_exit(void)
  406. {
  407. kmem_cache_destroy(dma_page_table_cache);
  408. kmem_cache_destroy(dma_region_table_cache);
  409. }
  410. #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
  411. static int __init dma_debug_do_init(void)
  412. {
  413. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  414. return 0;
  415. }
  416. fs_initcall(dma_debug_do_init);
  417. struct dma_map_ops s390_dma_ops = {
  418. .alloc = s390_dma_alloc,
  419. .free = s390_dma_free,
  420. .map_sg = s390_dma_map_sg,
  421. .unmap_sg = s390_dma_unmap_sg,
  422. .map_page = s390_dma_map_pages,
  423. .unmap_page = s390_dma_unmap_pages,
  424. /* if we support direct DMA this must be conditional */
  425. .is_phys = 0,
  426. /* dma_supported is unconditionally true without a callback */
  427. };
  428. EXPORT_SYMBOL_GPL(s390_dma_ops);