eeh_cache.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. /*
  2. * PCI address cache; allows the lookup of PCI devices based on I/O address
  3. *
  4. * Copyright IBM Corporation 2004
  5. * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/list.h>
  22. #include <linux/pci.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/slab.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/atomic.h>
  27. #include <asm/pci-bridge.h>
  28. #include <asm/ppc-pci.h>
  29. /**
  30. * The pci address cache subsystem. This subsystem places
  31. * PCI device address resources into a red-black tree, sorted
  32. * according to the address range, so that given only an i/o
  33. * address, the corresponding PCI device can be **quickly**
  34. * found. It is safe to perform an address lookup in an interrupt
  35. * context; this ability is an important feature.
  36. *
  37. * Currently, the only customer of this code is the EEH subsystem;
  38. * thus, this code has been somewhat tailored to suit EEH better.
  39. * In particular, the cache does *not* hold the addresses of devices
  40. * for which EEH is not enabled.
  41. *
  42. * (Implementation Note: The RB tree seems to be better/faster
  43. * than any hash algo I could think of for this problem, even
  44. * with the penalty of slow pointer chases for d-cache misses).
  45. */
  46. struct pci_io_addr_range {
  47. struct rb_node rb_node;
  48. unsigned long addr_lo;
  49. unsigned long addr_hi;
  50. struct eeh_dev *edev;
  51. struct pci_dev *pcidev;
  52. unsigned int flags;
  53. };
  54. static struct pci_io_addr_cache {
  55. struct rb_root rb_root;
  56. spinlock_t piar_lock;
  57. } pci_io_addr_cache_root;
  58. static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
  59. {
  60. struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
  61. while (n) {
  62. struct pci_io_addr_range *piar;
  63. piar = rb_entry(n, struct pci_io_addr_range, rb_node);
  64. if (addr < piar->addr_lo) {
  65. n = n->rb_left;
  66. } else {
  67. if (addr > piar->addr_hi) {
  68. n = n->rb_right;
  69. } else {
  70. pci_dev_get(piar->pcidev);
  71. return piar->edev;
  72. }
  73. }
  74. }
  75. return NULL;
  76. }
  77. /**
  78. * eeh_addr_cache_get_dev - Get device, given only address
  79. * @addr: mmio (PIO) phys address or i/o port number
  80. *
  81. * Given an mmio phys address, or a port number, find a pci device
  82. * that implements this address. Be sure to pci_dev_put the device
  83. * when finished. I/O port numbers are assumed to be offset
  84. * from zero (that is, they do *not* have pci_io_addr added in).
  85. * It is safe to call this function within an interrupt.
  86. */
  87. struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
  88. {
  89. struct eeh_dev *edev;
  90. unsigned long flags;
  91. spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
  92. edev = __eeh_addr_cache_get_device(addr);
  93. spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
  94. return edev;
  95. }
  96. #ifdef DEBUG
  97. /*
  98. * Handy-dandy debug print routine, does nothing more
  99. * than print out the contents of our addr cache.
  100. */
  101. static void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
  102. {
  103. struct rb_node *n;
  104. int cnt = 0;
  105. n = rb_first(&cache->rb_root);
  106. while (n) {
  107. struct pci_io_addr_range *piar;
  108. piar = rb_entry(n, struct pci_io_addr_range, rb_node);
  109. pr_debug("PCI: %s addr range %d [%lx-%lx]: %s\n",
  110. (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
  111. piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
  112. cnt++;
  113. n = rb_next(n);
  114. }
  115. }
  116. #endif
  117. /* Insert address range into the rb tree. */
  118. static struct pci_io_addr_range *
  119. eeh_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
  120. unsigned long ahi, unsigned int flags)
  121. {
  122. struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
  123. struct rb_node *parent = NULL;
  124. struct pci_io_addr_range *piar;
  125. /* Walk tree, find a place to insert into tree */
  126. while (*p) {
  127. parent = *p;
  128. piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
  129. if (ahi < piar->addr_lo) {
  130. p = &parent->rb_left;
  131. } else if (alo > piar->addr_hi) {
  132. p = &parent->rb_right;
  133. } else {
  134. if (dev != piar->pcidev ||
  135. alo != piar->addr_lo || ahi != piar->addr_hi) {
  136. pr_warning("PIAR: overlapping address range\n");
  137. }
  138. return piar;
  139. }
  140. }
  141. piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
  142. if (!piar)
  143. return NULL;
  144. pci_dev_get(dev);
  145. piar->addr_lo = alo;
  146. piar->addr_hi = ahi;
  147. piar->edev = pci_dev_to_eeh_dev(dev);
  148. piar->pcidev = dev;
  149. piar->flags = flags;
  150. #ifdef DEBUG
  151. pr_debug("PIAR: insert range=[%lx:%lx] dev=%s\n",
  152. alo, ahi, pci_name(dev));
  153. #endif
  154. rb_link_node(&piar->rb_node, parent, p);
  155. rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
  156. return piar;
  157. }
  158. static void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
  159. {
  160. struct device_node *dn;
  161. struct eeh_dev *edev;
  162. int i;
  163. dn = pci_device_to_OF_node(dev);
  164. if (!dn) {
  165. pr_warning("PCI: no pci dn found for dev=%s\n", pci_name(dev));
  166. return;
  167. }
  168. edev = of_node_to_eeh_dev(dn);
  169. if (!edev) {
  170. pr_warning("PCI: no EEH dev found for dn=%s\n",
  171. dn->full_name);
  172. return;
  173. }
  174. /* Skip any devices for which EEH is not enabled. */
  175. if (!edev->pe) {
  176. #ifdef DEBUG
  177. pr_info("PCI: skip building address cache for=%s - %s\n",
  178. pci_name(dev), dn->full_name);
  179. #endif
  180. return;
  181. }
  182. /* Walk resources on this device, poke them into the tree */
  183. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  184. unsigned long start = pci_resource_start(dev,i);
  185. unsigned long end = pci_resource_end(dev,i);
  186. unsigned int flags = pci_resource_flags(dev,i);
  187. /* We are interested only bus addresses, not dma or other stuff */
  188. if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
  189. continue;
  190. if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
  191. continue;
  192. eeh_addr_cache_insert(dev, start, end, flags);
  193. }
  194. }
  195. /**
  196. * eeh_addr_cache_insert_dev - Add a device to the address cache
  197. * @dev: PCI device whose I/O addresses we are interested in.
  198. *
  199. * In order to support the fast lookup of devices based on addresses,
  200. * we maintain a cache of devices that can be quickly searched.
  201. * This routine adds a device to that cache.
  202. */
  203. void eeh_addr_cache_insert_dev(struct pci_dev *dev)
  204. {
  205. unsigned long flags;
  206. /* Ignore PCI bridges */
  207. if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE)
  208. return;
  209. spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
  210. __eeh_addr_cache_insert_dev(dev);
  211. spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
  212. }
  213. static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
  214. {
  215. struct rb_node *n;
  216. restart:
  217. n = rb_first(&pci_io_addr_cache_root.rb_root);
  218. while (n) {
  219. struct pci_io_addr_range *piar;
  220. piar = rb_entry(n, struct pci_io_addr_range, rb_node);
  221. if (piar->pcidev == dev) {
  222. rb_erase(n, &pci_io_addr_cache_root.rb_root);
  223. pci_dev_put(piar->pcidev);
  224. kfree(piar);
  225. goto restart;
  226. }
  227. n = rb_next(n);
  228. }
  229. }
  230. /**
  231. * eeh_addr_cache_rmv_dev - remove pci device from addr cache
  232. * @dev: device to remove
  233. *
  234. * Remove a device from the addr-cache tree.
  235. * This is potentially expensive, since it will walk
  236. * the tree multiple times (once per resource).
  237. * But so what; device removal doesn't need to be that fast.
  238. */
  239. void eeh_addr_cache_rmv_dev(struct pci_dev *dev)
  240. {
  241. unsigned long flags;
  242. spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
  243. __eeh_addr_cache_rmv_dev(dev);
  244. spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
  245. }
  246. /**
  247. * eeh_addr_cache_build - Build a cache of I/O addresses
  248. *
  249. * Build a cache of pci i/o addresses. This cache will be used to
  250. * find the pci device that corresponds to a given address.
  251. * This routine scans all pci busses to build the cache.
  252. * Must be run late in boot process, after the pci controllers
  253. * have been scanned for devices (after all device resources are known).
  254. */
  255. void __init eeh_addr_cache_build(void)
  256. {
  257. struct device_node *dn;
  258. struct eeh_dev *edev;
  259. struct pci_dev *dev = NULL;
  260. spin_lock_init(&pci_io_addr_cache_root.piar_lock);
  261. for_each_pci_dev(dev) {
  262. eeh_addr_cache_insert_dev(dev);
  263. dn = pci_device_to_OF_node(dev);
  264. if (!dn)
  265. continue;
  266. edev = of_node_to_eeh_dev(dn);
  267. if (!edev)
  268. continue;
  269. pci_dev_get(dev); /* matching put is in eeh_remove_device() */
  270. dev->dev.archdata.edev = edev;
  271. edev->pdev = dev;
  272. eeh_sysfs_add_device(dev);
  273. }
  274. #ifdef DEBUG
  275. /* Verify tree built up above, echo back the list of addrs. */
  276. eeh_addr_cache_print(&pci_io_addr_cache_root);
  277. #endif
  278. }