book3s_hv_rm_mmu.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/string.h>
  10. #include <linux/kvm.h>
  11. #include <linux/kvm_host.h>
  12. #include <linux/hugetlb.h>
  13. #include <linux/module.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/kvm_ppc.h>
  16. #include <asm/kvm_book3s.h>
  17. #include <asm/mmu-hash64.h>
  18. #include <asm/hvcall.h>
  19. #include <asm/synch.h>
  20. #include <asm/ppc-opcode.h>
  21. /* Translate address of a vmalloc'd thing to a linear map address */
  22. static void *real_vmalloc_addr(void *x)
  23. {
  24. unsigned long addr = (unsigned long) x;
  25. pte_t *p;
  26. p = find_linux_pte(swapper_pg_dir, addr);
  27. if (!p || !pte_present(*p))
  28. return NULL;
  29. /* assume we don't have huge pages in vmalloc space... */
  30. addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
  31. return __va(addr);
  32. }
  33. /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
  34. static int global_invalidates(struct kvm *kvm, unsigned long flags)
  35. {
  36. int global;
  37. /*
  38. * If there is only one vcore, and it's currently running,
  39. * we can use tlbiel as long as we mark all other physical
  40. * cores as potentially having stale TLB entries for this lpid.
  41. * If we're not using MMU notifiers, we never take pages away
  42. * from the guest, so we can use tlbiel if requested.
  43. * Otherwise, don't use tlbiel.
  44. */
  45. if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcore)
  46. global = 0;
  47. else if (kvm->arch.using_mmu_notifiers)
  48. global = 1;
  49. else
  50. global = !(flags & H_LOCAL);
  51. if (!global) {
  52. /* any other core might now have stale TLB entries... */
  53. smp_wmb();
  54. cpumask_setall(&kvm->arch.need_tlb_flush);
  55. cpumask_clear_cpu(local_paca->kvm_hstate.kvm_vcore->pcpu,
  56. &kvm->arch.need_tlb_flush);
  57. }
  58. return global;
  59. }
  60. /*
  61. * Add this HPTE into the chain for the real page.
  62. * Must be called with the chain locked; it unlocks the chain.
  63. */
  64. void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
  65. unsigned long *rmap, long pte_index, int realmode)
  66. {
  67. struct revmap_entry *head, *tail;
  68. unsigned long i;
  69. if (*rmap & KVMPPC_RMAP_PRESENT) {
  70. i = *rmap & KVMPPC_RMAP_INDEX;
  71. head = &kvm->arch.revmap[i];
  72. if (realmode)
  73. head = real_vmalloc_addr(head);
  74. tail = &kvm->arch.revmap[head->back];
  75. if (realmode)
  76. tail = real_vmalloc_addr(tail);
  77. rev->forw = i;
  78. rev->back = head->back;
  79. tail->forw = pte_index;
  80. head->back = pte_index;
  81. } else {
  82. rev->forw = rev->back = pte_index;
  83. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
  84. pte_index | KVMPPC_RMAP_PRESENT;
  85. }
  86. unlock_rmap(rmap);
  87. }
  88. EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
  89. /*
  90. * Note modification of an HPTE; set the HPTE modified bit
  91. * if anyone is interested.
  92. */
  93. static inline void note_hpte_modification(struct kvm *kvm,
  94. struct revmap_entry *rev)
  95. {
  96. if (atomic_read(&kvm->arch.hpte_mod_interest))
  97. rev->guest_rpte |= HPTE_GR_MODIFIED;
  98. }
  99. /* Remove this HPTE from the chain for a real page */
  100. static void remove_revmap_chain(struct kvm *kvm, long pte_index,
  101. struct revmap_entry *rev,
  102. unsigned long hpte_v, unsigned long hpte_r)
  103. {
  104. struct revmap_entry *next, *prev;
  105. unsigned long gfn, ptel, head;
  106. struct kvm_memory_slot *memslot;
  107. unsigned long *rmap;
  108. unsigned long rcbits;
  109. rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
  110. ptel = rev->guest_rpte |= rcbits;
  111. gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
  112. memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
  113. if (!memslot)
  114. return;
  115. rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
  116. lock_rmap(rmap);
  117. head = *rmap & KVMPPC_RMAP_INDEX;
  118. next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
  119. prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
  120. next->back = rev->back;
  121. prev->forw = rev->forw;
  122. if (head == pte_index) {
  123. head = rev->forw;
  124. if (head == pte_index)
  125. *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
  126. else
  127. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
  128. }
  129. *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
  130. unlock_rmap(rmap);
  131. }
  132. static pte_t lookup_linux_pte(pgd_t *pgdir, unsigned long hva,
  133. int writing, unsigned long *pte_sizep)
  134. {
  135. pte_t *ptep;
  136. unsigned long ps = *pte_sizep;
  137. unsigned int shift;
  138. ptep = find_linux_pte_or_hugepte(pgdir, hva, &shift);
  139. if (!ptep)
  140. return __pte(0);
  141. if (shift)
  142. *pte_sizep = 1ul << shift;
  143. else
  144. *pte_sizep = PAGE_SIZE;
  145. if (ps > *pte_sizep)
  146. return __pte(0);
  147. if (!pte_present(*ptep))
  148. return __pte(0);
  149. return kvmppc_read_update_linux_pte(ptep, writing);
  150. }
  151. static inline void unlock_hpte(unsigned long *hpte, unsigned long hpte_v)
  152. {
  153. asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
  154. hpte[0] = hpte_v;
  155. }
  156. long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
  157. long pte_index, unsigned long pteh, unsigned long ptel,
  158. pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
  159. {
  160. unsigned long i, pa, gpa, gfn, psize;
  161. unsigned long slot_fn, hva;
  162. unsigned long *hpte;
  163. struct revmap_entry *rev;
  164. unsigned long g_ptel;
  165. struct kvm_memory_slot *memslot;
  166. unsigned long *physp, pte_size;
  167. unsigned long is_io;
  168. unsigned long *rmap;
  169. pte_t pte;
  170. unsigned int writing;
  171. unsigned long mmu_seq;
  172. unsigned long rcbits;
  173. psize = hpte_page_size(pteh, ptel);
  174. if (!psize)
  175. return H_PARAMETER;
  176. writing = hpte_is_writable(ptel);
  177. pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
  178. ptel &= ~HPTE_GR_RESERVED;
  179. g_ptel = ptel;
  180. /* used later to detect if we might have been invalidated */
  181. mmu_seq = kvm->mmu_notifier_seq;
  182. smp_rmb();
  183. /* Find the memslot (if any) for this address */
  184. gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
  185. gfn = gpa >> PAGE_SHIFT;
  186. memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
  187. pa = 0;
  188. is_io = ~0ul;
  189. rmap = NULL;
  190. if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
  191. /* PPC970 can't do emulated MMIO */
  192. if (!cpu_has_feature(CPU_FTR_ARCH_206))
  193. return H_PARAMETER;
  194. /* Emulated MMIO - mark this with key=31 */
  195. pteh |= HPTE_V_ABSENT;
  196. ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  197. goto do_insert;
  198. }
  199. /* Check if the requested page fits entirely in the memslot. */
  200. if (!slot_is_aligned(memslot, psize))
  201. return H_PARAMETER;
  202. slot_fn = gfn - memslot->base_gfn;
  203. rmap = &memslot->arch.rmap[slot_fn];
  204. if (!kvm->arch.using_mmu_notifiers) {
  205. physp = memslot->arch.slot_phys;
  206. if (!physp)
  207. return H_PARAMETER;
  208. physp += slot_fn;
  209. if (realmode)
  210. physp = real_vmalloc_addr(physp);
  211. pa = *physp;
  212. if (!pa)
  213. return H_TOO_HARD;
  214. is_io = pa & (HPTE_R_I | HPTE_R_W);
  215. pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
  216. pa &= PAGE_MASK;
  217. } else {
  218. /* Translate to host virtual address */
  219. hva = __gfn_to_hva_memslot(memslot, gfn);
  220. /* Look up the Linux PTE for the backing page */
  221. pte_size = psize;
  222. pte = lookup_linux_pte(pgdir, hva, writing, &pte_size);
  223. if (pte_present(pte)) {
  224. if (writing && !pte_write(pte))
  225. /* make the actual HPTE be read-only */
  226. ptel = hpte_make_readonly(ptel);
  227. is_io = hpte_cache_bits(pte_val(pte));
  228. pa = pte_pfn(pte) << PAGE_SHIFT;
  229. }
  230. }
  231. if (pte_size < psize)
  232. return H_PARAMETER;
  233. if (pa && pte_size > psize)
  234. pa |= gpa & (pte_size - 1);
  235. ptel &= ~(HPTE_R_PP0 - psize);
  236. ptel |= pa;
  237. if (pa)
  238. pteh |= HPTE_V_VALID;
  239. else
  240. pteh |= HPTE_V_ABSENT;
  241. /* Check WIMG */
  242. if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
  243. if (is_io)
  244. return H_PARAMETER;
  245. /*
  246. * Allow guest to map emulated device memory as
  247. * uncacheable, but actually make it cacheable.
  248. */
  249. ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
  250. ptel |= HPTE_R_M;
  251. }
  252. /* Find and lock the HPTEG slot to use */
  253. do_insert:
  254. if (pte_index >= kvm->arch.hpt_npte)
  255. return H_PARAMETER;
  256. if (likely((flags & H_EXACT) == 0)) {
  257. pte_index &= ~7UL;
  258. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  259. for (i = 0; i < 8; ++i) {
  260. if ((*hpte & HPTE_V_VALID) == 0 &&
  261. try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  262. HPTE_V_ABSENT))
  263. break;
  264. hpte += 2;
  265. }
  266. if (i == 8) {
  267. /*
  268. * Since try_lock_hpte doesn't retry (not even stdcx.
  269. * failures), it could be that there is a free slot
  270. * but we transiently failed to lock it. Try again,
  271. * actually locking each slot and checking it.
  272. */
  273. hpte -= 16;
  274. for (i = 0; i < 8; ++i) {
  275. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  276. cpu_relax();
  277. if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)))
  278. break;
  279. *hpte &= ~HPTE_V_HVLOCK;
  280. hpte += 2;
  281. }
  282. if (i == 8)
  283. return H_PTEG_FULL;
  284. }
  285. pte_index += i;
  286. } else {
  287. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  288. if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  289. HPTE_V_ABSENT)) {
  290. /* Lock the slot and check again */
  291. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  292. cpu_relax();
  293. if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
  294. *hpte &= ~HPTE_V_HVLOCK;
  295. return H_PTEG_FULL;
  296. }
  297. }
  298. }
  299. /* Save away the guest's idea of the second HPTE dword */
  300. rev = &kvm->arch.revmap[pte_index];
  301. if (realmode)
  302. rev = real_vmalloc_addr(rev);
  303. if (rev) {
  304. rev->guest_rpte = g_ptel;
  305. note_hpte_modification(kvm, rev);
  306. }
  307. /* Link HPTE into reverse-map chain */
  308. if (pteh & HPTE_V_VALID) {
  309. if (realmode)
  310. rmap = real_vmalloc_addr(rmap);
  311. lock_rmap(rmap);
  312. /* Check for pending invalidations under the rmap chain lock */
  313. if (kvm->arch.using_mmu_notifiers &&
  314. mmu_notifier_retry(kvm, mmu_seq)) {
  315. /* inval in progress, write a non-present HPTE */
  316. pteh |= HPTE_V_ABSENT;
  317. pteh &= ~HPTE_V_VALID;
  318. unlock_rmap(rmap);
  319. } else {
  320. kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
  321. realmode);
  322. /* Only set R/C in real HPTE if already set in *rmap */
  323. rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
  324. ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
  325. }
  326. }
  327. hpte[1] = ptel;
  328. /* Write the first HPTE dword, unlocking the HPTE and making it valid */
  329. eieio();
  330. hpte[0] = pteh;
  331. asm volatile("ptesync" : : : "memory");
  332. *pte_idx_ret = pte_index;
  333. return H_SUCCESS;
  334. }
  335. EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
  336. long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  337. long pte_index, unsigned long pteh, unsigned long ptel)
  338. {
  339. return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
  340. vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]);
  341. }
  342. #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
  343. static inline int try_lock_tlbie(unsigned int *lock)
  344. {
  345. unsigned int tmp, old;
  346. unsigned int token = LOCK_TOKEN;
  347. asm volatile("1:lwarx %1,0,%2\n"
  348. " cmpwi cr0,%1,0\n"
  349. " bne 2f\n"
  350. " stwcx. %3,0,%2\n"
  351. " bne- 1b\n"
  352. " isync\n"
  353. "2:"
  354. : "=&r" (tmp), "=&r" (old)
  355. : "r" (lock), "r" (token)
  356. : "cc", "memory");
  357. return old == 0;
  358. }
  359. long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
  360. unsigned long pte_index, unsigned long avpn,
  361. unsigned long *hpret)
  362. {
  363. unsigned long *hpte;
  364. unsigned long v, r, rb;
  365. struct revmap_entry *rev;
  366. if (pte_index >= kvm->arch.hpt_npte)
  367. return H_PARAMETER;
  368. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  369. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  370. cpu_relax();
  371. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  372. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
  373. ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
  374. hpte[0] &= ~HPTE_V_HVLOCK;
  375. return H_NOT_FOUND;
  376. }
  377. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  378. v = hpte[0] & ~HPTE_V_HVLOCK;
  379. if (v & HPTE_V_VALID) {
  380. hpte[0] &= ~HPTE_V_VALID;
  381. rb = compute_tlbie_rb(v, hpte[1], pte_index);
  382. if (global_invalidates(kvm, flags)) {
  383. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  384. cpu_relax();
  385. asm volatile("ptesync" : : : "memory");
  386. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  387. : : "r" (rb), "r" (kvm->arch.lpid));
  388. asm volatile("ptesync" : : : "memory");
  389. kvm->arch.tlbie_lock = 0;
  390. } else {
  391. asm volatile("ptesync" : : : "memory");
  392. asm volatile("tlbiel %0" : : "r" (rb));
  393. asm volatile("ptesync" : : : "memory");
  394. }
  395. /* Read PTE low word after tlbie to get final R/C values */
  396. remove_revmap_chain(kvm, pte_index, rev, v, hpte[1]);
  397. }
  398. r = rev->guest_rpte & ~HPTE_GR_RESERVED;
  399. note_hpte_modification(kvm, rev);
  400. unlock_hpte(hpte, 0);
  401. hpret[0] = v;
  402. hpret[1] = r;
  403. return H_SUCCESS;
  404. }
  405. EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
  406. long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
  407. unsigned long pte_index, unsigned long avpn)
  408. {
  409. return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
  410. &vcpu->arch.gpr[4]);
  411. }
  412. long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
  413. {
  414. struct kvm *kvm = vcpu->kvm;
  415. unsigned long *args = &vcpu->arch.gpr[4];
  416. unsigned long *hp, *hptes[4], tlbrb[4];
  417. long int i, j, k, n, found, indexes[4];
  418. unsigned long flags, req, pte_index, rcbits;
  419. long int local = 0;
  420. long int ret = H_SUCCESS;
  421. struct revmap_entry *rev, *revs[4];
  422. if (atomic_read(&kvm->online_vcpus) == 1)
  423. local = 1;
  424. for (i = 0; i < 4 && ret == H_SUCCESS; ) {
  425. n = 0;
  426. for (; i < 4; ++i) {
  427. j = i * 2;
  428. pte_index = args[j];
  429. flags = pte_index >> 56;
  430. pte_index &= ((1ul << 56) - 1);
  431. req = flags >> 6;
  432. flags &= 3;
  433. if (req == 3) { /* no more requests */
  434. i = 4;
  435. break;
  436. }
  437. if (req != 1 || flags == 3 ||
  438. pte_index >= kvm->arch.hpt_npte) {
  439. /* parameter error */
  440. args[j] = ((0xa0 | flags) << 56) + pte_index;
  441. ret = H_PARAMETER;
  442. break;
  443. }
  444. hp = (unsigned long *)
  445. (kvm->arch.hpt_virt + (pte_index << 4));
  446. /* to avoid deadlock, don't spin except for first */
  447. if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
  448. if (n)
  449. break;
  450. while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
  451. cpu_relax();
  452. }
  453. found = 0;
  454. if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) {
  455. switch (flags & 3) {
  456. case 0: /* absolute */
  457. found = 1;
  458. break;
  459. case 1: /* andcond */
  460. if (!(hp[0] & args[j + 1]))
  461. found = 1;
  462. break;
  463. case 2: /* AVPN */
  464. if ((hp[0] & ~0x7fUL) == args[j + 1])
  465. found = 1;
  466. break;
  467. }
  468. }
  469. if (!found) {
  470. hp[0] &= ~HPTE_V_HVLOCK;
  471. args[j] = ((0x90 | flags) << 56) + pte_index;
  472. continue;
  473. }
  474. args[j] = ((0x80 | flags) << 56) + pte_index;
  475. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  476. note_hpte_modification(kvm, rev);
  477. if (!(hp[0] & HPTE_V_VALID)) {
  478. /* insert R and C bits from PTE */
  479. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  480. args[j] |= rcbits << (56 - 5);
  481. hp[0] = 0;
  482. continue;
  483. }
  484. hp[0] &= ~HPTE_V_VALID; /* leave it locked */
  485. tlbrb[n] = compute_tlbie_rb(hp[0], hp[1], pte_index);
  486. indexes[n] = j;
  487. hptes[n] = hp;
  488. revs[n] = rev;
  489. ++n;
  490. }
  491. if (!n)
  492. break;
  493. /* Now that we've collected a batch, do the tlbies */
  494. if (!local) {
  495. while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
  496. cpu_relax();
  497. asm volatile("ptesync" : : : "memory");
  498. for (k = 0; k < n; ++k)
  499. asm volatile(PPC_TLBIE(%1,%0) : :
  500. "r" (tlbrb[k]),
  501. "r" (kvm->arch.lpid));
  502. asm volatile("eieio; tlbsync; ptesync" : : : "memory");
  503. kvm->arch.tlbie_lock = 0;
  504. } else {
  505. asm volatile("ptesync" : : : "memory");
  506. for (k = 0; k < n; ++k)
  507. asm volatile("tlbiel %0" : : "r" (tlbrb[k]));
  508. asm volatile("ptesync" : : : "memory");
  509. }
  510. /* Read PTE low words after tlbie to get final R/C values */
  511. for (k = 0; k < n; ++k) {
  512. j = indexes[k];
  513. pte_index = args[j] & ((1ul << 56) - 1);
  514. hp = hptes[k];
  515. rev = revs[k];
  516. remove_revmap_chain(kvm, pte_index, rev, hp[0], hp[1]);
  517. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  518. args[j] |= rcbits << (56 - 5);
  519. hp[0] = 0;
  520. }
  521. }
  522. return ret;
  523. }
  524. long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
  525. unsigned long pte_index, unsigned long avpn,
  526. unsigned long va)
  527. {
  528. struct kvm *kvm = vcpu->kvm;
  529. unsigned long *hpte;
  530. struct revmap_entry *rev;
  531. unsigned long v, r, rb, mask, bits;
  532. if (pte_index >= kvm->arch.hpt_npte)
  533. return H_PARAMETER;
  534. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  535. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  536. cpu_relax();
  537. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  538. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
  539. hpte[0] &= ~HPTE_V_HVLOCK;
  540. return H_NOT_FOUND;
  541. }
  542. v = hpte[0];
  543. bits = (flags << 55) & HPTE_R_PP0;
  544. bits |= (flags << 48) & HPTE_R_KEY_HI;
  545. bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
  546. /* Update guest view of 2nd HPTE dword */
  547. mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
  548. HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  549. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  550. if (rev) {
  551. r = (rev->guest_rpte & ~mask) | bits;
  552. rev->guest_rpte = r;
  553. note_hpte_modification(kvm, rev);
  554. }
  555. r = (hpte[1] & ~mask) | bits;
  556. /* Update HPTE */
  557. if (v & HPTE_V_VALID) {
  558. rb = compute_tlbie_rb(v, r, pte_index);
  559. hpte[0] = v & ~HPTE_V_VALID;
  560. if (global_invalidates(kvm, flags)) {
  561. while(!try_lock_tlbie(&kvm->arch.tlbie_lock))
  562. cpu_relax();
  563. asm volatile("ptesync" : : : "memory");
  564. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  565. : : "r" (rb), "r" (kvm->arch.lpid));
  566. asm volatile("ptesync" : : : "memory");
  567. kvm->arch.tlbie_lock = 0;
  568. } else {
  569. asm volatile("ptesync" : : : "memory");
  570. asm volatile("tlbiel %0" : : "r" (rb));
  571. asm volatile("ptesync" : : : "memory");
  572. }
  573. /*
  574. * If the host has this page as readonly but the guest
  575. * wants to make it read/write, reduce the permissions.
  576. * Checking the host permissions involves finding the
  577. * memslot and then the Linux PTE for the page.
  578. */
  579. if (hpte_is_writable(r) && kvm->arch.using_mmu_notifiers) {
  580. unsigned long psize, gfn, hva;
  581. struct kvm_memory_slot *memslot;
  582. pgd_t *pgdir = vcpu->arch.pgdir;
  583. pte_t pte;
  584. psize = hpte_page_size(v, r);
  585. gfn = ((r & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
  586. memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
  587. if (memslot) {
  588. hva = __gfn_to_hva_memslot(memslot, gfn);
  589. pte = lookup_linux_pte(pgdir, hva, 1, &psize);
  590. if (pte_present(pte) && !pte_write(pte))
  591. r = hpte_make_readonly(r);
  592. }
  593. }
  594. }
  595. hpte[1] = r;
  596. eieio();
  597. hpte[0] = v & ~HPTE_V_HVLOCK;
  598. asm volatile("ptesync" : : : "memory");
  599. return H_SUCCESS;
  600. }
  601. long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
  602. unsigned long pte_index)
  603. {
  604. struct kvm *kvm = vcpu->kvm;
  605. unsigned long *hpte, v, r;
  606. int i, n = 1;
  607. struct revmap_entry *rev = NULL;
  608. if (pte_index >= kvm->arch.hpt_npte)
  609. return H_PARAMETER;
  610. if (flags & H_READ_4) {
  611. pte_index &= ~3;
  612. n = 4;
  613. }
  614. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  615. for (i = 0; i < n; ++i, ++pte_index) {
  616. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  617. v = hpte[0] & ~HPTE_V_HVLOCK;
  618. r = hpte[1];
  619. if (v & HPTE_V_ABSENT) {
  620. v &= ~HPTE_V_ABSENT;
  621. v |= HPTE_V_VALID;
  622. }
  623. if (v & HPTE_V_VALID) {
  624. r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
  625. r &= ~HPTE_GR_RESERVED;
  626. }
  627. vcpu->arch.gpr[4 + i * 2] = v;
  628. vcpu->arch.gpr[5 + i * 2] = r;
  629. }
  630. return H_SUCCESS;
  631. }
  632. void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
  633. unsigned long pte_index)
  634. {
  635. unsigned long rb;
  636. hptep[0] &= ~HPTE_V_VALID;
  637. rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
  638. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  639. cpu_relax();
  640. asm volatile("ptesync" : : : "memory");
  641. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  642. : : "r" (rb), "r" (kvm->arch.lpid));
  643. asm volatile("ptesync" : : : "memory");
  644. kvm->arch.tlbie_lock = 0;
  645. }
  646. EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
  647. void kvmppc_clear_ref_hpte(struct kvm *kvm, unsigned long *hptep,
  648. unsigned long pte_index)
  649. {
  650. unsigned long rb;
  651. unsigned char rbyte;
  652. rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
  653. rbyte = (hptep[1] & ~HPTE_R_R) >> 8;
  654. /* modify only the second-last byte, which contains the ref bit */
  655. *((char *)hptep + 14) = rbyte;
  656. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  657. cpu_relax();
  658. asm volatile(PPC_TLBIE(%1,%0)"; eieio; tlbsync"
  659. : : "r" (rb), "r" (kvm->arch.lpid));
  660. asm volatile("ptesync" : : : "memory");
  661. kvm->arch.tlbie_lock = 0;
  662. }
  663. EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
  664. static int slb_base_page_shift[4] = {
  665. 24, /* 16M */
  666. 16, /* 64k */
  667. 34, /* 16G */
  668. 20, /* 1M, unsupported */
  669. };
  670. long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
  671. unsigned long valid)
  672. {
  673. unsigned int i;
  674. unsigned int pshift;
  675. unsigned long somask;
  676. unsigned long vsid, hash;
  677. unsigned long avpn;
  678. unsigned long *hpte;
  679. unsigned long mask, val;
  680. unsigned long v, r;
  681. /* Get page shift, work out hash and AVPN etc. */
  682. mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
  683. val = 0;
  684. pshift = 12;
  685. if (slb_v & SLB_VSID_L) {
  686. mask |= HPTE_V_LARGE;
  687. val |= HPTE_V_LARGE;
  688. pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
  689. }
  690. if (slb_v & SLB_VSID_B_1T) {
  691. somask = (1UL << 40) - 1;
  692. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
  693. vsid ^= vsid << 25;
  694. } else {
  695. somask = (1UL << 28) - 1;
  696. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
  697. }
  698. hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvm->arch.hpt_mask;
  699. avpn = slb_v & ~(somask >> 16); /* also includes B */
  700. avpn |= (eaddr & somask) >> 16;
  701. if (pshift >= 24)
  702. avpn &= ~((1UL << (pshift - 16)) - 1);
  703. else
  704. avpn &= ~0x7fUL;
  705. val |= avpn;
  706. for (;;) {
  707. hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7));
  708. for (i = 0; i < 16; i += 2) {
  709. /* Read the PTE racily */
  710. v = hpte[i] & ~HPTE_V_HVLOCK;
  711. /* Check valid/absent, hash, segment size and AVPN */
  712. if (!(v & valid) || (v & mask) != val)
  713. continue;
  714. /* Lock the PTE and read it under the lock */
  715. while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
  716. cpu_relax();
  717. v = hpte[i] & ~HPTE_V_HVLOCK;
  718. r = hpte[i+1];
  719. /*
  720. * Check the HPTE again, including large page size
  721. * Since we don't currently allow any MPSS (mixed
  722. * page-size segment) page sizes, it is sufficient
  723. * to check against the actual page size.
  724. */
  725. if ((v & valid) && (v & mask) == val &&
  726. hpte_page_size(v, r) == (1ul << pshift))
  727. /* Return with the HPTE still locked */
  728. return (hash << 3) + (i >> 1);
  729. /* Unlock and move on */
  730. hpte[i] = v;
  731. }
  732. if (val & HPTE_V_SECONDARY)
  733. break;
  734. val |= HPTE_V_SECONDARY;
  735. hash = hash ^ kvm->arch.hpt_mask;
  736. }
  737. return -1;
  738. }
  739. EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
  740. /*
  741. * Called in real mode to check whether an HPTE not found fault
  742. * is due to accessing a paged-out page or an emulated MMIO page,
  743. * or if a protection fault is due to accessing a page that the
  744. * guest wanted read/write access to but which we made read-only.
  745. * Returns a possibly modified status (DSISR) value if not
  746. * (i.e. pass the interrupt to the guest),
  747. * -1 to pass the fault up to host kernel mode code, -2 to do that
  748. * and also load the instruction word (for MMIO emulation),
  749. * or 0 if we should make the guest retry the access.
  750. */
  751. long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  752. unsigned long slb_v, unsigned int status, bool data)
  753. {
  754. struct kvm *kvm = vcpu->kvm;
  755. long int index;
  756. unsigned long v, r, gr;
  757. unsigned long *hpte;
  758. unsigned long valid;
  759. struct revmap_entry *rev;
  760. unsigned long pp, key;
  761. /* For protection fault, expect to find a valid HPTE */
  762. valid = HPTE_V_VALID;
  763. if (status & DSISR_NOHPTE)
  764. valid |= HPTE_V_ABSENT;
  765. index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
  766. if (index < 0) {
  767. if (status & DSISR_NOHPTE)
  768. return status; /* there really was no HPTE */
  769. return 0; /* for prot fault, HPTE disappeared */
  770. }
  771. hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  772. v = hpte[0] & ~HPTE_V_HVLOCK;
  773. r = hpte[1];
  774. rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
  775. gr = rev->guest_rpte;
  776. unlock_hpte(hpte, v);
  777. /* For not found, if the HPTE is valid by now, retry the instruction */
  778. if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
  779. return 0;
  780. /* Check access permissions to the page */
  781. pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
  782. key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
  783. status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
  784. if (!data) {
  785. if (gr & (HPTE_R_N | HPTE_R_G))
  786. return status | SRR1_ISI_N_OR_G;
  787. if (!hpte_read_permission(pp, slb_v & key))
  788. return status | SRR1_ISI_PROT;
  789. } else if (status & DSISR_ISSTORE) {
  790. /* check write permission */
  791. if (!hpte_write_permission(pp, slb_v & key))
  792. return status | DSISR_PROTFAULT;
  793. } else {
  794. if (!hpte_read_permission(pp, slb_v & key))
  795. return status | DSISR_PROTFAULT;
  796. }
  797. /* Check storage key, if applicable */
  798. if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
  799. unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
  800. if (status & DSISR_ISSTORE)
  801. perm >>= 1;
  802. if (perm & 1)
  803. return status | DSISR_KEYFAULT;
  804. }
  805. /* Save HPTE info for virtual-mode handler */
  806. vcpu->arch.pgfault_addr = addr;
  807. vcpu->arch.pgfault_index = index;
  808. vcpu->arch.pgfault_hpte[0] = v;
  809. vcpu->arch.pgfault_hpte[1] = r;
  810. /* Check the storage key to see if it is possibly emulated MMIO */
  811. if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
  812. (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
  813. (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
  814. return -2; /* MMIO emulation - load instr word */
  815. return -1; /* send fault up to host kernel mode */
  816. }