gup.c 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317
  1. /*
  2. * Lockless get_user_pages_fast for MIPS
  3. *
  4. * Copyright (C) 2008 Nick Piggin
  5. * Copyright (C) 2008 Novell Inc.
  6. * Copyright (C) 2011 Ralf Baechle
  7. */
  8. #include <linux/sched.h>
  9. #include <linux/mm.h>
  10. #include <linux/vmstat.h>
  11. #include <linux/highmem.h>
  12. #include <linux/swap.h>
  13. #include <linux/hugetlb.h>
  14. #include <asm/pgtable.h>
  15. static inline pte_t gup_get_pte(pte_t *ptep)
  16. {
  17. #if defined(CONFIG_64BIT_PHYS_ADDR) && defined(CONFIG_CPU_MIPS32)
  18. pte_t pte;
  19. retry:
  20. pte.pte_low = ptep->pte_low;
  21. smp_rmb();
  22. pte.pte_high = ptep->pte_high;
  23. smp_rmb();
  24. if (unlikely(pte.pte_low != ptep->pte_low))
  25. goto retry;
  26. return pte;
  27. #else
  28. return ACCESS_ONCE(*ptep);
  29. #endif
  30. }
  31. static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
  32. int write, struct page **pages, int *nr)
  33. {
  34. pte_t *ptep = pte_offset_map(&pmd, addr);
  35. do {
  36. pte_t pte = gup_get_pte(ptep);
  37. struct page *page;
  38. if (!pte_present(pte) ||
  39. pte_special(pte) || (write && !pte_write(pte))) {
  40. pte_unmap(ptep);
  41. return 0;
  42. }
  43. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  44. page = pte_page(pte);
  45. get_page(page);
  46. SetPageReferenced(page);
  47. pages[*nr] = page;
  48. (*nr)++;
  49. } while (ptep++, addr += PAGE_SIZE, addr != end);
  50. pte_unmap(ptep - 1);
  51. return 1;
  52. }
  53. static inline void get_head_page_multiple(struct page *page, int nr)
  54. {
  55. VM_BUG_ON(page != compound_head(page));
  56. VM_BUG_ON(page_count(page) == 0);
  57. atomic_add(nr, &page->_count);
  58. SetPageReferenced(page);
  59. }
  60. static int gup_huge_pmd(pmd_t pmd, unsigned long addr, unsigned long end,
  61. int write, struct page **pages, int *nr)
  62. {
  63. pte_t pte = *(pte_t *)&pmd;
  64. struct page *head, *page;
  65. int refs;
  66. if (write && !pte_write(pte))
  67. return 0;
  68. /* hugepages are never "special" */
  69. VM_BUG_ON(pte_special(pte));
  70. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  71. refs = 0;
  72. head = pte_page(pte);
  73. page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  74. do {
  75. VM_BUG_ON(compound_head(page) != head);
  76. pages[*nr] = page;
  77. if (PageTail(page))
  78. get_huge_page_tail(page);
  79. (*nr)++;
  80. page++;
  81. refs++;
  82. } while (addr += PAGE_SIZE, addr != end);
  83. get_head_page_multiple(head, refs);
  84. return 1;
  85. }
  86. static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
  87. int write, struct page **pages, int *nr)
  88. {
  89. unsigned long next;
  90. pmd_t *pmdp;
  91. pmdp = pmd_offset(&pud, addr);
  92. do {
  93. pmd_t pmd = *pmdp;
  94. next = pmd_addr_end(addr, end);
  95. /*
  96. * The pmd_trans_splitting() check below explains why
  97. * pmdp_splitting_flush has to flush the tlb, to stop
  98. * this gup-fast code from running while we set the
  99. * splitting bit in the pmd. Returning zero will take
  100. * the slow path that will call wait_split_huge_page()
  101. * if the pmd is still in splitting state. gup-fast
  102. * can't because it has irq disabled and
  103. * wait_split_huge_page() would never return as the
  104. * tlb flush IPI wouldn't run.
  105. */
  106. if (pmd_none(pmd) || pmd_trans_splitting(pmd))
  107. return 0;
  108. if (unlikely(pmd_huge(pmd))) {
  109. if (!gup_huge_pmd(pmd, addr, next, write, pages,nr))
  110. return 0;
  111. } else {
  112. if (!gup_pte_range(pmd, addr, next, write, pages,nr))
  113. return 0;
  114. }
  115. } while (pmdp++, addr = next, addr != end);
  116. return 1;
  117. }
  118. static int gup_huge_pud(pud_t pud, unsigned long addr, unsigned long end,
  119. int write, struct page **pages, int *nr)
  120. {
  121. pte_t pte = *(pte_t *)&pud;
  122. struct page *head, *page;
  123. int refs;
  124. if (write && !pte_write(pte))
  125. return 0;
  126. /* hugepages are never "special" */
  127. VM_BUG_ON(pte_special(pte));
  128. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  129. refs = 0;
  130. head = pte_page(pte);
  131. page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
  132. do {
  133. VM_BUG_ON(compound_head(page) != head);
  134. pages[*nr] = page;
  135. if (PageTail(page))
  136. get_huge_page_tail(page);
  137. (*nr)++;
  138. page++;
  139. refs++;
  140. } while (addr += PAGE_SIZE, addr != end);
  141. get_head_page_multiple(head, refs);
  142. return 1;
  143. }
  144. static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
  145. int write, struct page **pages, int *nr)
  146. {
  147. unsigned long next;
  148. pud_t *pudp;
  149. pudp = pud_offset(&pgd, addr);
  150. do {
  151. pud_t pud = *pudp;
  152. next = pud_addr_end(addr, end);
  153. if (pud_none(pud))
  154. return 0;
  155. if (unlikely(pud_huge(pud))) {
  156. if (!gup_huge_pud(pud, addr, next, write, pages,nr))
  157. return 0;
  158. } else {
  159. if (!gup_pmd_range(pud, addr, next, write, pages,nr))
  160. return 0;
  161. }
  162. } while (pudp++, addr = next, addr != end);
  163. return 1;
  164. }
  165. /*
  166. * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
  167. * back to the regular GUP.
  168. */
  169. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  170. struct page **pages)
  171. {
  172. struct mm_struct *mm = current->mm;
  173. unsigned long addr, len, end;
  174. unsigned long next;
  175. unsigned long flags;
  176. pgd_t *pgdp;
  177. int nr = 0;
  178. start &= PAGE_MASK;
  179. addr = start;
  180. len = (unsigned long) nr_pages << PAGE_SHIFT;
  181. end = start + len;
  182. if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
  183. (void __user *)start, len)))
  184. return 0;
  185. /*
  186. * XXX: batch / limit 'nr', to avoid large irq off latency
  187. * needs some instrumenting to determine the common sizes used by
  188. * important workloads (eg. DB2), and whether limiting the batch
  189. * size will decrease performance.
  190. *
  191. * It seems like we're in the clear for the moment. Direct-IO is
  192. * the main guy that batches up lots of get_user_pages, and even
  193. * they are limited to 64-at-a-time which is not so many.
  194. */
  195. /*
  196. * This doesn't prevent pagetable teardown, but does prevent
  197. * the pagetables and pages from being freed.
  198. *
  199. * So long as we atomically load page table pointers versus teardown,
  200. * we can follow the address down to the page and take a ref on it.
  201. */
  202. local_irq_save(flags);
  203. pgdp = pgd_offset(mm, addr);
  204. do {
  205. pgd_t pgd = *pgdp;
  206. next = pgd_addr_end(addr, end);
  207. if (pgd_none(pgd))
  208. break;
  209. if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
  210. break;
  211. } while (pgdp++, addr = next, addr != end);
  212. local_irq_restore(flags);
  213. return nr;
  214. }
  215. /**
  216. * get_user_pages_fast() - pin user pages in memory
  217. * @start: starting user address
  218. * @nr_pages: number of pages from start to pin
  219. * @write: whether pages will be written to
  220. * @pages: array that receives pointers to the pages pinned.
  221. * Should be at least nr_pages long.
  222. *
  223. * Attempt to pin user pages in memory without taking mm->mmap_sem.
  224. * If not successful, it will fall back to taking the lock and
  225. * calling get_user_pages().
  226. *
  227. * Returns number of pages pinned. This may be fewer than the number
  228. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  229. * were pinned, returns -errno.
  230. */
  231. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  232. struct page **pages)
  233. {
  234. struct mm_struct *mm = current->mm;
  235. unsigned long addr, len, end;
  236. unsigned long next;
  237. pgd_t *pgdp;
  238. int ret, nr = 0;
  239. start &= PAGE_MASK;
  240. addr = start;
  241. len = (unsigned long) nr_pages << PAGE_SHIFT;
  242. end = start + len;
  243. if (end < start)
  244. goto slow_irqon;
  245. /* XXX: batch / limit 'nr' */
  246. local_irq_disable();
  247. pgdp = pgd_offset(mm, addr);
  248. do {
  249. pgd_t pgd = *pgdp;
  250. next = pgd_addr_end(addr, end);
  251. if (pgd_none(pgd))
  252. goto slow;
  253. if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
  254. goto slow;
  255. } while (pgdp++, addr = next, addr != end);
  256. local_irq_enable();
  257. VM_BUG_ON(nr != (end - start) >> PAGE_SHIFT);
  258. return nr;
  259. slow:
  260. local_irq_enable();
  261. slow_irqon:
  262. /* Try to get the remaining pages with get_user_pages */
  263. start += nr << PAGE_SHIFT;
  264. pages += nr;
  265. down_read(&mm->mmap_sem);
  266. ret = get_user_pages(current, mm, start,
  267. (end - start) >> PAGE_SHIFT,
  268. write, 0, pages, NULL);
  269. up_read(&mm->mmap_sem);
  270. /* Have to be a bit careful with return values */
  271. if (nr > 0) {
  272. if (ret < 0)
  273. ret = nr;
  274. else
  275. ret += nr;
  276. }
  277. return ret;
  278. }