process.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. *
  8. * 2005-10-07 Keith Owens <kaos@sgi.com>
  9. * Add notify_die() hooks.
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/pm.h>
  13. #include <linux/elf.h>
  14. #include <linux/errno.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/slab.h>
  19. #include <linux/module.h>
  20. #include <linux/notifier.h>
  21. #include <linux/personality.h>
  22. #include <linux/sched.h>
  23. #include <linux/stddef.h>
  24. #include <linux/thread_info.h>
  25. #include <linux/unistd.h>
  26. #include <linux/efi.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/delay.h>
  29. #include <linux/kdebug.h>
  30. #include <linux/utsname.h>
  31. #include <linux/tracehook.h>
  32. #include <linux/rcupdate.h>
  33. #include <asm/cpu.h>
  34. #include <asm/delay.h>
  35. #include <asm/elf.h>
  36. #include <asm/irq.h>
  37. #include <asm/kexec.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sal.h>
  41. #include <asm/switch_to.h>
  42. #include <asm/tlbflush.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/unwind.h>
  45. #include <asm/user.h>
  46. #include "entry.h"
  47. #ifdef CONFIG_PERFMON
  48. # include <asm/perfmon.h>
  49. #endif
  50. #include "sigframe.h"
  51. void (*ia64_mark_idle)(int);
  52. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  53. EXPORT_SYMBOL(boot_option_idle_override);
  54. void (*pm_power_off) (void);
  55. EXPORT_SYMBOL(pm_power_off);
  56. void
  57. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  58. {
  59. unsigned long ip, sp, bsp;
  60. char buf[128]; /* don't make it so big that it overflows the stack! */
  61. printk("\nCall Trace:\n");
  62. do {
  63. unw_get_ip(info, &ip);
  64. if (ip == 0)
  65. break;
  66. unw_get_sp(info, &sp);
  67. unw_get_bsp(info, &bsp);
  68. snprintf(buf, sizeof(buf),
  69. " [<%016lx>] %%s\n"
  70. " sp=%016lx bsp=%016lx\n",
  71. ip, sp, bsp);
  72. print_symbol(buf, ip);
  73. } while (unw_unwind(info) >= 0);
  74. }
  75. void
  76. show_stack (struct task_struct *task, unsigned long *sp)
  77. {
  78. if (!task)
  79. unw_init_running(ia64_do_show_stack, NULL);
  80. else {
  81. struct unw_frame_info info;
  82. unw_init_from_blocked_task(&info, task);
  83. ia64_do_show_stack(&info, NULL);
  84. }
  85. }
  86. void
  87. dump_stack (void)
  88. {
  89. show_stack(NULL, NULL);
  90. }
  91. EXPORT_SYMBOL(dump_stack);
  92. void
  93. show_regs (struct pt_regs *regs)
  94. {
  95. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  96. print_modules();
  97. printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
  98. smp_processor_id(), current->comm);
  99. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
  100. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
  101. init_utsname()->release);
  102. print_symbol("ip is at %s\n", ip);
  103. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  104. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  105. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  106. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  107. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  108. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  109. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  110. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  111. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  112. regs->f6.u.bits[1], regs->f6.u.bits[0],
  113. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  114. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  115. regs->f8.u.bits[1], regs->f8.u.bits[0],
  116. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  117. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  118. regs->f10.u.bits[1], regs->f10.u.bits[0],
  119. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  120. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  121. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  122. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  123. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  124. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  125. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  126. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  127. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  128. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  129. if (user_mode(regs)) {
  130. /* print the stacked registers */
  131. unsigned long val, *bsp, ndirty;
  132. int i, sof, is_nat = 0;
  133. sof = regs->cr_ifs & 0x7f; /* size of frame */
  134. ndirty = (regs->loadrs >> 19);
  135. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  136. for (i = 0; i < sof; ++i) {
  137. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  138. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  139. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  140. }
  141. } else
  142. show_stack(NULL, NULL);
  143. }
  144. /* local support for deprecated console_print */
  145. void
  146. console_print(const char *s)
  147. {
  148. printk(KERN_EMERG "%s", s);
  149. }
  150. void
  151. do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
  152. {
  153. if (fsys_mode(current, &scr->pt)) {
  154. /*
  155. * defer signal-handling etc. until we return to
  156. * privilege-level 0.
  157. */
  158. if (!ia64_psr(&scr->pt)->lp)
  159. ia64_psr(&scr->pt)->lp = 1;
  160. return;
  161. }
  162. #ifdef CONFIG_PERFMON
  163. if (current->thread.pfm_needs_checking)
  164. /*
  165. * Note: pfm_handle_work() allow us to call it with interrupts
  166. * disabled, and may enable interrupts within the function.
  167. */
  168. pfm_handle_work();
  169. #endif
  170. /* deal with pending signal delivery */
  171. if (test_thread_flag(TIF_SIGPENDING)) {
  172. local_irq_enable(); /* force interrupt enable */
  173. ia64_do_signal(scr, in_syscall);
  174. }
  175. if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) {
  176. local_irq_enable(); /* force interrupt enable */
  177. tracehook_notify_resume(&scr->pt);
  178. }
  179. /* copy user rbs to kernel rbs */
  180. if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
  181. local_irq_enable(); /* force interrupt enable */
  182. ia64_sync_krbs();
  183. }
  184. local_irq_disable(); /* force interrupt disable */
  185. }
  186. static int pal_halt = 1;
  187. static int can_do_pal_halt = 1;
  188. static int __init nohalt_setup(char * str)
  189. {
  190. pal_halt = can_do_pal_halt = 0;
  191. return 1;
  192. }
  193. __setup("nohalt", nohalt_setup);
  194. void
  195. update_pal_halt_status(int status)
  196. {
  197. can_do_pal_halt = pal_halt && status;
  198. }
  199. /*
  200. * We use this if we don't have any better idle routine..
  201. */
  202. void
  203. default_idle (void)
  204. {
  205. local_irq_enable();
  206. while (!need_resched()) {
  207. if (can_do_pal_halt) {
  208. local_irq_disable();
  209. if (!need_resched()) {
  210. safe_halt();
  211. }
  212. local_irq_enable();
  213. } else
  214. cpu_relax();
  215. }
  216. }
  217. #ifdef CONFIG_HOTPLUG_CPU
  218. /* We don't actually take CPU down, just spin without interrupts. */
  219. static inline void play_dead(void)
  220. {
  221. unsigned int this_cpu = smp_processor_id();
  222. /* Ack it */
  223. __get_cpu_var(cpu_state) = CPU_DEAD;
  224. max_xtp();
  225. local_irq_disable();
  226. idle_task_exit();
  227. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  228. /*
  229. * The above is a point of no-return, the processor is
  230. * expected to be in SAL loop now.
  231. */
  232. BUG();
  233. }
  234. #else
  235. static inline void play_dead(void)
  236. {
  237. BUG();
  238. }
  239. #endif /* CONFIG_HOTPLUG_CPU */
  240. void __attribute__((noreturn))
  241. cpu_idle (void)
  242. {
  243. void (*mark_idle)(int) = ia64_mark_idle;
  244. int cpu = smp_processor_id();
  245. /* endless idle loop with no priority at all */
  246. while (1) {
  247. rcu_idle_enter();
  248. if (can_do_pal_halt) {
  249. current_thread_info()->status &= ~TS_POLLING;
  250. /*
  251. * TS_POLLING-cleared state must be visible before we
  252. * test NEED_RESCHED:
  253. */
  254. smp_mb();
  255. } else {
  256. current_thread_info()->status |= TS_POLLING;
  257. }
  258. if (!need_resched()) {
  259. #ifdef CONFIG_SMP
  260. min_xtp();
  261. #endif
  262. rmb();
  263. if (mark_idle)
  264. (*mark_idle)(1);
  265. default_idle();
  266. if (mark_idle)
  267. (*mark_idle)(0);
  268. #ifdef CONFIG_SMP
  269. normal_xtp();
  270. #endif
  271. }
  272. rcu_idle_exit();
  273. schedule_preempt_disabled();
  274. check_pgt_cache();
  275. if (cpu_is_offline(cpu))
  276. play_dead();
  277. }
  278. }
  279. void
  280. ia64_save_extra (struct task_struct *task)
  281. {
  282. #ifdef CONFIG_PERFMON
  283. unsigned long info;
  284. #endif
  285. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  286. ia64_save_debug_regs(&task->thread.dbr[0]);
  287. #ifdef CONFIG_PERFMON
  288. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  289. pfm_save_regs(task);
  290. info = __get_cpu_var(pfm_syst_info);
  291. if (info & PFM_CPUINFO_SYST_WIDE)
  292. pfm_syst_wide_update_task(task, info, 0);
  293. #endif
  294. }
  295. void
  296. ia64_load_extra (struct task_struct *task)
  297. {
  298. #ifdef CONFIG_PERFMON
  299. unsigned long info;
  300. #endif
  301. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  302. ia64_load_debug_regs(&task->thread.dbr[0]);
  303. #ifdef CONFIG_PERFMON
  304. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  305. pfm_load_regs(task);
  306. info = __get_cpu_var(pfm_syst_info);
  307. if (info & PFM_CPUINFO_SYST_WIDE)
  308. pfm_syst_wide_update_task(task, info, 1);
  309. #endif
  310. }
  311. /*
  312. * Copy the state of an ia-64 thread.
  313. *
  314. * We get here through the following call chain:
  315. *
  316. * from user-level: from kernel:
  317. *
  318. * <clone syscall> <some kernel call frames>
  319. * sys_clone :
  320. * do_fork do_fork
  321. * copy_thread copy_thread
  322. *
  323. * This means that the stack layout is as follows:
  324. *
  325. * +---------------------+ (highest addr)
  326. * | struct pt_regs |
  327. * +---------------------+
  328. * | struct switch_stack |
  329. * +---------------------+
  330. * | |
  331. * | memory stack |
  332. * | | <-- sp (lowest addr)
  333. * +---------------------+
  334. *
  335. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  336. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  337. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  338. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  339. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  340. * so there is nothing to worry about.
  341. */
  342. int
  343. copy_thread(unsigned long clone_flags,
  344. unsigned long user_stack_base, unsigned long user_stack_size,
  345. struct task_struct *p)
  346. {
  347. extern char ia64_ret_from_clone;
  348. struct switch_stack *child_stack, *stack;
  349. unsigned long rbs, child_rbs, rbs_size;
  350. struct pt_regs *child_ptregs;
  351. struct pt_regs *regs = current_pt_regs();
  352. int retval = 0;
  353. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  354. child_stack = (struct switch_stack *) child_ptregs - 1;
  355. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  356. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  357. /* copy parts of thread_struct: */
  358. p->thread.ksp = (unsigned long) child_stack - 16;
  359. /*
  360. * NOTE: The calling convention considers all floating point
  361. * registers in the high partition (fph) to be scratch. Since
  362. * the only way to get to this point is through a system call,
  363. * we know that the values in fph are all dead. Hence, there
  364. * is no need to inherit the fph state from the parent to the
  365. * child and all we have to do is to make sure that
  366. * IA64_THREAD_FPH_VALID is cleared in the child.
  367. *
  368. * XXX We could push this optimization a bit further by
  369. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  370. * However, it's not clear this is worth doing. Also, it
  371. * would be a slight deviation from the normal Linux system
  372. * call behavior where scratch registers are preserved across
  373. * system calls (unless used by the system call itself).
  374. */
  375. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  376. | IA64_THREAD_PM_VALID)
  377. # define THREAD_FLAGS_TO_SET 0
  378. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  379. | THREAD_FLAGS_TO_SET);
  380. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  381. if (unlikely(p->flags & PF_KTHREAD)) {
  382. if (unlikely(!user_stack_base)) {
  383. /* fork_idle() called us */
  384. return 0;
  385. }
  386. memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
  387. child_stack->r4 = user_stack_base; /* payload */
  388. child_stack->r5 = user_stack_size; /* argument */
  389. /*
  390. * Preserve PSR bits, except for bits 32-34 and 37-45,
  391. * which we can't read.
  392. */
  393. child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  394. /* mark as valid, empty frame */
  395. child_ptregs->cr_ifs = 1UL << 63;
  396. child_stack->ar_fpsr = child_ptregs->ar_fpsr
  397. = ia64_getreg(_IA64_REG_AR_FPSR);
  398. child_stack->pr = (1 << PRED_KERNEL_STACK);
  399. child_stack->ar_bspstore = child_rbs;
  400. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  401. /* stop some PSR bits from being inherited.
  402. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  403. * therefore we must specify them explicitly here and not include them in
  404. * IA64_PSR_BITS_TO_CLEAR.
  405. */
  406. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  407. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  408. return 0;
  409. }
  410. stack = ((struct switch_stack *) regs) - 1;
  411. /* copy parent's switch_stack & pt_regs to child: */
  412. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  413. /* copy the parent's register backing store to the child: */
  414. rbs_size = stack->ar_bspstore - rbs;
  415. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  416. if (clone_flags & CLONE_SETTLS)
  417. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  418. if (user_stack_base) {
  419. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  420. child_ptregs->ar_bspstore = user_stack_base;
  421. child_ptregs->ar_rnat = 0;
  422. child_ptregs->loadrs = 0;
  423. }
  424. child_stack->ar_bspstore = child_rbs + rbs_size;
  425. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  426. /* stop some PSR bits from being inherited.
  427. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  428. * therefore we must specify them explicitly here and not include them in
  429. * IA64_PSR_BITS_TO_CLEAR.
  430. */
  431. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  432. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  433. #ifdef CONFIG_PERFMON
  434. if (current->thread.pfm_context)
  435. pfm_inherit(p, child_ptregs);
  436. #endif
  437. return retval;
  438. }
  439. static void
  440. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  441. {
  442. unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
  443. unsigned long uninitialized_var(ip); /* GCC be quiet */
  444. elf_greg_t *dst = arg;
  445. struct pt_regs *pt;
  446. char nat;
  447. int i;
  448. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  449. if (unw_unwind_to_user(info) < 0)
  450. return;
  451. unw_get_sp(info, &sp);
  452. pt = (struct pt_regs *) (sp + 16);
  453. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  454. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  455. return;
  456. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  457. &ar_rnat);
  458. /*
  459. * coredump format:
  460. * r0-r31
  461. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  462. * predicate registers (p0-p63)
  463. * b0-b7
  464. * ip cfm user-mask
  465. * ar.rsc ar.bsp ar.bspstore ar.rnat
  466. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  467. */
  468. /* r0 is zero */
  469. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  470. unw_get_gr(info, i, &dst[i], &nat);
  471. if (nat)
  472. nat_bits |= mask;
  473. mask <<= 1;
  474. }
  475. dst[32] = nat_bits;
  476. unw_get_pr(info, &dst[33]);
  477. for (i = 0; i < 8; ++i)
  478. unw_get_br(info, i, &dst[34 + i]);
  479. unw_get_rp(info, &ip);
  480. dst[42] = ip + ia64_psr(pt)->ri;
  481. dst[43] = cfm;
  482. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  483. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  484. /*
  485. * For bsp and bspstore, unw_get_ar() would return the kernel
  486. * addresses, but we need the user-level addresses instead:
  487. */
  488. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  489. dst[47] = pt->ar_bspstore;
  490. dst[48] = ar_rnat;
  491. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  492. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  493. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  494. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  495. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  496. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  497. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  498. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  499. }
  500. void
  501. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  502. {
  503. elf_fpreg_t *dst = arg;
  504. int i;
  505. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  506. if (unw_unwind_to_user(info) < 0)
  507. return;
  508. /* f0 is 0.0, f1 is 1.0 */
  509. for (i = 2; i < 32; ++i)
  510. unw_get_fr(info, i, dst + i);
  511. ia64_flush_fph(task);
  512. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  513. memcpy(dst + 32, task->thread.fph, 96*16);
  514. }
  515. void
  516. do_copy_regs (struct unw_frame_info *info, void *arg)
  517. {
  518. do_copy_task_regs(current, info, arg);
  519. }
  520. void
  521. do_dump_fpu (struct unw_frame_info *info, void *arg)
  522. {
  523. do_dump_task_fpu(current, info, arg);
  524. }
  525. void
  526. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  527. {
  528. unw_init_running(do_copy_regs, dst);
  529. }
  530. int
  531. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  532. {
  533. unw_init_running(do_dump_fpu, dst);
  534. return 1; /* f0-f31 are always valid so we always return 1 */
  535. }
  536. /*
  537. * Flush thread state. This is called when a thread does an execve().
  538. */
  539. void
  540. flush_thread (void)
  541. {
  542. /* drop floating-point and debug-register state if it exists: */
  543. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  544. ia64_drop_fpu(current);
  545. }
  546. /*
  547. * Clean up state associated with current thread. This is called when
  548. * the thread calls exit().
  549. */
  550. void
  551. exit_thread (void)
  552. {
  553. ia64_drop_fpu(current);
  554. #ifdef CONFIG_PERFMON
  555. /* if needed, stop monitoring and flush state to perfmon context */
  556. if (current->thread.pfm_context)
  557. pfm_exit_thread(current);
  558. /* free debug register resources */
  559. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  560. pfm_release_debug_registers(current);
  561. #endif
  562. }
  563. unsigned long
  564. get_wchan (struct task_struct *p)
  565. {
  566. struct unw_frame_info info;
  567. unsigned long ip;
  568. int count = 0;
  569. if (!p || p == current || p->state == TASK_RUNNING)
  570. return 0;
  571. /*
  572. * Note: p may not be a blocked task (it could be current or
  573. * another process running on some other CPU. Rather than
  574. * trying to determine if p is really blocked, we just assume
  575. * it's blocked and rely on the unwind routines to fail
  576. * gracefully if the process wasn't really blocked after all.
  577. * --davidm 99/12/15
  578. */
  579. unw_init_from_blocked_task(&info, p);
  580. do {
  581. if (p->state == TASK_RUNNING)
  582. return 0;
  583. if (unw_unwind(&info) < 0)
  584. return 0;
  585. unw_get_ip(&info, &ip);
  586. if (!in_sched_functions(ip))
  587. return ip;
  588. } while (count++ < 16);
  589. return 0;
  590. }
  591. void
  592. cpu_halt (void)
  593. {
  594. pal_power_mgmt_info_u_t power_info[8];
  595. unsigned long min_power;
  596. int i, min_power_state;
  597. if (ia64_pal_halt_info(power_info) != 0)
  598. return;
  599. min_power_state = 0;
  600. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  601. for (i = 1; i < 8; ++i)
  602. if (power_info[i].pal_power_mgmt_info_s.im
  603. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  604. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  605. min_power_state = i;
  606. }
  607. while (1)
  608. ia64_pal_halt(min_power_state);
  609. }
  610. void machine_shutdown(void)
  611. {
  612. #ifdef CONFIG_HOTPLUG_CPU
  613. int cpu;
  614. for_each_online_cpu(cpu) {
  615. if (cpu != smp_processor_id())
  616. cpu_down(cpu);
  617. }
  618. #endif
  619. #ifdef CONFIG_KEXEC
  620. kexec_disable_iosapic();
  621. #endif
  622. }
  623. void
  624. machine_restart (char *restart_cmd)
  625. {
  626. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  627. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  628. }
  629. void
  630. machine_halt (void)
  631. {
  632. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  633. cpu_halt();
  634. }
  635. void
  636. machine_power_off (void)
  637. {
  638. if (pm_power_off)
  639. pm_power_off();
  640. machine_halt();
  641. }