gpmc-onenand.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394
  1. /*
  2. * linux/arch/arm/mach-omap2/gpmc-onenand.c
  3. *
  4. * Copyright (C) 2006 - 2009 Nokia Corporation
  5. * Contacts: Juha Yrjola
  6. * Tony Lindgren
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/string.h>
  13. #include <linux/kernel.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/mtd/onenand_regs.h>
  16. #include <linux/io.h>
  17. #include <linux/platform_data/mtd-onenand-omap2.h>
  18. #include <linux/err.h>
  19. #include <asm/mach/flash.h>
  20. #include "gpmc.h"
  21. #include "soc.h"
  22. #include "gpmc-onenand.h"
  23. #define ONENAND_IO_SIZE SZ_128K
  24. #define ONENAND_FLAG_SYNCREAD (1 << 0)
  25. #define ONENAND_FLAG_SYNCWRITE (1 << 1)
  26. #define ONENAND_FLAG_HF (1 << 2)
  27. #define ONENAND_FLAG_VHF (1 << 3)
  28. static unsigned onenand_flags;
  29. static unsigned latency;
  30. static struct omap_onenand_platform_data *gpmc_onenand_data;
  31. static struct resource gpmc_onenand_resource = {
  32. .flags = IORESOURCE_MEM,
  33. };
  34. static struct platform_device gpmc_onenand_device = {
  35. .name = "omap2-onenand",
  36. .id = -1,
  37. .num_resources = 1,
  38. .resource = &gpmc_onenand_resource,
  39. };
  40. static struct gpmc_timings omap2_onenand_calc_async_timings(void)
  41. {
  42. struct gpmc_device_timings dev_t;
  43. struct gpmc_timings t;
  44. const int t_cer = 15;
  45. const int t_avdp = 12;
  46. const int t_aavdh = 7;
  47. const int t_ce = 76;
  48. const int t_aa = 76;
  49. const int t_oe = 20;
  50. const int t_cez = 20; /* max of t_cez, t_oez */
  51. const int t_wpl = 40;
  52. const int t_wph = 30;
  53. memset(&dev_t, 0, sizeof(dev_t));
  54. dev_t.mux = true;
  55. dev_t.t_avdp_r = max_t(int, t_avdp, t_cer) * 1000;
  56. dev_t.t_avdp_w = dev_t.t_avdp_r;
  57. dev_t.t_aavdh = t_aavdh * 1000;
  58. dev_t.t_aa = t_aa * 1000;
  59. dev_t.t_ce = t_ce * 1000;
  60. dev_t.t_oe = t_oe * 1000;
  61. dev_t.t_cez_r = t_cez * 1000;
  62. dev_t.t_cez_w = dev_t.t_cez_r;
  63. dev_t.t_wpl = t_wpl * 1000;
  64. dev_t.t_wph = t_wph * 1000;
  65. gpmc_calc_timings(&t, &dev_t);
  66. return t;
  67. }
  68. static int gpmc_set_async_mode(int cs, struct gpmc_timings *t)
  69. {
  70. /* Configure GPMC for asynchronous read */
  71. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
  72. GPMC_CONFIG1_DEVICESIZE_16 |
  73. GPMC_CONFIG1_MUXADDDATA);
  74. return gpmc_cs_set_timings(cs, t);
  75. }
  76. static void omap2_onenand_set_async_mode(void __iomem *onenand_base)
  77. {
  78. u32 reg;
  79. /* Ensure sync read and sync write are disabled */
  80. reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
  81. reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
  82. writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
  83. }
  84. static void set_onenand_cfg(void __iomem *onenand_base)
  85. {
  86. u32 reg;
  87. reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
  88. reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9));
  89. reg |= (latency << ONENAND_SYS_CFG1_BRL_SHIFT) |
  90. ONENAND_SYS_CFG1_BL_16;
  91. if (onenand_flags & ONENAND_FLAG_SYNCREAD)
  92. reg |= ONENAND_SYS_CFG1_SYNC_READ;
  93. else
  94. reg &= ~ONENAND_SYS_CFG1_SYNC_READ;
  95. if (onenand_flags & ONENAND_FLAG_SYNCWRITE)
  96. reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
  97. else
  98. reg &= ~ONENAND_SYS_CFG1_SYNC_WRITE;
  99. if (onenand_flags & ONENAND_FLAG_HF)
  100. reg |= ONENAND_SYS_CFG1_HF;
  101. else
  102. reg &= ~ONENAND_SYS_CFG1_HF;
  103. if (onenand_flags & ONENAND_FLAG_VHF)
  104. reg |= ONENAND_SYS_CFG1_VHF;
  105. else
  106. reg &= ~ONENAND_SYS_CFG1_VHF;
  107. writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
  108. }
  109. static int omap2_onenand_get_freq(struct omap_onenand_platform_data *cfg,
  110. void __iomem *onenand_base)
  111. {
  112. u16 ver = readw(onenand_base + ONENAND_REG_VERSION_ID);
  113. int freq;
  114. switch ((ver >> 4) & 0xf) {
  115. case 0:
  116. freq = 40;
  117. break;
  118. case 1:
  119. freq = 54;
  120. break;
  121. case 2:
  122. freq = 66;
  123. break;
  124. case 3:
  125. freq = 83;
  126. break;
  127. case 4:
  128. freq = 104;
  129. break;
  130. default:
  131. freq = 54;
  132. break;
  133. }
  134. return freq;
  135. }
  136. static struct gpmc_timings
  137. omap2_onenand_calc_sync_timings(struct omap_onenand_platform_data *cfg,
  138. int freq)
  139. {
  140. struct gpmc_device_timings dev_t;
  141. struct gpmc_timings t;
  142. const int t_cer = 15;
  143. const int t_avdp = 12;
  144. const int t_cez = 20; /* max of t_cez, t_oez */
  145. const int t_wpl = 40;
  146. const int t_wph = 30;
  147. int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
  148. int div, gpmc_clk_ns;
  149. if (cfg->flags & ONENAND_SYNC_READ)
  150. onenand_flags = ONENAND_FLAG_SYNCREAD;
  151. else if (cfg->flags & ONENAND_SYNC_READWRITE)
  152. onenand_flags = ONENAND_FLAG_SYNCREAD | ONENAND_FLAG_SYNCWRITE;
  153. switch (freq) {
  154. case 104:
  155. min_gpmc_clk_period = 9600; /* 104 MHz */
  156. t_ces = 3;
  157. t_avds = 4;
  158. t_avdh = 2;
  159. t_ach = 3;
  160. t_aavdh = 6;
  161. t_rdyo = 6;
  162. break;
  163. case 83:
  164. min_gpmc_clk_period = 12000; /* 83 MHz */
  165. t_ces = 5;
  166. t_avds = 4;
  167. t_avdh = 2;
  168. t_ach = 6;
  169. t_aavdh = 6;
  170. t_rdyo = 9;
  171. break;
  172. case 66:
  173. min_gpmc_clk_period = 15000; /* 66 MHz */
  174. t_ces = 6;
  175. t_avds = 5;
  176. t_avdh = 2;
  177. t_ach = 6;
  178. t_aavdh = 6;
  179. t_rdyo = 11;
  180. break;
  181. default:
  182. min_gpmc_clk_period = 18500; /* 54 MHz */
  183. t_ces = 7;
  184. t_avds = 7;
  185. t_avdh = 7;
  186. t_ach = 9;
  187. t_aavdh = 7;
  188. t_rdyo = 15;
  189. onenand_flags &= ~ONENAND_FLAG_SYNCWRITE;
  190. break;
  191. }
  192. div = gpmc_calc_divider(min_gpmc_clk_period);
  193. gpmc_clk_ns = gpmc_ticks_to_ns(div);
  194. if (gpmc_clk_ns < 15) /* >66Mhz */
  195. onenand_flags |= ONENAND_FLAG_HF;
  196. else
  197. onenand_flags &= ~ONENAND_FLAG_HF;
  198. if (gpmc_clk_ns < 12) /* >83Mhz */
  199. onenand_flags |= ONENAND_FLAG_VHF;
  200. else
  201. onenand_flags &= ~ONENAND_FLAG_VHF;
  202. if (onenand_flags & ONENAND_FLAG_VHF)
  203. latency = 8;
  204. else if (onenand_flags & ONENAND_FLAG_HF)
  205. latency = 6;
  206. else if (gpmc_clk_ns >= 25) /* 40 MHz*/
  207. latency = 3;
  208. else
  209. latency = 4;
  210. /* Set synchronous read timings */
  211. memset(&dev_t, 0, sizeof(dev_t));
  212. dev_t.mux = true;
  213. dev_t.sync_read = true;
  214. if (onenand_flags & ONENAND_FLAG_SYNCWRITE) {
  215. dev_t.sync_write = true;
  216. } else {
  217. dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
  218. dev_t.t_wpl = t_wpl * 1000;
  219. dev_t.t_wph = t_wph * 1000;
  220. dev_t.t_aavdh = t_aavdh * 1000;
  221. }
  222. dev_t.ce_xdelay = true;
  223. dev_t.avd_xdelay = true;
  224. dev_t.oe_xdelay = true;
  225. dev_t.we_xdelay = true;
  226. dev_t.clk = min_gpmc_clk_period;
  227. dev_t.t_bacc = dev_t.clk;
  228. dev_t.t_ces = t_ces * 1000;
  229. dev_t.t_avds = t_avds * 1000;
  230. dev_t.t_avdh = t_avdh * 1000;
  231. dev_t.t_ach = t_ach * 1000;
  232. dev_t.cyc_iaa = (latency + 1);
  233. dev_t.t_cez_r = t_cez * 1000;
  234. dev_t.t_cez_w = dev_t.t_cez_r;
  235. dev_t.cyc_aavdh_oe = 1;
  236. dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
  237. gpmc_calc_timings(&t, &dev_t);
  238. return t;
  239. }
  240. static int gpmc_set_sync_mode(int cs, struct gpmc_timings *t)
  241. {
  242. unsigned sync_read = onenand_flags & ONENAND_FLAG_SYNCREAD;
  243. unsigned sync_write = onenand_flags & ONENAND_FLAG_SYNCWRITE;
  244. /* Configure GPMC for synchronous read */
  245. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
  246. GPMC_CONFIG1_WRAPBURST_SUPP |
  247. GPMC_CONFIG1_READMULTIPLE_SUPP |
  248. (sync_read ? GPMC_CONFIG1_READTYPE_SYNC : 0) |
  249. (sync_write ? GPMC_CONFIG1_WRITEMULTIPLE_SUPP : 0) |
  250. (sync_write ? GPMC_CONFIG1_WRITETYPE_SYNC : 0) |
  251. GPMC_CONFIG1_PAGE_LEN(2) |
  252. (cpu_is_omap34xx() ? 0 :
  253. (GPMC_CONFIG1_WAIT_READ_MON |
  254. GPMC_CONFIG1_WAIT_PIN_SEL(0))) |
  255. GPMC_CONFIG1_DEVICESIZE_16 |
  256. GPMC_CONFIG1_DEVICETYPE_NOR |
  257. GPMC_CONFIG1_MUXADDDATA);
  258. return gpmc_cs_set_timings(cs, t);
  259. }
  260. static int omap2_onenand_setup_async(void __iomem *onenand_base)
  261. {
  262. struct gpmc_timings t;
  263. int ret;
  264. omap2_onenand_set_async_mode(onenand_base);
  265. t = omap2_onenand_calc_async_timings();
  266. ret = gpmc_set_async_mode(gpmc_onenand_data->cs, &t);
  267. if (IS_ERR_VALUE(ret))
  268. return ret;
  269. omap2_onenand_set_async_mode(onenand_base);
  270. return 0;
  271. }
  272. static int omap2_onenand_setup_sync(void __iomem *onenand_base, int *freq_ptr)
  273. {
  274. int ret, freq = *freq_ptr;
  275. struct gpmc_timings t;
  276. if (!freq) {
  277. /* Very first call freq is not known */
  278. freq = omap2_onenand_get_freq(gpmc_onenand_data, onenand_base);
  279. set_onenand_cfg(onenand_base);
  280. }
  281. t = omap2_onenand_calc_sync_timings(gpmc_onenand_data, freq);
  282. ret = gpmc_set_sync_mode(gpmc_onenand_data->cs, &t);
  283. if (IS_ERR_VALUE(ret))
  284. return ret;
  285. set_onenand_cfg(onenand_base);
  286. *freq_ptr = freq;
  287. return 0;
  288. }
  289. static int gpmc_onenand_setup(void __iomem *onenand_base, int *freq_ptr)
  290. {
  291. struct device *dev = &gpmc_onenand_device.dev;
  292. unsigned l = ONENAND_SYNC_READ | ONENAND_SYNC_READWRITE;
  293. int ret;
  294. ret = omap2_onenand_setup_async(onenand_base);
  295. if (ret) {
  296. dev_err(dev, "unable to set to async mode\n");
  297. return ret;
  298. }
  299. if (!(gpmc_onenand_data->flags & l))
  300. return 0;
  301. ret = omap2_onenand_setup_sync(onenand_base, freq_ptr);
  302. if (ret)
  303. dev_err(dev, "unable to set to sync mode\n");
  304. return ret;
  305. }
  306. void gpmc_onenand_init(struct omap_onenand_platform_data *_onenand_data)
  307. {
  308. int err;
  309. gpmc_onenand_data = _onenand_data;
  310. gpmc_onenand_data->onenand_setup = gpmc_onenand_setup;
  311. gpmc_onenand_device.dev.platform_data = gpmc_onenand_data;
  312. if (cpu_is_omap24xx() &&
  313. (gpmc_onenand_data->flags & ONENAND_SYNC_READWRITE)) {
  314. printk(KERN_ERR "Onenand using only SYNC_READ on 24xx\n");
  315. gpmc_onenand_data->flags &= ~ONENAND_SYNC_READWRITE;
  316. gpmc_onenand_data->flags |= ONENAND_SYNC_READ;
  317. }
  318. if (cpu_is_omap34xx())
  319. gpmc_onenand_data->flags |= ONENAND_IN_OMAP34XX;
  320. else
  321. gpmc_onenand_data->flags &= ~ONENAND_IN_OMAP34XX;
  322. err = gpmc_cs_request(gpmc_onenand_data->cs, ONENAND_IO_SIZE,
  323. (unsigned long *)&gpmc_onenand_resource.start);
  324. if (err < 0) {
  325. pr_err("%s: Cannot request GPMC CS\n", __func__);
  326. return;
  327. }
  328. gpmc_onenand_resource.end = gpmc_onenand_resource.start +
  329. ONENAND_IO_SIZE - 1;
  330. if (platform_device_register(&gpmc_onenand_device) < 0) {
  331. pr_err("%s: Unable to register OneNAND device\n", __func__);
  332. gpmc_cs_free(gpmc_onenand_data->cs);
  333. return;
  334. }
  335. }