timer.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336
  1. /*
  2. *
  3. * Copyright (C) 2007 Google, Inc.
  4. * Copyright (c) 2009-2012, The Linux Foundation. All rights reserved.
  5. *
  6. * This software is licensed under the terms of the GNU General Public
  7. * License version 2, as published by the Free Software Foundation, and
  8. * may be copied, distributed, and modified under those terms.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. */
  16. #include <linux/clocksource.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/init.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/irq.h>
  21. #include <linux/io.h>
  22. #include <linux/of.h>
  23. #include <linux/of_address.h>
  24. #include <linux/of_irq.h>
  25. #include <asm/mach/time.h>
  26. #include <asm/localtimer.h>
  27. #include <asm/sched_clock.h>
  28. #include "common.h"
  29. #define TIMER_MATCH_VAL 0x0000
  30. #define TIMER_COUNT_VAL 0x0004
  31. #define TIMER_ENABLE 0x0008
  32. #define TIMER_ENABLE_CLR_ON_MATCH_EN BIT(1)
  33. #define TIMER_ENABLE_EN BIT(0)
  34. #define TIMER_CLEAR 0x000C
  35. #define DGT_CLK_CTL_DIV_4 0x3
  36. #define GPT_HZ 32768
  37. #define MSM_DGT_SHIFT 5
  38. static void __iomem *event_base;
  39. static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
  40. {
  41. struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
  42. /* Stop the timer tick */
  43. if (evt->mode == CLOCK_EVT_MODE_ONESHOT) {
  44. u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
  45. ctrl &= ~TIMER_ENABLE_EN;
  46. writel_relaxed(ctrl, event_base + TIMER_ENABLE);
  47. }
  48. evt->event_handler(evt);
  49. return IRQ_HANDLED;
  50. }
  51. static int msm_timer_set_next_event(unsigned long cycles,
  52. struct clock_event_device *evt)
  53. {
  54. u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
  55. writel_relaxed(0, event_base + TIMER_CLEAR);
  56. writel_relaxed(cycles, event_base + TIMER_MATCH_VAL);
  57. writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE);
  58. return 0;
  59. }
  60. static void msm_timer_set_mode(enum clock_event_mode mode,
  61. struct clock_event_device *evt)
  62. {
  63. u32 ctrl;
  64. ctrl = readl_relaxed(event_base + TIMER_ENABLE);
  65. ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN);
  66. switch (mode) {
  67. case CLOCK_EVT_MODE_RESUME:
  68. case CLOCK_EVT_MODE_PERIODIC:
  69. break;
  70. case CLOCK_EVT_MODE_ONESHOT:
  71. /* Timer is enabled in set_next_event */
  72. break;
  73. case CLOCK_EVT_MODE_UNUSED:
  74. case CLOCK_EVT_MODE_SHUTDOWN:
  75. break;
  76. }
  77. writel_relaxed(ctrl, event_base + TIMER_ENABLE);
  78. }
  79. static struct clock_event_device msm_clockevent = {
  80. .name = "gp_timer",
  81. .features = CLOCK_EVT_FEAT_ONESHOT,
  82. .rating = 200,
  83. .set_next_event = msm_timer_set_next_event,
  84. .set_mode = msm_timer_set_mode,
  85. };
  86. static union {
  87. struct clock_event_device *evt;
  88. struct clock_event_device * __percpu *percpu_evt;
  89. } msm_evt;
  90. static void __iomem *source_base;
  91. static notrace cycle_t msm_read_timer_count(struct clocksource *cs)
  92. {
  93. return readl_relaxed(source_base + TIMER_COUNT_VAL);
  94. }
  95. static notrace cycle_t msm_read_timer_count_shift(struct clocksource *cs)
  96. {
  97. /*
  98. * Shift timer count down by a constant due to unreliable lower bits
  99. * on some targets.
  100. */
  101. return msm_read_timer_count(cs) >> MSM_DGT_SHIFT;
  102. }
  103. static struct clocksource msm_clocksource = {
  104. .name = "dg_timer",
  105. .rating = 300,
  106. .read = msm_read_timer_count,
  107. .mask = CLOCKSOURCE_MASK(32),
  108. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  109. };
  110. #ifdef CONFIG_LOCAL_TIMERS
  111. static int __cpuinit msm_local_timer_setup(struct clock_event_device *evt)
  112. {
  113. /* Use existing clock_event for cpu 0 */
  114. if (!smp_processor_id())
  115. return 0;
  116. writel_relaxed(0, event_base + TIMER_ENABLE);
  117. writel_relaxed(0, event_base + TIMER_CLEAR);
  118. writel_relaxed(~0, event_base + TIMER_MATCH_VAL);
  119. evt->irq = msm_clockevent.irq;
  120. evt->name = "local_timer";
  121. evt->features = msm_clockevent.features;
  122. evt->rating = msm_clockevent.rating;
  123. evt->set_mode = msm_timer_set_mode;
  124. evt->set_next_event = msm_timer_set_next_event;
  125. *__this_cpu_ptr(msm_evt.percpu_evt) = evt;
  126. clockevents_config_and_register(evt, GPT_HZ, 4, 0xf0000000);
  127. enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING);
  128. return 0;
  129. }
  130. static void msm_local_timer_stop(struct clock_event_device *evt)
  131. {
  132. evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
  133. disable_percpu_irq(evt->irq);
  134. }
  135. static struct local_timer_ops msm_local_timer_ops __cpuinitdata = {
  136. .setup = msm_local_timer_setup,
  137. .stop = msm_local_timer_stop,
  138. };
  139. #endif /* CONFIG_LOCAL_TIMERS */
  140. static notrace u32 msm_sched_clock_read(void)
  141. {
  142. return msm_clocksource.read(&msm_clocksource);
  143. }
  144. static void __init msm_timer_init(u32 dgt_hz, int sched_bits, int irq,
  145. bool percpu)
  146. {
  147. struct clock_event_device *ce = &msm_clockevent;
  148. struct clocksource *cs = &msm_clocksource;
  149. int res;
  150. writel_relaxed(0, event_base + TIMER_ENABLE);
  151. writel_relaxed(0, event_base + TIMER_CLEAR);
  152. writel_relaxed(~0, event_base + TIMER_MATCH_VAL);
  153. ce->cpumask = cpumask_of(0);
  154. ce->irq = irq;
  155. clockevents_config_and_register(ce, GPT_HZ, 4, 0xffffffff);
  156. if (percpu) {
  157. msm_evt.percpu_evt = alloc_percpu(struct clock_event_device *);
  158. if (!msm_evt.percpu_evt) {
  159. pr_err("memory allocation failed for %s\n", ce->name);
  160. goto err;
  161. }
  162. *__this_cpu_ptr(msm_evt.percpu_evt) = ce;
  163. res = request_percpu_irq(ce->irq, msm_timer_interrupt,
  164. ce->name, msm_evt.percpu_evt);
  165. if (!res) {
  166. enable_percpu_irq(ce->irq, IRQ_TYPE_EDGE_RISING);
  167. #ifdef CONFIG_LOCAL_TIMERS
  168. local_timer_register(&msm_local_timer_ops);
  169. #endif
  170. }
  171. } else {
  172. msm_evt.evt = ce;
  173. res = request_irq(ce->irq, msm_timer_interrupt,
  174. IRQF_TIMER | IRQF_NOBALANCING |
  175. IRQF_TRIGGER_RISING, ce->name, &msm_evt.evt);
  176. }
  177. if (res)
  178. pr_err("request_irq failed for %s\n", ce->name);
  179. err:
  180. writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE);
  181. res = clocksource_register_hz(cs, dgt_hz);
  182. if (res)
  183. pr_err("clocksource_register failed\n");
  184. setup_sched_clock(msm_sched_clock_read, sched_bits, dgt_hz);
  185. }
  186. #ifdef CONFIG_OF
  187. static const struct of_device_id msm_dgt_match[] __initconst = {
  188. { .compatible = "qcom,msm-dgt" },
  189. { },
  190. };
  191. static const struct of_device_id msm_gpt_match[] __initconst = {
  192. { .compatible = "qcom,msm-gpt" },
  193. { },
  194. };
  195. void __init msm_dt_timer_init(void)
  196. {
  197. struct device_node *np;
  198. u32 freq;
  199. int irq;
  200. struct resource res;
  201. u32 percpu_offset;
  202. void __iomem *dgt_clk_ctl;
  203. np = of_find_matching_node(NULL, msm_gpt_match);
  204. if (!np) {
  205. pr_err("Can't find GPT DT node\n");
  206. return;
  207. }
  208. event_base = of_iomap(np, 0);
  209. if (!event_base) {
  210. pr_err("Failed to map event base\n");
  211. return;
  212. }
  213. irq = irq_of_parse_and_map(np, 0);
  214. if (irq <= 0) {
  215. pr_err("Can't get irq\n");
  216. return;
  217. }
  218. of_node_put(np);
  219. np = of_find_matching_node(NULL, msm_dgt_match);
  220. if (!np) {
  221. pr_err("Can't find DGT DT node\n");
  222. return;
  223. }
  224. if (of_property_read_u32(np, "cpu-offset", &percpu_offset))
  225. percpu_offset = 0;
  226. if (of_address_to_resource(np, 0, &res)) {
  227. pr_err("Failed to parse DGT resource\n");
  228. return;
  229. }
  230. source_base = ioremap(res.start + percpu_offset, resource_size(&res));
  231. if (!source_base) {
  232. pr_err("Failed to map source base\n");
  233. return;
  234. }
  235. if (!of_address_to_resource(np, 1, &res)) {
  236. dgt_clk_ctl = ioremap(res.start + percpu_offset,
  237. resource_size(&res));
  238. if (!dgt_clk_ctl) {
  239. pr_err("Failed to map DGT control base\n");
  240. return;
  241. }
  242. writel_relaxed(DGT_CLK_CTL_DIV_4, dgt_clk_ctl);
  243. iounmap(dgt_clk_ctl);
  244. }
  245. if (of_property_read_u32(np, "clock-frequency", &freq)) {
  246. pr_err("Unknown frequency\n");
  247. return;
  248. }
  249. of_node_put(np);
  250. msm_timer_init(freq, 32, irq, !!percpu_offset);
  251. }
  252. #endif
  253. static int __init msm_timer_map(phys_addr_t event, phys_addr_t source)
  254. {
  255. event_base = ioremap(event, SZ_64);
  256. if (!event_base) {
  257. pr_err("Failed to map event base\n");
  258. return 1;
  259. }
  260. source_base = ioremap(source, SZ_64);
  261. if (!source_base) {
  262. pr_err("Failed to map source base\n");
  263. return 1;
  264. }
  265. return 0;
  266. }
  267. void __init msm7x01_timer_init(void)
  268. {
  269. struct clocksource *cs = &msm_clocksource;
  270. if (msm_timer_map(0xc0100000, 0xc0100010))
  271. return;
  272. cs->read = msm_read_timer_count_shift;
  273. cs->mask = CLOCKSOURCE_MASK((32 - MSM_DGT_SHIFT));
  274. /* 600 KHz */
  275. msm_timer_init(19200000 >> MSM_DGT_SHIFT, 32 - MSM_DGT_SHIFT, 7,
  276. false);
  277. }
  278. void __init msm7x30_timer_init(void)
  279. {
  280. if (msm_timer_map(0xc0100004, 0xc0100024))
  281. return;
  282. msm_timer_init(24576000 / 4, 32, 1, false);
  283. }
  284. void __init qsd8x50_timer_init(void)
  285. {
  286. if (msm_timer_map(0xAC100000, 0xAC100010))
  287. return;
  288. msm_timer_init(19200000 / 4, 32, 7, false);
  289. }