irq.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463
  1. /*
  2. * linux/arch/arm/mach-mmp/irq.c
  3. *
  4. * Generic IRQ handling, GPIO IRQ demultiplexing, etc.
  5. * Copyright (C) 2008 - 2012 Marvell Technology Group Ltd.
  6. *
  7. * Author: Bin Yang <bin.yang@marvell.com>
  8. * Haojian Zhuang <haojian.zhuang@gmail.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/irq.h>
  17. #include <linux/irqdomain.h>
  18. #include <linux/io.h>
  19. #include <linux/ioport.h>
  20. #include <linux/of_address.h>
  21. #include <linux/of_irq.h>
  22. #include <mach/irqs.h>
  23. #ifdef CONFIG_CPU_MMP2
  24. #include <mach/pm-mmp2.h>
  25. #endif
  26. #ifdef CONFIG_CPU_PXA910
  27. #include <mach/pm-pxa910.h>
  28. #endif
  29. #include "common.h"
  30. #define MAX_ICU_NR 16
  31. struct icu_chip_data {
  32. int nr_irqs;
  33. unsigned int virq_base;
  34. unsigned int cascade_irq;
  35. void __iomem *reg_status;
  36. void __iomem *reg_mask;
  37. unsigned int conf_enable;
  38. unsigned int conf_disable;
  39. unsigned int conf_mask;
  40. unsigned int clr_mfp_irq_base;
  41. unsigned int clr_mfp_hwirq;
  42. struct irq_domain *domain;
  43. };
  44. struct mmp_intc_conf {
  45. unsigned int conf_enable;
  46. unsigned int conf_disable;
  47. unsigned int conf_mask;
  48. };
  49. void __iomem *mmp_icu_base;
  50. static struct icu_chip_data icu_data[MAX_ICU_NR];
  51. static int max_icu_nr;
  52. extern void mmp2_clear_pmic_int(void);
  53. static void icu_mask_ack_irq(struct irq_data *d)
  54. {
  55. struct irq_domain *domain = d->domain;
  56. struct icu_chip_data *data = (struct icu_chip_data *)domain->host_data;
  57. int hwirq;
  58. u32 r;
  59. hwirq = d->irq - data->virq_base;
  60. if (data == &icu_data[0]) {
  61. r = readl_relaxed(mmp_icu_base + (hwirq << 2));
  62. r &= ~data->conf_mask;
  63. r |= data->conf_disable;
  64. writel_relaxed(r, mmp_icu_base + (hwirq << 2));
  65. } else {
  66. #ifdef CONFIG_CPU_MMP2
  67. if ((data->virq_base == data->clr_mfp_irq_base)
  68. && (hwirq == data->clr_mfp_hwirq))
  69. mmp2_clear_pmic_int();
  70. #endif
  71. r = readl_relaxed(data->reg_mask) | (1 << hwirq);
  72. writel_relaxed(r, data->reg_mask);
  73. }
  74. }
  75. static void icu_mask_irq(struct irq_data *d)
  76. {
  77. struct irq_domain *domain = d->domain;
  78. struct icu_chip_data *data = (struct icu_chip_data *)domain->host_data;
  79. int hwirq;
  80. u32 r;
  81. hwirq = d->irq - data->virq_base;
  82. if (data == &icu_data[0]) {
  83. r = readl_relaxed(mmp_icu_base + (hwirq << 2));
  84. r &= ~data->conf_mask;
  85. r |= data->conf_disable;
  86. writel_relaxed(r, mmp_icu_base + (hwirq << 2));
  87. } else {
  88. r = readl_relaxed(data->reg_mask) | (1 << hwirq);
  89. writel_relaxed(r, data->reg_mask);
  90. }
  91. }
  92. static void icu_unmask_irq(struct irq_data *d)
  93. {
  94. struct irq_domain *domain = d->domain;
  95. struct icu_chip_data *data = (struct icu_chip_data *)domain->host_data;
  96. int hwirq;
  97. u32 r;
  98. hwirq = d->irq - data->virq_base;
  99. if (data == &icu_data[0]) {
  100. r = readl_relaxed(mmp_icu_base + (hwirq << 2));
  101. r &= ~data->conf_mask;
  102. r |= data->conf_enable;
  103. writel_relaxed(r, mmp_icu_base + (hwirq << 2));
  104. } else {
  105. r = readl_relaxed(data->reg_mask) & ~(1 << hwirq);
  106. writel_relaxed(r, data->reg_mask);
  107. }
  108. }
  109. static struct irq_chip icu_irq_chip = {
  110. .name = "icu_irq",
  111. .irq_mask = icu_mask_irq,
  112. .irq_mask_ack = icu_mask_ack_irq,
  113. .irq_unmask = icu_unmask_irq,
  114. };
  115. static void icu_mux_irq_demux(unsigned int irq, struct irq_desc *desc)
  116. {
  117. struct irq_domain *domain;
  118. struct icu_chip_data *data;
  119. int i;
  120. unsigned long mask, status, n;
  121. for (i = 1; i < max_icu_nr; i++) {
  122. if (irq == icu_data[i].cascade_irq) {
  123. domain = icu_data[i].domain;
  124. data = (struct icu_chip_data *)domain->host_data;
  125. break;
  126. }
  127. }
  128. if (i >= max_icu_nr) {
  129. pr_err("Spurious irq %d in MMP INTC\n", irq);
  130. return;
  131. }
  132. mask = readl_relaxed(data->reg_mask);
  133. while (1) {
  134. status = readl_relaxed(data->reg_status) & ~mask;
  135. if (status == 0)
  136. break;
  137. for_each_set_bit(n, &status, BITS_PER_LONG) {
  138. generic_handle_irq(icu_data[i].virq_base + n);
  139. }
  140. }
  141. }
  142. static int mmp_irq_domain_map(struct irq_domain *d, unsigned int irq,
  143. irq_hw_number_t hw)
  144. {
  145. irq_set_chip_and_handler(irq, &icu_irq_chip, handle_level_irq);
  146. set_irq_flags(irq, IRQF_VALID);
  147. return 0;
  148. }
  149. static int mmp_irq_domain_xlate(struct irq_domain *d, struct device_node *node,
  150. const u32 *intspec, unsigned int intsize,
  151. unsigned long *out_hwirq,
  152. unsigned int *out_type)
  153. {
  154. *out_hwirq = intspec[0];
  155. return 0;
  156. }
  157. const struct irq_domain_ops mmp_irq_domain_ops = {
  158. .map = mmp_irq_domain_map,
  159. .xlate = mmp_irq_domain_xlate,
  160. };
  161. static struct mmp_intc_conf mmp_conf = {
  162. .conf_enable = 0x51,
  163. .conf_disable = 0x0,
  164. .conf_mask = 0x7f,
  165. };
  166. static struct mmp_intc_conf mmp2_conf = {
  167. .conf_enable = 0x20,
  168. .conf_disable = 0x0,
  169. .conf_mask = 0x7f,
  170. };
  171. /* MMP (ARMv5) */
  172. void __init icu_init_irq(void)
  173. {
  174. int irq;
  175. max_icu_nr = 1;
  176. mmp_icu_base = ioremap(0xd4282000, 0x1000);
  177. icu_data[0].conf_enable = mmp_conf.conf_enable;
  178. icu_data[0].conf_disable = mmp_conf.conf_disable;
  179. icu_data[0].conf_mask = mmp_conf.conf_mask;
  180. icu_data[0].nr_irqs = 64;
  181. icu_data[0].virq_base = 0;
  182. icu_data[0].domain = irq_domain_add_legacy(NULL, 64, 0, 0,
  183. &irq_domain_simple_ops,
  184. &icu_data[0]);
  185. for (irq = 0; irq < 64; irq++) {
  186. icu_mask_irq(irq_get_irq_data(irq));
  187. irq_set_chip_and_handler(irq, &icu_irq_chip, handle_level_irq);
  188. set_irq_flags(irq, IRQF_VALID);
  189. }
  190. irq_set_default_host(icu_data[0].domain);
  191. #ifdef CONFIG_CPU_PXA910
  192. icu_irq_chip.irq_set_wake = pxa910_set_wake;
  193. #endif
  194. }
  195. /* MMP2 (ARMv7) */
  196. void __init mmp2_init_icu(void)
  197. {
  198. int irq;
  199. max_icu_nr = 8;
  200. mmp_icu_base = ioremap(0xd4282000, 0x1000);
  201. icu_data[0].conf_enable = mmp2_conf.conf_enable;
  202. icu_data[0].conf_disable = mmp2_conf.conf_disable;
  203. icu_data[0].conf_mask = mmp2_conf.conf_mask;
  204. icu_data[0].nr_irqs = 64;
  205. icu_data[0].virq_base = 0;
  206. icu_data[0].domain = irq_domain_add_legacy(NULL, 64, 0, 0,
  207. &irq_domain_simple_ops,
  208. &icu_data[0]);
  209. icu_data[1].reg_status = mmp_icu_base + 0x150;
  210. icu_data[1].reg_mask = mmp_icu_base + 0x168;
  211. icu_data[1].clr_mfp_irq_base = IRQ_MMP2_PMIC_BASE;
  212. icu_data[1].clr_mfp_hwirq = IRQ_MMP2_PMIC - IRQ_MMP2_PMIC_BASE;
  213. icu_data[1].nr_irqs = 2;
  214. icu_data[1].cascade_irq = 4;
  215. icu_data[1].virq_base = IRQ_MMP2_PMIC_BASE;
  216. icu_data[1].domain = irq_domain_add_legacy(NULL, icu_data[1].nr_irqs,
  217. icu_data[1].virq_base, 0,
  218. &irq_domain_simple_ops,
  219. &icu_data[1]);
  220. icu_data[2].reg_status = mmp_icu_base + 0x154;
  221. icu_data[2].reg_mask = mmp_icu_base + 0x16c;
  222. icu_data[2].nr_irqs = 2;
  223. icu_data[2].cascade_irq = 5;
  224. icu_data[2].virq_base = IRQ_MMP2_RTC_BASE;
  225. icu_data[2].domain = irq_domain_add_legacy(NULL, icu_data[2].nr_irqs,
  226. icu_data[2].virq_base, 0,
  227. &irq_domain_simple_ops,
  228. &icu_data[2]);
  229. icu_data[3].reg_status = mmp_icu_base + 0x180;
  230. icu_data[3].reg_mask = mmp_icu_base + 0x17c;
  231. icu_data[3].nr_irqs = 3;
  232. icu_data[3].cascade_irq = 9;
  233. icu_data[3].virq_base = IRQ_MMP2_KEYPAD_BASE;
  234. icu_data[3].domain = irq_domain_add_legacy(NULL, icu_data[3].nr_irqs,
  235. icu_data[3].virq_base, 0,
  236. &irq_domain_simple_ops,
  237. &icu_data[3]);
  238. icu_data[4].reg_status = mmp_icu_base + 0x158;
  239. icu_data[4].reg_mask = mmp_icu_base + 0x170;
  240. icu_data[4].nr_irqs = 5;
  241. icu_data[4].cascade_irq = 17;
  242. icu_data[4].virq_base = IRQ_MMP2_TWSI_BASE;
  243. icu_data[4].domain = irq_domain_add_legacy(NULL, icu_data[4].nr_irqs,
  244. icu_data[4].virq_base, 0,
  245. &irq_domain_simple_ops,
  246. &icu_data[4]);
  247. icu_data[5].reg_status = mmp_icu_base + 0x15c;
  248. icu_data[5].reg_mask = mmp_icu_base + 0x174;
  249. icu_data[5].nr_irqs = 15;
  250. icu_data[5].cascade_irq = 35;
  251. icu_data[5].virq_base = IRQ_MMP2_MISC_BASE;
  252. icu_data[5].domain = irq_domain_add_legacy(NULL, icu_data[5].nr_irqs,
  253. icu_data[5].virq_base, 0,
  254. &irq_domain_simple_ops,
  255. &icu_data[5]);
  256. icu_data[6].reg_status = mmp_icu_base + 0x160;
  257. icu_data[6].reg_mask = mmp_icu_base + 0x178;
  258. icu_data[6].nr_irqs = 2;
  259. icu_data[6].cascade_irq = 51;
  260. icu_data[6].virq_base = IRQ_MMP2_MIPI_HSI1_BASE;
  261. icu_data[6].domain = irq_domain_add_legacy(NULL, icu_data[6].nr_irqs,
  262. icu_data[6].virq_base, 0,
  263. &irq_domain_simple_ops,
  264. &icu_data[6]);
  265. icu_data[7].reg_status = mmp_icu_base + 0x188;
  266. icu_data[7].reg_mask = mmp_icu_base + 0x184;
  267. icu_data[7].nr_irqs = 2;
  268. icu_data[7].cascade_irq = 55;
  269. icu_data[7].virq_base = IRQ_MMP2_MIPI_HSI0_BASE;
  270. icu_data[7].domain = irq_domain_add_legacy(NULL, icu_data[7].nr_irqs,
  271. icu_data[7].virq_base, 0,
  272. &irq_domain_simple_ops,
  273. &icu_data[7]);
  274. for (irq = 0; irq < IRQ_MMP2_MUX_END; irq++) {
  275. icu_mask_irq(irq_get_irq_data(irq));
  276. switch (irq) {
  277. case IRQ_MMP2_PMIC_MUX:
  278. case IRQ_MMP2_RTC_MUX:
  279. case IRQ_MMP2_KEYPAD_MUX:
  280. case IRQ_MMP2_TWSI_MUX:
  281. case IRQ_MMP2_MISC_MUX:
  282. case IRQ_MMP2_MIPI_HSI1_MUX:
  283. case IRQ_MMP2_MIPI_HSI0_MUX:
  284. irq_set_chip(irq, &icu_irq_chip);
  285. irq_set_chained_handler(irq, icu_mux_irq_demux);
  286. break;
  287. default:
  288. irq_set_chip_and_handler(irq, &icu_irq_chip,
  289. handle_level_irq);
  290. break;
  291. }
  292. set_irq_flags(irq, IRQF_VALID);
  293. }
  294. irq_set_default_host(icu_data[0].domain);
  295. #ifdef CONFIG_CPU_MMP2
  296. icu_irq_chip.irq_set_wake = mmp2_set_wake;
  297. #endif
  298. }
  299. #ifdef CONFIG_OF
  300. static const struct of_device_id intc_ids[] __initconst = {
  301. { .compatible = "mrvl,mmp-intc", .data = &mmp_conf },
  302. { .compatible = "mrvl,mmp2-intc", .data = &mmp2_conf },
  303. {}
  304. };
  305. static const struct of_device_id mmp_mux_irq_match[] __initconst = {
  306. { .compatible = "mrvl,mmp2-mux-intc" },
  307. {}
  308. };
  309. int __init mmp2_mux_init(struct device_node *parent)
  310. {
  311. struct device_node *node;
  312. const struct of_device_id *of_id;
  313. struct resource res;
  314. int i, irq_base, ret, irq;
  315. u32 nr_irqs, mfp_irq;
  316. node = parent;
  317. max_icu_nr = 1;
  318. for (i = 1; i < MAX_ICU_NR; i++) {
  319. node = of_find_matching_node(node, mmp_mux_irq_match);
  320. if (!node)
  321. break;
  322. of_id = of_match_node(&mmp_mux_irq_match[0], node);
  323. ret = of_property_read_u32(node, "mrvl,intc-nr-irqs",
  324. &nr_irqs);
  325. if (ret) {
  326. pr_err("Not found mrvl,intc-nr-irqs property\n");
  327. ret = -EINVAL;
  328. goto err;
  329. }
  330. ret = of_address_to_resource(node, 0, &res);
  331. if (ret < 0) {
  332. pr_err("Not found reg property\n");
  333. ret = -EINVAL;
  334. goto err;
  335. }
  336. icu_data[i].reg_status = mmp_icu_base + res.start;
  337. ret = of_address_to_resource(node, 1, &res);
  338. if (ret < 0) {
  339. pr_err("Not found reg property\n");
  340. ret = -EINVAL;
  341. goto err;
  342. }
  343. icu_data[i].reg_mask = mmp_icu_base + res.start;
  344. icu_data[i].cascade_irq = irq_of_parse_and_map(node, 0);
  345. if (!icu_data[i].cascade_irq) {
  346. ret = -EINVAL;
  347. goto err;
  348. }
  349. irq_base = irq_alloc_descs(-1, 0, nr_irqs, 0);
  350. if (irq_base < 0) {
  351. pr_err("Failed to allocate IRQ numbers for mux intc\n");
  352. ret = irq_base;
  353. goto err;
  354. }
  355. if (!of_property_read_u32(node, "mrvl,clr-mfp-irq",
  356. &mfp_irq)) {
  357. icu_data[i].clr_mfp_irq_base = irq_base;
  358. icu_data[i].clr_mfp_hwirq = mfp_irq;
  359. }
  360. irq_set_chained_handler(icu_data[i].cascade_irq,
  361. icu_mux_irq_demux);
  362. icu_data[i].nr_irqs = nr_irqs;
  363. icu_data[i].virq_base = irq_base;
  364. icu_data[i].domain = irq_domain_add_legacy(node, nr_irqs,
  365. irq_base, 0,
  366. &mmp_irq_domain_ops,
  367. &icu_data[i]);
  368. for (irq = irq_base; irq < irq_base + nr_irqs; irq++)
  369. icu_mask_irq(irq_get_irq_data(irq));
  370. }
  371. max_icu_nr = i;
  372. return 0;
  373. err:
  374. of_node_put(node);
  375. max_icu_nr = i;
  376. return ret;
  377. }
  378. void __init mmp_dt_irq_init(void)
  379. {
  380. struct device_node *node;
  381. const struct of_device_id *of_id;
  382. struct mmp_intc_conf *conf;
  383. int nr_irqs, irq_base, ret, irq;
  384. node = of_find_matching_node(NULL, intc_ids);
  385. if (!node) {
  386. pr_err("Failed to find interrupt controller in arch-mmp\n");
  387. return;
  388. }
  389. of_id = of_match_node(intc_ids, node);
  390. conf = of_id->data;
  391. ret = of_property_read_u32(node, "mrvl,intc-nr-irqs", &nr_irqs);
  392. if (ret) {
  393. pr_err("Not found mrvl,intc-nr-irqs property\n");
  394. return;
  395. }
  396. mmp_icu_base = of_iomap(node, 0);
  397. if (!mmp_icu_base) {
  398. pr_err("Failed to get interrupt controller register\n");
  399. return;
  400. }
  401. irq_base = irq_alloc_descs(-1, 0, nr_irqs - NR_IRQS_LEGACY, 0);
  402. if (irq_base < 0) {
  403. pr_err("Failed to allocate IRQ numbers\n");
  404. goto err;
  405. } else if (irq_base != NR_IRQS_LEGACY) {
  406. pr_err("ICU's irqbase should be started from 0\n");
  407. goto err;
  408. }
  409. icu_data[0].conf_enable = conf->conf_enable;
  410. icu_data[0].conf_disable = conf->conf_disable;
  411. icu_data[0].conf_mask = conf->conf_mask;
  412. icu_data[0].nr_irqs = nr_irqs;
  413. icu_data[0].virq_base = 0;
  414. icu_data[0].domain = irq_domain_add_legacy(node, nr_irqs, 0, 0,
  415. &mmp_irq_domain_ops,
  416. &icu_data[0]);
  417. irq_set_default_host(icu_data[0].domain);
  418. for (irq = 0; irq < nr_irqs; irq++)
  419. icu_mask_irq(irq_get_irq_data(irq));
  420. mmp2_mux_init(node);
  421. return;
  422. err:
  423. iounmap(mmp_icu_base);
  424. }
  425. #endif