mct.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485
  1. /* linux/arch/arm/mach-exynos4/mct.c
  2. *
  3. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * EXYNOS4 MCT(Multi-Core Timer) support
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/irq.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/delay.h>
  20. #include <linux/percpu.h>
  21. #include <linux/of.h>
  22. #include <asm/arch_timer.h>
  23. #include <asm/localtimer.h>
  24. #include <plat/cpu.h>
  25. #include <mach/map.h>
  26. #include <mach/irqs.h>
  27. #include <mach/regs-mct.h>
  28. #include <asm/mach/time.h>
  29. #define TICK_BASE_CNT 1
  30. enum {
  31. MCT_INT_SPI,
  32. MCT_INT_PPI
  33. };
  34. static unsigned long clk_rate;
  35. static unsigned int mct_int_type;
  36. struct mct_clock_event_device {
  37. struct clock_event_device *evt;
  38. void __iomem *base;
  39. char name[10];
  40. };
  41. static void exynos4_mct_write(unsigned int value, void *addr)
  42. {
  43. void __iomem *stat_addr;
  44. u32 mask;
  45. u32 i;
  46. __raw_writel(value, addr);
  47. if (likely(addr >= EXYNOS4_MCT_L_BASE(0))) {
  48. u32 base = (u32) addr & EXYNOS4_MCT_L_MASK;
  49. switch ((u32) addr & ~EXYNOS4_MCT_L_MASK) {
  50. case (u32) MCT_L_TCON_OFFSET:
  51. stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
  52. mask = 1 << 3; /* L_TCON write status */
  53. break;
  54. case (u32) MCT_L_ICNTB_OFFSET:
  55. stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
  56. mask = 1 << 1; /* L_ICNTB write status */
  57. break;
  58. case (u32) MCT_L_TCNTB_OFFSET:
  59. stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
  60. mask = 1 << 0; /* L_TCNTB write status */
  61. break;
  62. default:
  63. return;
  64. }
  65. } else {
  66. switch ((u32) addr) {
  67. case (u32) EXYNOS4_MCT_G_TCON:
  68. stat_addr = EXYNOS4_MCT_G_WSTAT;
  69. mask = 1 << 16; /* G_TCON write status */
  70. break;
  71. case (u32) EXYNOS4_MCT_G_COMP0_L:
  72. stat_addr = EXYNOS4_MCT_G_WSTAT;
  73. mask = 1 << 0; /* G_COMP0_L write status */
  74. break;
  75. case (u32) EXYNOS4_MCT_G_COMP0_U:
  76. stat_addr = EXYNOS4_MCT_G_WSTAT;
  77. mask = 1 << 1; /* G_COMP0_U write status */
  78. break;
  79. case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR:
  80. stat_addr = EXYNOS4_MCT_G_WSTAT;
  81. mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
  82. break;
  83. case (u32) EXYNOS4_MCT_G_CNT_L:
  84. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  85. mask = 1 << 0; /* G_CNT_L write status */
  86. break;
  87. case (u32) EXYNOS4_MCT_G_CNT_U:
  88. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  89. mask = 1 << 1; /* G_CNT_U write status */
  90. break;
  91. default:
  92. return;
  93. }
  94. }
  95. /* Wait maximum 1 ms until written values are applied */
  96. for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
  97. if (__raw_readl(stat_addr) & mask) {
  98. __raw_writel(mask, stat_addr);
  99. return;
  100. }
  101. panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr);
  102. }
  103. /* Clocksource handling */
  104. static void exynos4_mct_frc_start(u32 hi, u32 lo)
  105. {
  106. u32 reg;
  107. exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
  108. exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
  109. reg = __raw_readl(EXYNOS4_MCT_G_TCON);
  110. reg |= MCT_G_TCON_START;
  111. exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
  112. }
  113. static cycle_t exynos4_frc_read(struct clocksource *cs)
  114. {
  115. unsigned int lo, hi;
  116. u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
  117. do {
  118. hi = hi2;
  119. lo = __raw_readl(EXYNOS4_MCT_G_CNT_L);
  120. hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
  121. } while (hi != hi2);
  122. return ((cycle_t)hi << 32) | lo;
  123. }
  124. static void exynos4_frc_resume(struct clocksource *cs)
  125. {
  126. exynos4_mct_frc_start(0, 0);
  127. }
  128. struct clocksource mct_frc = {
  129. .name = "mct-frc",
  130. .rating = 400,
  131. .read = exynos4_frc_read,
  132. .mask = CLOCKSOURCE_MASK(64),
  133. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  134. .resume = exynos4_frc_resume,
  135. };
  136. static void __init exynos4_clocksource_init(void)
  137. {
  138. exynos4_mct_frc_start(0, 0);
  139. if (clocksource_register_hz(&mct_frc, clk_rate))
  140. panic("%s: can't register clocksource\n", mct_frc.name);
  141. }
  142. static void exynos4_mct_comp0_stop(void)
  143. {
  144. unsigned int tcon;
  145. tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
  146. tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
  147. exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
  148. exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
  149. }
  150. static void exynos4_mct_comp0_start(enum clock_event_mode mode,
  151. unsigned long cycles)
  152. {
  153. unsigned int tcon;
  154. cycle_t comp_cycle;
  155. tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
  156. if (mode == CLOCK_EVT_MODE_PERIODIC) {
  157. tcon |= MCT_G_TCON_COMP0_AUTO_INC;
  158. exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
  159. }
  160. comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
  161. exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
  162. exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
  163. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
  164. tcon |= MCT_G_TCON_COMP0_ENABLE;
  165. exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
  166. }
  167. static int exynos4_comp_set_next_event(unsigned long cycles,
  168. struct clock_event_device *evt)
  169. {
  170. exynos4_mct_comp0_start(evt->mode, cycles);
  171. return 0;
  172. }
  173. static void exynos4_comp_set_mode(enum clock_event_mode mode,
  174. struct clock_event_device *evt)
  175. {
  176. unsigned long cycles_per_jiffy;
  177. exynos4_mct_comp0_stop();
  178. switch (mode) {
  179. case CLOCK_EVT_MODE_PERIODIC:
  180. cycles_per_jiffy =
  181. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  182. exynos4_mct_comp0_start(mode, cycles_per_jiffy);
  183. break;
  184. case CLOCK_EVT_MODE_ONESHOT:
  185. case CLOCK_EVT_MODE_UNUSED:
  186. case CLOCK_EVT_MODE_SHUTDOWN:
  187. case CLOCK_EVT_MODE_RESUME:
  188. break;
  189. }
  190. }
  191. static struct clock_event_device mct_comp_device = {
  192. .name = "mct-comp",
  193. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  194. .rating = 250,
  195. .set_next_event = exynos4_comp_set_next_event,
  196. .set_mode = exynos4_comp_set_mode,
  197. };
  198. static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
  199. {
  200. struct clock_event_device *evt = dev_id;
  201. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
  202. evt->event_handler(evt);
  203. return IRQ_HANDLED;
  204. }
  205. static struct irqaction mct_comp_event_irq = {
  206. .name = "mct_comp_irq",
  207. .flags = IRQF_TIMER | IRQF_IRQPOLL,
  208. .handler = exynos4_mct_comp_isr,
  209. .dev_id = &mct_comp_device,
  210. };
  211. static void exynos4_clockevent_init(void)
  212. {
  213. mct_comp_device.cpumask = cpumask_of(0);
  214. clockevents_config_and_register(&mct_comp_device, clk_rate,
  215. 0xf, 0xffffffff);
  216. if (soc_is_exynos5250())
  217. setup_irq(EXYNOS5_IRQ_MCT_G0, &mct_comp_event_irq);
  218. else
  219. setup_irq(EXYNOS4_IRQ_MCT_G0, &mct_comp_event_irq);
  220. }
  221. #ifdef CONFIG_LOCAL_TIMERS
  222. static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
  223. /* Clock event handling */
  224. static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
  225. {
  226. unsigned long tmp;
  227. unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
  228. void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET;
  229. tmp = __raw_readl(addr);
  230. if (tmp & mask) {
  231. tmp &= ~mask;
  232. exynos4_mct_write(tmp, addr);
  233. }
  234. }
  235. static void exynos4_mct_tick_start(unsigned long cycles,
  236. struct mct_clock_event_device *mevt)
  237. {
  238. unsigned long tmp;
  239. exynos4_mct_tick_stop(mevt);
  240. tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
  241. /* update interrupt count buffer */
  242. exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
  243. /* enable MCT tick interrupt */
  244. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
  245. tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET);
  246. tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
  247. MCT_L_TCON_INTERVAL_MODE;
  248. exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
  249. }
  250. static int exynos4_tick_set_next_event(unsigned long cycles,
  251. struct clock_event_device *evt)
  252. {
  253. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  254. exynos4_mct_tick_start(cycles, mevt);
  255. return 0;
  256. }
  257. static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
  258. struct clock_event_device *evt)
  259. {
  260. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  261. unsigned long cycles_per_jiffy;
  262. exynos4_mct_tick_stop(mevt);
  263. switch (mode) {
  264. case CLOCK_EVT_MODE_PERIODIC:
  265. cycles_per_jiffy =
  266. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  267. exynos4_mct_tick_start(cycles_per_jiffy, mevt);
  268. break;
  269. case CLOCK_EVT_MODE_ONESHOT:
  270. case CLOCK_EVT_MODE_UNUSED:
  271. case CLOCK_EVT_MODE_SHUTDOWN:
  272. case CLOCK_EVT_MODE_RESUME:
  273. break;
  274. }
  275. }
  276. static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
  277. {
  278. struct clock_event_device *evt = mevt->evt;
  279. /*
  280. * This is for supporting oneshot mode.
  281. * Mct would generate interrupt periodically
  282. * without explicit stopping.
  283. */
  284. if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
  285. exynos4_mct_tick_stop(mevt);
  286. /* Clear the MCT tick interrupt */
  287. if (__raw_readl(mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
  288. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
  289. return 1;
  290. } else {
  291. return 0;
  292. }
  293. }
  294. static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
  295. {
  296. struct mct_clock_event_device *mevt = dev_id;
  297. struct clock_event_device *evt = mevt->evt;
  298. exynos4_mct_tick_clear(mevt);
  299. evt->event_handler(evt);
  300. return IRQ_HANDLED;
  301. }
  302. static struct irqaction mct_tick0_event_irq = {
  303. .name = "mct_tick0_irq",
  304. .flags = IRQF_TIMER | IRQF_NOBALANCING,
  305. .handler = exynos4_mct_tick_isr,
  306. };
  307. static struct irqaction mct_tick1_event_irq = {
  308. .name = "mct_tick1_irq",
  309. .flags = IRQF_TIMER | IRQF_NOBALANCING,
  310. .handler = exynos4_mct_tick_isr,
  311. };
  312. static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt)
  313. {
  314. struct mct_clock_event_device *mevt;
  315. unsigned int cpu = smp_processor_id();
  316. int mct_lx_irq;
  317. mevt = this_cpu_ptr(&percpu_mct_tick);
  318. mevt->evt = evt;
  319. mevt->base = EXYNOS4_MCT_L_BASE(cpu);
  320. sprintf(mevt->name, "mct_tick%d", cpu);
  321. evt->name = mevt->name;
  322. evt->cpumask = cpumask_of(cpu);
  323. evt->set_next_event = exynos4_tick_set_next_event;
  324. evt->set_mode = exynos4_tick_set_mode;
  325. evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
  326. evt->rating = 450;
  327. clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
  328. 0xf, 0x7fffffff);
  329. exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
  330. if (mct_int_type == MCT_INT_SPI) {
  331. if (cpu == 0) {
  332. mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L0 :
  333. EXYNOS5_IRQ_MCT_L0;
  334. mct_tick0_event_irq.dev_id = mevt;
  335. evt->irq = mct_lx_irq;
  336. setup_irq(mct_lx_irq, &mct_tick0_event_irq);
  337. } else {
  338. mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L1 :
  339. EXYNOS5_IRQ_MCT_L1;
  340. mct_tick1_event_irq.dev_id = mevt;
  341. evt->irq = mct_lx_irq;
  342. setup_irq(mct_lx_irq, &mct_tick1_event_irq);
  343. irq_set_affinity(mct_lx_irq, cpumask_of(1));
  344. }
  345. } else {
  346. enable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER, 0);
  347. }
  348. return 0;
  349. }
  350. static void exynos4_local_timer_stop(struct clock_event_device *evt)
  351. {
  352. unsigned int cpu = smp_processor_id();
  353. evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
  354. if (mct_int_type == MCT_INT_SPI)
  355. if (cpu == 0)
  356. remove_irq(evt->irq, &mct_tick0_event_irq);
  357. else
  358. remove_irq(evt->irq, &mct_tick1_event_irq);
  359. else
  360. disable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER);
  361. }
  362. static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = {
  363. .setup = exynos4_local_timer_setup,
  364. .stop = exynos4_local_timer_stop,
  365. };
  366. #endif /* CONFIG_LOCAL_TIMERS */
  367. static void __init exynos4_timer_resources(void)
  368. {
  369. struct clk *mct_clk;
  370. mct_clk = clk_get(NULL, "xtal");
  371. clk_rate = clk_get_rate(mct_clk);
  372. #ifdef CONFIG_LOCAL_TIMERS
  373. if (mct_int_type == MCT_INT_PPI) {
  374. int err;
  375. err = request_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER,
  376. exynos4_mct_tick_isr, "MCT",
  377. &percpu_mct_tick);
  378. WARN(err, "MCT: can't request IRQ %d (%d)\n",
  379. EXYNOS_IRQ_MCT_LOCALTIMER, err);
  380. }
  381. local_timer_register(&exynos4_mct_tick_ops);
  382. #endif /* CONFIG_LOCAL_TIMERS */
  383. }
  384. void __init exynos4_timer_init(void)
  385. {
  386. if (soc_is_exynos5440()) {
  387. arch_timer_of_register();
  388. return;
  389. }
  390. if ((soc_is_exynos4210()) || (soc_is_exynos5250()))
  391. mct_int_type = MCT_INT_SPI;
  392. else
  393. mct_int_type = MCT_INT_PPI;
  394. exynos4_timer_resources();
  395. exynos4_clocksource_init();
  396. exynos4_clockevent_init();
  397. }