smp.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/irq.h>
  24. #include <linux/percpu.h>
  25. #include <linux/clockchips.h>
  26. #include <linux/completion.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/atomic.h>
  29. #include <asm/smp.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu.h>
  32. #include <asm/cputype.h>
  33. #include <asm/exception.h>
  34. #include <asm/idmap.h>
  35. #include <asm/topology.h>
  36. #include <asm/mmu_context.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sections.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/ptrace.h>
  43. #include <asm/localtimer.h>
  44. #include <asm/smp_plat.h>
  45. #include <asm/virt.h>
  46. #include <asm/mach/arch.h>
  47. /*
  48. * as from 2.5, kernels no longer have an init_tasks structure
  49. * so we need some other way of telling a new secondary core
  50. * where to place its SVC stack
  51. */
  52. struct secondary_data secondary_data;
  53. /*
  54. * control for which core is the next to come out of the secondary
  55. * boot "holding pen"
  56. */
  57. volatile int __cpuinitdata pen_release = -1;
  58. enum ipi_msg_type {
  59. IPI_WAKEUP,
  60. IPI_TIMER,
  61. IPI_RESCHEDULE,
  62. IPI_CALL_FUNC,
  63. IPI_CALL_FUNC_SINGLE,
  64. IPI_CPU_STOP,
  65. };
  66. static DECLARE_COMPLETION(cpu_running);
  67. static struct smp_operations smp_ops;
  68. void __init smp_set_ops(struct smp_operations *ops)
  69. {
  70. if (ops)
  71. smp_ops = *ops;
  72. };
  73. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
  74. {
  75. int ret;
  76. /*
  77. * We need to tell the secondary core where to find
  78. * its stack and the page tables.
  79. */
  80. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  81. secondary_data.pgdir = virt_to_phys(idmap_pgd);
  82. secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
  83. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  84. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  85. /*
  86. * Now bring the CPU into our world.
  87. */
  88. ret = boot_secondary(cpu, idle);
  89. if (ret == 0) {
  90. /*
  91. * CPU was successfully started, wait for it
  92. * to come online or time out.
  93. */
  94. wait_for_completion_timeout(&cpu_running,
  95. msecs_to_jiffies(1000));
  96. if (!cpu_online(cpu)) {
  97. pr_crit("CPU%u: failed to come online\n", cpu);
  98. ret = -EIO;
  99. }
  100. } else {
  101. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  102. }
  103. secondary_data.stack = NULL;
  104. secondary_data.pgdir = 0;
  105. return ret;
  106. }
  107. /* platform specific SMP operations */
  108. void __init smp_init_cpus(void)
  109. {
  110. if (smp_ops.smp_init_cpus)
  111. smp_ops.smp_init_cpus();
  112. }
  113. int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
  114. {
  115. if (smp_ops.smp_boot_secondary)
  116. return smp_ops.smp_boot_secondary(cpu, idle);
  117. return -ENOSYS;
  118. }
  119. #ifdef CONFIG_HOTPLUG_CPU
  120. static void percpu_timer_stop(void);
  121. static int platform_cpu_kill(unsigned int cpu)
  122. {
  123. if (smp_ops.cpu_kill)
  124. return smp_ops.cpu_kill(cpu);
  125. return 1;
  126. }
  127. static int platform_cpu_disable(unsigned int cpu)
  128. {
  129. if (smp_ops.cpu_disable)
  130. return smp_ops.cpu_disable(cpu);
  131. /*
  132. * By default, allow disabling all CPUs except the first one,
  133. * since this is special on a lot of platforms, e.g. because
  134. * of clock tick interrupts.
  135. */
  136. return cpu == 0 ? -EPERM : 0;
  137. }
  138. /*
  139. * __cpu_disable runs on the processor to be shutdown.
  140. */
  141. int __cpuinit __cpu_disable(void)
  142. {
  143. unsigned int cpu = smp_processor_id();
  144. int ret;
  145. ret = platform_cpu_disable(cpu);
  146. if (ret)
  147. return ret;
  148. /*
  149. * Take this CPU offline. Once we clear this, we can't return,
  150. * and we must not schedule until we're ready to give up the cpu.
  151. */
  152. set_cpu_online(cpu, false);
  153. /*
  154. * OK - migrate IRQs away from this CPU
  155. */
  156. migrate_irqs();
  157. /*
  158. * Stop the local timer for this CPU.
  159. */
  160. percpu_timer_stop();
  161. /*
  162. * Flush user cache and TLB mappings, and then remove this CPU
  163. * from the vm mask set of all processes.
  164. *
  165. * Caches are flushed to the Level of Unification Inner Shareable
  166. * to write-back dirty lines to unified caches shared by all CPUs.
  167. */
  168. flush_cache_louis();
  169. local_flush_tlb_all();
  170. clear_tasks_mm_cpumask(cpu);
  171. return 0;
  172. }
  173. static DECLARE_COMPLETION(cpu_died);
  174. /*
  175. * called on the thread which is asking for a CPU to be shutdown -
  176. * waits until shutdown has completed, or it is timed out.
  177. */
  178. void __cpuinit __cpu_die(unsigned int cpu)
  179. {
  180. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  181. pr_err("CPU%u: cpu didn't die\n", cpu);
  182. return;
  183. }
  184. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  185. if (!platform_cpu_kill(cpu))
  186. printk("CPU%u: unable to kill\n", cpu);
  187. }
  188. /*
  189. * Called from the idle thread for the CPU which has been shutdown.
  190. *
  191. * Note that we disable IRQs here, but do not re-enable them
  192. * before returning to the caller. This is also the behaviour
  193. * of the other hotplug-cpu capable cores, so presumably coming
  194. * out of idle fixes this.
  195. */
  196. void __ref cpu_die(void)
  197. {
  198. unsigned int cpu = smp_processor_id();
  199. idle_task_exit();
  200. local_irq_disable();
  201. mb();
  202. /* Tell __cpu_die() that this CPU is now safe to dispose of */
  203. RCU_NONIDLE(complete(&cpu_died));
  204. /*
  205. * actual CPU shutdown procedure is at least platform (if not
  206. * CPU) specific.
  207. */
  208. if (smp_ops.cpu_die)
  209. smp_ops.cpu_die(cpu);
  210. /*
  211. * Do not return to the idle loop - jump back to the secondary
  212. * cpu initialisation. There's some initialisation which needs
  213. * to be repeated to undo the effects of taking the CPU offline.
  214. */
  215. __asm__("mov sp, %0\n"
  216. " mov fp, #0\n"
  217. " b secondary_start_kernel"
  218. :
  219. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  220. }
  221. #endif /* CONFIG_HOTPLUG_CPU */
  222. /*
  223. * Called by both boot and secondaries to move global data into
  224. * per-processor storage.
  225. */
  226. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  227. {
  228. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  229. cpu_info->loops_per_jiffy = loops_per_jiffy;
  230. cpu_info->cpuid = read_cpuid_id();
  231. store_cpu_topology(cpuid);
  232. }
  233. static void percpu_timer_setup(void);
  234. /*
  235. * This is the secondary CPU boot entry. We're using this CPUs
  236. * idle thread stack, but a set of temporary page tables.
  237. */
  238. asmlinkage void __cpuinit secondary_start_kernel(void)
  239. {
  240. struct mm_struct *mm = &init_mm;
  241. unsigned int cpu;
  242. /*
  243. * The identity mapping is uncached (strongly ordered), so
  244. * switch away from it before attempting any exclusive accesses.
  245. */
  246. cpu_switch_mm(mm->pgd, mm);
  247. local_flush_bp_all();
  248. enter_lazy_tlb(mm, current);
  249. local_flush_tlb_all();
  250. /*
  251. * All kernel threads share the same mm context; grab a
  252. * reference and switch to it.
  253. */
  254. cpu = smp_processor_id();
  255. atomic_inc(&mm->mm_count);
  256. current->active_mm = mm;
  257. cpumask_set_cpu(cpu, mm_cpumask(mm));
  258. cpu_init();
  259. printk("CPU%u: Booted secondary processor\n", cpu);
  260. preempt_disable();
  261. trace_hardirqs_off();
  262. /*
  263. * Give the platform a chance to do its own initialisation.
  264. */
  265. if (smp_ops.smp_secondary_init)
  266. smp_ops.smp_secondary_init(cpu);
  267. notify_cpu_starting(cpu);
  268. calibrate_delay();
  269. smp_store_cpu_info(cpu);
  270. /*
  271. * OK, now it's safe to let the boot CPU continue. Wait for
  272. * the CPU migration code to notice that the CPU is online
  273. * before we continue - which happens after __cpu_up returns.
  274. */
  275. set_cpu_online(cpu, true);
  276. complete(&cpu_running);
  277. /*
  278. * Setup the percpu timer for this CPU.
  279. */
  280. percpu_timer_setup();
  281. local_irq_enable();
  282. local_fiq_enable();
  283. /*
  284. * OK, it's off to the idle thread for us
  285. */
  286. cpu_idle();
  287. }
  288. void __init smp_cpus_done(unsigned int max_cpus)
  289. {
  290. int cpu;
  291. unsigned long bogosum = 0;
  292. for_each_online_cpu(cpu)
  293. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  294. printk(KERN_INFO "SMP: Total of %d processors activated "
  295. "(%lu.%02lu BogoMIPS).\n",
  296. num_online_cpus(),
  297. bogosum / (500000/HZ),
  298. (bogosum / (5000/HZ)) % 100);
  299. hyp_mode_check();
  300. }
  301. void __init smp_prepare_boot_cpu(void)
  302. {
  303. set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
  304. }
  305. void __init smp_prepare_cpus(unsigned int max_cpus)
  306. {
  307. unsigned int ncores = num_possible_cpus();
  308. init_cpu_topology();
  309. smp_store_cpu_info(smp_processor_id());
  310. /*
  311. * are we trying to boot more cores than exist?
  312. */
  313. if (max_cpus > ncores)
  314. max_cpus = ncores;
  315. if (ncores > 1 && max_cpus) {
  316. /*
  317. * Enable the local timer or broadcast device for the
  318. * boot CPU, but only if we have more than one CPU.
  319. */
  320. percpu_timer_setup();
  321. /*
  322. * Initialise the present map, which describes the set of CPUs
  323. * actually populated at the present time. A platform should
  324. * re-initialize the map in the platforms smp_prepare_cpus()
  325. * if present != possible (e.g. physical hotplug).
  326. */
  327. init_cpu_present(cpu_possible_mask);
  328. /*
  329. * Initialise the SCU if there are more than one CPU
  330. * and let them know where to start.
  331. */
  332. if (smp_ops.smp_prepare_cpus)
  333. smp_ops.smp_prepare_cpus(max_cpus);
  334. }
  335. }
  336. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  337. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  338. {
  339. if (!smp_cross_call)
  340. smp_cross_call = fn;
  341. }
  342. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  343. {
  344. smp_cross_call(mask, IPI_CALL_FUNC);
  345. }
  346. void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
  347. {
  348. smp_cross_call(mask, IPI_WAKEUP);
  349. }
  350. void arch_send_call_function_single_ipi(int cpu)
  351. {
  352. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  353. }
  354. static const char *ipi_types[NR_IPI] = {
  355. #define S(x,s) [x] = s
  356. S(IPI_WAKEUP, "CPU wakeup interrupts"),
  357. S(IPI_TIMER, "Timer broadcast interrupts"),
  358. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  359. S(IPI_CALL_FUNC, "Function call interrupts"),
  360. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  361. S(IPI_CPU_STOP, "CPU stop interrupts"),
  362. };
  363. void show_ipi_list(struct seq_file *p, int prec)
  364. {
  365. unsigned int cpu, i;
  366. for (i = 0; i < NR_IPI; i++) {
  367. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  368. for_each_online_cpu(cpu)
  369. seq_printf(p, "%10u ",
  370. __get_irq_stat(cpu, ipi_irqs[i]));
  371. seq_printf(p, " %s\n", ipi_types[i]);
  372. }
  373. }
  374. u64 smp_irq_stat_cpu(unsigned int cpu)
  375. {
  376. u64 sum = 0;
  377. int i;
  378. for (i = 0; i < NR_IPI; i++)
  379. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  380. return sum;
  381. }
  382. /*
  383. * Timer (local or broadcast) support
  384. */
  385. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  386. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  387. void tick_broadcast(const struct cpumask *mask)
  388. {
  389. smp_cross_call(mask, IPI_TIMER);
  390. }
  391. #endif
  392. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  393. struct clock_event_device *evt)
  394. {
  395. }
  396. static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
  397. {
  398. evt->name = "dummy_timer";
  399. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  400. CLOCK_EVT_FEAT_PERIODIC |
  401. CLOCK_EVT_FEAT_DUMMY;
  402. evt->rating = 100;
  403. evt->mult = 1;
  404. evt->set_mode = broadcast_timer_set_mode;
  405. clockevents_register_device(evt);
  406. }
  407. static struct local_timer_ops *lt_ops;
  408. #ifdef CONFIG_LOCAL_TIMERS
  409. int local_timer_register(struct local_timer_ops *ops)
  410. {
  411. if (!is_smp() || !setup_max_cpus)
  412. return -ENXIO;
  413. if (lt_ops)
  414. return -EBUSY;
  415. lt_ops = ops;
  416. return 0;
  417. }
  418. #endif
  419. static void __cpuinit percpu_timer_setup(void)
  420. {
  421. unsigned int cpu = smp_processor_id();
  422. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  423. evt->cpumask = cpumask_of(cpu);
  424. if (!lt_ops || lt_ops->setup(evt))
  425. broadcast_timer_setup(evt);
  426. }
  427. #ifdef CONFIG_HOTPLUG_CPU
  428. /*
  429. * The generic clock events code purposely does not stop the local timer
  430. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  431. * manually here.
  432. */
  433. static void percpu_timer_stop(void)
  434. {
  435. unsigned int cpu = smp_processor_id();
  436. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  437. if (lt_ops)
  438. lt_ops->stop(evt);
  439. }
  440. #endif
  441. static DEFINE_RAW_SPINLOCK(stop_lock);
  442. /*
  443. * ipi_cpu_stop - handle IPI from smp_send_stop()
  444. */
  445. static void ipi_cpu_stop(unsigned int cpu)
  446. {
  447. if (system_state == SYSTEM_BOOTING ||
  448. system_state == SYSTEM_RUNNING) {
  449. raw_spin_lock(&stop_lock);
  450. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  451. dump_stack();
  452. raw_spin_unlock(&stop_lock);
  453. }
  454. set_cpu_online(cpu, false);
  455. local_fiq_disable();
  456. local_irq_disable();
  457. while (1)
  458. cpu_relax();
  459. }
  460. /*
  461. * Main handler for inter-processor interrupts
  462. */
  463. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  464. {
  465. handle_IPI(ipinr, regs);
  466. }
  467. void handle_IPI(int ipinr, struct pt_regs *regs)
  468. {
  469. unsigned int cpu = smp_processor_id();
  470. struct pt_regs *old_regs = set_irq_regs(regs);
  471. if (ipinr < NR_IPI)
  472. __inc_irq_stat(cpu, ipi_irqs[ipinr]);
  473. switch (ipinr) {
  474. case IPI_WAKEUP:
  475. break;
  476. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  477. case IPI_TIMER:
  478. irq_enter();
  479. tick_receive_broadcast();
  480. irq_exit();
  481. break;
  482. #endif
  483. case IPI_RESCHEDULE:
  484. scheduler_ipi();
  485. break;
  486. case IPI_CALL_FUNC:
  487. irq_enter();
  488. generic_smp_call_function_interrupt();
  489. irq_exit();
  490. break;
  491. case IPI_CALL_FUNC_SINGLE:
  492. irq_enter();
  493. generic_smp_call_function_single_interrupt();
  494. irq_exit();
  495. break;
  496. case IPI_CPU_STOP:
  497. irq_enter();
  498. ipi_cpu_stop(cpu);
  499. irq_exit();
  500. break;
  501. default:
  502. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  503. cpu, ipinr);
  504. break;
  505. }
  506. set_irq_regs(old_regs);
  507. }
  508. void smp_send_reschedule(int cpu)
  509. {
  510. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  511. }
  512. #ifdef CONFIG_HOTPLUG_CPU
  513. static void smp_kill_cpus(cpumask_t *mask)
  514. {
  515. unsigned int cpu;
  516. for_each_cpu(cpu, mask)
  517. platform_cpu_kill(cpu);
  518. }
  519. #else
  520. static void smp_kill_cpus(cpumask_t *mask) { }
  521. #endif
  522. void smp_send_stop(void)
  523. {
  524. unsigned long timeout;
  525. struct cpumask mask;
  526. cpumask_copy(&mask, cpu_online_mask);
  527. cpumask_clear_cpu(smp_processor_id(), &mask);
  528. if (!cpumask_empty(&mask))
  529. smp_cross_call(&mask, IPI_CPU_STOP);
  530. /* Wait up to one second for other CPUs to stop */
  531. timeout = USEC_PER_SEC;
  532. while (num_online_cpus() > 1 && timeout--)
  533. udelay(1);
  534. if (num_online_cpus() > 1)
  535. pr_warning("SMP: failed to stop secondary CPUs\n");
  536. smp_kill_cpus(&mask);
  537. }
  538. /*
  539. * not supported here
  540. */
  541. int setup_profiling_timer(unsigned int multiplier)
  542. {
  543. return -EINVAL;
  544. }
  545. #ifdef CONFIG_CPU_FREQ
  546. static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
  547. static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
  548. static unsigned long global_l_p_j_ref;
  549. static unsigned long global_l_p_j_ref_freq;
  550. static int cpufreq_callback(struct notifier_block *nb,
  551. unsigned long val, void *data)
  552. {
  553. struct cpufreq_freqs *freq = data;
  554. int cpu = freq->cpu;
  555. if (freq->flags & CPUFREQ_CONST_LOOPS)
  556. return NOTIFY_OK;
  557. if (arm_delay_ops.const_clock)
  558. return NOTIFY_OK;
  559. if (!per_cpu(l_p_j_ref, cpu)) {
  560. per_cpu(l_p_j_ref, cpu) =
  561. per_cpu(cpu_data, cpu).loops_per_jiffy;
  562. per_cpu(l_p_j_ref_freq, cpu) = freq->old;
  563. if (!global_l_p_j_ref) {
  564. global_l_p_j_ref = loops_per_jiffy;
  565. global_l_p_j_ref_freq = freq->old;
  566. }
  567. }
  568. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  569. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  570. (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
  571. loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
  572. global_l_p_j_ref_freq,
  573. freq->new);
  574. per_cpu(cpu_data, cpu).loops_per_jiffy =
  575. cpufreq_scale(per_cpu(l_p_j_ref, cpu),
  576. per_cpu(l_p_j_ref_freq, cpu),
  577. freq->new);
  578. }
  579. return NOTIFY_OK;
  580. }
  581. static struct notifier_block cpufreq_notifier = {
  582. .notifier_call = cpufreq_callback,
  583. };
  584. static int __init register_cpufreq_notifier(void)
  585. {
  586. return cpufreq_register_notifier(&cpufreq_notifier,
  587. CPUFREQ_TRANSITION_NOTIFIER);
  588. }
  589. core_initcall(register_cpufreq_notifier);
  590. #endif