irttp.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903
  1. /*********************************************************************
  2. *
  3. * Filename: irttp.c
  4. * Version: 1.2
  5. * Description: Tiny Transport Protocol (TTP) implementation
  6. * Status: Stable
  7. * Author: Dag Brattli <dagb@cs.uit.no>
  8. * Created at: Sun Aug 31 20:14:31 1997
  9. * Modified at: Wed Jan 5 11:31:27 2000
  10. * Modified by: Dag Brattli <dagb@cs.uit.no>
  11. *
  12. * Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
  13. * All Rights Reserved.
  14. * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
  15. *
  16. * This program is free software; you can redistribute it and/or
  17. * modify it under the terms of the GNU General Public License as
  18. * published by the Free Software Foundation; either version 2 of
  19. * the License, or (at your option) any later version.
  20. *
  21. * Neither Dag Brattli nor University of Tromsø admit liability nor
  22. * provide warranty for any of this software. This material is
  23. * provided "AS-IS" and at no charge.
  24. *
  25. ********************************************************************/
  26. #include <linux/skbuff.h>
  27. #include <linux/init.h>
  28. #include <linux/seq_file.h>
  29. #include <asm/byteorder.h>
  30. #include <asm/unaligned.h>
  31. #include <net/irda/irda.h>
  32. #include <net/irda/irlap.h>
  33. #include <net/irda/irlmp.h>
  34. #include <net/irda/parameters.h>
  35. #include <net/irda/irttp.h>
  36. static struct irttp_cb *irttp;
  37. static void __irttp_close_tsap(struct tsap_cb *self);
  38. static int irttp_data_indication(void *instance, void *sap,
  39. struct sk_buff *skb);
  40. static int irttp_udata_indication(void *instance, void *sap,
  41. struct sk_buff *skb);
  42. static void irttp_disconnect_indication(void *instance, void *sap,
  43. LM_REASON reason, struct sk_buff *);
  44. static void irttp_connect_indication(void *instance, void *sap,
  45. struct qos_info *qos, __u32 max_sdu_size,
  46. __u8 header_size, struct sk_buff *skb);
  47. static void irttp_connect_confirm(void *instance, void *sap,
  48. struct qos_info *qos, __u32 max_sdu_size,
  49. __u8 header_size, struct sk_buff *skb);
  50. static void irttp_run_tx_queue(struct tsap_cb *self);
  51. static void irttp_run_rx_queue(struct tsap_cb *self);
  52. static void irttp_flush_queues(struct tsap_cb *self);
  53. static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
  54. static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
  55. static void irttp_todo_expired(unsigned long data);
  56. static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
  57. int get);
  58. static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
  59. static void irttp_status_indication(void *instance,
  60. LINK_STATUS link, LOCK_STATUS lock);
  61. /* Information for parsing parameters in IrTTP */
  62. static pi_minor_info_t pi_minor_call_table[] = {
  63. { NULL, 0 }, /* 0x00 */
  64. { irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
  65. };
  66. static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
  67. static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
  68. /************************ GLOBAL PROCEDURES ************************/
  69. /*
  70. * Function irttp_init (void)
  71. *
  72. * Initialize the IrTTP layer. Called by module initialization code
  73. *
  74. */
  75. int __init irttp_init(void)
  76. {
  77. irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
  78. if (irttp == NULL)
  79. return -ENOMEM;
  80. irttp->magic = TTP_MAGIC;
  81. irttp->tsaps = hashbin_new(HB_LOCK);
  82. if (!irttp->tsaps) {
  83. IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
  84. __FUNCTION__);
  85. kfree(irttp);
  86. return -ENOMEM;
  87. }
  88. return 0;
  89. }
  90. /*
  91. * Function irttp_cleanup (void)
  92. *
  93. * Called by module destruction/cleanup code
  94. *
  95. */
  96. void __exit irttp_cleanup(void)
  97. {
  98. /* Check for main structure */
  99. IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
  100. /*
  101. * Delete hashbin and close all TSAP instances in it
  102. */
  103. hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
  104. irttp->magic = 0;
  105. /* De-allocate main structure */
  106. kfree(irttp);
  107. irttp = NULL;
  108. }
  109. /*************************** SUBROUTINES ***************************/
  110. /*
  111. * Function irttp_start_todo_timer (self, timeout)
  112. *
  113. * Start todo timer.
  114. *
  115. * Made it more effient and unsensitive to race conditions - Jean II
  116. */
  117. static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
  118. {
  119. /* Set new value for timer */
  120. mod_timer(&self->todo_timer, jiffies + timeout);
  121. }
  122. /*
  123. * Function irttp_todo_expired (data)
  124. *
  125. * Todo timer has expired!
  126. *
  127. * One of the restriction of the timer is that it is run only on the timer
  128. * interrupt which run every 10ms. This mean that even if you set the timer
  129. * with a delay of 0, it may take up to 10ms before it's run.
  130. * So, to minimise latency and keep cache fresh, we try to avoid using
  131. * it as much as possible.
  132. * Note : we can't use tasklets, because they can't be asynchronously
  133. * killed (need user context), and we can't guarantee that here...
  134. * Jean II
  135. */
  136. static void irttp_todo_expired(unsigned long data)
  137. {
  138. struct tsap_cb *self = (struct tsap_cb *) data;
  139. /* Check that we still exist */
  140. if (!self || self->magic != TTP_TSAP_MAGIC)
  141. return;
  142. IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self);
  143. /* Try to make some progress, especially on Tx side - Jean II */
  144. irttp_run_rx_queue(self);
  145. irttp_run_tx_queue(self);
  146. /* Check if time for disconnect */
  147. if (test_bit(0, &self->disconnect_pend)) {
  148. /* Check if it's possible to disconnect yet */
  149. if (skb_queue_empty(&self->tx_queue)) {
  150. /* Make sure disconnect is not pending anymore */
  151. clear_bit(0, &self->disconnect_pend); /* FALSE */
  152. /* Note : self->disconnect_skb may be NULL */
  153. irttp_disconnect_request(self, self->disconnect_skb,
  154. P_NORMAL);
  155. self->disconnect_skb = NULL;
  156. } else {
  157. /* Try again later */
  158. irttp_start_todo_timer(self, HZ/10);
  159. /* No reason to try and close now */
  160. return;
  161. }
  162. }
  163. /* Check if it's closing time */
  164. if (self->close_pend)
  165. /* Finish cleanup */
  166. irttp_close_tsap(self);
  167. }
  168. /*
  169. * Function irttp_flush_queues (self)
  170. *
  171. * Flushes (removes all frames) in transitt-buffer (tx_list)
  172. */
  173. void irttp_flush_queues(struct tsap_cb *self)
  174. {
  175. struct sk_buff* skb;
  176. IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
  177. IRDA_ASSERT(self != NULL, return;);
  178. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  179. /* Deallocate frames waiting to be sent */
  180. while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
  181. dev_kfree_skb(skb);
  182. /* Deallocate received frames */
  183. while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
  184. dev_kfree_skb(skb);
  185. /* Deallocate received fragments */
  186. while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
  187. dev_kfree_skb(skb);
  188. }
  189. /*
  190. * Function irttp_reassemble (self)
  191. *
  192. * Makes a new (continuous) skb of all the fragments in the fragment
  193. * queue
  194. *
  195. */
  196. static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
  197. {
  198. struct sk_buff *skb, *frag;
  199. int n = 0; /* Fragment index */
  200. IRDA_ASSERT(self != NULL, return NULL;);
  201. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
  202. IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __FUNCTION__,
  203. self->rx_sdu_size);
  204. skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
  205. if (!skb)
  206. return NULL;
  207. /*
  208. * Need to reserve space for TTP header in case this skb needs to
  209. * be requeued in case delivery failes
  210. */
  211. skb_reserve(skb, TTP_HEADER);
  212. skb_put(skb, self->rx_sdu_size);
  213. /*
  214. * Copy all fragments to a new buffer
  215. */
  216. while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
  217. memcpy(skb->data+n, frag->data, frag->len);
  218. n += frag->len;
  219. dev_kfree_skb(frag);
  220. }
  221. IRDA_DEBUG(2,
  222. "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
  223. __FUNCTION__, n, self->rx_sdu_size, self->rx_max_sdu_size);
  224. /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
  225. * by summing the size of all fragments, so we should always
  226. * have n == self->rx_sdu_size, except in cases where we
  227. * droped the last fragment (when self->rx_sdu_size exceed
  228. * self->rx_max_sdu_size), where n < self->rx_sdu_size.
  229. * Jean II */
  230. IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
  231. /* Set the new length */
  232. skb_trim(skb, n);
  233. self->rx_sdu_size = 0;
  234. return skb;
  235. }
  236. /*
  237. * Function irttp_fragment_skb (skb)
  238. *
  239. * Fragments a frame and queues all the fragments for transmission
  240. *
  241. */
  242. static inline void irttp_fragment_skb(struct tsap_cb *self,
  243. struct sk_buff *skb)
  244. {
  245. struct sk_buff *frag;
  246. __u8 *frame;
  247. IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
  248. IRDA_ASSERT(self != NULL, return;);
  249. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  250. IRDA_ASSERT(skb != NULL, return;);
  251. /*
  252. * Split frame into a number of segments
  253. */
  254. while (skb->len > self->max_seg_size) {
  255. IRDA_DEBUG(2, "%s(), fragmenting ...\n", __FUNCTION__);
  256. /* Make new segment */
  257. frag = alloc_skb(self->max_seg_size+self->max_header_size,
  258. GFP_ATOMIC);
  259. if (!frag)
  260. return;
  261. skb_reserve(frag, self->max_header_size);
  262. /* Copy data from the original skb into this fragment. */
  263. memcpy(skb_put(frag, self->max_seg_size), skb->data,
  264. self->max_seg_size);
  265. /* Insert TTP header, with the more bit set */
  266. frame = skb_push(frag, TTP_HEADER);
  267. frame[0] = TTP_MORE;
  268. /* Hide the copied data from the original skb */
  269. skb_pull(skb, self->max_seg_size);
  270. /* Queue fragment */
  271. skb_queue_tail(&self->tx_queue, frag);
  272. }
  273. /* Queue what is left of the original skb */
  274. IRDA_DEBUG(2, "%s(), queuing last segment\n", __FUNCTION__);
  275. frame = skb_push(skb, TTP_HEADER);
  276. frame[0] = 0x00; /* Clear more bit */
  277. /* Queue fragment */
  278. skb_queue_tail(&self->tx_queue, skb);
  279. }
  280. /*
  281. * Function irttp_param_max_sdu_size (self, param)
  282. *
  283. * Handle the MaxSduSize parameter in the connect frames, this function
  284. * will be called both when this parameter needs to be inserted into, and
  285. * extracted from the connect frames
  286. */
  287. static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
  288. int get)
  289. {
  290. struct tsap_cb *self;
  291. self = (struct tsap_cb *) instance;
  292. IRDA_ASSERT(self != NULL, return -1;);
  293. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  294. if (get)
  295. param->pv.i = self->tx_max_sdu_size;
  296. else
  297. self->tx_max_sdu_size = param->pv.i;
  298. IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __FUNCTION__, param->pv.i);
  299. return 0;
  300. }
  301. /*************************** CLIENT CALLS ***************************/
  302. /************************** LMP CALLBACKS **************************/
  303. /* Everything is happily mixed up. Waiting for next clean up - Jean II */
  304. /*
  305. * Function irttp_open_tsap (stsap, notify)
  306. *
  307. * Create TSAP connection endpoint,
  308. */
  309. struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
  310. {
  311. struct tsap_cb *self;
  312. struct lsap_cb *lsap;
  313. notify_t ttp_notify;
  314. IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
  315. /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
  316. * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
  317. * JeanII */
  318. if((stsap_sel != LSAP_ANY) &&
  319. ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
  320. IRDA_DEBUG(0, "%s(), invalid tsap!\n", __FUNCTION__);
  321. return NULL;
  322. }
  323. self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
  324. if (self == NULL) {
  325. IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __FUNCTION__);
  326. return NULL;
  327. }
  328. spin_lock_init(&self->lock);
  329. /* Initialise todo timer */
  330. init_timer(&self->todo_timer);
  331. self->todo_timer.data = (unsigned long) self;
  332. self->todo_timer.function = &irttp_todo_expired;
  333. /* Initialize callbacks for IrLMP to use */
  334. irda_notify_init(&ttp_notify);
  335. ttp_notify.connect_confirm = irttp_connect_confirm;
  336. ttp_notify.connect_indication = irttp_connect_indication;
  337. ttp_notify.disconnect_indication = irttp_disconnect_indication;
  338. ttp_notify.data_indication = irttp_data_indication;
  339. ttp_notify.udata_indication = irttp_udata_indication;
  340. ttp_notify.flow_indication = irttp_flow_indication;
  341. if(notify->status_indication != NULL)
  342. ttp_notify.status_indication = irttp_status_indication;
  343. ttp_notify.instance = self;
  344. strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
  345. self->magic = TTP_TSAP_MAGIC;
  346. self->connected = FALSE;
  347. skb_queue_head_init(&self->rx_queue);
  348. skb_queue_head_init(&self->tx_queue);
  349. skb_queue_head_init(&self->rx_fragments);
  350. /*
  351. * Create LSAP at IrLMP layer
  352. */
  353. lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
  354. if (lsap == NULL) {
  355. IRDA_WARNING("%s: unable to allocate LSAP!!\n", __FUNCTION__);
  356. return NULL;
  357. }
  358. /*
  359. * If user specified LSAP_ANY as source TSAP selector, then IrLMP
  360. * will replace it with whatever source selector which is free, so
  361. * the stsap_sel we have might not be valid anymore
  362. */
  363. self->stsap_sel = lsap->slsap_sel;
  364. IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __FUNCTION__, self->stsap_sel);
  365. self->notify = *notify;
  366. self->lsap = lsap;
  367. hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
  368. if (credit > TTP_RX_MAX_CREDIT)
  369. self->initial_credit = TTP_RX_MAX_CREDIT;
  370. else
  371. self->initial_credit = credit;
  372. return self;
  373. }
  374. EXPORT_SYMBOL(irttp_open_tsap);
  375. /*
  376. * Function irttp_close (handle)
  377. *
  378. * Remove an instance of a TSAP. This function should only deal with the
  379. * deallocation of the TSAP, and resetting of the TSAPs values;
  380. *
  381. */
  382. static void __irttp_close_tsap(struct tsap_cb *self)
  383. {
  384. /* First make sure we're connected. */
  385. IRDA_ASSERT(self != NULL, return;);
  386. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  387. irttp_flush_queues(self);
  388. del_timer(&self->todo_timer);
  389. /* This one won't be cleaned up if we are disconnect_pend + close_pend
  390. * and we receive a disconnect_indication */
  391. if (self->disconnect_skb)
  392. dev_kfree_skb(self->disconnect_skb);
  393. self->connected = FALSE;
  394. self->magic = ~TTP_TSAP_MAGIC;
  395. kfree(self);
  396. }
  397. /*
  398. * Function irttp_close (self)
  399. *
  400. * Remove TSAP from list of all TSAPs and then deallocate all resources
  401. * associated with this TSAP
  402. *
  403. * Note : because we *free* the tsap structure, it is the responsibility
  404. * of the caller to make sure we are called only once and to deal with
  405. * possible race conditions. - Jean II
  406. */
  407. int irttp_close_tsap(struct tsap_cb *self)
  408. {
  409. struct tsap_cb *tsap;
  410. IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
  411. IRDA_ASSERT(self != NULL, return -1;);
  412. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  413. /* Make sure tsap has been disconnected */
  414. if (self->connected) {
  415. /* Check if disconnect is not pending */
  416. if (!test_bit(0, &self->disconnect_pend)) {
  417. IRDA_WARNING("%s: TSAP still connected!\n",
  418. __FUNCTION__);
  419. irttp_disconnect_request(self, NULL, P_NORMAL);
  420. }
  421. self->close_pend = TRUE;
  422. irttp_start_todo_timer(self, HZ/10);
  423. return 0; /* Will be back! */
  424. }
  425. tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
  426. IRDA_ASSERT(tsap == self, return -1;);
  427. /* Close corresponding LSAP */
  428. if (self->lsap) {
  429. irlmp_close_lsap(self->lsap);
  430. self->lsap = NULL;
  431. }
  432. __irttp_close_tsap(self);
  433. return 0;
  434. }
  435. EXPORT_SYMBOL(irttp_close_tsap);
  436. /*
  437. * Function irttp_udata_request (self, skb)
  438. *
  439. * Send unreliable data on this TSAP
  440. *
  441. */
  442. int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
  443. {
  444. IRDA_ASSERT(self != NULL, return -1;);
  445. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  446. IRDA_ASSERT(skb != NULL, return -1;);
  447. IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
  448. /* Check that nothing bad happens */
  449. if ((skb->len == 0) || (!self->connected)) {
  450. IRDA_DEBUG(1, "%s(), No data, or not connected\n",
  451. __FUNCTION__);
  452. goto err;
  453. }
  454. if (skb->len > self->max_seg_size) {
  455. IRDA_DEBUG(1, "%s(), UData is to large for IrLAP!\n",
  456. __FUNCTION__);
  457. goto err;
  458. }
  459. irlmp_udata_request(self->lsap, skb);
  460. self->stats.tx_packets++;
  461. return 0;
  462. err:
  463. dev_kfree_skb(skb);
  464. return -1;
  465. }
  466. EXPORT_SYMBOL(irttp_udata_request);
  467. /*
  468. * Function irttp_data_request (handle, skb)
  469. *
  470. * Queue frame for transmission. If SAR is enabled, fragement the frame
  471. * and queue the fragments for transmission
  472. */
  473. int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
  474. {
  475. __u8 *frame;
  476. int ret;
  477. IRDA_ASSERT(self != NULL, return -1;);
  478. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  479. IRDA_ASSERT(skb != NULL, return -1;);
  480. IRDA_DEBUG(2, "%s() : queue len = %d\n", __FUNCTION__,
  481. skb_queue_len(&self->tx_queue));
  482. /* Check that nothing bad happens */
  483. if ((skb->len == 0) || (!self->connected)) {
  484. IRDA_WARNING("%s: No data, or not connected\n", __FUNCTION__);
  485. ret = -ENOTCONN;
  486. goto err;
  487. }
  488. /*
  489. * Check if SAR is disabled, and the frame is larger than what fits
  490. * inside an IrLAP frame
  491. */
  492. if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
  493. IRDA_ERROR("%s: SAR disabled, and data is to large for IrLAP!\n",
  494. __FUNCTION__);
  495. ret = -EMSGSIZE;
  496. goto err;
  497. }
  498. /*
  499. * Check if SAR is enabled, and the frame is larger than the
  500. * TxMaxSduSize
  501. */
  502. if ((self->tx_max_sdu_size != 0) &&
  503. (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
  504. (skb->len > self->tx_max_sdu_size))
  505. {
  506. IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
  507. __FUNCTION__);
  508. ret = -EMSGSIZE;
  509. goto err;
  510. }
  511. /*
  512. * Check if transmit queue is full
  513. */
  514. if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
  515. /*
  516. * Give it a chance to empty itself
  517. */
  518. irttp_run_tx_queue(self);
  519. /* Drop packet. This error code should trigger the caller
  520. * to resend the data in the client code - Jean II */
  521. ret = -ENOBUFS;
  522. goto err;
  523. }
  524. /* Queue frame, or queue frame segments */
  525. if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
  526. /* Queue frame */
  527. IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
  528. frame = skb_push(skb, TTP_HEADER);
  529. frame[0] = 0x00; /* Clear more bit */
  530. skb_queue_tail(&self->tx_queue, skb);
  531. } else {
  532. /*
  533. * Fragment the frame, this function will also queue the
  534. * fragments, we don't care about the fact the transmit
  535. * queue may be overfilled by all the segments for a little
  536. * while
  537. */
  538. irttp_fragment_skb(self, skb);
  539. }
  540. /* Check if we can accept more data from client */
  541. if ((!self->tx_sdu_busy) &&
  542. (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
  543. /* Tx queue filling up, so stop client. */
  544. if (self->notify.flow_indication) {
  545. self->notify.flow_indication(self->notify.instance,
  546. self, FLOW_STOP);
  547. }
  548. /* self->tx_sdu_busy is the state of the client.
  549. * Update state after notifying client to avoid
  550. * race condition with irttp_flow_indication().
  551. * If the queue empty itself after our test but before
  552. * we set the flag, we will fix ourselves below in
  553. * irttp_run_tx_queue().
  554. * Jean II */
  555. self->tx_sdu_busy = TRUE;
  556. }
  557. /* Try to make some progress */
  558. irttp_run_tx_queue(self);
  559. return 0;
  560. err:
  561. dev_kfree_skb(skb);
  562. return ret;
  563. }
  564. EXPORT_SYMBOL(irttp_data_request);
  565. /*
  566. * Function irttp_run_tx_queue (self)
  567. *
  568. * Transmit packets queued for transmission (if possible)
  569. *
  570. */
  571. static void irttp_run_tx_queue(struct tsap_cb *self)
  572. {
  573. struct sk_buff *skb;
  574. unsigned long flags;
  575. int n;
  576. IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
  577. __FUNCTION__,
  578. self->send_credit, skb_queue_len(&self->tx_queue));
  579. /* Get exclusive access to the tx queue, otherwise don't touch it */
  580. if (irda_lock(&self->tx_queue_lock) == FALSE)
  581. return;
  582. /* Try to send out frames as long as we have credits
  583. * and as long as LAP is not full. If LAP is full, it will
  584. * poll us through irttp_flow_indication() - Jean II */
  585. while ((self->send_credit > 0) &&
  586. (!irlmp_lap_tx_queue_full(self->lsap)) &&
  587. (skb = skb_dequeue(&self->tx_queue)))
  588. {
  589. /*
  590. * Since we can transmit and receive frames concurrently,
  591. * the code below is a critical region and we must assure that
  592. * nobody messes with the credits while we update them.
  593. */
  594. spin_lock_irqsave(&self->lock, flags);
  595. n = self->avail_credit;
  596. self->avail_credit = 0;
  597. /* Only room for 127 credits in frame */
  598. if (n > 127) {
  599. self->avail_credit = n-127;
  600. n = 127;
  601. }
  602. self->remote_credit += n;
  603. self->send_credit--;
  604. spin_unlock_irqrestore(&self->lock, flags);
  605. /*
  606. * More bit must be set by the data_request() or fragment()
  607. * functions
  608. */
  609. skb->data[0] |= (n & 0x7f);
  610. /* Detach from socket.
  611. * The current skb has a reference to the socket that sent
  612. * it (skb->sk). When we pass it to IrLMP, the skb will be
  613. * stored in in IrLAP (self->wx_list). When we are within
  614. * IrLAP, we lose the notion of socket, so we should not
  615. * have a reference to a socket. So, we drop it here.
  616. *
  617. * Why does it matter ?
  618. * When the skb is freed (kfree_skb), if it is associated
  619. * with a socket, it release buffer space on the socket
  620. * (through sock_wfree() and sock_def_write_space()).
  621. * If the socket no longer exist, we may crash. Hard.
  622. * When we close a socket, we make sure that associated packets
  623. * in IrTTP are freed. However, we have no way to cancel
  624. * the packet that we have passed to IrLAP. So, if a packet
  625. * remains in IrLAP (retry on the link or else) after we
  626. * close the socket, we are dead !
  627. * Jean II */
  628. if (skb->sk != NULL) {
  629. /* IrSOCK application, IrOBEX, ... */
  630. skb_orphan(skb);
  631. }
  632. /* IrCOMM over IrTTP, IrLAN, ... */
  633. /* Pass the skb to IrLMP - done */
  634. irlmp_data_request(self->lsap, skb);
  635. self->stats.tx_packets++;
  636. }
  637. /* Check if we can accept more frames from client.
  638. * We don't want to wait until the todo timer to do that, and we
  639. * can't use tasklets (grr...), so we are obliged to give control
  640. * to client. That's ok, this test will be true not too often
  641. * (max once per LAP window) and we are called from places
  642. * where we can spend a bit of time doing stuff. - Jean II */
  643. if ((self->tx_sdu_busy) &&
  644. (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
  645. (!self->close_pend))
  646. {
  647. if (self->notify.flow_indication)
  648. self->notify.flow_indication(self->notify.instance,
  649. self, FLOW_START);
  650. /* self->tx_sdu_busy is the state of the client.
  651. * We don't really have a race here, but it's always safer
  652. * to update our state after the client - Jean II */
  653. self->tx_sdu_busy = FALSE;
  654. }
  655. /* Reset lock */
  656. self->tx_queue_lock = 0;
  657. }
  658. /*
  659. * Function irttp_give_credit (self)
  660. *
  661. * Send a dataless flowdata TTP-PDU and give available credit to peer
  662. * TSAP
  663. */
  664. static inline void irttp_give_credit(struct tsap_cb *self)
  665. {
  666. struct sk_buff *tx_skb = NULL;
  667. unsigned long flags;
  668. int n;
  669. IRDA_ASSERT(self != NULL, return;);
  670. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  671. IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
  672. __FUNCTION__,
  673. self->send_credit, self->avail_credit, self->remote_credit);
  674. /* Give credit to peer */
  675. tx_skb = alloc_skb(64, GFP_ATOMIC);
  676. if (!tx_skb)
  677. return;
  678. /* Reserve space for LMP, and LAP header */
  679. skb_reserve(tx_skb, self->max_header_size);
  680. /*
  681. * Since we can transmit and receive frames concurrently,
  682. * the code below is a critical region and we must assure that
  683. * nobody messes with the credits while we update them.
  684. */
  685. spin_lock_irqsave(&self->lock, flags);
  686. n = self->avail_credit;
  687. self->avail_credit = 0;
  688. /* Only space for 127 credits in frame */
  689. if (n > 127) {
  690. self->avail_credit = n - 127;
  691. n = 127;
  692. }
  693. self->remote_credit += n;
  694. spin_unlock_irqrestore(&self->lock, flags);
  695. skb_put(tx_skb, 1);
  696. tx_skb->data[0] = (__u8) (n & 0x7f);
  697. irlmp_data_request(self->lsap, tx_skb);
  698. self->stats.tx_packets++;
  699. }
  700. /*
  701. * Function irttp_udata_indication (instance, sap, skb)
  702. *
  703. * Received some unit-data (unreliable)
  704. *
  705. */
  706. static int irttp_udata_indication(void *instance, void *sap,
  707. struct sk_buff *skb)
  708. {
  709. struct tsap_cb *self;
  710. int err;
  711. IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
  712. self = (struct tsap_cb *) instance;
  713. IRDA_ASSERT(self != NULL, return -1;);
  714. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  715. IRDA_ASSERT(skb != NULL, return -1;);
  716. self->stats.rx_packets++;
  717. /* Just pass data to layer above */
  718. if (self->notify.udata_indication) {
  719. err = self->notify.udata_indication(self->notify.instance,
  720. self,skb);
  721. /* Same comment as in irttp_do_data_indication() */
  722. if (!err)
  723. return 0;
  724. }
  725. /* Either no handler, or handler returns an error */
  726. dev_kfree_skb(skb);
  727. return 0;
  728. }
  729. /*
  730. * Function irttp_data_indication (instance, sap, skb)
  731. *
  732. * Receive segment from IrLMP.
  733. *
  734. */
  735. static int irttp_data_indication(void *instance, void *sap,
  736. struct sk_buff *skb)
  737. {
  738. struct tsap_cb *self;
  739. unsigned long flags;
  740. int n;
  741. self = (struct tsap_cb *) instance;
  742. n = skb->data[0] & 0x7f; /* Extract the credits */
  743. self->stats.rx_packets++;
  744. /* Deal with inbound credit
  745. * Since we can transmit and receive frames concurrently,
  746. * the code below is a critical region and we must assure that
  747. * nobody messes with the credits while we update them.
  748. */
  749. spin_lock_irqsave(&self->lock, flags);
  750. self->send_credit += n;
  751. if (skb->len > 1)
  752. self->remote_credit--;
  753. spin_unlock_irqrestore(&self->lock, flags);
  754. /*
  755. * Data or dataless packet? Dataless frames contains only the
  756. * TTP_HEADER.
  757. */
  758. if (skb->len > 1) {
  759. /*
  760. * We don't remove the TTP header, since we must preserve the
  761. * more bit, so the defragment routing knows what to do
  762. */
  763. skb_queue_tail(&self->rx_queue, skb);
  764. } else {
  765. /* Dataless flowdata TTP-PDU */
  766. dev_kfree_skb(skb);
  767. }
  768. /* Push data to the higher layer.
  769. * We do it synchronously because running the todo timer for each
  770. * receive packet would be too much overhead and latency.
  771. * By passing control to the higher layer, we run the risk that
  772. * it may take time or grab a lock. Most often, the higher layer
  773. * will only put packet in a queue.
  774. * Anyway, packets are only dripping through the IrDA, so we can
  775. * have time before the next packet.
  776. * Further, we are run from NET_BH, so the worse that can happen is
  777. * us missing the optimal time to send back the PF bit in LAP.
  778. * Jean II */
  779. irttp_run_rx_queue(self);
  780. /* We now give credits to peer in irttp_run_rx_queue().
  781. * We need to send credit *NOW*, otherwise we are going
  782. * to miss the next Tx window. The todo timer may take
  783. * a while before it's run... - Jean II */
  784. /*
  785. * If the peer device has given us some credits and we didn't have
  786. * anyone from before, then we need to shedule the tx queue.
  787. * We need to do that because our Tx have stopped (so we may not
  788. * get any LAP flow indication) and the user may be stopped as
  789. * well. - Jean II
  790. */
  791. if (self->send_credit == n) {
  792. /* Restart pushing stuff to LAP */
  793. irttp_run_tx_queue(self);
  794. /* Note : we don't want to schedule the todo timer
  795. * because it has horrible latency. No tasklets
  796. * because the tasklet API is broken. - Jean II */
  797. }
  798. return 0;
  799. }
  800. /*
  801. * Function irttp_status_indication (self, reason)
  802. *
  803. * Status_indication, just pass to the higher layer...
  804. *
  805. */
  806. static void irttp_status_indication(void *instance,
  807. LINK_STATUS link, LOCK_STATUS lock)
  808. {
  809. struct tsap_cb *self;
  810. IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
  811. self = (struct tsap_cb *) instance;
  812. IRDA_ASSERT(self != NULL, return;);
  813. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  814. /* Check if client has already closed the TSAP and gone away */
  815. if (self->close_pend)
  816. return;
  817. /*
  818. * Inform service user if he has requested it
  819. */
  820. if (self->notify.status_indication != NULL)
  821. self->notify.status_indication(self->notify.instance,
  822. link, lock);
  823. else
  824. IRDA_DEBUG(2, "%s(), no handler\n", __FUNCTION__);
  825. }
  826. /*
  827. * Function irttp_flow_indication (self, reason)
  828. *
  829. * Flow_indication : IrLAP tells us to send more data.
  830. *
  831. */
  832. static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
  833. {
  834. struct tsap_cb *self;
  835. self = (struct tsap_cb *) instance;
  836. IRDA_ASSERT(self != NULL, return;);
  837. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  838. IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self);
  839. /* We are "polled" directly from LAP, and the LAP want to fill
  840. * its Tx window. We want to do our best to send it data, so that
  841. * we maximise the window. On the other hand, we want to limit the
  842. * amount of work here so that LAP doesn't hang forever waiting
  843. * for packets. - Jean II */
  844. /* Try to send some packets. Currently, LAP calls us every time
  845. * there is one free slot, so we will send only one packet.
  846. * This allow the scheduler to do its round robin - Jean II */
  847. irttp_run_tx_queue(self);
  848. /* Note regarding the interraction with higher layer.
  849. * irttp_run_tx_queue() may call the client when its queue
  850. * start to empty, via notify.flow_indication(). Initially.
  851. * I wanted this to happen in a tasklet, to avoid client
  852. * grabbing the CPU, but we can't use tasklets safely. And timer
  853. * is definitely too slow.
  854. * This will happen only once per LAP window, and usually at
  855. * the third packet (unless window is smaller). LAP is still
  856. * doing mtt and sending first packet so it's sort of OK
  857. * to do that. Jean II */
  858. /* If we need to send disconnect. try to do it now */
  859. if(self->disconnect_pend)
  860. irttp_start_todo_timer(self, 0);
  861. }
  862. /*
  863. * Function irttp_flow_request (self, command)
  864. *
  865. * This function could be used by the upper layers to tell IrTTP to stop
  866. * delivering frames if the receive queues are starting to get full, or
  867. * to tell IrTTP to start delivering frames again.
  868. */
  869. void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
  870. {
  871. IRDA_DEBUG(1, "%s()\n", __FUNCTION__);
  872. IRDA_ASSERT(self != NULL, return;);
  873. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  874. switch (flow) {
  875. case FLOW_STOP:
  876. IRDA_DEBUG(1, "%s(), flow stop\n", __FUNCTION__);
  877. self->rx_sdu_busy = TRUE;
  878. break;
  879. case FLOW_START:
  880. IRDA_DEBUG(1, "%s(), flow start\n", __FUNCTION__);
  881. self->rx_sdu_busy = FALSE;
  882. /* Client say he can accept more data, try to free our
  883. * queues ASAP - Jean II */
  884. irttp_run_rx_queue(self);
  885. break;
  886. default:
  887. IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __FUNCTION__);
  888. }
  889. }
  890. EXPORT_SYMBOL(irttp_flow_request);
  891. /*
  892. * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
  893. *
  894. * Try to connect to remote destination TSAP selector
  895. *
  896. */
  897. int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
  898. __u32 saddr, __u32 daddr,
  899. struct qos_info *qos, __u32 max_sdu_size,
  900. struct sk_buff *userdata)
  901. {
  902. struct sk_buff *tx_skb;
  903. __u8 *frame;
  904. __u8 n;
  905. IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __FUNCTION__, max_sdu_size);
  906. IRDA_ASSERT(self != NULL, return -EBADR;);
  907. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
  908. if (self->connected) {
  909. if(userdata)
  910. dev_kfree_skb(userdata);
  911. return -EISCONN;
  912. }
  913. /* Any userdata supplied? */
  914. if (userdata == NULL) {
  915. tx_skb = alloc_skb(64, GFP_ATOMIC);
  916. if (!tx_skb)
  917. return -ENOMEM;
  918. /* Reserve space for MUX_CONTROL and LAP header */
  919. skb_reserve(tx_skb, TTP_MAX_HEADER);
  920. } else {
  921. tx_skb = userdata;
  922. /*
  923. * Check that the client has reserved enough space for
  924. * headers
  925. */
  926. IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
  927. { dev_kfree_skb(userdata); return -1; } );
  928. }
  929. /* Initialize connection parameters */
  930. self->connected = FALSE;
  931. self->avail_credit = 0;
  932. self->rx_max_sdu_size = max_sdu_size;
  933. self->rx_sdu_size = 0;
  934. self->rx_sdu_busy = FALSE;
  935. self->dtsap_sel = dtsap_sel;
  936. n = self->initial_credit;
  937. self->remote_credit = 0;
  938. self->send_credit = 0;
  939. /*
  940. * Give away max 127 credits for now
  941. */
  942. if (n > 127) {
  943. self->avail_credit=n-127;
  944. n = 127;
  945. }
  946. self->remote_credit = n;
  947. /* SAR enabled? */
  948. if (max_sdu_size > 0) {
  949. IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
  950. { dev_kfree_skb(tx_skb); return -1; } );
  951. /* Insert SAR parameters */
  952. frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
  953. frame[0] = TTP_PARAMETERS | n;
  954. frame[1] = 0x04; /* Length */
  955. frame[2] = 0x01; /* MaxSduSize */
  956. frame[3] = 0x02; /* Value length */
  957. put_unaligned(cpu_to_be16((__u16) max_sdu_size),
  958. (__u16 *)(frame+4));
  959. } else {
  960. /* Insert plain TTP header */
  961. frame = skb_push(tx_skb, TTP_HEADER);
  962. /* Insert initial credit in frame */
  963. frame[0] = n & 0x7f;
  964. }
  965. /* Connect with IrLMP. No QoS parameters for now */
  966. return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
  967. tx_skb);
  968. }
  969. EXPORT_SYMBOL(irttp_connect_request);
  970. /*
  971. * Function irttp_connect_confirm (handle, qos, skb)
  972. *
  973. * Sevice user confirms TSAP connection with peer.
  974. *
  975. */
  976. static void irttp_connect_confirm(void *instance, void *sap,
  977. struct qos_info *qos, __u32 max_seg_size,
  978. __u8 max_header_size, struct sk_buff *skb)
  979. {
  980. struct tsap_cb *self;
  981. int parameters;
  982. int ret;
  983. __u8 plen;
  984. __u8 n;
  985. IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
  986. self = (struct tsap_cb *) instance;
  987. IRDA_ASSERT(self != NULL, return;);
  988. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  989. IRDA_ASSERT(skb != NULL, return;);
  990. self->max_seg_size = max_seg_size - TTP_HEADER;
  991. self->max_header_size = max_header_size + TTP_HEADER;
  992. /*
  993. * Check if we have got some QoS parameters back! This should be the
  994. * negotiated QoS for the link.
  995. */
  996. if (qos) {
  997. IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
  998. qos->baud_rate.bits);
  999. IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
  1000. qos->baud_rate.value);
  1001. }
  1002. n = skb->data[0] & 0x7f;
  1003. IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __FUNCTION__, n);
  1004. self->send_credit = n;
  1005. self->tx_max_sdu_size = 0;
  1006. self->connected = TRUE;
  1007. parameters = skb->data[0] & 0x80;
  1008. IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
  1009. skb_pull(skb, TTP_HEADER);
  1010. if (parameters) {
  1011. plen = skb->data[0];
  1012. ret = irda_param_extract_all(self, skb->data+1,
  1013. IRDA_MIN(skb->len-1, plen),
  1014. &param_info);
  1015. /* Any errors in the parameter list? */
  1016. if (ret < 0) {
  1017. IRDA_WARNING("%s: error extracting parameters\n",
  1018. __FUNCTION__);
  1019. dev_kfree_skb(skb);
  1020. /* Do not accept this connection attempt */
  1021. return;
  1022. }
  1023. /* Remove parameters */
  1024. skb_pull(skb, IRDA_MIN(skb->len, plen+1));
  1025. }
  1026. IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__,
  1027. self->send_credit, self->avail_credit, self->remote_credit);
  1028. IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __FUNCTION__,
  1029. self->tx_max_sdu_size);
  1030. if (self->notify.connect_confirm) {
  1031. self->notify.connect_confirm(self->notify.instance, self, qos,
  1032. self->tx_max_sdu_size,
  1033. self->max_header_size, skb);
  1034. } else
  1035. dev_kfree_skb(skb);
  1036. }
  1037. /*
  1038. * Function irttp_connect_indication (handle, skb)
  1039. *
  1040. * Some other device is connecting to this TSAP
  1041. *
  1042. */
  1043. void irttp_connect_indication(void *instance, void *sap, struct qos_info *qos,
  1044. __u32 max_seg_size, __u8 max_header_size,
  1045. struct sk_buff *skb)
  1046. {
  1047. struct tsap_cb *self;
  1048. struct lsap_cb *lsap;
  1049. int parameters;
  1050. int ret;
  1051. __u8 plen;
  1052. __u8 n;
  1053. self = (struct tsap_cb *) instance;
  1054. IRDA_ASSERT(self != NULL, return;);
  1055. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  1056. IRDA_ASSERT(skb != NULL, return;);
  1057. lsap = (struct lsap_cb *) sap;
  1058. self->max_seg_size = max_seg_size - TTP_HEADER;
  1059. self->max_header_size = max_header_size+TTP_HEADER;
  1060. IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __FUNCTION__, self->stsap_sel);
  1061. /* Need to update dtsap_sel if its equal to LSAP_ANY */
  1062. self->dtsap_sel = lsap->dlsap_sel;
  1063. n = skb->data[0] & 0x7f;
  1064. self->send_credit = n;
  1065. self->tx_max_sdu_size = 0;
  1066. parameters = skb->data[0] & 0x80;
  1067. IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
  1068. skb_pull(skb, TTP_HEADER);
  1069. if (parameters) {
  1070. plen = skb->data[0];
  1071. ret = irda_param_extract_all(self, skb->data+1,
  1072. IRDA_MIN(skb->len-1, plen),
  1073. &param_info);
  1074. /* Any errors in the parameter list? */
  1075. if (ret < 0) {
  1076. IRDA_WARNING("%s: error extracting parameters\n",
  1077. __FUNCTION__);
  1078. dev_kfree_skb(skb);
  1079. /* Do not accept this connection attempt */
  1080. return;
  1081. }
  1082. /* Remove parameters */
  1083. skb_pull(skb, IRDA_MIN(skb->len, plen+1));
  1084. }
  1085. if (self->notify.connect_indication) {
  1086. self->notify.connect_indication(self->notify.instance, self,
  1087. qos, self->tx_max_sdu_size,
  1088. self->max_header_size, skb);
  1089. } else
  1090. dev_kfree_skb(skb);
  1091. }
  1092. /*
  1093. * Function irttp_connect_response (handle, userdata)
  1094. *
  1095. * Service user is accepting the connection, just pass it down to
  1096. * IrLMP!
  1097. *
  1098. */
  1099. int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
  1100. struct sk_buff *userdata)
  1101. {
  1102. struct sk_buff *tx_skb;
  1103. __u8 *frame;
  1104. int ret;
  1105. __u8 n;
  1106. IRDA_ASSERT(self != NULL, return -1;);
  1107. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  1108. IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __FUNCTION__,
  1109. self->stsap_sel);
  1110. /* Any userdata supplied? */
  1111. if (userdata == NULL) {
  1112. tx_skb = alloc_skb(64, GFP_ATOMIC);
  1113. if (!tx_skb)
  1114. return -ENOMEM;
  1115. /* Reserve space for MUX_CONTROL and LAP header */
  1116. skb_reserve(tx_skb, TTP_MAX_HEADER);
  1117. } else {
  1118. tx_skb = userdata;
  1119. /*
  1120. * Check that the client has reserved enough space for
  1121. * headers
  1122. */
  1123. IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
  1124. { dev_kfree_skb(userdata); return -1; } );
  1125. }
  1126. self->avail_credit = 0;
  1127. self->remote_credit = 0;
  1128. self->rx_max_sdu_size = max_sdu_size;
  1129. self->rx_sdu_size = 0;
  1130. self->rx_sdu_busy = FALSE;
  1131. n = self->initial_credit;
  1132. /* Frame has only space for max 127 credits (7 bits) */
  1133. if (n > 127) {
  1134. self->avail_credit = n - 127;
  1135. n = 127;
  1136. }
  1137. self->remote_credit = n;
  1138. self->connected = TRUE;
  1139. /* SAR enabled? */
  1140. if (max_sdu_size > 0) {
  1141. IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
  1142. { dev_kfree_skb(tx_skb); return -1; } );
  1143. /* Insert TTP header with SAR parameters */
  1144. frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
  1145. frame[0] = TTP_PARAMETERS | n;
  1146. frame[1] = 0x04; /* Length */
  1147. /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
  1148. /* TTP_SAR_HEADER, &param_info) */
  1149. frame[2] = 0x01; /* MaxSduSize */
  1150. frame[3] = 0x02; /* Value length */
  1151. put_unaligned(cpu_to_be16((__u16) max_sdu_size),
  1152. (__u16 *)(frame+4));
  1153. } else {
  1154. /* Insert TTP header */
  1155. frame = skb_push(tx_skb, TTP_HEADER);
  1156. frame[0] = n & 0x7f;
  1157. }
  1158. ret = irlmp_connect_response(self->lsap, tx_skb);
  1159. return ret;
  1160. }
  1161. EXPORT_SYMBOL(irttp_connect_response);
  1162. /*
  1163. * Function irttp_dup (self, instance)
  1164. *
  1165. * Duplicate TSAP, can be used by servers to confirm a connection on a
  1166. * new TSAP so it can keep listening on the old one.
  1167. */
  1168. struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
  1169. {
  1170. struct tsap_cb *new;
  1171. unsigned long flags;
  1172. IRDA_DEBUG(1, "%s()\n", __FUNCTION__);
  1173. /* Protect our access to the old tsap instance */
  1174. spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
  1175. /* Find the old instance */
  1176. if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
  1177. IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __FUNCTION__);
  1178. spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
  1179. return NULL;
  1180. }
  1181. /* Allocate a new instance */
  1182. new = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
  1183. if (!new) {
  1184. IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __FUNCTION__);
  1185. spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
  1186. return NULL;
  1187. }
  1188. /* Dup */
  1189. memcpy(new, orig, sizeof(struct tsap_cb));
  1190. /* We don't need the old instance any more */
  1191. spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
  1192. /* Try to dup the LSAP (may fail if we were too slow) */
  1193. new->lsap = irlmp_dup(orig->lsap, new);
  1194. if (!new->lsap) {
  1195. IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__);
  1196. kfree(new);
  1197. return NULL;
  1198. }
  1199. /* Not everything should be copied */
  1200. new->notify.instance = instance;
  1201. init_timer(&new->todo_timer);
  1202. skb_queue_head_init(&new->rx_queue);
  1203. skb_queue_head_init(&new->tx_queue);
  1204. skb_queue_head_init(&new->rx_fragments);
  1205. /* This is locked */
  1206. hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
  1207. return new;
  1208. }
  1209. EXPORT_SYMBOL(irttp_dup);
  1210. /*
  1211. * Function irttp_disconnect_request (self)
  1212. *
  1213. * Close this connection please! If priority is high, the queued data
  1214. * segments, if any, will be deallocated first
  1215. *
  1216. */
  1217. int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
  1218. int priority)
  1219. {
  1220. int ret;
  1221. IRDA_ASSERT(self != NULL, return -1;);
  1222. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  1223. /* Already disconnected? */
  1224. if (!self->connected) {
  1225. IRDA_DEBUG(4, "%s(), already disconnected!\n", __FUNCTION__);
  1226. if (userdata)
  1227. dev_kfree_skb(userdata);
  1228. return -1;
  1229. }
  1230. /* Disconnect already pending ?
  1231. * We need to use an atomic operation to prevent reentry. This
  1232. * function may be called from various context, like user, timer
  1233. * for following a disconnect_indication() (i.e. net_bh).
  1234. * Jean II */
  1235. if(test_and_set_bit(0, &self->disconnect_pend)) {
  1236. IRDA_DEBUG(0, "%s(), disconnect already pending\n",
  1237. __FUNCTION__);
  1238. if (userdata)
  1239. dev_kfree_skb(userdata);
  1240. /* Try to make some progress */
  1241. irttp_run_tx_queue(self);
  1242. return -1;
  1243. }
  1244. /*
  1245. * Check if there is still data segments in the transmit queue
  1246. */
  1247. if (!skb_queue_empty(&self->tx_queue)) {
  1248. if (priority == P_HIGH) {
  1249. /*
  1250. * No need to send the queued data, if we are
  1251. * disconnecting right now since the data will
  1252. * not have any usable connection to be sent on
  1253. */
  1254. IRDA_DEBUG(1, "%s(): High priority!!()\n", __FUNCTION__);
  1255. irttp_flush_queues(self);
  1256. } else if (priority == P_NORMAL) {
  1257. /*
  1258. * Must delay disconnect until after all data segments
  1259. * have been sent and the tx_queue is empty
  1260. */
  1261. /* We'll reuse this one later for the disconnect */
  1262. self->disconnect_skb = userdata; /* May be NULL */
  1263. irttp_run_tx_queue(self);
  1264. irttp_start_todo_timer(self, HZ/10);
  1265. return -1;
  1266. }
  1267. }
  1268. /* Note : we don't need to check if self->rx_queue is full and the
  1269. * state of self->rx_sdu_busy because the disconnect response will
  1270. * be sent at the LMP level (so even if the peer has its Tx queue
  1271. * full of data). - Jean II */
  1272. IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __FUNCTION__);
  1273. self->connected = FALSE;
  1274. if (!userdata) {
  1275. struct sk_buff *tx_skb;
  1276. tx_skb = alloc_skb(64, GFP_ATOMIC);
  1277. if (!tx_skb)
  1278. return -ENOMEM;
  1279. /*
  1280. * Reserve space for MUX and LAP header
  1281. */
  1282. skb_reserve(tx_skb, TTP_MAX_HEADER);
  1283. userdata = tx_skb;
  1284. }
  1285. ret = irlmp_disconnect_request(self->lsap, userdata);
  1286. /* The disconnect is no longer pending */
  1287. clear_bit(0, &self->disconnect_pend); /* FALSE */
  1288. return ret;
  1289. }
  1290. EXPORT_SYMBOL(irttp_disconnect_request);
  1291. /*
  1292. * Function irttp_disconnect_indication (self, reason)
  1293. *
  1294. * Disconnect indication, TSAP disconnected by peer?
  1295. *
  1296. */
  1297. void irttp_disconnect_indication(void *instance, void *sap, LM_REASON reason,
  1298. struct sk_buff *skb)
  1299. {
  1300. struct tsap_cb *self;
  1301. IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
  1302. self = (struct tsap_cb *) instance;
  1303. IRDA_ASSERT(self != NULL, return;);
  1304. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  1305. /* Prevent higher layer to send more data */
  1306. self->connected = FALSE;
  1307. /* Check if client has already tried to close the TSAP */
  1308. if (self->close_pend) {
  1309. /* In this case, the higher layer is probably gone. Don't
  1310. * bother it and clean up the remains - Jean II */
  1311. if (skb)
  1312. dev_kfree_skb(skb);
  1313. irttp_close_tsap(self);
  1314. return;
  1315. }
  1316. /* If we are here, we assume that is the higher layer is still
  1317. * waiting for the disconnect notification and able to process it,
  1318. * even if he tried to disconnect. Otherwise, it would have already
  1319. * attempted to close the tsap and self->close_pend would be TRUE.
  1320. * Jean II */
  1321. /* No need to notify the client if has already tried to disconnect */
  1322. if(self->notify.disconnect_indication)
  1323. self->notify.disconnect_indication(self->notify.instance, self,
  1324. reason, skb);
  1325. else
  1326. if (skb)
  1327. dev_kfree_skb(skb);
  1328. }
  1329. /*
  1330. * Function irttp_do_data_indication (self, skb)
  1331. *
  1332. * Try to deliver reassembled skb to layer above, and requeue it if that
  1333. * for some reason should fail. We mark rx sdu as busy to apply back
  1334. * pressure is necessary.
  1335. */
  1336. static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
  1337. {
  1338. int err;
  1339. /* Check if client has already closed the TSAP and gone away */
  1340. if (self->close_pend) {
  1341. dev_kfree_skb(skb);
  1342. return;
  1343. }
  1344. err = self->notify.data_indication(self->notify.instance, self, skb);
  1345. /* Usually the layer above will notify that it's input queue is
  1346. * starting to get filled by using the flow request, but this may
  1347. * be difficult, so it can instead just refuse to eat it and just
  1348. * give an error back
  1349. */
  1350. if (err) {
  1351. IRDA_DEBUG(0, "%s() requeueing skb!\n", __FUNCTION__);
  1352. /* Make sure we take a break */
  1353. self->rx_sdu_busy = TRUE;
  1354. /* Need to push the header in again */
  1355. skb_push(skb, TTP_HEADER);
  1356. skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
  1357. /* Put skb back on queue */
  1358. skb_queue_head(&self->rx_queue, skb);
  1359. }
  1360. }
  1361. /*
  1362. * Function irttp_run_rx_queue (self)
  1363. *
  1364. * Check if we have any frames to be transmitted, or if we have any
  1365. * available credit to give away.
  1366. */
  1367. void irttp_run_rx_queue(struct tsap_cb *self)
  1368. {
  1369. struct sk_buff *skb;
  1370. int more = 0;
  1371. IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__,
  1372. self->send_credit, self->avail_credit, self->remote_credit);
  1373. /* Get exclusive access to the rx queue, otherwise don't touch it */
  1374. if (irda_lock(&self->rx_queue_lock) == FALSE)
  1375. return;
  1376. /*
  1377. * Reassemble all frames in receive queue and deliver them
  1378. */
  1379. while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
  1380. /* This bit will tell us if it's the last fragment or not */
  1381. more = skb->data[0] & 0x80;
  1382. /* Remove TTP header */
  1383. skb_pull(skb, TTP_HEADER);
  1384. /* Add the length of the remaining data */
  1385. self->rx_sdu_size += skb->len;
  1386. /*
  1387. * If SAR is disabled, or user has requested no reassembly
  1388. * of received fragments then we just deliver them
  1389. * immediately. This can be requested by clients that
  1390. * implements byte streams without any message boundaries
  1391. */
  1392. if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
  1393. irttp_do_data_indication(self, skb);
  1394. self->rx_sdu_size = 0;
  1395. continue;
  1396. }
  1397. /* Check if this is a fragment, and not the last fragment */
  1398. if (more) {
  1399. /*
  1400. * Queue the fragment if we still are within the
  1401. * limits of the maximum size of the rx_sdu
  1402. */
  1403. if (self->rx_sdu_size <= self->rx_max_sdu_size) {
  1404. IRDA_DEBUG(4, "%s(), queueing frag\n",
  1405. __FUNCTION__);
  1406. skb_queue_tail(&self->rx_fragments, skb);
  1407. } else {
  1408. /* Free the part of the SDU that is too big */
  1409. dev_kfree_skb(skb);
  1410. }
  1411. continue;
  1412. }
  1413. /*
  1414. * This is the last fragment, so time to reassemble!
  1415. */
  1416. if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
  1417. (self->rx_max_sdu_size == TTP_SAR_UNBOUND))
  1418. {
  1419. /*
  1420. * A little optimizing. Only queue the fragment if
  1421. * there are other fragments. Since if this is the
  1422. * last and only fragment, there is no need to
  1423. * reassemble :-)
  1424. */
  1425. if (!skb_queue_empty(&self->rx_fragments)) {
  1426. skb_queue_tail(&self->rx_fragments,
  1427. skb);
  1428. skb = irttp_reassemble_skb(self);
  1429. }
  1430. /* Now we can deliver the reassembled skb */
  1431. irttp_do_data_indication(self, skb);
  1432. } else {
  1433. IRDA_DEBUG(1, "%s(), Truncated frame\n", __FUNCTION__);
  1434. /* Free the part of the SDU that is too big */
  1435. dev_kfree_skb(skb);
  1436. /* Deliver only the valid but truncated part of SDU */
  1437. skb = irttp_reassemble_skb(self);
  1438. irttp_do_data_indication(self, skb);
  1439. }
  1440. self->rx_sdu_size = 0;
  1441. }
  1442. /*
  1443. * It's not trivial to keep track of how many credits are available
  1444. * by incrementing at each packet, because delivery may fail
  1445. * (irttp_do_data_indication() may requeue the frame) and because
  1446. * we need to take care of fragmentation.
  1447. * We want the other side to send up to initial_credit packets.
  1448. * We have some frames in our queues, and we have already allowed it
  1449. * to send remote_credit.
  1450. * No need to spinlock, write is atomic and self correcting...
  1451. * Jean II
  1452. */
  1453. self->avail_credit = (self->initial_credit -
  1454. (self->remote_credit +
  1455. skb_queue_len(&self->rx_queue) +
  1456. skb_queue_len(&self->rx_fragments)));
  1457. /* Do we have too much credits to send to peer ? */
  1458. if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
  1459. (self->avail_credit > 0)) {
  1460. /* Send explicit credit frame */
  1461. irttp_give_credit(self);
  1462. /* Note : do *NOT* check if tx_queue is non-empty, that
  1463. * will produce deadlocks. I repeat : send a credit frame
  1464. * even if we have something to send in our Tx queue.
  1465. * If we have credits, it means that our Tx queue is blocked.
  1466. *
  1467. * Let's suppose the peer can't keep up with our Tx. He will
  1468. * flow control us by not sending us any credits, and we
  1469. * will stop Tx and start accumulating credits here.
  1470. * Up to the point where the peer will stop its Tx queue,
  1471. * for lack of credits.
  1472. * Let's assume the peer application is single threaded.
  1473. * It will block on Tx and never consume any Rx buffer.
  1474. * Deadlock. Guaranteed. - Jean II
  1475. */
  1476. }
  1477. /* Reset lock */
  1478. self->rx_queue_lock = 0;
  1479. }
  1480. #ifdef CONFIG_PROC_FS
  1481. struct irttp_iter_state {
  1482. int id;
  1483. };
  1484. static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
  1485. {
  1486. struct irttp_iter_state *iter = seq->private;
  1487. struct tsap_cb *self;
  1488. /* Protect our access to the tsap list */
  1489. spin_lock_irq(&irttp->tsaps->hb_spinlock);
  1490. iter->id = 0;
  1491. for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
  1492. self != NULL;
  1493. self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
  1494. if (iter->id == *pos)
  1495. break;
  1496. ++iter->id;
  1497. }
  1498. return self;
  1499. }
  1500. static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1501. {
  1502. struct irttp_iter_state *iter = seq->private;
  1503. ++*pos;
  1504. ++iter->id;
  1505. return (void *) hashbin_get_next(irttp->tsaps);
  1506. }
  1507. static void irttp_seq_stop(struct seq_file *seq, void *v)
  1508. {
  1509. spin_unlock_irq(&irttp->tsaps->hb_spinlock);
  1510. }
  1511. static int irttp_seq_show(struct seq_file *seq, void *v)
  1512. {
  1513. const struct irttp_iter_state *iter = seq->private;
  1514. const struct tsap_cb *self = v;
  1515. seq_printf(seq, "TSAP %d, ", iter->id);
  1516. seq_printf(seq, "stsap_sel: %02x, ",
  1517. self->stsap_sel);
  1518. seq_printf(seq, "dtsap_sel: %02x\n",
  1519. self->dtsap_sel);
  1520. seq_printf(seq, " connected: %s, ",
  1521. self->connected? "TRUE":"FALSE");
  1522. seq_printf(seq, "avail credit: %d, ",
  1523. self->avail_credit);
  1524. seq_printf(seq, "remote credit: %d, ",
  1525. self->remote_credit);
  1526. seq_printf(seq, "send credit: %d\n",
  1527. self->send_credit);
  1528. seq_printf(seq, " tx packets: %ld, ",
  1529. self->stats.tx_packets);
  1530. seq_printf(seq, "rx packets: %ld, ",
  1531. self->stats.rx_packets);
  1532. seq_printf(seq, "tx_queue len: %d ",
  1533. skb_queue_len(&self->tx_queue));
  1534. seq_printf(seq, "rx_queue len: %d\n",
  1535. skb_queue_len(&self->rx_queue));
  1536. seq_printf(seq, " tx_sdu_busy: %s, ",
  1537. self->tx_sdu_busy? "TRUE":"FALSE");
  1538. seq_printf(seq, "rx_sdu_busy: %s\n",
  1539. self->rx_sdu_busy? "TRUE":"FALSE");
  1540. seq_printf(seq, " max_seg_size: %d, ",
  1541. self->max_seg_size);
  1542. seq_printf(seq, "tx_max_sdu_size: %d, ",
  1543. self->tx_max_sdu_size);
  1544. seq_printf(seq, "rx_max_sdu_size: %d\n",
  1545. self->rx_max_sdu_size);
  1546. seq_printf(seq, " Used by (%s)\n\n",
  1547. self->notify.name);
  1548. return 0;
  1549. }
  1550. static struct seq_operations irttp_seq_ops = {
  1551. .start = irttp_seq_start,
  1552. .next = irttp_seq_next,
  1553. .stop = irttp_seq_stop,
  1554. .show = irttp_seq_show,
  1555. };
  1556. static int irttp_seq_open(struct inode *inode, struct file *file)
  1557. {
  1558. struct seq_file *seq;
  1559. int rc = -ENOMEM;
  1560. struct irttp_iter_state *s;
  1561. s = kzalloc(sizeof(*s), GFP_KERNEL);
  1562. if (!s)
  1563. goto out;
  1564. rc = seq_open(file, &irttp_seq_ops);
  1565. if (rc)
  1566. goto out_kfree;
  1567. seq = file->private_data;
  1568. seq->private = s;
  1569. out:
  1570. return rc;
  1571. out_kfree:
  1572. kfree(s);
  1573. goto out;
  1574. }
  1575. struct file_operations irttp_seq_fops = {
  1576. .owner = THIS_MODULE,
  1577. .open = irttp_seq_open,
  1578. .read = seq_read,
  1579. .llseek = seq_lseek,
  1580. .release = seq_release_private,
  1581. };
  1582. #endif /* PROC_FS */