sched.c 173 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/nmi.h>
  23. #include <linux/init.h>
  24. #include <asm/uaccess.h>
  25. #include <linux/highmem.h>
  26. #include <linux/smp_lock.h>
  27. #include <asm/mmu_context.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/capability.h>
  30. #include <linux/completion.h>
  31. #include <linux/kernel_stat.h>
  32. #include <linux/debug_locks.h>
  33. #include <linux/security.h>
  34. #include <linux/notifier.h>
  35. #include <linux/profile.h>
  36. #include <linux/suspend.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/blkdev.h>
  39. #include <linux/delay.h>
  40. #include <linux/smp.h>
  41. #include <linux/threads.h>
  42. #include <linux/timer.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/cpu.h>
  45. #include <linux/cpuset.h>
  46. #include <linux/percpu.h>
  47. #include <linux/kthread.h>
  48. #include <linux/seq_file.h>
  49. #include <linux/syscalls.h>
  50. #include <linux/times.h>
  51. #include <linux/acct.h>
  52. #include <linux/kprobes.h>
  53. #include <linux/delayacct.h>
  54. #include <asm/tlb.h>
  55. #include <asm/unistd.h>
  56. /*
  57. * Convert user-nice values [ -20 ... 0 ... 19 ]
  58. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  59. * and back.
  60. */
  61. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  62. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  63. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  64. /*
  65. * 'User priority' is the nice value converted to something we
  66. * can work with better when scaling various scheduler parameters,
  67. * it's a [ 0 ... 39 ] range.
  68. */
  69. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  70. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  71. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  72. /*
  73. * Some helpers for converting nanosecond timing to jiffy resolution
  74. */
  75. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  76. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  77. /*
  78. * These are the 'tuning knobs' of the scheduler:
  79. *
  80. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  81. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  82. * Timeslices get refilled after they expire.
  83. */
  84. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  85. #define DEF_TIMESLICE (100 * HZ / 1000)
  86. #define ON_RUNQUEUE_WEIGHT 30
  87. #define CHILD_PENALTY 95
  88. #define PARENT_PENALTY 100
  89. #define EXIT_WEIGHT 3
  90. #define PRIO_BONUS_RATIO 25
  91. #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
  92. #define INTERACTIVE_DELTA 2
  93. #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
  94. #define STARVATION_LIMIT (MAX_SLEEP_AVG)
  95. #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
  96. /*
  97. * If a task is 'interactive' then we reinsert it in the active
  98. * array after it has expired its current timeslice. (it will not
  99. * continue to run immediately, it will still roundrobin with
  100. * other interactive tasks.)
  101. *
  102. * This part scales the interactivity limit depending on niceness.
  103. *
  104. * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  105. * Here are a few examples of different nice levels:
  106. *
  107. * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  108. * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  109. * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
  110. * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  111. * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  112. *
  113. * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  114. * priority range a task can explore, a value of '1' means the
  115. * task is rated interactive.)
  116. *
  117. * Ie. nice +19 tasks can never get 'interactive' enough to be
  118. * reinserted into the active array. And only heavily CPU-hog nice -20
  119. * tasks will be expired. Default nice 0 tasks are somewhere between,
  120. * it takes some effort for them to get interactive, but it's not
  121. * too hard.
  122. */
  123. #define CURRENT_BONUS(p) \
  124. (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
  125. MAX_SLEEP_AVG)
  126. #define GRANULARITY (10 * HZ / 1000 ? : 1)
  127. #ifdef CONFIG_SMP
  128. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  129. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
  130. num_online_cpus())
  131. #else
  132. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  133. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
  134. #endif
  135. #define SCALE(v1,v1_max,v2_max) \
  136. (v1) * (v2_max) / (v1_max)
  137. #define DELTA(p) \
  138. (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
  139. INTERACTIVE_DELTA)
  140. #define TASK_INTERACTIVE(p) \
  141. ((p)->prio <= (p)->static_prio - DELTA(p))
  142. #define INTERACTIVE_SLEEP(p) \
  143. (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
  144. (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
  145. #define TASK_PREEMPTS_CURR(p, rq) \
  146. ((p)->prio < (rq)->curr->prio)
  147. /*
  148. * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  149. * to time slice values: [800ms ... 100ms ... 5ms]
  150. *
  151. * The higher a thread's priority, the bigger timeslices
  152. * it gets during one round of execution. But even the lowest
  153. * priority thread gets MIN_TIMESLICE worth of execution time.
  154. */
  155. #define SCALE_PRIO(x, prio) \
  156. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  157. static unsigned int static_prio_timeslice(int static_prio)
  158. {
  159. if (static_prio < NICE_TO_PRIO(0))
  160. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  161. else
  162. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  163. }
  164. static inline unsigned int task_timeslice(struct task_struct *p)
  165. {
  166. return static_prio_timeslice(p->static_prio);
  167. }
  168. /*
  169. * These are the runqueue data structures:
  170. */
  171. struct prio_array {
  172. unsigned int nr_active;
  173. DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
  174. struct list_head queue[MAX_PRIO];
  175. };
  176. /*
  177. * This is the main, per-CPU runqueue data structure.
  178. *
  179. * Locking rule: those places that want to lock multiple runqueues
  180. * (such as the load balancing or the thread migration code), lock
  181. * acquire operations must be ordered by ascending &runqueue.
  182. */
  183. struct rq {
  184. spinlock_t lock;
  185. /*
  186. * nr_running and cpu_load should be in the same cacheline because
  187. * remote CPUs use both these fields when doing load calculation.
  188. */
  189. unsigned long nr_running;
  190. unsigned long raw_weighted_load;
  191. #ifdef CONFIG_SMP
  192. unsigned long cpu_load[3];
  193. #endif
  194. unsigned long long nr_switches;
  195. /*
  196. * This is part of a global counter where only the total sum
  197. * over all CPUs matters. A task can increase this counter on
  198. * one CPU and if it got migrated afterwards it may decrease
  199. * it on another CPU. Always updated under the runqueue lock:
  200. */
  201. unsigned long nr_uninterruptible;
  202. unsigned long expired_timestamp;
  203. unsigned long long timestamp_last_tick;
  204. struct task_struct *curr, *idle;
  205. struct mm_struct *prev_mm;
  206. struct prio_array *active, *expired, arrays[2];
  207. int best_expired_prio;
  208. atomic_t nr_iowait;
  209. #ifdef CONFIG_SMP
  210. struct sched_domain *sd;
  211. /* For active balancing */
  212. int active_balance;
  213. int push_cpu;
  214. int cpu; /* cpu of this runqueue */
  215. struct task_struct *migration_thread;
  216. struct list_head migration_queue;
  217. #endif
  218. #ifdef CONFIG_SCHEDSTATS
  219. /* latency stats */
  220. struct sched_info rq_sched_info;
  221. /* sys_sched_yield() stats */
  222. unsigned long yld_exp_empty;
  223. unsigned long yld_act_empty;
  224. unsigned long yld_both_empty;
  225. unsigned long yld_cnt;
  226. /* schedule() stats */
  227. unsigned long sched_switch;
  228. unsigned long sched_cnt;
  229. unsigned long sched_goidle;
  230. /* try_to_wake_up() stats */
  231. unsigned long ttwu_cnt;
  232. unsigned long ttwu_local;
  233. #endif
  234. struct lock_class_key rq_lock_key;
  235. };
  236. static DEFINE_PER_CPU(struct rq, runqueues);
  237. static inline int cpu_of(struct rq *rq)
  238. {
  239. #ifdef CONFIG_SMP
  240. return rq->cpu;
  241. #else
  242. return 0;
  243. #endif
  244. }
  245. /*
  246. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  247. * See detach_destroy_domains: synchronize_sched for details.
  248. *
  249. * The domain tree of any CPU may only be accessed from within
  250. * preempt-disabled sections.
  251. */
  252. #define for_each_domain(cpu, __sd) \
  253. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  254. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  255. #define this_rq() (&__get_cpu_var(runqueues))
  256. #define task_rq(p) cpu_rq(task_cpu(p))
  257. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  258. #ifndef prepare_arch_switch
  259. # define prepare_arch_switch(next) do { } while (0)
  260. #endif
  261. #ifndef finish_arch_switch
  262. # define finish_arch_switch(prev) do { } while (0)
  263. #endif
  264. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  265. static inline int task_running(struct rq *rq, struct task_struct *p)
  266. {
  267. return rq->curr == p;
  268. }
  269. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  270. {
  271. }
  272. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  273. {
  274. #ifdef CONFIG_DEBUG_SPINLOCK
  275. /* this is a valid case when another task releases the spinlock */
  276. rq->lock.owner = current;
  277. #endif
  278. /*
  279. * If we are tracking spinlock dependencies then we have to
  280. * fix up the runqueue lock - which gets 'carried over' from
  281. * prev into current:
  282. */
  283. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  284. spin_unlock_irq(&rq->lock);
  285. }
  286. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  287. static inline int task_running(struct rq *rq, struct task_struct *p)
  288. {
  289. #ifdef CONFIG_SMP
  290. return p->oncpu;
  291. #else
  292. return rq->curr == p;
  293. #endif
  294. }
  295. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  296. {
  297. #ifdef CONFIG_SMP
  298. /*
  299. * We can optimise this out completely for !SMP, because the
  300. * SMP rebalancing from interrupt is the only thing that cares
  301. * here.
  302. */
  303. next->oncpu = 1;
  304. #endif
  305. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  306. spin_unlock_irq(&rq->lock);
  307. #else
  308. spin_unlock(&rq->lock);
  309. #endif
  310. }
  311. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  312. {
  313. #ifdef CONFIG_SMP
  314. /*
  315. * After ->oncpu is cleared, the task can be moved to a different CPU.
  316. * We must ensure this doesn't happen until the switch is completely
  317. * finished.
  318. */
  319. smp_wmb();
  320. prev->oncpu = 0;
  321. #endif
  322. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  323. local_irq_enable();
  324. #endif
  325. }
  326. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  327. /*
  328. * __task_rq_lock - lock the runqueue a given task resides on.
  329. * Must be called interrupts disabled.
  330. */
  331. static inline struct rq *__task_rq_lock(struct task_struct *p)
  332. __acquires(rq->lock)
  333. {
  334. struct rq *rq;
  335. repeat_lock_task:
  336. rq = task_rq(p);
  337. spin_lock(&rq->lock);
  338. if (unlikely(rq != task_rq(p))) {
  339. spin_unlock(&rq->lock);
  340. goto repeat_lock_task;
  341. }
  342. return rq;
  343. }
  344. /*
  345. * task_rq_lock - lock the runqueue a given task resides on and disable
  346. * interrupts. Note the ordering: we can safely lookup the task_rq without
  347. * explicitly disabling preemption.
  348. */
  349. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  350. __acquires(rq->lock)
  351. {
  352. struct rq *rq;
  353. repeat_lock_task:
  354. local_irq_save(*flags);
  355. rq = task_rq(p);
  356. spin_lock(&rq->lock);
  357. if (unlikely(rq != task_rq(p))) {
  358. spin_unlock_irqrestore(&rq->lock, *flags);
  359. goto repeat_lock_task;
  360. }
  361. return rq;
  362. }
  363. static inline void __task_rq_unlock(struct rq *rq)
  364. __releases(rq->lock)
  365. {
  366. spin_unlock(&rq->lock);
  367. }
  368. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  369. __releases(rq->lock)
  370. {
  371. spin_unlock_irqrestore(&rq->lock, *flags);
  372. }
  373. #ifdef CONFIG_SCHEDSTATS
  374. /*
  375. * bump this up when changing the output format or the meaning of an existing
  376. * format, so that tools can adapt (or abort)
  377. */
  378. #define SCHEDSTAT_VERSION 12
  379. static int show_schedstat(struct seq_file *seq, void *v)
  380. {
  381. int cpu;
  382. seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
  383. seq_printf(seq, "timestamp %lu\n", jiffies);
  384. for_each_online_cpu(cpu) {
  385. struct rq *rq = cpu_rq(cpu);
  386. #ifdef CONFIG_SMP
  387. struct sched_domain *sd;
  388. int dcnt = 0;
  389. #endif
  390. /* runqueue-specific stats */
  391. seq_printf(seq,
  392. "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
  393. cpu, rq->yld_both_empty,
  394. rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
  395. rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
  396. rq->ttwu_cnt, rq->ttwu_local,
  397. rq->rq_sched_info.cpu_time,
  398. rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
  399. seq_printf(seq, "\n");
  400. #ifdef CONFIG_SMP
  401. /* domain-specific stats */
  402. preempt_disable();
  403. for_each_domain(cpu, sd) {
  404. enum idle_type itype;
  405. char mask_str[NR_CPUS];
  406. cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
  407. seq_printf(seq, "domain%d %s", dcnt++, mask_str);
  408. for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
  409. itype++) {
  410. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
  411. sd->lb_cnt[itype],
  412. sd->lb_balanced[itype],
  413. sd->lb_failed[itype],
  414. sd->lb_imbalance[itype],
  415. sd->lb_gained[itype],
  416. sd->lb_hot_gained[itype],
  417. sd->lb_nobusyq[itype],
  418. sd->lb_nobusyg[itype]);
  419. }
  420. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
  421. sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
  422. sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
  423. sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
  424. sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
  425. }
  426. preempt_enable();
  427. #endif
  428. }
  429. return 0;
  430. }
  431. static int schedstat_open(struct inode *inode, struct file *file)
  432. {
  433. unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
  434. char *buf = kmalloc(size, GFP_KERNEL);
  435. struct seq_file *m;
  436. int res;
  437. if (!buf)
  438. return -ENOMEM;
  439. res = single_open(file, show_schedstat, NULL);
  440. if (!res) {
  441. m = file->private_data;
  442. m->buf = buf;
  443. m->size = size;
  444. } else
  445. kfree(buf);
  446. return res;
  447. }
  448. struct file_operations proc_schedstat_operations = {
  449. .open = schedstat_open,
  450. .read = seq_read,
  451. .llseek = seq_lseek,
  452. .release = single_release,
  453. };
  454. /*
  455. * Expects runqueue lock to be held for atomicity of update
  456. */
  457. static inline void
  458. rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
  459. {
  460. if (rq) {
  461. rq->rq_sched_info.run_delay += delta_jiffies;
  462. rq->rq_sched_info.pcnt++;
  463. }
  464. }
  465. /*
  466. * Expects runqueue lock to be held for atomicity of update
  467. */
  468. static inline void
  469. rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
  470. {
  471. if (rq)
  472. rq->rq_sched_info.cpu_time += delta_jiffies;
  473. }
  474. # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
  475. # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
  476. #else /* !CONFIG_SCHEDSTATS */
  477. static inline void
  478. rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
  479. {}
  480. static inline void
  481. rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
  482. {}
  483. # define schedstat_inc(rq, field) do { } while (0)
  484. # define schedstat_add(rq, field, amt) do { } while (0)
  485. #endif
  486. /*
  487. * rq_lock - lock a given runqueue and disable interrupts.
  488. */
  489. static inline struct rq *this_rq_lock(void)
  490. __acquires(rq->lock)
  491. {
  492. struct rq *rq;
  493. local_irq_disable();
  494. rq = this_rq();
  495. spin_lock(&rq->lock);
  496. return rq;
  497. }
  498. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  499. /*
  500. * Called when a process is dequeued from the active array and given
  501. * the cpu. We should note that with the exception of interactive
  502. * tasks, the expired queue will become the active queue after the active
  503. * queue is empty, without explicitly dequeuing and requeuing tasks in the
  504. * expired queue. (Interactive tasks may be requeued directly to the
  505. * active queue, thus delaying tasks in the expired queue from running;
  506. * see scheduler_tick()).
  507. *
  508. * This function is only called from sched_info_arrive(), rather than
  509. * dequeue_task(). Even though a task may be queued and dequeued multiple
  510. * times as it is shuffled about, we're really interested in knowing how
  511. * long it was from the *first* time it was queued to the time that it
  512. * finally hit a cpu.
  513. */
  514. static inline void sched_info_dequeued(struct task_struct *t)
  515. {
  516. t->sched_info.last_queued = 0;
  517. }
  518. /*
  519. * Called when a task finally hits the cpu. We can now calculate how
  520. * long it was waiting to run. We also note when it began so that we
  521. * can keep stats on how long its timeslice is.
  522. */
  523. static void sched_info_arrive(struct task_struct *t)
  524. {
  525. unsigned long now = jiffies, delta_jiffies = 0;
  526. if (t->sched_info.last_queued)
  527. delta_jiffies = now - t->sched_info.last_queued;
  528. sched_info_dequeued(t);
  529. t->sched_info.run_delay += delta_jiffies;
  530. t->sched_info.last_arrival = now;
  531. t->sched_info.pcnt++;
  532. rq_sched_info_arrive(task_rq(t), delta_jiffies);
  533. }
  534. /*
  535. * Called when a process is queued into either the active or expired
  536. * array. The time is noted and later used to determine how long we
  537. * had to wait for us to reach the cpu. Since the expired queue will
  538. * become the active queue after active queue is empty, without dequeuing
  539. * and requeuing any tasks, we are interested in queuing to either. It
  540. * is unusual but not impossible for tasks to be dequeued and immediately
  541. * requeued in the same or another array: this can happen in sched_yield(),
  542. * set_user_nice(), and even load_balance() as it moves tasks from runqueue
  543. * to runqueue.
  544. *
  545. * This function is only called from enqueue_task(), but also only updates
  546. * the timestamp if it is already not set. It's assumed that
  547. * sched_info_dequeued() will clear that stamp when appropriate.
  548. */
  549. static inline void sched_info_queued(struct task_struct *t)
  550. {
  551. if (unlikely(sched_info_on()))
  552. if (!t->sched_info.last_queued)
  553. t->sched_info.last_queued = jiffies;
  554. }
  555. /*
  556. * Called when a process ceases being the active-running process, either
  557. * voluntarily or involuntarily. Now we can calculate how long we ran.
  558. */
  559. static inline void sched_info_depart(struct task_struct *t)
  560. {
  561. unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
  562. t->sched_info.cpu_time += delta_jiffies;
  563. rq_sched_info_depart(task_rq(t), delta_jiffies);
  564. }
  565. /*
  566. * Called when tasks are switched involuntarily due, typically, to expiring
  567. * their time slice. (This may also be called when switching to or from
  568. * the idle task.) We are only called when prev != next.
  569. */
  570. static inline void
  571. __sched_info_switch(struct task_struct *prev, struct task_struct *next)
  572. {
  573. struct rq *rq = task_rq(prev);
  574. /*
  575. * prev now departs the cpu. It's not interesting to record
  576. * stats about how efficient we were at scheduling the idle
  577. * process, however.
  578. */
  579. if (prev != rq->idle)
  580. sched_info_depart(prev);
  581. if (next != rq->idle)
  582. sched_info_arrive(next);
  583. }
  584. static inline void
  585. sched_info_switch(struct task_struct *prev, struct task_struct *next)
  586. {
  587. if (unlikely(sched_info_on()))
  588. __sched_info_switch(prev, next);
  589. }
  590. #else
  591. #define sched_info_queued(t) do { } while (0)
  592. #define sched_info_switch(t, next) do { } while (0)
  593. #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
  594. /*
  595. * Adding/removing a task to/from a priority array:
  596. */
  597. static void dequeue_task(struct task_struct *p, struct prio_array *array)
  598. {
  599. array->nr_active--;
  600. list_del(&p->run_list);
  601. if (list_empty(array->queue + p->prio))
  602. __clear_bit(p->prio, array->bitmap);
  603. }
  604. static void enqueue_task(struct task_struct *p, struct prio_array *array)
  605. {
  606. sched_info_queued(p);
  607. list_add_tail(&p->run_list, array->queue + p->prio);
  608. __set_bit(p->prio, array->bitmap);
  609. array->nr_active++;
  610. p->array = array;
  611. }
  612. /*
  613. * Put task to the end of the run list without the overhead of dequeue
  614. * followed by enqueue.
  615. */
  616. static void requeue_task(struct task_struct *p, struct prio_array *array)
  617. {
  618. list_move_tail(&p->run_list, array->queue + p->prio);
  619. }
  620. static inline void
  621. enqueue_task_head(struct task_struct *p, struct prio_array *array)
  622. {
  623. list_add(&p->run_list, array->queue + p->prio);
  624. __set_bit(p->prio, array->bitmap);
  625. array->nr_active++;
  626. p->array = array;
  627. }
  628. /*
  629. * __normal_prio - return the priority that is based on the static
  630. * priority but is modified by bonuses/penalties.
  631. *
  632. * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
  633. * into the -5 ... 0 ... +5 bonus/penalty range.
  634. *
  635. * We use 25% of the full 0...39 priority range so that:
  636. *
  637. * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
  638. * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
  639. *
  640. * Both properties are important to certain workloads.
  641. */
  642. static inline int __normal_prio(struct task_struct *p)
  643. {
  644. int bonus, prio;
  645. bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
  646. prio = p->static_prio - bonus;
  647. if (prio < MAX_RT_PRIO)
  648. prio = MAX_RT_PRIO;
  649. if (prio > MAX_PRIO-1)
  650. prio = MAX_PRIO-1;
  651. return prio;
  652. }
  653. /*
  654. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  655. * of tasks with abnormal "nice" values across CPUs the contribution that
  656. * each task makes to its run queue's load is weighted according to its
  657. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  658. * scaled version of the new time slice allocation that they receive on time
  659. * slice expiry etc.
  660. */
  661. /*
  662. * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
  663. * If static_prio_timeslice() is ever changed to break this assumption then
  664. * this code will need modification
  665. */
  666. #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
  667. #define LOAD_WEIGHT(lp) \
  668. (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
  669. #define PRIO_TO_LOAD_WEIGHT(prio) \
  670. LOAD_WEIGHT(static_prio_timeslice(prio))
  671. #define RTPRIO_TO_LOAD_WEIGHT(rp) \
  672. (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
  673. static void set_load_weight(struct task_struct *p)
  674. {
  675. if (has_rt_policy(p)) {
  676. #ifdef CONFIG_SMP
  677. if (p == task_rq(p)->migration_thread)
  678. /*
  679. * The migration thread does the actual balancing.
  680. * Giving its load any weight will skew balancing
  681. * adversely.
  682. */
  683. p->load_weight = 0;
  684. else
  685. #endif
  686. p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
  687. } else
  688. p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
  689. }
  690. static inline void
  691. inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  692. {
  693. rq->raw_weighted_load += p->load_weight;
  694. }
  695. static inline void
  696. dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  697. {
  698. rq->raw_weighted_load -= p->load_weight;
  699. }
  700. static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
  701. {
  702. rq->nr_running++;
  703. inc_raw_weighted_load(rq, p);
  704. }
  705. static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
  706. {
  707. rq->nr_running--;
  708. dec_raw_weighted_load(rq, p);
  709. }
  710. /*
  711. * Calculate the expected normal priority: i.e. priority
  712. * without taking RT-inheritance into account. Might be
  713. * boosted by interactivity modifiers. Changes upon fork,
  714. * setprio syscalls, and whenever the interactivity
  715. * estimator recalculates.
  716. */
  717. static inline int normal_prio(struct task_struct *p)
  718. {
  719. int prio;
  720. if (has_rt_policy(p))
  721. prio = MAX_RT_PRIO-1 - p->rt_priority;
  722. else
  723. prio = __normal_prio(p);
  724. return prio;
  725. }
  726. /*
  727. * Calculate the current priority, i.e. the priority
  728. * taken into account by the scheduler. This value might
  729. * be boosted by RT tasks, or might be boosted by
  730. * interactivity modifiers. Will be RT if the task got
  731. * RT-boosted. If not then it returns p->normal_prio.
  732. */
  733. static int effective_prio(struct task_struct *p)
  734. {
  735. p->normal_prio = normal_prio(p);
  736. /*
  737. * If we are RT tasks or we were boosted to RT priority,
  738. * keep the priority unchanged. Otherwise, update priority
  739. * to the normal priority:
  740. */
  741. if (!rt_prio(p->prio))
  742. return p->normal_prio;
  743. return p->prio;
  744. }
  745. /*
  746. * __activate_task - move a task to the runqueue.
  747. */
  748. static void __activate_task(struct task_struct *p, struct rq *rq)
  749. {
  750. struct prio_array *target = rq->active;
  751. if (batch_task(p))
  752. target = rq->expired;
  753. enqueue_task(p, target);
  754. inc_nr_running(p, rq);
  755. }
  756. /*
  757. * __activate_idle_task - move idle task to the _front_ of runqueue.
  758. */
  759. static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
  760. {
  761. enqueue_task_head(p, rq->active);
  762. inc_nr_running(p, rq);
  763. }
  764. /*
  765. * Recalculate p->normal_prio and p->prio after having slept,
  766. * updating the sleep-average too:
  767. */
  768. static int recalc_task_prio(struct task_struct *p, unsigned long long now)
  769. {
  770. /* Caller must always ensure 'now >= p->timestamp' */
  771. unsigned long sleep_time = now - p->timestamp;
  772. if (batch_task(p))
  773. sleep_time = 0;
  774. if (likely(sleep_time > 0)) {
  775. /*
  776. * This ceiling is set to the lowest priority that would allow
  777. * a task to be reinserted into the active array on timeslice
  778. * completion.
  779. */
  780. unsigned long ceiling = INTERACTIVE_SLEEP(p);
  781. if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
  782. /*
  783. * Prevents user tasks from achieving best priority
  784. * with one single large enough sleep.
  785. */
  786. p->sleep_avg = ceiling;
  787. /*
  788. * Using INTERACTIVE_SLEEP() as a ceiling places a
  789. * nice(0) task 1ms sleep away from promotion, and
  790. * gives it 700ms to round-robin with no chance of
  791. * being demoted. This is more than generous, so
  792. * mark this sleep as non-interactive to prevent the
  793. * on-runqueue bonus logic from intervening should
  794. * this task not receive cpu immediately.
  795. */
  796. p->sleep_type = SLEEP_NONINTERACTIVE;
  797. } else {
  798. /*
  799. * Tasks waking from uninterruptible sleep are
  800. * limited in their sleep_avg rise as they
  801. * are likely to be waiting on I/O
  802. */
  803. if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
  804. if (p->sleep_avg >= ceiling)
  805. sleep_time = 0;
  806. else if (p->sleep_avg + sleep_time >=
  807. ceiling) {
  808. p->sleep_avg = ceiling;
  809. sleep_time = 0;
  810. }
  811. }
  812. /*
  813. * This code gives a bonus to interactive tasks.
  814. *
  815. * The boost works by updating the 'average sleep time'
  816. * value here, based on ->timestamp. The more time a
  817. * task spends sleeping, the higher the average gets -
  818. * and the higher the priority boost gets as well.
  819. */
  820. p->sleep_avg += sleep_time;
  821. }
  822. if (p->sleep_avg > NS_MAX_SLEEP_AVG)
  823. p->sleep_avg = NS_MAX_SLEEP_AVG;
  824. }
  825. return effective_prio(p);
  826. }
  827. /*
  828. * activate_task - move a task to the runqueue and do priority recalculation
  829. *
  830. * Update all the scheduling statistics stuff. (sleep average
  831. * calculation, priority modifiers, etc.)
  832. */
  833. static void activate_task(struct task_struct *p, struct rq *rq, int local)
  834. {
  835. unsigned long long now;
  836. now = sched_clock();
  837. #ifdef CONFIG_SMP
  838. if (!local) {
  839. /* Compensate for drifting sched_clock */
  840. struct rq *this_rq = this_rq();
  841. now = (now - this_rq->timestamp_last_tick)
  842. + rq->timestamp_last_tick;
  843. }
  844. #endif
  845. if (!rt_task(p))
  846. p->prio = recalc_task_prio(p, now);
  847. /*
  848. * This checks to make sure it's not an uninterruptible task
  849. * that is now waking up.
  850. */
  851. if (p->sleep_type == SLEEP_NORMAL) {
  852. /*
  853. * Tasks which were woken up by interrupts (ie. hw events)
  854. * are most likely of interactive nature. So we give them
  855. * the credit of extending their sleep time to the period
  856. * of time they spend on the runqueue, waiting for execution
  857. * on a CPU, first time around:
  858. */
  859. if (in_interrupt())
  860. p->sleep_type = SLEEP_INTERRUPTED;
  861. else {
  862. /*
  863. * Normal first-time wakeups get a credit too for
  864. * on-runqueue time, but it will be weighted down:
  865. */
  866. p->sleep_type = SLEEP_INTERACTIVE;
  867. }
  868. }
  869. p->timestamp = now;
  870. __activate_task(p, rq);
  871. }
  872. /*
  873. * deactivate_task - remove a task from the runqueue.
  874. */
  875. static void deactivate_task(struct task_struct *p, struct rq *rq)
  876. {
  877. dec_nr_running(p, rq);
  878. dequeue_task(p, p->array);
  879. p->array = NULL;
  880. }
  881. /*
  882. * resched_task - mark a task 'to be rescheduled now'.
  883. *
  884. * On UP this means the setting of the need_resched flag, on SMP it
  885. * might also involve a cross-CPU call to trigger the scheduler on
  886. * the target CPU.
  887. */
  888. #ifdef CONFIG_SMP
  889. #ifndef tsk_is_polling
  890. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  891. #endif
  892. static void resched_task(struct task_struct *p)
  893. {
  894. int cpu;
  895. assert_spin_locked(&task_rq(p)->lock);
  896. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  897. return;
  898. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  899. cpu = task_cpu(p);
  900. if (cpu == smp_processor_id())
  901. return;
  902. /* NEED_RESCHED must be visible before we test polling */
  903. smp_mb();
  904. if (!tsk_is_polling(p))
  905. smp_send_reschedule(cpu);
  906. }
  907. #else
  908. static inline void resched_task(struct task_struct *p)
  909. {
  910. assert_spin_locked(&task_rq(p)->lock);
  911. set_tsk_need_resched(p);
  912. }
  913. #endif
  914. /**
  915. * task_curr - is this task currently executing on a CPU?
  916. * @p: the task in question.
  917. */
  918. inline int task_curr(const struct task_struct *p)
  919. {
  920. return cpu_curr(task_cpu(p)) == p;
  921. }
  922. /* Used instead of source_load when we know the type == 0 */
  923. unsigned long weighted_cpuload(const int cpu)
  924. {
  925. return cpu_rq(cpu)->raw_weighted_load;
  926. }
  927. #ifdef CONFIG_SMP
  928. struct migration_req {
  929. struct list_head list;
  930. struct task_struct *task;
  931. int dest_cpu;
  932. struct completion done;
  933. };
  934. /*
  935. * The task's runqueue lock must be held.
  936. * Returns true if you have to wait for migration thread.
  937. */
  938. static int
  939. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  940. {
  941. struct rq *rq = task_rq(p);
  942. /*
  943. * If the task is not on a runqueue (and not running), then
  944. * it is sufficient to simply update the task's cpu field.
  945. */
  946. if (!p->array && !task_running(rq, p)) {
  947. set_task_cpu(p, dest_cpu);
  948. return 0;
  949. }
  950. init_completion(&req->done);
  951. req->task = p;
  952. req->dest_cpu = dest_cpu;
  953. list_add(&req->list, &rq->migration_queue);
  954. return 1;
  955. }
  956. /*
  957. * wait_task_inactive - wait for a thread to unschedule.
  958. *
  959. * The caller must ensure that the task *will* unschedule sometime soon,
  960. * else this function might spin for a *long* time. This function can't
  961. * be called with interrupts off, or it may introduce deadlock with
  962. * smp_call_function() if an IPI is sent by the same process we are
  963. * waiting to become inactive.
  964. */
  965. void wait_task_inactive(struct task_struct *p)
  966. {
  967. unsigned long flags;
  968. struct rq *rq;
  969. int preempted;
  970. repeat:
  971. rq = task_rq_lock(p, &flags);
  972. /* Must be off runqueue entirely, not preempted. */
  973. if (unlikely(p->array || task_running(rq, p))) {
  974. /* If it's preempted, we yield. It could be a while. */
  975. preempted = !task_running(rq, p);
  976. task_rq_unlock(rq, &flags);
  977. cpu_relax();
  978. if (preempted)
  979. yield();
  980. goto repeat;
  981. }
  982. task_rq_unlock(rq, &flags);
  983. }
  984. /***
  985. * kick_process - kick a running thread to enter/exit the kernel
  986. * @p: the to-be-kicked thread
  987. *
  988. * Cause a process which is running on another CPU to enter
  989. * kernel-mode, without any delay. (to get signals handled.)
  990. *
  991. * NOTE: this function doesnt have to take the runqueue lock,
  992. * because all it wants to ensure is that the remote task enters
  993. * the kernel. If the IPI races and the task has been migrated
  994. * to another CPU then no harm is done and the purpose has been
  995. * achieved as well.
  996. */
  997. void kick_process(struct task_struct *p)
  998. {
  999. int cpu;
  1000. preempt_disable();
  1001. cpu = task_cpu(p);
  1002. if ((cpu != smp_processor_id()) && task_curr(p))
  1003. smp_send_reschedule(cpu);
  1004. preempt_enable();
  1005. }
  1006. /*
  1007. * Return a low guess at the load of a migration-source cpu weighted
  1008. * according to the scheduling class and "nice" value.
  1009. *
  1010. * We want to under-estimate the load of migration sources, to
  1011. * balance conservatively.
  1012. */
  1013. static inline unsigned long source_load(int cpu, int type)
  1014. {
  1015. struct rq *rq = cpu_rq(cpu);
  1016. if (type == 0)
  1017. return rq->raw_weighted_load;
  1018. return min(rq->cpu_load[type-1], rq->raw_weighted_load);
  1019. }
  1020. /*
  1021. * Return a high guess at the load of a migration-target cpu weighted
  1022. * according to the scheduling class and "nice" value.
  1023. */
  1024. static inline unsigned long target_load(int cpu, int type)
  1025. {
  1026. struct rq *rq = cpu_rq(cpu);
  1027. if (type == 0)
  1028. return rq->raw_weighted_load;
  1029. return max(rq->cpu_load[type-1], rq->raw_weighted_load);
  1030. }
  1031. /*
  1032. * Return the average load per task on the cpu's run queue
  1033. */
  1034. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1035. {
  1036. struct rq *rq = cpu_rq(cpu);
  1037. unsigned long n = rq->nr_running;
  1038. return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
  1039. }
  1040. /*
  1041. * find_idlest_group finds and returns the least busy CPU group within the
  1042. * domain.
  1043. */
  1044. static struct sched_group *
  1045. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1046. {
  1047. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1048. unsigned long min_load = ULONG_MAX, this_load = 0;
  1049. int load_idx = sd->forkexec_idx;
  1050. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1051. do {
  1052. unsigned long load, avg_load;
  1053. int local_group;
  1054. int i;
  1055. /* Skip over this group if it has no CPUs allowed */
  1056. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1057. goto nextgroup;
  1058. local_group = cpu_isset(this_cpu, group->cpumask);
  1059. /* Tally up the load of all CPUs in the group */
  1060. avg_load = 0;
  1061. for_each_cpu_mask(i, group->cpumask) {
  1062. /* Bias balancing toward cpus of our domain */
  1063. if (local_group)
  1064. load = source_load(i, load_idx);
  1065. else
  1066. load = target_load(i, load_idx);
  1067. avg_load += load;
  1068. }
  1069. /* Adjust by relative CPU power of the group */
  1070. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1071. if (local_group) {
  1072. this_load = avg_load;
  1073. this = group;
  1074. } else if (avg_load < min_load) {
  1075. min_load = avg_load;
  1076. idlest = group;
  1077. }
  1078. nextgroup:
  1079. group = group->next;
  1080. } while (group != sd->groups);
  1081. if (!idlest || 100*this_load < imbalance*min_load)
  1082. return NULL;
  1083. return idlest;
  1084. }
  1085. /*
  1086. * find_idlest_queue - find the idlest runqueue among the cpus in group.
  1087. */
  1088. static int
  1089. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1090. {
  1091. cpumask_t tmp;
  1092. unsigned long load, min_load = ULONG_MAX;
  1093. int idlest = -1;
  1094. int i;
  1095. /* Traverse only the allowed CPUs */
  1096. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1097. for_each_cpu_mask(i, tmp) {
  1098. load = weighted_cpuload(i);
  1099. if (load < min_load || (load == min_load && i == this_cpu)) {
  1100. min_load = load;
  1101. idlest = i;
  1102. }
  1103. }
  1104. return idlest;
  1105. }
  1106. /*
  1107. * sched_balance_self: balance the current task (running on cpu) in domains
  1108. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1109. * SD_BALANCE_EXEC.
  1110. *
  1111. * Balance, ie. select the least loaded group.
  1112. *
  1113. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1114. *
  1115. * preempt must be disabled.
  1116. */
  1117. static int sched_balance_self(int cpu, int flag)
  1118. {
  1119. struct task_struct *t = current;
  1120. struct sched_domain *tmp, *sd = NULL;
  1121. for_each_domain(cpu, tmp) {
  1122. /*
  1123. * If power savings logic is enabled for a domain, stop there.
  1124. */
  1125. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1126. break;
  1127. if (tmp->flags & flag)
  1128. sd = tmp;
  1129. }
  1130. while (sd) {
  1131. cpumask_t span;
  1132. struct sched_group *group;
  1133. int new_cpu;
  1134. int weight;
  1135. span = sd->span;
  1136. group = find_idlest_group(sd, t, cpu);
  1137. if (!group)
  1138. goto nextlevel;
  1139. new_cpu = find_idlest_cpu(group, t, cpu);
  1140. if (new_cpu == -1 || new_cpu == cpu)
  1141. goto nextlevel;
  1142. /* Now try balancing at a lower domain level */
  1143. cpu = new_cpu;
  1144. nextlevel:
  1145. sd = NULL;
  1146. weight = cpus_weight(span);
  1147. for_each_domain(cpu, tmp) {
  1148. if (weight <= cpus_weight(tmp->span))
  1149. break;
  1150. if (tmp->flags & flag)
  1151. sd = tmp;
  1152. }
  1153. /* while loop will break here if sd == NULL */
  1154. }
  1155. return cpu;
  1156. }
  1157. #endif /* CONFIG_SMP */
  1158. /*
  1159. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1160. * not idle and an idle cpu is available. The span of cpus to
  1161. * search starts with cpus closest then further out as needed,
  1162. * so we always favor a closer, idle cpu.
  1163. *
  1164. * Returns the CPU we should wake onto.
  1165. */
  1166. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1167. static int wake_idle(int cpu, struct task_struct *p)
  1168. {
  1169. cpumask_t tmp;
  1170. struct sched_domain *sd;
  1171. int i;
  1172. if (idle_cpu(cpu))
  1173. return cpu;
  1174. for_each_domain(cpu, sd) {
  1175. if (sd->flags & SD_WAKE_IDLE) {
  1176. cpus_and(tmp, sd->span, p->cpus_allowed);
  1177. for_each_cpu_mask(i, tmp) {
  1178. if (idle_cpu(i))
  1179. return i;
  1180. }
  1181. }
  1182. else
  1183. break;
  1184. }
  1185. return cpu;
  1186. }
  1187. #else
  1188. static inline int wake_idle(int cpu, struct task_struct *p)
  1189. {
  1190. return cpu;
  1191. }
  1192. #endif
  1193. /***
  1194. * try_to_wake_up - wake up a thread
  1195. * @p: the to-be-woken-up thread
  1196. * @state: the mask of task states that can be woken
  1197. * @sync: do a synchronous wakeup?
  1198. *
  1199. * Put it on the run-queue if it's not already there. The "current"
  1200. * thread is always on the run-queue (except when the actual
  1201. * re-schedule is in progress), and as such you're allowed to do
  1202. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1203. * runnable without the overhead of this.
  1204. *
  1205. * returns failure only if the task is already active.
  1206. */
  1207. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1208. {
  1209. int cpu, this_cpu, success = 0;
  1210. unsigned long flags;
  1211. long old_state;
  1212. struct rq *rq;
  1213. #ifdef CONFIG_SMP
  1214. struct sched_domain *sd, *this_sd = NULL;
  1215. unsigned long load, this_load;
  1216. int new_cpu;
  1217. #endif
  1218. rq = task_rq_lock(p, &flags);
  1219. old_state = p->state;
  1220. if (!(old_state & state))
  1221. goto out;
  1222. if (p->array)
  1223. goto out_running;
  1224. cpu = task_cpu(p);
  1225. this_cpu = smp_processor_id();
  1226. #ifdef CONFIG_SMP
  1227. if (unlikely(task_running(rq, p)))
  1228. goto out_activate;
  1229. new_cpu = cpu;
  1230. schedstat_inc(rq, ttwu_cnt);
  1231. if (cpu == this_cpu) {
  1232. schedstat_inc(rq, ttwu_local);
  1233. goto out_set_cpu;
  1234. }
  1235. for_each_domain(this_cpu, sd) {
  1236. if (cpu_isset(cpu, sd->span)) {
  1237. schedstat_inc(sd, ttwu_wake_remote);
  1238. this_sd = sd;
  1239. break;
  1240. }
  1241. }
  1242. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1243. goto out_set_cpu;
  1244. /*
  1245. * Check for affine wakeup and passive balancing possibilities.
  1246. */
  1247. if (this_sd) {
  1248. int idx = this_sd->wake_idx;
  1249. unsigned int imbalance;
  1250. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1251. load = source_load(cpu, idx);
  1252. this_load = target_load(this_cpu, idx);
  1253. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1254. if (this_sd->flags & SD_WAKE_AFFINE) {
  1255. unsigned long tl = this_load;
  1256. unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
  1257. /*
  1258. * If sync wakeup then subtract the (maximum possible)
  1259. * effect of the currently running task from the load
  1260. * of the current CPU:
  1261. */
  1262. if (sync)
  1263. tl -= current->load_weight;
  1264. if ((tl <= load &&
  1265. tl + target_load(cpu, idx) <= tl_per_task) ||
  1266. 100*(tl + p->load_weight) <= imbalance*load) {
  1267. /*
  1268. * This domain has SD_WAKE_AFFINE and
  1269. * p is cache cold in this domain, and
  1270. * there is no bad imbalance.
  1271. */
  1272. schedstat_inc(this_sd, ttwu_move_affine);
  1273. goto out_set_cpu;
  1274. }
  1275. }
  1276. /*
  1277. * Start passive balancing when half the imbalance_pct
  1278. * limit is reached.
  1279. */
  1280. if (this_sd->flags & SD_WAKE_BALANCE) {
  1281. if (imbalance*this_load <= 100*load) {
  1282. schedstat_inc(this_sd, ttwu_move_balance);
  1283. goto out_set_cpu;
  1284. }
  1285. }
  1286. }
  1287. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1288. out_set_cpu:
  1289. new_cpu = wake_idle(new_cpu, p);
  1290. if (new_cpu != cpu) {
  1291. set_task_cpu(p, new_cpu);
  1292. task_rq_unlock(rq, &flags);
  1293. /* might preempt at this point */
  1294. rq = task_rq_lock(p, &flags);
  1295. old_state = p->state;
  1296. if (!(old_state & state))
  1297. goto out;
  1298. if (p->array)
  1299. goto out_running;
  1300. this_cpu = smp_processor_id();
  1301. cpu = task_cpu(p);
  1302. }
  1303. out_activate:
  1304. #endif /* CONFIG_SMP */
  1305. if (old_state == TASK_UNINTERRUPTIBLE) {
  1306. rq->nr_uninterruptible--;
  1307. /*
  1308. * Tasks on involuntary sleep don't earn
  1309. * sleep_avg beyond just interactive state.
  1310. */
  1311. p->sleep_type = SLEEP_NONINTERACTIVE;
  1312. } else
  1313. /*
  1314. * Tasks that have marked their sleep as noninteractive get
  1315. * woken up with their sleep average not weighted in an
  1316. * interactive way.
  1317. */
  1318. if (old_state & TASK_NONINTERACTIVE)
  1319. p->sleep_type = SLEEP_NONINTERACTIVE;
  1320. activate_task(p, rq, cpu == this_cpu);
  1321. /*
  1322. * Sync wakeups (i.e. those types of wakeups where the waker
  1323. * has indicated that it will leave the CPU in short order)
  1324. * don't trigger a preemption, if the woken up task will run on
  1325. * this cpu. (in this case the 'I will reschedule' promise of
  1326. * the waker guarantees that the freshly woken up task is going
  1327. * to be considered on this CPU.)
  1328. */
  1329. if (!sync || cpu != this_cpu) {
  1330. if (TASK_PREEMPTS_CURR(p, rq))
  1331. resched_task(rq->curr);
  1332. }
  1333. success = 1;
  1334. out_running:
  1335. p->state = TASK_RUNNING;
  1336. out:
  1337. task_rq_unlock(rq, &flags);
  1338. return success;
  1339. }
  1340. int fastcall wake_up_process(struct task_struct *p)
  1341. {
  1342. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1343. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1344. }
  1345. EXPORT_SYMBOL(wake_up_process);
  1346. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1347. {
  1348. return try_to_wake_up(p, state, 0);
  1349. }
  1350. /*
  1351. * Perform scheduler related setup for a newly forked process p.
  1352. * p is forked by current.
  1353. */
  1354. void fastcall sched_fork(struct task_struct *p, int clone_flags)
  1355. {
  1356. int cpu = get_cpu();
  1357. #ifdef CONFIG_SMP
  1358. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1359. #endif
  1360. set_task_cpu(p, cpu);
  1361. /*
  1362. * We mark the process as running here, but have not actually
  1363. * inserted it onto the runqueue yet. This guarantees that
  1364. * nobody will actually run it, and a signal or other external
  1365. * event cannot wake it up and insert it on the runqueue either.
  1366. */
  1367. p->state = TASK_RUNNING;
  1368. /*
  1369. * Make sure we do not leak PI boosting priority to the child:
  1370. */
  1371. p->prio = current->normal_prio;
  1372. INIT_LIST_HEAD(&p->run_list);
  1373. p->array = NULL;
  1374. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1375. if (unlikely(sched_info_on()))
  1376. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1377. #endif
  1378. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1379. p->oncpu = 0;
  1380. #endif
  1381. #ifdef CONFIG_PREEMPT
  1382. /* Want to start with kernel preemption disabled. */
  1383. task_thread_info(p)->preempt_count = 1;
  1384. #endif
  1385. /*
  1386. * Share the timeslice between parent and child, thus the
  1387. * total amount of pending timeslices in the system doesn't change,
  1388. * resulting in more scheduling fairness.
  1389. */
  1390. local_irq_disable();
  1391. p->time_slice = (current->time_slice + 1) >> 1;
  1392. /*
  1393. * The remainder of the first timeslice might be recovered by
  1394. * the parent if the child exits early enough.
  1395. */
  1396. p->first_time_slice = 1;
  1397. current->time_slice >>= 1;
  1398. p->timestamp = sched_clock();
  1399. if (unlikely(!current->time_slice)) {
  1400. /*
  1401. * This case is rare, it happens when the parent has only
  1402. * a single jiffy left from its timeslice. Taking the
  1403. * runqueue lock is not a problem.
  1404. */
  1405. current->time_slice = 1;
  1406. scheduler_tick();
  1407. }
  1408. local_irq_enable();
  1409. put_cpu();
  1410. }
  1411. /*
  1412. * wake_up_new_task - wake up a newly created task for the first time.
  1413. *
  1414. * This function will do some initial scheduler statistics housekeeping
  1415. * that must be done for every newly created context, then puts the task
  1416. * on the runqueue and wakes it.
  1417. */
  1418. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1419. {
  1420. struct rq *rq, *this_rq;
  1421. unsigned long flags;
  1422. int this_cpu, cpu;
  1423. rq = task_rq_lock(p, &flags);
  1424. BUG_ON(p->state != TASK_RUNNING);
  1425. this_cpu = smp_processor_id();
  1426. cpu = task_cpu(p);
  1427. /*
  1428. * We decrease the sleep average of forking parents
  1429. * and children as well, to keep max-interactive tasks
  1430. * from forking tasks that are max-interactive. The parent
  1431. * (current) is done further down, under its lock.
  1432. */
  1433. p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
  1434. CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1435. p->prio = effective_prio(p);
  1436. if (likely(cpu == this_cpu)) {
  1437. if (!(clone_flags & CLONE_VM)) {
  1438. /*
  1439. * The VM isn't cloned, so we're in a good position to
  1440. * do child-runs-first in anticipation of an exec. This
  1441. * usually avoids a lot of COW overhead.
  1442. */
  1443. if (unlikely(!current->array))
  1444. __activate_task(p, rq);
  1445. else {
  1446. p->prio = current->prio;
  1447. p->normal_prio = current->normal_prio;
  1448. list_add_tail(&p->run_list, &current->run_list);
  1449. p->array = current->array;
  1450. p->array->nr_active++;
  1451. inc_nr_running(p, rq);
  1452. }
  1453. set_need_resched();
  1454. } else
  1455. /* Run child last */
  1456. __activate_task(p, rq);
  1457. /*
  1458. * We skip the following code due to cpu == this_cpu
  1459. *
  1460. * task_rq_unlock(rq, &flags);
  1461. * this_rq = task_rq_lock(current, &flags);
  1462. */
  1463. this_rq = rq;
  1464. } else {
  1465. this_rq = cpu_rq(this_cpu);
  1466. /*
  1467. * Not the local CPU - must adjust timestamp. This should
  1468. * get optimised away in the !CONFIG_SMP case.
  1469. */
  1470. p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
  1471. + rq->timestamp_last_tick;
  1472. __activate_task(p, rq);
  1473. if (TASK_PREEMPTS_CURR(p, rq))
  1474. resched_task(rq->curr);
  1475. /*
  1476. * Parent and child are on different CPUs, now get the
  1477. * parent runqueue to update the parent's ->sleep_avg:
  1478. */
  1479. task_rq_unlock(rq, &flags);
  1480. this_rq = task_rq_lock(current, &flags);
  1481. }
  1482. current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
  1483. PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1484. task_rq_unlock(this_rq, &flags);
  1485. }
  1486. /*
  1487. * Potentially available exiting-child timeslices are
  1488. * retrieved here - this way the parent does not get
  1489. * penalized for creating too many threads.
  1490. *
  1491. * (this cannot be used to 'generate' timeslices
  1492. * artificially, because any timeslice recovered here
  1493. * was given away by the parent in the first place.)
  1494. */
  1495. void fastcall sched_exit(struct task_struct *p)
  1496. {
  1497. unsigned long flags;
  1498. struct rq *rq;
  1499. /*
  1500. * If the child was a (relative-) CPU hog then decrease
  1501. * the sleep_avg of the parent as well.
  1502. */
  1503. rq = task_rq_lock(p->parent, &flags);
  1504. if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
  1505. p->parent->time_slice += p->time_slice;
  1506. if (unlikely(p->parent->time_slice > task_timeslice(p)))
  1507. p->parent->time_slice = task_timeslice(p);
  1508. }
  1509. if (p->sleep_avg < p->parent->sleep_avg)
  1510. p->parent->sleep_avg = p->parent->sleep_avg /
  1511. (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
  1512. (EXIT_WEIGHT + 1);
  1513. task_rq_unlock(rq, &flags);
  1514. }
  1515. /**
  1516. * prepare_task_switch - prepare to switch tasks
  1517. * @rq: the runqueue preparing to switch
  1518. * @next: the task we are going to switch to.
  1519. *
  1520. * This is called with the rq lock held and interrupts off. It must
  1521. * be paired with a subsequent finish_task_switch after the context
  1522. * switch.
  1523. *
  1524. * prepare_task_switch sets up locking and calls architecture specific
  1525. * hooks.
  1526. */
  1527. static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
  1528. {
  1529. prepare_lock_switch(rq, next);
  1530. prepare_arch_switch(next);
  1531. }
  1532. /**
  1533. * finish_task_switch - clean up after a task-switch
  1534. * @rq: runqueue associated with task-switch
  1535. * @prev: the thread we just switched away from.
  1536. *
  1537. * finish_task_switch must be called after the context switch, paired
  1538. * with a prepare_task_switch call before the context switch.
  1539. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1540. * and do any other architecture-specific cleanup actions.
  1541. *
  1542. * Note that we may have delayed dropping an mm in context_switch(). If
  1543. * so, we finish that here outside of the runqueue lock. (Doing it
  1544. * with the lock held can cause deadlocks; see schedule() for
  1545. * details.)
  1546. */
  1547. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1548. __releases(rq->lock)
  1549. {
  1550. struct mm_struct *mm = rq->prev_mm;
  1551. unsigned long prev_task_flags;
  1552. rq->prev_mm = NULL;
  1553. /*
  1554. * A task struct has one reference for the use as "current".
  1555. * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
  1556. * calls schedule one last time. The schedule call will never return,
  1557. * and the scheduled task must drop that reference.
  1558. * The test for EXIT_ZOMBIE must occur while the runqueue locks are
  1559. * still held, otherwise prev could be scheduled on another cpu, die
  1560. * there before we look at prev->state, and then the reference would
  1561. * be dropped twice.
  1562. * Manfred Spraul <manfred@colorfullife.com>
  1563. */
  1564. prev_task_flags = prev->flags;
  1565. finish_arch_switch(prev);
  1566. finish_lock_switch(rq, prev);
  1567. if (mm)
  1568. mmdrop(mm);
  1569. if (unlikely(prev_task_flags & PF_DEAD)) {
  1570. /*
  1571. * Remove function-return probe instances associated with this
  1572. * task and put them back on the free list.
  1573. */
  1574. kprobe_flush_task(prev);
  1575. put_task_struct(prev);
  1576. }
  1577. }
  1578. /**
  1579. * schedule_tail - first thing a freshly forked thread must call.
  1580. * @prev: the thread we just switched away from.
  1581. */
  1582. asmlinkage void schedule_tail(struct task_struct *prev)
  1583. __releases(rq->lock)
  1584. {
  1585. struct rq *rq = this_rq();
  1586. finish_task_switch(rq, prev);
  1587. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1588. /* In this case, finish_task_switch does not reenable preemption */
  1589. preempt_enable();
  1590. #endif
  1591. if (current->set_child_tid)
  1592. put_user(current->pid, current->set_child_tid);
  1593. }
  1594. /*
  1595. * context_switch - switch to the new MM and the new
  1596. * thread's register state.
  1597. */
  1598. static inline struct task_struct *
  1599. context_switch(struct rq *rq, struct task_struct *prev,
  1600. struct task_struct *next)
  1601. {
  1602. struct mm_struct *mm = next->mm;
  1603. struct mm_struct *oldmm = prev->active_mm;
  1604. if (unlikely(!mm)) {
  1605. next->active_mm = oldmm;
  1606. atomic_inc(&oldmm->mm_count);
  1607. enter_lazy_tlb(oldmm, next);
  1608. } else
  1609. switch_mm(oldmm, mm, next);
  1610. if (unlikely(!prev->mm)) {
  1611. prev->active_mm = NULL;
  1612. WARN_ON(rq->prev_mm);
  1613. rq->prev_mm = oldmm;
  1614. }
  1615. /*
  1616. * Since the runqueue lock will be released by the next
  1617. * task (which is an invalid locking op but in the case
  1618. * of the scheduler it's an obvious special-case), so we
  1619. * do an early lockdep release here:
  1620. */
  1621. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1622. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1623. #endif
  1624. /* Here we just switch the register state and the stack. */
  1625. switch_to(prev, next, prev);
  1626. return prev;
  1627. }
  1628. /*
  1629. * nr_running, nr_uninterruptible and nr_context_switches:
  1630. *
  1631. * externally visible scheduler statistics: current number of runnable
  1632. * threads, current number of uninterruptible-sleeping threads, total
  1633. * number of context switches performed since bootup.
  1634. */
  1635. unsigned long nr_running(void)
  1636. {
  1637. unsigned long i, sum = 0;
  1638. for_each_online_cpu(i)
  1639. sum += cpu_rq(i)->nr_running;
  1640. return sum;
  1641. }
  1642. unsigned long nr_uninterruptible(void)
  1643. {
  1644. unsigned long i, sum = 0;
  1645. for_each_possible_cpu(i)
  1646. sum += cpu_rq(i)->nr_uninterruptible;
  1647. /*
  1648. * Since we read the counters lockless, it might be slightly
  1649. * inaccurate. Do not allow it to go below zero though:
  1650. */
  1651. if (unlikely((long)sum < 0))
  1652. sum = 0;
  1653. return sum;
  1654. }
  1655. unsigned long long nr_context_switches(void)
  1656. {
  1657. int i;
  1658. unsigned long long sum = 0;
  1659. for_each_possible_cpu(i)
  1660. sum += cpu_rq(i)->nr_switches;
  1661. return sum;
  1662. }
  1663. unsigned long nr_iowait(void)
  1664. {
  1665. unsigned long i, sum = 0;
  1666. for_each_possible_cpu(i)
  1667. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1668. return sum;
  1669. }
  1670. unsigned long nr_active(void)
  1671. {
  1672. unsigned long i, running = 0, uninterruptible = 0;
  1673. for_each_online_cpu(i) {
  1674. running += cpu_rq(i)->nr_running;
  1675. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1676. }
  1677. if (unlikely((long)uninterruptible < 0))
  1678. uninterruptible = 0;
  1679. return running + uninterruptible;
  1680. }
  1681. #ifdef CONFIG_SMP
  1682. /*
  1683. * Is this task likely cache-hot:
  1684. */
  1685. static inline int
  1686. task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
  1687. {
  1688. return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
  1689. }
  1690. /*
  1691. * double_rq_lock - safely lock two runqueues
  1692. *
  1693. * Note this does not disable interrupts like task_rq_lock,
  1694. * you need to do so manually before calling.
  1695. */
  1696. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1697. __acquires(rq1->lock)
  1698. __acquires(rq2->lock)
  1699. {
  1700. if (rq1 == rq2) {
  1701. spin_lock(&rq1->lock);
  1702. __acquire(rq2->lock); /* Fake it out ;) */
  1703. } else {
  1704. if (rq1 < rq2) {
  1705. spin_lock(&rq1->lock);
  1706. spin_lock(&rq2->lock);
  1707. } else {
  1708. spin_lock(&rq2->lock);
  1709. spin_lock(&rq1->lock);
  1710. }
  1711. }
  1712. }
  1713. /*
  1714. * double_rq_unlock - safely unlock two runqueues
  1715. *
  1716. * Note this does not restore interrupts like task_rq_unlock,
  1717. * you need to do so manually after calling.
  1718. */
  1719. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1720. __releases(rq1->lock)
  1721. __releases(rq2->lock)
  1722. {
  1723. spin_unlock(&rq1->lock);
  1724. if (rq1 != rq2)
  1725. spin_unlock(&rq2->lock);
  1726. else
  1727. __release(rq2->lock);
  1728. }
  1729. /*
  1730. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1731. */
  1732. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1733. __releases(this_rq->lock)
  1734. __acquires(busiest->lock)
  1735. __acquires(this_rq->lock)
  1736. {
  1737. if (unlikely(!spin_trylock(&busiest->lock))) {
  1738. if (busiest < this_rq) {
  1739. spin_unlock(&this_rq->lock);
  1740. spin_lock(&busiest->lock);
  1741. spin_lock(&this_rq->lock);
  1742. } else
  1743. spin_lock(&busiest->lock);
  1744. }
  1745. }
  1746. /*
  1747. * If dest_cpu is allowed for this process, migrate the task to it.
  1748. * This is accomplished by forcing the cpu_allowed mask to only
  1749. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1750. * the cpu_allowed mask is restored.
  1751. */
  1752. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1753. {
  1754. struct migration_req req;
  1755. unsigned long flags;
  1756. struct rq *rq;
  1757. rq = task_rq_lock(p, &flags);
  1758. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1759. || unlikely(cpu_is_offline(dest_cpu)))
  1760. goto out;
  1761. /* force the process onto the specified CPU */
  1762. if (migrate_task(p, dest_cpu, &req)) {
  1763. /* Need to wait for migration thread (might exit: take ref). */
  1764. struct task_struct *mt = rq->migration_thread;
  1765. get_task_struct(mt);
  1766. task_rq_unlock(rq, &flags);
  1767. wake_up_process(mt);
  1768. put_task_struct(mt);
  1769. wait_for_completion(&req.done);
  1770. return;
  1771. }
  1772. out:
  1773. task_rq_unlock(rq, &flags);
  1774. }
  1775. /*
  1776. * sched_exec - execve() is a valuable balancing opportunity, because at
  1777. * this point the task has the smallest effective memory and cache footprint.
  1778. */
  1779. void sched_exec(void)
  1780. {
  1781. int new_cpu, this_cpu = get_cpu();
  1782. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1783. put_cpu();
  1784. if (new_cpu != this_cpu)
  1785. sched_migrate_task(current, new_cpu);
  1786. }
  1787. /*
  1788. * pull_task - move a task from a remote runqueue to the local runqueue.
  1789. * Both runqueues must be locked.
  1790. */
  1791. static void pull_task(struct rq *src_rq, struct prio_array *src_array,
  1792. struct task_struct *p, struct rq *this_rq,
  1793. struct prio_array *this_array, int this_cpu)
  1794. {
  1795. dequeue_task(p, src_array);
  1796. dec_nr_running(p, src_rq);
  1797. set_task_cpu(p, this_cpu);
  1798. inc_nr_running(p, this_rq);
  1799. enqueue_task(p, this_array);
  1800. p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
  1801. + this_rq->timestamp_last_tick;
  1802. /*
  1803. * Note that idle threads have a prio of MAX_PRIO, for this test
  1804. * to be always true for them.
  1805. */
  1806. if (TASK_PREEMPTS_CURR(p, this_rq))
  1807. resched_task(this_rq->curr);
  1808. }
  1809. /*
  1810. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1811. */
  1812. static
  1813. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1814. struct sched_domain *sd, enum idle_type idle,
  1815. int *all_pinned)
  1816. {
  1817. /*
  1818. * We do not migrate tasks that are:
  1819. * 1) running (obviously), or
  1820. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1821. * 3) are cache-hot on their current CPU.
  1822. */
  1823. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1824. return 0;
  1825. *all_pinned = 0;
  1826. if (task_running(rq, p))
  1827. return 0;
  1828. /*
  1829. * Aggressive migration if:
  1830. * 1) task is cache cold, or
  1831. * 2) too many balance attempts have failed.
  1832. */
  1833. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1834. return 1;
  1835. if (task_hot(p, rq->timestamp_last_tick, sd))
  1836. return 0;
  1837. return 1;
  1838. }
  1839. #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
  1840. /*
  1841. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1842. * load from busiest to this_rq, as part of a balancing operation within
  1843. * "domain". Returns the number of tasks moved.
  1844. *
  1845. * Called with both runqueues locked.
  1846. */
  1847. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1848. unsigned long max_nr_move, unsigned long max_load_move,
  1849. struct sched_domain *sd, enum idle_type idle,
  1850. int *all_pinned)
  1851. {
  1852. int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
  1853. best_prio_seen, skip_for_load;
  1854. struct prio_array *array, *dst_array;
  1855. struct list_head *head, *curr;
  1856. struct task_struct *tmp;
  1857. long rem_load_move;
  1858. if (max_nr_move == 0 || max_load_move == 0)
  1859. goto out;
  1860. rem_load_move = max_load_move;
  1861. pinned = 1;
  1862. this_best_prio = rq_best_prio(this_rq);
  1863. best_prio = rq_best_prio(busiest);
  1864. /*
  1865. * Enable handling of the case where there is more than one task
  1866. * with the best priority. If the current running task is one
  1867. * of those with prio==best_prio we know it won't be moved
  1868. * and therefore it's safe to override the skip (based on load) of
  1869. * any task we find with that prio.
  1870. */
  1871. best_prio_seen = best_prio == busiest->curr->prio;
  1872. /*
  1873. * We first consider expired tasks. Those will likely not be
  1874. * executed in the near future, and they are most likely to
  1875. * be cache-cold, thus switching CPUs has the least effect
  1876. * on them.
  1877. */
  1878. if (busiest->expired->nr_active) {
  1879. array = busiest->expired;
  1880. dst_array = this_rq->expired;
  1881. } else {
  1882. array = busiest->active;
  1883. dst_array = this_rq->active;
  1884. }
  1885. new_array:
  1886. /* Start searching at priority 0: */
  1887. idx = 0;
  1888. skip_bitmap:
  1889. if (!idx)
  1890. idx = sched_find_first_bit(array->bitmap);
  1891. else
  1892. idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
  1893. if (idx >= MAX_PRIO) {
  1894. if (array == busiest->expired && busiest->active->nr_active) {
  1895. array = busiest->active;
  1896. dst_array = this_rq->active;
  1897. goto new_array;
  1898. }
  1899. goto out;
  1900. }
  1901. head = array->queue + idx;
  1902. curr = head->prev;
  1903. skip_queue:
  1904. tmp = list_entry(curr, struct task_struct, run_list);
  1905. curr = curr->prev;
  1906. /*
  1907. * To help distribute high priority tasks accross CPUs we don't
  1908. * skip a task if it will be the highest priority task (i.e. smallest
  1909. * prio value) on its new queue regardless of its load weight
  1910. */
  1911. skip_for_load = tmp->load_weight > rem_load_move;
  1912. if (skip_for_load && idx < this_best_prio)
  1913. skip_for_load = !best_prio_seen && idx == best_prio;
  1914. if (skip_for_load ||
  1915. !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
  1916. best_prio_seen |= idx == best_prio;
  1917. if (curr != head)
  1918. goto skip_queue;
  1919. idx++;
  1920. goto skip_bitmap;
  1921. }
  1922. #ifdef CONFIG_SCHEDSTATS
  1923. if (task_hot(tmp, busiest->timestamp_last_tick, sd))
  1924. schedstat_inc(sd, lb_hot_gained[idle]);
  1925. #endif
  1926. pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
  1927. pulled++;
  1928. rem_load_move -= tmp->load_weight;
  1929. /*
  1930. * We only want to steal up to the prescribed number of tasks
  1931. * and the prescribed amount of weighted load.
  1932. */
  1933. if (pulled < max_nr_move && rem_load_move > 0) {
  1934. if (idx < this_best_prio)
  1935. this_best_prio = idx;
  1936. if (curr != head)
  1937. goto skip_queue;
  1938. idx++;
  1939. goto skip_bitmap;
  1940. }
  1941. out:
  1942. /*
  1943. * Right now, this is the only place pull_task() is called,
  1944. * so we can safely collect pull_task() stats here rather than
  1945. * inside pull_task().
  1946. */
  1947. schedstat_add(sd, lb_gained[idle], pulled);
  1948. if (all_pinned)
  1949. *all_pinned = pinned;
  1950. return pulled;
  1951. }
  1952. /*
  1953. * find_busiest_group finds and returns the busiest CPU group within the
  1954. * domain. It calculates and returns the amount of weighted load which
  1955. * should be moved to restore balance via the imbalance parameter.
  1956. */
  1957. static struct sched_group *
  1958. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1959. unsigned long *imbalance, enum idle_type idle, int *sd_idle,
  1960. cpumask_t *cpus)
  1961. {
  1962. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1963. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1964. unsigned long max_pull;
  1965. unsigned long busiest_load_per_task, busiest_nr_running;
  1966. unsigned long this_load_per_task, this_nr_running;
  1967. int load_idx;
  1968. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1969. int power_savings_balance = 1;
  1970. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1971. unsigned long min_nr_running = ULONG_MAX;
  1972. struct sched_group *group_min = NULL, *group_leader = NULL;
  1973. #endif
  1974. max_load = this_load = total_load = total_pwr = 0;
  1975. busiest_load_per_task = busiest_nr_running = 0;
  1976. this_load_per_task = this_nr_running = 0;
  1977. if (idle == NOT_IDLE)
  1978. load_idx = sd->busy_idx;
  1979. else if (idle == NEWLY_IDLE)
  1980. load_idx = sd->newidle_idx;
  1981. else
  1982. load_idx = sd->idle_idx;
  1983. do {
  1984. unsigned long load, group_capacity;
  1985. int local_group;
  1986. int i;
  1987. unsigned long sum_nr_running, sum_weighted_load;
  1988. local_group = cpu_isset(this_cpu, group->cpumask);
  1989. /* Tally up the load of all CPUs in the group */
  1990. sum_weighted_load = sum_nr_running = avg_load = 0;
  1991. for_each_cpu_mask(i, group->cpumask) {
  1992. struct rq *rq;
  1993. if (!cpu_isset(i, *cpus))
  1994. continue;
  1995. rq = cpu_rq(i);
  1996. if (*sd_idle && !idle_cpu(i))
  1997. *sd_idle = 0;
  1998. /* Bias balancing toward cpus of our domain */
  1999. if (local_group)
  2000. load = target_load(i, load_idx);
  2001. else
  2002. load = source_load(i, load_idx);
  2003. avg_load += load;
  2004. sum_nr_running += rq->nr_running;
  2005. sum_weighted_load += rq->raw_weighted_load;
  2006. }
  2007. total_load += avg_load;
  2008. total_pwr += group->cpu_power;
  2009. /* Adjust by relative CPU power of the group */
  2010. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2011. group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
  2012. if (local_group) {
  2013. this_load = avg_load;
  2014. this = group;
  2015. this_nr_running = sum_nr_running;
  2016. this_load_per_task = sum_weighted_load;
  2017. } else if (avg_load > max_load &&
  2018. sum_nr_running > group_capacity) {
  2019. max_load = avg_load;
  2020. busiest = group;
  2021. busiest_nr_running = sum_nr_running;
  2022. busiest_load_per_task = sum_weighted_load;
  2023. }
  2024. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2025. /*
  2026. * Busy processors will not participate in power savings
  2027. * balance.
  2028. */
  2029. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2030. goto group_next;
  2031. /*
  2032. * If the local group is idle or completely loaded
  2033. * no need to do power savings balance at this domain
  2034. */
  2035. if (local_group && (this_nr_running >= group_capacity ||
  2036. !this_nr_running))
  2037. power_savings_balance = 0;
  2038. /*
  2039. * If a group is already running at full capacity or idle,
  2040. * don't include that group in power savings calculations
  2041. */
  2042. if (!power_savings_balance || sum_nr_running >= group_capacity
  2043. || !sum_nr_running)
  2044. goto group_next;
  2045. /*
  2046. * Calculate the group which has the least non-idle load.
  2047. * This is the group from where we need to pick up the load
  2048. * for saving power
  2049. */
  2050. if ((sum_nr_running < min_nr_running) ||
  2051. (sum_nr_running == min_nr_running &&
  2052. first_cpu(group->cpumask) <
  2053. first_cpu(group_min->cpumask))) {
  2054. group_min = group;
  2055. min_nr_running = sum_nr_running;
  2056. min_load_per_task = sum_weighted_load /
  2057. sum_nr_running;
  2058. }
  2059. /*
  2060. * Calculate the group which is almost near its
  2061. * capacity but still has some space to pick up some load
  2062. * from other group and save more power
  2063. */
  2064. if (sum_nr_running <= group_capacity - 1) {
  2065. if (sum_nr_running > leader_nr_running ||
  2066. (sum_nr_running == leader_nr_running &&
  2067. first_cpu(group->cpumask) >
  2068. first_cpu(group_leader->cpumask))) {
  2069. group_leader = group;
  2070. leader_nr_running = sum_nr_running;
  2071. }
  2072. }
  2073. group_next:
  2074. #endif
  2075. group = group->next;
  2076. } while (group != sd->groups);
  2077. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2078. goto out_balanced;
  2079. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2080. if (this_load >= avg_load ||
  2081. 100*max_load <= sd->imbalance_pct*this_load)
  2082. goto out_balanced;
  2083. busiest_load_per_task /= busiest_nr_running;
  2084. /*
  2085. * We're trying to get all the cpus to the average_load, so we don't
  2086. * want to push ourselves above the average load, nor do we wish to
  2087. * reduce the max loaded cpu below the average load, as either of these
  2088. * actions would just result in more rebalancing later, and ping-pong
  2089. * tasks around. Thus we look for the minimum possible imbalance.
  2090. * Negative imbalances (*we* are more loaded than anyone else) will
  2091. * be counted as no imbalance for these purposes -- we can't fix that
  2092. * by pulling tasks to us. Be careful of negative numbers as they'll
  2093. * appear as very large values with unsigned longs.
  2094. */
  2095. if (max_load <= busiest_load_per_task)
  2096. goto out_balanced;
  2097. /*
  2098. * In the presence of smp nice balancing, certain scenarios can have
  2099. * max load less than avg load(as we skip the groups at or below
  2100. * its cpu_power, while calculating max_load..)
  2101. */
  2102. if (max_load < avg_load) {
  2103. *imbalance = 0;
  2104. goto small_imbalance;
  2105. }
  2106. /* Don't want to pull so many tasks that a group would go idle */
  2107. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2108. /* How much load to actually move to equalise the imbalance */
  2109. *imbalance = min(max_pull * busiest->cpu_power,
  2110. (avg_load - this_load) * this->cpu_power)
  2111. / SCHED_LOAD_SCALE;
  2112. /*
  2113. * if *imbalance is less than the average load per runnable task
  2114. * there is no gaurantee that any tasks will be moved so we'll have
  2115. * a think about bumping its value to force at least one task to be
  2116. * moved
  2117. */
  2118. if (*imbalance < busiest_load_per_task) {
  2119. unsigned long tmp, pwr_now, pwr_move;
  2120. unsigned int imbn;
  2121. small_imbalance:
  2122. pwr_move = pwr_now = 0;
  2123. imbn = 2;
  2124. if (this_nr_running) {
  2125. this_load_per_task /= this_nr_running;
  2126. if (busiest_load_per_task > this_load_per_task)
  2127. imbn = 1;
  2128. } else
  2129. this_load_per_task = SCHED_LOAD_SCALE;
  2130. if (max_load - this_load >= busiest_load_per_task * imbn) {
  2131. *imbalance = busiest_load_per_task;
  2132. return busiest;
  2133. }
  2134. /*
  2135. * OK, we don't have enough imbalance to justify moving tasks,
  2136. * however we may be able to increase total CPU power used by
  2137. * moving them.
  2138. */
  2139. pwr_now += busiest->cpu_power *
  2140. min(busiest_load_per_task, max_load);
  2141. pwr_now += this->cpu_power *
  2142. min(this_load_per_task, this_load);
  2143. pwr_now /= SCHED_LOAD_SCALE;
  2144. /* Amount of load we'd subtract */
  2145. tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
  2146. if (max_load > tmp)
  2147. pwr_move += busiest->cpu_power *
  2148. min(busiest_load_per_task, max_load - tmp);
  2149. /* Amount of load we'd add */
  2150. if (max_load*busiest->cpu_power <
  2151. busiest_load_per_task*SCHED_LOAD_SCALE)
  2152. tmp = max_load*busiest->cpu_power/this->cpu_power;
  2153. else
  2154. tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
  2155. pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
  2156. pwr_move /= SCHED_LOAD_SCALE;
  2157. /* Move if we gain throughput */
  2158. if (pwr_move <= pwr_now)
  2159. goto out_balanced;
  2160. *imbalance = busiest_load_per_task;
  2161. }
  2162. return busiest;
  2163. out_balanced:
  2164. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2165. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2166. goto ret;
  2167. if (this == group_leader && group_leader != group_min) {
  2168. *imbalance = min_load_per_task;
  2169. return group_min;
  2170. }
  2171. ret:
  2172. #endif
  2173. *imbalance = 0;
  2174. return NULL;
  2175. }
  2176. /*
  2177. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2178. */
  2179. static struct rq *
  2180. find_busiest_queue(struct sched_group *group, enum idle_type idle,
  2181. unsigned long imbalance, cpumask_t *cpus)
  2182. {
  2183. struct rq *busiest = NULL, *rq;
  2184. unsigned long max_load = 0;
  2185. int i;
  2186. for_each_cpu_mask(i, group->cpumask) {
  2187. if (!cpu_isset(i, *cpus))
  2188. continue;
  2189. rq = cpu_rq(i);
  2190. if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
  2191. continue;
  2192. if (rq->raw_weighted_load > max_load) {
  2193. max_load = rq->raw_weighted_load;
  2194. busiest = rq;
  2195. }
  2196. }
  2197. return busiest;
  2198. }
  2199. /*
  2200. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2201. * so long as it is large enough.
  2202. */
  2203. #define MAX_PINNED_INTERVAL 512
  2204. static inline unsigned long minus_1_or_zero(unsigned long n)
  2205. {
  2206. return n > 0 ? n - 1 : 0;
  2207. }
  2208. /*
  2209. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2210. * tasks if there is an imbalance.
  2211. *
  2212. * Called with this_rq unlocked.
  2213. */
  2214. static int load_balance(int this_cpu, struct rq *this_rq,
  2215. struct sched_domain *sd, enum idle_type idle)
  2216. {
  2217. int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2218. struct sched_group *group;
  2219. unsigned long imbalance;
  2220. struct rq *busiest;
  2221. cpumask_t cpus = CPU_MASK_ALL;
  2222. if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2223. !sched_smt_power_savings)
  2224. sd_idle = 1;
  2225. schedstat_inc(sd, lb_cnt[idle]);
  2226. redo:
  2227. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2228. &cpus);
  2229. if (!group) {
  2230. schedstat_inc(sd, lb_nobusyg[idle]);
  2231. goto out_balanced;
  2232. }
  2233. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2234. if (!busiest) {
  2235. schedstat_inc(sd, lb_nobusyq[idle]);
  2236. goto out_balanced;
  2237. }
  2238. BUG_ON(busiest == this_rq);
  2239. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2240. nr_moved = 0;
  2241. if (busiest->nr_running > 1) {
  2242. /*
  2243. * Attempt to move tasks. If find_busiest_group has found
  2244. * an imbalance but busiest->nr_running <= 1, the group is
  2245. * still unbalanced. nr_moved simply stays zero, so it is
  2246. * correctly treated as an imbalance.
  2247. */
  2248. double_rq_lock(this_rq, busiest);
  2249. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2250. minus_1_or_zero(busiest->nr_running),
  2251. imbalance, sd, idle, &all_pinned);
  2252. double_rq_unlock(this_rq, busiest);
  2253. /* All tasks on this runqueue were pinned by CPU affinity */
  2254. if (unlikely(all_pinned)) {
  2255. cpu_clear(cpu_of(busiest), cpus);
  2256. if (!cpus_empty(cpus))
  2257. goto redo;
  2258. goto out_balanced;
  2259. }
  2260. }
  2261. if (!nr_moved) {
  2262. schedstat_inc(sd, lb_failed[idle]);
  2263. sd->nr_balance_failed++;
  2264. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2265. spin_lock(&busiest->lock);
  2266. /* don't kick the migration_thread, if the curr
  2267. * task on busiest cpu can't be moved to this_cpu
  2268. */
  2269. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2270. spin_unlock(&busiest->lock);
  2271. all_pinned = 1;
  2272. goto out_one_pinned;
  2273. }
  2274. if (!busiest->active_balance) {
  2275. busiest->active_balance = 1;
  2276. busiest->push_cpu = this_cpu;
  2277. active_balance = 1;
  2278. }
  2279. spin_unlock(&busiest->lock);
  2280. if (active_balance)
  2281. wake_up_process(busiest->migration_thread);
  2282. /*
  2283. * We've kicked active balancing, reset the failure
  2284. * counter.
  2285. */
  2286. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2287. }
  2288. } else
  2289. sd->nr_balance_failed = 0;
  2290. if (likely(!active_balance)) {
  2291. /* We were unbalanced, so reset the balancing interval */
  2292. sd->balance_interval = sd->min_interval;
  2293. } else {
  2294. /*
  2295. * If we've begun active balancing, start to back off. This
  2296. * case may not be covered by the all_pinned logic if there
  2297. * is only 1 task on the busy runqueue (because we don't call
  2298. * move_tasks).
  2299. */
  2300. if (sd->balance_interval < sd->max_interval)
  2301. sd->balance_interval *= 2;
  2302. }
  2303. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2304. !sched_smt_power_savings)
  2305. return -1;
  2306. return nr_moved;
  2307. out_balanced:
  2308. schedstat_inc(sd, lb_balanced[idle]);
  2309. sd->nr_balance_failed = 0;
  2310. out_one_pinned:
  2311. /* tune up the balancing interval */
  2312. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2313. (sd->balance_interval < sd->max_interval))
  2314. sd->balance_interval *= 2;
  2315. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2316. !sched_smt_power_savings)
  2317. return -1;
  2318. return 0;
  2319. }
  2320. /*
  2321. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2322. * tasks if there is an imbalance.
  2323. *
  2324. * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
  2325. * this_rq is locked.
  2326. */
  2327. static int
  2328. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2329. {
  2330. struct sched_group *group;
  2331. struct rq *busiest = NULL;
  2332. unsigned long imbalance;
  2333. int nr_moved = 0;
  2334. int sd_idle = 0;
  2335. cpumask_t cpus = CPU_MASK_ALL;
  2336. if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
  2337. sd_idle = 1;
  2338. schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
  2339. redo:
  2340. group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
  2341. &sd_idle, &cpus);
  2342. if (!group) {
  2343. schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
  2344. goto out_balanced;
  2345. }
  2346. busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
  2347. &cpus);
  2348. if (!busiest) {
  2349. schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
  2350. goto out_balanced;
  2351. }
  2352. BUG_ON(busiest == this_rq);
  2353. schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
  2354. nr_moved = 0;
  2355. if (busiest->nr_running > 1) {
  2356. /* Attempt to move tasks */
  2357. double_lock_balance(this_rq, busiest);
  2358. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2359. minus_1_or_zero(busiest->nr_running),
  2360. imbalance, sd, NEWLY_IDLE, NULL);
  2361. spin_unlock(&busiest->lock);
  2362. if (!nr_moved) {
  2363. cpu_clear(cpu_of(busiest), cpus);
  2364. if (!cpus_empty(cpus))
  2365. goto redo;
  2366. }
  2367. }
  2368. if (!nr_moved) {
  2369. schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
  2370. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
  2371. return -1;
  2372. } else
  2373. sd->nr_balance_failed = 0;
  2374. return nr_moved;
  2375. out_balanced:
  2376. schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
  2377. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2378. !sched_smt_power_savings)
  2379. return -1;
  2380. sd->nr_balance_failed = 0;
  2381. return 0;
  2382. }
  2383. /*
  2384. * idle_balance is called by schedule() if this_cpu is about to become
  2385. * idle. Attempts to pull tasks from other CPUs.
  2386. */
  2387. static void idle_balance(int this_cpu, struct rq *this_rq)
  2388. {
  2389. struct sched_domain *sd;
  2390. for_each_domain(this_cpu, sd) {
  2391. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2392. /* If we've pulled tasks over stop searching: */
  2393. if (load_balance_newidle(this_cpu, this_rq, sd))
  2394. break;
  2395. }
  2396. }
  2397. }
  2398. /*
  2399. * active_load_balance is run by migration threads. It pushes running tasks
  2400. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2401. * running on each physical CPU where possible, and avoids physical /
  2402. * logical imbalances.
  2403. *
  2404. * Called with busiest_rq locked.
  2405. */
  2406. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2407. {
  2408. int target_cpu = busiest_rq->push_cpu;
  2409. struct sched_domain *sd;
  2410. struct rq *target_rq;
  2411. /* Is there any task to move? */
  2412. if (busiest_rq->nr_running <= 1)
  2413. return;
  2414. target_rq = cpu_rq(target_cpu);
  2415. /*
  2416. * This condition is "impossible", if it occurs
  2417. * we need to fix it. Originally reported by
  2418. * Bjorn Helgaas on a 128-cpu setup.
  2419. */
  2420. BUG_ON(busiest_rq == target_rq);
  2421. /* move a task from busiest_rq to target_rq */
  2422. double_lock_balance(busiest_rq, target_rq);
  2423. /* Search for an sd spanning us and the target CPU. */
  2424. for_each_domain(target_cpu, sd) {
  2425. if ((sd->flags & SD_LOAD_BALANCE) &&
  2426. cpu_isset(busiest_cpu, sd->span))
  2427. break;
  2428. }
  2429. if (likely(sd)) {
  2430. schedstat_inc(sd, alb_cnt);
  2431. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2432. RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
  2433. NULL))
  2434. schedstat_inc(sd, alb_pushed);
  2435. else
  2436. schedstat_inc(sd, alb_failed);
  2437. }
  2438. spin_unlock(&target_rq->lock);
  2439. }
  2440. /*
  2441. * rebalance_tick will get called every timer tick, on every CPU.
  2442. *
  2443. * It checks each scheduling domain to see if it is due to be balanced,
  2444. * and initiates a balancing operation if so.
  2445. *
  2446. * Balancing parameters are set up in arch_init_sched_domains.
  2447. */
  2448. /* Don't have all balancing operations going off at once: */
  2449. static inline unsigned long cpu_offset(int cpu)
  2450. {
  2451. return jiffies + cpu * HZ / NR_CPUS;
  2452. }
  2453. static void
  2454. rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle)
  2455. {
  2456. unsigned long this_load, interval, j = cpu_offset(this_cpu);
  2457. struct sched_domain *sd;
  2458. int i, scale;
  2459. this_load = this_rq->raw_weighted_load;
  2460. /* Update our load: */
  2461. for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
  2462. unsigned long old_load, new_load;
  2463. old_load = this_rq->cpu_load[i];
  2464. new_load = this_load;
  2465. /*
  2466. * Round up the averaging division if load is increasing. This
  2467. * prevents us from getting stuck on 9 if the load is 10, for
  2468. * example.
  2469. */
  2470. if (new_load > old_load)
  2471. new_load += scale-1;
  2472. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
  2473. }
  2474. for_each_domain(this_cpu, sd) {
  2475. if (!(sd->flags & SD_LOAD_BALANCE))
  2476. continue;
  2477. interval = sd->balance_interval;
  2478. if (idle != SCHED_IDLE)
  2479. interval *= sd->busy_factor;
  2480. /* scale ms to jiffies */
  2481. interval = msecs_to_jiffies(interval);
  2482. if (unlikely(!interval))
  2483. interval = 1;
  2484. if (j - sd->last_balance >= interval) {
  2485. if (load_balance(this_cpu, this_rq, sd, idle)) {
  2486. /*
  2487. * We've pulled tasks over so either we're no
  2488. * longer idle, or one of our SMT siblings is
  2489. * not idle.
  2490. */
  2491. idle = NOT_IDLE;
  2492. }
  2493. sd->last_balance += interval;
  2494. }
  2495. }
  2496. }
  2497. #else
  2498. /*
  2499. * on UP we do not need to balance between CPUs:
  2500. */
  2501. static inline void rebalance_tick(int cpu, struct rq *rq, enum idle_type idle)
  2502. {
  2503. }
  2504. static inline void idle_balance(int cpu, struct rq *rq)
  2505. {
  2506. }
  2507. #endif
  2508. static inline int wake_priority_sleeper(struct rq *rq)
  2509. {
  2510. int ret = 0;
  2511. #ifdef CONFIG_SCHED_SMT
  2512. spin_lock(&rq->lock);
  2513. /*
  2514. * If an SMT sibling task has been put to sleep for priority
  2515. * reasons reschedule the idle task to see if it can now run.
  2516. */
  2517. if (rq->nr_running) {
  2518. resched_task(rq->idle);
  2519. ret = 1;
  2520. }
  2521. spin_unlock(&rq->lock);
  2522. #endif
  2523. return ret;
  2524. }
  2525. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2526. EXPORT_PER_CPU_SYMBOL(kstat);
  2527. /*
  2528. * This is called on clock ticks and on context switches.
  2529. * Bank in p->sched_time the ns elapsed since the last tick or switch.
  2530. */
  2531. static inline void
  2532. update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
  2533. {
  2534. p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
  2535. }
  2536. /*
  2537. * Return current->sched_time plus any more ns on the sched_clock
  2538. * that have not yet been banked.
  2539. */
  2540. unsigned long long current_sched_time(const struct task_struct *p)
  2541. {
  2542. unsigned long long ns;
  2543. unsigned long flags;
  2544. local_irq_save(flags);
  2545. ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
  2546. ns = p->sched_time + sched_clock() - ns;
  2547. local_irq_restore(flags);
  2548. return ns;
  2549. }
  2550. /*
  2551. * We place interactive tasks back into the active array, if possible.
  2552. *
  2553. * To guarantee that this does not starve expired tasks we ignore the
  2554. * interactivity of a task if the first expired task had to wait more
  2555. * than a 'reasonable' amount of time. This deadline timeout is
  2556. * load-dependent, as the frequency of array switched decreases with
  2557. * increasing number of running tasks. We also ignore the interactivity
  2558. * if a better static_prio task has expired:
  2559. */
  2560. static inline int expired_starving(struct rq *rq)
  2561. {
  2562. if (rq->curr->static_prio > rq->best_expired_prio)
  2563. return 1;
  2564. if (!STARVATION_LIMIT || !rq->expired_timestamp)
  2565. return 0;
  2566. if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
  2567. return 1;
  2568. return 0;
  2569. }
  2570. /*
  2571. * Account user cpu time to a process.
  2572. * @p: the process that the cpu time gets accounted to
  2573. * @hardirq_offset: the offset to subtract from hardirq_count()
  2574. * @cputime: the cpu time spent in user space since the last update
  2575. */
  2576. void account_user_time(struct task_struct *p, cputime_t cputime)
  2577. {
  2578. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2579. cputime64_t tmp;
  2580. p->utime = cputime_add(p->utime, cputime);
  2581. /* Add user time to cpustat. */
  2582. tmp = cputime_to_cputime64(cputime);
  2583. if (TASK_NICE(p) > 0)
  2584. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2585. else
  2586. cpustat->user = cputime64_add(cpustat->user, tmp);
  2587. }
  2588. /*
  2589. * Account system cpu time to a process.
  2590. * @p: the process that the cpu time gets accounted to
  2591. * @hardirq_offset: the offset to subtract from hardirq_count()
  2592. * @cputime: the cpu time spent in kernel space since the last update
  2593. */
  2594. void account_system_time(struct task_struct *p, int hardirq_offset,
  2595. cputime_t cputime)
  2596. {
  2597. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2598. struct rq *rq = this_rq();
  2599. cputime64_t tmp;
  2600. p->stime = cputime_add(p->stime, cputime);
  2601. /* Add system time to cpustat. */
  2602. tmp = cputime_to_cputime64(cputime);
  2603. if (hardirq_count() - hardirq_offset)
  2604. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2605. else if (softirq_count())
  2606. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2607. else if (p != rq->idle)
  2608. cpustat->system = cputime64_add(cpustat->system, tmp);
  2609. else if (atomic_read(&rq->nr_iowait) > 0)
  2610. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2611. else
  2612. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2613. /* Account for system time used */
  2614. acct_update_integrals(p);
  2615. }
  2616. /*
  2617. * Account for involuntary wait time.
  2618. * @p: the process from which the cpu time has been stolen
  2619. * @steal: the cpu time spent in involuntary wait
  2620. */
  2621. void account_steal_time(struct task_struct *p, cputime_t steal)
  2622. {
  2623. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2624. cputime64_t tmp = cputime_to_cputime64(steal);
  2625. struct rq *rq = this_rq();
  2626. if (p == rq->idle) {
  2627. p->stime = cputime_add(p->stime, steal);
  2628. if (atomic_read(&rq->nr_iowait) > 0)
  2629. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2630. else
  2631. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2632. } else
  2633. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2634. }
  2635. /*
  2636. * This function gets called by the timer code, with HZ frequency.
  2637. * We call it with interrupts disabled.
  2638. *
  2639. * It also gets called by the fork code, when changing the parent's
  2640. * timeslices.
  2641. */
  2642. void scheduler_tick(void)
  2643. {
  2644. unsigned long long now = sched_clock();
  2645. struct task_struct *p = current;
  2646. int cpu = smp_processor_id();
  2647. struct rq *rq = cpu_rq(cpu);
  2648. update_cpu_clock(p, rq, now);
  2649. rq->timestamp_last_tick = now;
  2650. if (p == rq->idle) {
  2651. if (wake_priority_sleeper(rq))
  2652. goto out;
  2653. rebalance_tick(cpu, rq, SCHED_IDLE);
  2654. return;
  2655. }
  2656. /* Task might have expired already, but not scheduled off yet */
  2657. if (p->array != rq->active) {
  2658. set_tsk_need_resched(p);
  2659. goto out;
  2660. }
  2661. spin_lock(&rq->lock);
  2662. /*
  2663. * The task was running during this tick - update the
  2664. * time slice counter. Note: we do not update a thread's
  2665. * priority until it either goes to sleep or uses up its
  2666. * timeslice. This makes it possible for interactive tasks
  2667. * to use up their timeslices at their highest priority levels.
  2668. */
  2669. if (rt_task(p)) {
  2670. /*
  2671. * RR tasks need a special form of timeslice management.
  2672. * FIFO tasks have no timeslices.
  2673. */
  2674. if ((p->policy == SCHED_RR) && !--p->time_slice) {
  2675. p->time_slice = task_timeslice(p);
  2676. p->first_time_slice = 0;
  2677. set_tsk_need_resched(p);
  2678. /* put it at the end of the queue: */
  2679. requeue_task(p, rq->active);
  2680. }
  2681. goto out_unlock;
  2682. }
  2683. if (!--p->time_slice) {
  2684. dequeue_task(p, rq->active);
  2685. set_tsk_need_resched(p);
  2686. p->prio = effective_prio(p);
  2687. p->time_slice = task_timeslice(p);
  2688. p->first_time_slice = 0;
  2689. if (!rq->expired_timestamp)
  2690. rq->expired_timestamp = jiffies;
  2691. if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
  2692. enqueue_task(p, rq->expired);
  2693. if (p->static_prio < rq->best_expired_prio)
  2694. rq->best_expired_prio = p->static_prio;
  2695. } else
  2696. enqueue_task(p, rq->active);
  2697. } else {
  2698. /*
  2699. * Prevent a too long timeslice allowing a task to monopolize
  2700. * the CPU. We do this by splitting up the timeslice into
  2701. * smaller pieces.
  2702. *
  2703. * Note: this does not mean the task's timeslices expire or
  2704. * get lost in any way, they just might be preempted by
  2705. * another task of equal priority. (one with higher
  2706. * priority would have preempted this task already.) We
  2707. * requeue this task to the end of the list on this priority
  2708. * level, which is in essence a round-robin of tasks with
  2709. * equal priority.
  2710. *
  2711. * This only applies to tasks in the interactive
  2712. * delta range with at least TIMESLICE_GRANULARITY to requeue.
  2713. */
  2714. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
  2715. p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
  2716. (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
  2717. (p->array == rq->active)) {
  2718. requeue_task(p, rq->active);
  2719. set_tsk_need_resched(p);
  2720. }
  2721. }
  2722. out_unlock:
  2723. spin_unlock(&rq->lock);
  2724. out:
  2725. rebalance_tick(cpu, rq, NOT_IDLE);
  2726. }
  2727. #ifdef CONFIG_SCHED_SMT
  2728. static inline void wakeup_busy_runqueue(struct rq *rq)
  2729. {
  2730. /* If an SMT runqueue is sleeping due to priority reasons wake it up */
  2731. if (rq->curr == rq->idle && rq->nr_running)
  2732. resched_task(rq->idle);
  2733. }
  2734. /*
  2735. * Called with interrupt disabled and this_rq's runqueue locked.
  2736. */
  2737. static void wake_sleeping_dependent(int this_cpu)
  2738. {
  2739. struct sched_domain *tmp, *sd = NULL;
  2740. int i;
  2741. for_each_domain(this_cpu, tmp) {
  2742. if (tmp->flags & SD_SHARE_CPUPOWER) {
  2743. sd = tmp;
  2744. break;
  2745. }
  2746. }
  2747. if (!sd)
  2748. return;
  2749. for_each_cpu_mask(i, sd->span) {
  2750. struct rq *smt_rq = cpu_rq(i);
  2751. if (i == this_cpu)
  2752. continue;
  2753. if (unlikely(!spin_trylock(&smt_rq->lock)))
  2754. continue;
  2755. wakeup_busy_runqueue(smt_rq);
  2756. spin_unlock(&smt_rq->lock);
  2757. }
  2758. }
  2759. /*
  2760. * number of 'lost' timeslices this task wont be able to fully
  2761. * utilize, if another task runs on a sibling. This models the
  2762. * slowdown effect of other tasks running on siblings:
  2763. */
  2764. static inline unsigned long
  2765. smt_slice(struct task_struct *p, struct sched_domain *sd)
  2766. {
  2767. return p->time_slice * (100 - sd->per_cpu_gain) / 100;
  2768. }
  2769. /*
  2770. * To minimise lock contention and not have to drop this_rq's runlock we only
  2771. * trylock the sibling runqueues and bypass those runqueues if we fail to
  2772. * acquire their lock. As we only trylock the normal locking order does not
  2773. * need to be obeyed.
  2774. */
  2775. static int
  2776. dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
  2777. {
  2778. struct sched_domain *tmp, *sd = NULL;
  2779. int ret = 0, i;
  2780. /* kernel/rt threads do not participate in dependent sleeping */
  2781. if (!p->mm || rt_task(p))
  2782. return 0;
  2783. for_each_domain(this_cpu, tmp) {
  2784. if (tmp->flags & SD_SHARE_CPUPOWER) {
  2785. sd = tmp;
  2786. break;
  2787. }
  2788. }
  2789. if (!sd)
  2790. return 0;
  2791. for_each_cpu_mask(i, sd->span) {
  2792. struct task_struct *smt_curr;
  2793. struct rq *smt_rq;
  2794. if (i == this_cpu)
  2795. continue;
  2796. smt_rq = cpu_rq(i);
  2797. if (unlikely(!spin_trylock(&smt_rq->lock)))
  2798. continue;
  2799. smt_curr = smt_rq->curr;
  2800. if (!smt_curr->mm)
  2801. goto unlock;
  2802. /*
  2803. * If a user task with lower static priority than the
  2804. * running task on the SMT sibling is trying to schedule,
  2805. * delay it till there is proportionately less timeslice
  2806. * left of the sibling task to prevent a lower priority
  2807. * task from using an unfair proportion of the
  2808. * physical cpu's resources. -ck
  2809. */
  2810. if (rt_task(smt_curr)) {
  2811. /*
  2812. * With real time tasks we run non-rt tasks only
  2813. * per_cpu_gain% of the time.
  2814. */
  2815. if ((jiffies % DEF_TIMESLICE) >
  2816. (sd->per_cpu_gain * DEF_TIMESLICE / 100))
  2817. ret = 1;
  2818. } else {
  2819. if (smt_curr->static_prio < p->static_prio &&
  2820. !TASK_PREEMPTS_CURR(p, smt_rq) &&
  2821. smt_slice(smt_curr, sd) > task_timeslice(p))
  2822. ret = 1;
  2823. }
  2824. unlock:
  2825. spin_unlock(&smt_rq->lock);
  2826. }
  2827. return ret;
  2828. }
  2829. #else
  2830. static inline void wake_sleeping_dependent(int this_cpu)
  2831. {
  2832. }
  2833. static inline int
  2834. dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
  2835. {
  2836. return 0;
  2837. }
  2838. #endif
  2839. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2840. void fastcall add_preempt_count(int val)
  2841. {
  2842. /*
  2843. * Underflow?
  2844. */
  2845. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2846. return;
  2847. preempt_count() += val;
  2848. /*
  2849. * Spinlock count overflowing soon?
  2850. */
  2851. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
  2852. }
  2853. EXPORT_SYMBOL(add_preempt_count);
  2854. void fastcall sub_preempt_count(int val)
  2855. {
  2856. /*
  2857. * Underflow?
  2858. */
  2859. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2860. return;
  2861. /*
  2862. * Is the spinlock portion underflowing?
  2863. */
  2864. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2865. !(preempt_count() & PREEMPT_MASK)))
  2866. return;
  2867. preempt_count() -= val;
  2868. }
  2869. EXPORT_SYMBOL(sub_preempt_count);
  2870. #endif
  2871. static inline int interactive_sleep(enum sleep_type sleep_type)
  2872. {
  2873. return (sleep_type == SLEEP_INTERACTIVE ||
  2874. sleep_type == SLEEP_INTERRUPTED);
  2875. }
  2876. /*
  2877. * schedule() is the main scheduler function.
  2878. */
  2879. asmlinkage void __sched schedule(void)
  2880. {
  2881. struct task_struct *prev, *next;
  2882. struct prio_array *array;
  2883. struct list_head *queue;
  2884. unsigned long long now;
  2885. unsigned long run_time;
  2886. int cpu, idx, new_prio;
  2887. long *switch_count;
  2888. struct rq *rq;
  2889. /*
  2890. * Test if we are atomic. Since do_exit() needs to call into
  2891. * schedule() atomically, we ignore that path for now.
  2892. * Otherwise, whine if we are scheduling when we should not be.
  2893. */
  2894. if (unlikely(in_atomic() && !current->exit_state)) {
  2895. printk(KERN_ERR "BUG: scheduling while atomic: "
  2896. "%s/0x%08x/%d\n",
  2897. current->comm, preempt_count(), current->pid);
  2898. dump_stack();
  2899. }
  2900. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2901. need_resched:
  2902. preempt_disable();
  2903. prev = current;
  2904. release_kernel_lock(prev);
  2905. need_resched_nonpreemptible:
  2906. rq = this_rq();
  2907. /*
  2908. * The idle thread is not allowed to schedule!
  2909. * Remove this check after it has been exercised a bit.
  2910. */
  2911. if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
  2912. printk(KERN_ERR "bad: scheduling from the idle thread!\n");
  2913. dump_stack();
  2914. }
  2915. schedstat_inc(rq, sched_cnt);
  2916. now = sched_clock();
  2917. if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
  2918. run_time = now - prev->timestamp;
  2919. if (unlikely((long long)(now - prev->timestamp) < 0))
  2920. run_time = 0;
  2921. } else
  2922. run_time = NS_MAX_SLEEP_AVG;
  2923. /*
  2924. * Tasks charged proportionately less run_time at high sleep_avg to
  2925. * delay them losing their interactive status
  2926. */
  2927. run_time /= (CURRENT_BONUS(prev) ? : 1);
  2928. spin_lock_irq(&rq->lock);
  2929. if (unlikely(prev->flags & PF_DEAD))
  2930. prev->state = EXIT_DEAD;
  2931. switch_count = &prev->nivcsw;
  2932. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2933. switch_count = &prev->nvcsw;
  2934. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2935. unlikely(signal_pending(prev))))
  2936. prev->state = TASK_RUNNING;
  2937. else {
  2938. if (prev->state == TASK_UNINTERRUPTIBLE)
  2939. rq->nr_uninterruptible++;
  2940. deactivate_task(prev, rq);
  2941. }
  2942. }
  2943. cpu = smp_processor_id();
  2944. if (unlikely(!rq->nr_running)) {
  2945. idle_balance(cpu, rq);
  2946. if (!rq->nr_running) {
  2947. next = rq->idle;
  2948. rq->expired_timestamp = 0;
  2949. wake_sleeping_dependent(cpu);
  2950. goto switch_tasks;
  2951. }
  2952. }
  2953. array = rq->active;
  2954. if (unlikely(!array->nr_active)) {
  2955. /*
  2956. * Switch the active and expired arrays.
  2957. */
  2958. schedstat_inc(rq, sched_switch);
  2959. rq->active = rq->expired;
  2960. rq->expired = array;
  2961. array = rq->active;
  2962. rq->expired_timestamp = 0;
  2963. rq->best_expired_prio = MAX_PRIO;
  2964. }
  2965. idx = sched_find_first_bit(array->bitmap);
  2966. queue = array->queue + idx;
  2967. next = list_entry(queue->next, struct task_struct, run_list);
  2968. if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
  2969. unsigned long long delta = now - next->timestamp;
  2970. if (unlikely((long long)(now - next->timestamp) < 0))
  2971. delta = 0;
  2972. if (next->sleep_type == SLEEP_INTERACTIVE)
  2973. delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
  2974. array = next->array;
  2975. new_prio = recalc_task_prio(next, next->timestamp + delta);
  2976. if (unlikely(next->prio != new_prio)) {
  2977. dequeue_task(next, array);
  2978. next->prio = new_prio;
  2979. enqueue_task(next, array);
  2980. }
  2981. }
  2982. next->sleep_type = SLEEP_NORMAL;
  2983. if (dependent_sleeper(cpu, rq, next))
  2984. next = rq->idle;
  2985. switch_tasks:
  2986. if (next == rq->idle)
  2987. schedstat_inc(rq, sched_goidle);
  2988. prefetch(next);
  2989. prefetch_stack(next);
  2990. clear_tsk_need_resched(prev);
  2991. rcu_qsctr_inc(task_cpu(prev));
  2992. update_cpu_clock(prev, rq, now);
  2993. prev->sleep_avg -= run_time;
  2994. if ((long)prev->sleep_avg <= 0)
  2995. prev->sleep_avg = 0;
  2996. prev->timestamp = prev->last_ran = now;
  2997. sched_info_switch(prev, next);
  2998. if (likely(prev != next)) {
  2999. next->timestamp = now;
  3000. rq->nr_switches++;
  3001. rq->curr = next;
  3002. ++*switch_count;
  3003. prepare_task_switch(rq, next);
  3004. prev = context_switch(rq, prev, next);
  3005. barrier();
  3006. /*
  3007. * this_rq must be evaluated again because prev may have moved
  3008. * CPUs since it called schedule(), thus the 'rq' on its stack
  3009. * frame will be invalid.
  3010. */
  3011. finish_task_switch(this_rq(), prev);
  3012. } else
  3013. spin_unlock_irq(&rq->lock);
  3014. prev = current;
  3015. if (unlikely(reacquire_kernel_lock(prev) < 0))
  3016. goto need_resched_nonpreemptible;
  3017. preempt_enable_no_resched();
  3018. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3019. goto need_resched;
  3020. }
  3021. EXPORT_SYMBOL(schedule);
  3022. #ifdef CONFIG_PREEMPT
  3023. /*
  3024. * this is the entry point to schedule() from in-kernel preemption
  3025. * off of preempt_enable. Kernel preemptions off return from interrupt
  3026. * occur there and call schedule directly.
  3027. */
  3028. asmlinkage void __sched preempt_schedule(void)
  3029. {
  3030. struct thread_info *ti = current_thread_info();
  3031. #ifdef CONFIG_PREEMPT_BKL
  3032. struct task_struct *task = current;
  3033. int saved_lock_depth;
  3034. #endif
  3035. /*
  3036. * If there is a non-zero preempt_count or interrupts are disabled,
  3037. * we do not want to preempt the current task. Just return..
  3038. */
  3039. if (unlikely(ti->preempt_count || irqs_disabled()))
  3040. return;
  3041. need_resched:
  3042. add_preempt_count(PREEMPT_ACTIVE);
  3043. /*
  3044. * We keep the big kernel semaphore locked, but we
  3045. * clear ->lock_depth so that schedule() doesnt
  3046. * auto-release the semaphore:
  3047. */
  3048. #ifdef CONFIG_PREEMPT_BKL
  3049. saved_lock_depth = task->lock_depth;
  3050. task->lock_depth = -1;
  3051. #endif
  3052. schedule();
  3053. #ifdef CONFIG_PREEMPT_BKL
  3054. task->lock_depth = saved_lock_depth;
  3055. #endif
  3056. sub_preempt_count(PREEMPT_ACTIVE);
  3057. /* we could miss a preemption opportunity between schedule and now */
  3058. barrier();
  3059. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3060. goto need_resched;
  3061. }
  3062. EXPORT_SYMBOL(preempt_schedule);
  3063. /*
  3064. * this is the entry point to schedule() from kernel preemption
  3065. * off of irq context.
  3066. * Note, that this is called and return with irqs disabled. This will
  3067. * protect us against recursive calling from irq.
  3068. */
  3069. asmlinkage void __sched preempt_schedule_irq(void)
  3070. {
  3071. struct thread_info *ti = current_thread_info();
  3072. #ifdef CONFIG_PREEMPT_BKL
  3073. struct task_struct *task = current;
  3074. int saved_lock_depth;
  3075. #endif
  3076. /* Catch callers which need to be fixed */
  3077. BUG_ON(ti->preempt_count || !irqs_disabled());
  3078. need_resched:
  3079. add_preempt_count(PREEMPT_ACTIVE);
  3080. /*
  3081. * We keep the big kernel semaphore locked, but we
  3082. * clear ->lock_depth so that schedule() doesnt
  3083. * auto-release the semaphore:
  3084. */
  3085. #ifdef CONFIG_PREEMPT_BKL
  3086. saved_lock_depth = task->lock_depth;
  3087. task->lock_depth = -1;
  3088. #endif
  3089. local_irq_enable();
  3090. schedule();
  3091. local_irq_disable();
  3092. #ifdef CONFIG_PREEMPT_BKL
  3093. task->lock_depth = saved_lock_depth;
  3094. #endif
  3095. sub_preempt_count(PREEMPT_ACTIVE);
  3096. /* we could miss a preemption opportunity between schedule and now */
  3097. barrier();
  3098. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3099. goto need_resched;
  3100. }
  3101. #endif /* CONFIG_PREEMPT */
  3102. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3103. void *key)
  3104. {
  3105. return try_to_wake_up(curr->private, mode, sync);
  3106. }
  3107. EXPORT_SYMBOL(default_wake_function);
  3108. /*
  3109. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3110. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3111. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3112. *
  3113. * There are circumstances in which we can try to wake a task which has already
  3114. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3115. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3116. */
  3117. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3118. int nr_exclusive, int sync, void *key)
  3119. {
  3120. struct list_head *tmp, *next;
  3121. list_for_each_safe(tmp, next, &q->task_list) {
  3122. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3123. unsigned flags = curr->flags;
  3124. if (curr->func(curr, mode, sync, key) &&
  3125. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3126. break;
  3127. }
  3128. }
  3129. /**
  3130. * __wake_up - wake up threads blocked on a waitqueue.
  3131. * @q: the waitqueue
  3132. * @mode: which threads
  3133. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3134. * @key: is directly passed to the wakeup function
  3135. */
  3136. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3137. int nr_exclusive, void *key)
  3138. {
  3139. unsigned long flags;
  3140. spin_lock_irqsave(&q->lock, flags);
  3141. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3142. spin_unlock_irqrestore(&q->lock, flags);
  3143. }
  3144. EXPORT_SYMBOL(__wake_up);
  3145. /*
  3146. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3147. */
  3148. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3149. {
  3150. __wake_up_common(q, mode, 1, 0, NULL);
  3151. }
  3152. /**
  3153. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3154. * @q: the waitqueue
  3155. * @mode: which threads
  3156. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3157. *
  3158. * The sync wakeup differs that the waker knows that it will schedule
  3159. * away soon, so while the target thread will be woken up, it will not
  3160. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3161. * with each other. This can prevent needless bouncing between CPUs.
  3162. *
  3163. * On UP it can prevent extra preemption.
  3164. */
  3165. void fastcall
  3166. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3167. {
  3168. unsigned long flags;
  3169. int sync = 1;
  3170. if (unlikely(!q))
  3171. return;
  3172. if (unlikely(!nr_exclusive))
  3173. sync = 0;
  3174. spin_lock_irqsave(&q->lock, flags);
  3175. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3176. spin_unlock_irqrestore(&q->lock, flags);
  3177. }
  3178. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3179. void fastcall complete(struct completion *x)
  3180. {
  3181. unsigned long flags;
  3182. spin_lock_irqsave(&x->wait.lock, flags);
  3183. x->done++;
  3184. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3185. 1, 0, NULL);
  3186. spin_unlock_irqrestore(&x->wait.lock, flags);
  3187. }
  3188. EXPORT_SYMBOL(complete);
  3189. void fastcall complete_all(struct completion *x)
  3190. {
  3191. unsigned long flags;
  3192. spin_lock_irqsave(&x->wait.lock, flags);
  3193. x->done += UINT_MAX/2;
  3194. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3195. 0, 0, NULL);
  3196. spin_unlock_irqrestore(&x->wait.lock, flags);
  3197. }
  3198. EXPORT_SYMBOL(complete_all);
  3199. void fastcall __sched wait_for_completion(struct completion *x)
  3200. {
  3201. might_sleep();
  3202. spin_lock_irq(&x->wait.lock);
  3203. if (!x->done) {
  3204. DECLARE_WAITQUEUE(wait, current);
  3205. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3206. __add_wait_queue_tail(&x->wait, &wait);
  3207. do {
  3208. __set_current_state(TASK_UNINTERRUPTIBLE);
  3209. spin_unlock_irq(&x->wait.lock);
  3210. schedule();
  3211. spin_lock_irq(&x->wait.lock);
  3212. } while (!x->done);
  3213. __remove_wait_queue(&x->wait, &wait);
  3214. }
  3215. x->done--;
  3216. spin_unlock_irq(&x->wait.lock);
  3217. }
  3218. EXPORT_SYMBOL(wait_for_completion);
  3219. unsigned long fastcall __sched
  3220. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3221. {
  3222. might_sleep();
  3223. spin_lock_irq(&x->wait.lock);
  3224. if (!x->done) {
  3225. DECLARE_WAITQUEUE(wait, current);
  3226. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3227. __add_wait_queue_tail(&x->wait, &wait);
  3228. do {
  3229. __set_current_state(TASK_UNINTERRUPTIBLE);
  3230. spin_unlock_irq(&x->wait.lock);
  3231. timeout = schedule_timeout(timeout);
  3232. spin_lock_irq(&x->wait.lock);
  3233. if (!timeout) {
  3234. __remove_wait_queue(&x->wait, &wait);
  3235. goto out;
  3236. }
  3237. } while (!x->done);
  3238. __remove_wait_queue(&x->wait, &wait);
  3239. }
  3240. x->done--;
  3241. out:
  3242. spin_unlock_irq(&x->wait.lock);
  3243. return timeout;
  3244. }
  3245. EXPORT_SYMBOL(wait_for_completion_timeout);
  3246. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3247. {
  3248. int ret = 0;
  3249. might_sleep();
  3250. spin_lock_irq(&x->wait.lock);
  3251. if (!x->done) {
  3252. DECLARE_WAITQUEUE(wait, current);
  3253. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3254. __add_wait_queue_tail(&x->wait, &wait);
  3255. do {
  3256. if (signal_pending(current)) {
  3257. ret = -ERESTARTSYS;
  3258. __remove_wait_queue(&x->wait, &wait);
  3259. goto out;
  3260. }
  3261. __set_current_state(TASK_INTERRUPTIBLE);
  3262. spin_unlock_irq(&x->wait.lock);
  3263. schedule();
  3264. spin_lock_irq(&x->wait.lock);
  3265. } while (!x->done);
  3266. __remove_wait_queue(&x->wait, &wait);
  3267. }
  3268. x->done--;
  3269. out:
  3270. spin_unlock_irq(&x->wait.lock);
  3271. return ret;
  3272. }
  3273. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3274. unsigned long fastcall __sched
  3275. wait_for_completion_interruptible_timeout(struct completion *x,
  3276. unsigned long timeout)
  3277. {
  3278. might_sleep();
  3279. spin_lock_irq(&x->wait.lock);
  3280. if (!x->done) {
  3281. DECLARE_WAITQUEUE(wait, current);
  3282. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3283. __add_wait_queue_tail(&x->wait, &wait);
  3284. do {
  3285. if (signal_pending(current)) {
  3286. timeout = -ERESTARTSYS;
  3287. __remove_wait_queue(&x->wait, &wait);
  3288. goto out;
  3289. }
  3290. __set_current_state(TASK_INTERRUPTIBLE);
  3291. spin_unlock_irq(&x->wait.lock);
  3292. timeout = schedule_timeout(timeout);
  3293. spin_lock_irq(&x->wait.lock);
  3294. if (!timeout) {
  3295. __remove_wait_queue(&x->wait, &wait);
  3296. goto out;
  3297. }
  3298. } while (!x->done);
  3299. __remove_wait_queue(&x->wait, &wait);
  3300. }
  3301. x->done--;
  3302. out:
  3303. spin_unlock_irq(&x->wait.lock);
  3304. return timeout;
  3305. }
  3306. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3307. #define SLEEP_ON_VAR \
  3308. unsigned long flags; \
  3309. wait_queue_t wait; \
  3310. init_waitqueue_entry(&wait, current);
  3311. #define SLEEP_ON_HEAD \
  3312. spin_lock_irqsave(&q->lock,flags); \
  3313. __add_wait_queue(q, &wait); \
  3314. spin_unlock(&q->lock);
  3315. #define SLEEP_ON_TAIL \
  3316. spin_lock_irq(&q->lock); \
  3317. __remove_wait_queue(q, &wait); \
  3318. spin_unlock_irqrestore(&q->lock, flags);
  3319. void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
  3320. {
  3321. SLEEP_ON_VAR
  3322. current->state = TASK_INTERRUPTIBLE;
  3323. SLEEP_ON_HEAD
  3324. schedule();
  3325. SLEEP_ON_TAIL
  3326. }
  3327. EXPORT_SYMBOL(interruptible_sleep_on);
  3328. long fastcall __sched
  3329. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3330. {
  3331. SLEEP_ON_VAR
  3332. current->state = TASK_INTERRUPTIBLE;
  3333. SLEEP_ON_HEAD
  3334. timeout = schedule_timeout(timeout);
  3335. SLEEP_ON_TAIL
  3336. return timeout;
  3337. }
  3338. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3339. void fastcall __sched sleep_on(wait_queue_head_t *q)
  3340. {
  3341. SLEEP_ON_VAR
  3342. current->state = TASK_UNINTERRUPTIBLE;
  3343. SLEEP_ON_HEAD
  3344. schedule();
  3345. SLEEP_ON_TAIL
  3346. }
  3347. EXPORT_SYMBOL(sleep_on);
  3348. long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3349. {
  3350. SLEEP_ON_VAR
  3351. current->state = TASK_UNINTERRUPTIBLE;
  3352. SLEEP_ON_HEAD
  3353. timeout = schedule_timeout(timeout);
  3354. SLEEP_ON_TAIL
  3355. return timeout;
  3356. }
  3357. EXPORT_SYMBOL(sleep_on_timeout);
  3358. #ifdef CONFIG_RT_MUTEXES
  3359. /*
  3360. * rt_mutex_setprio - set the current priority of a task
  3361. * @p: task
  3362. * @prio: prio value (kernel-internal form)
  3363. *
  3364. * This function changes the 'effective' priority of a task. It does
  3365. * not touch ->normal_prio like __setscheduler().
  3366. *
  3367. * Used by the rt_mutex code to implement priority inheritance logic.
  3368. */
  3369. void rt_mutex_setprio(struct task_struct *p, int prio)
  3370. {
  3371. struct prio_array *array;
  3372. unsigned long flags;
  3373. struct rq *rq;
  3374. int oldprio;
  3375. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3376. rq = task_rq_lock(p, &flags);
  3377. oldprio = p->prio;
  3378. array = p->array;
  3379. if (array)
  3380. dequeue_task(p, array);
  3381. p->prio = prio;
  3382. if (array) {
  3383. /*
  3384. * If changing to an RT priority then queue it
  3385. * in the active array!
  3386. */
  3387. if (rt_task(p))
  3388. array = rq->active;
  3389. enqueue_task(p, array);
  3390. /*
  3391. * Reschedule if we are currently running on this runqueue and
  3392. * our priority decreased, or if we are not currently running on
  3393. * this runqueue and our priority is higher than the current's
  3394. */
  3395. if (task_running(rq, p)) {
  3396. if (p->prio > oldprio)
  3397. resched_task(rq->curr);
  3398. } else if (TASK_PREEMPTS_CURR(p, rq))
  3399. resched_task(rq->curr);
  3400. }
  3401. task_rq_unlock(rq, &flags);
  3402. }
  3403. #endif
  3404. void set_user_nice(struct task_struct *p, long nice)
  3405. {
  3406. struct prio_array *array;
  3407. int old_prio, delta;
  3408. unsigned long flags;
  3409. struct rq *rq;
  3410. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3411. return;
  3412. /*
  3413. * We have to be careful, if called from sys_setpriority(),
  3414. * the task might be in the middle of scheduling on another CPU.
  3415. */
  3416. rq = task_rq_lock(p, &flags);
  3417. /*
  3418. * The RT priorities are set via sched_setscheduler(), but we still
  3419. * allow the 'normal' nice value to be set - but as expected
  3420. * it wont have any effect on scheduling until the task is
  3421. * not SCHED_NORMAL/SCHED_BATCH:
  3422. */
  3423. if (has_rt_policy(p)) {
  3424. p->static_prio = NICE_TO_PRIO(nice);
  3425. goto out_unlock;
  3426. }
  3427. array = p->array;
  3428. if (array) {
  3429. dequeue_task(p, array);
  3430. dec_raw_weighted_load(rq, p);
  3431. }
  3432. p->static_prio = NICE_TO_PRIO(nice);
  3433. set_load_weight(p);
  3434. old_prio = p->prio;
  3435. p->prio = effective_prio(p);
  3436. delta = p->prio - old_prio;
  3437. if (array) {
  3438. enqueue_task(p, array);
  3439. inc_raw_weighted_load(rq, p);
  3440. /*
  3441. * If the task increased its priority or is running and
  3442. * lowered its priority, then reschedule its CPU:
  3443. */
  3444. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3445. resched_task(rq->curr);
  3446. }
  3447. out_unlock:
  3448. task_rq_unlock(rq, &flags);
  3449. }
  3450. EXPORT_SYMBOL(set_user_nice);
  3451. /*
  3452. * can_nice - check if a task can reduce its nice value
  3453. * @p: task
  3454. * @nice: nice value
  3455. */
  3456. int can_nice(const struct task_struct *p, const int nice)
  3457. {
  3458. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3459. int nice_rlim = 20 - nice;
  3460. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3461. capable(CAP_SYS_NICE));
  3462. }
  3463. #ifdef __ARCH_WANT_SYS_NICE
  3464. /*
  3465. * sys_nice - change the priority of the current process.
  3466. * @increment: priority increment
  3467. *
  3468. * sys_setpriority is a more generic, but much slower function that
  3469. * does similar things.
  3470. */
  3471. asmlinkage long sys_nice(int increment)
  3472. {
  3473. long nice, retval;
  3474. /*
  3475. * Setpriority might change our priority at the same moment.
  3476. * We don't have to worry. Conceptually one call occurs first
  3477. * and we have a single winner.
  3478. */
  3479. if (increment < -40)
  3480. increment = -40;
  3481. if (increment > 40)
  3482. increment = 40;
  3483. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3484. if (nice < -20)
  3485. nice = -20;
  3486. if (nice > 19)
  3487. nice = 19;
  3488. if (increment < 0 && !can_nice(current, nice))
  3489. return -EPERM;
  3490. retval = security_task_setnice(current, nice);
  3491. if (retval)
  3492. return retval;
  3493. set_user_nice(current, nice);
  3494. return 0;
  3495. }
  3496. #endif
  3497. /**
  3498. * task_prio - return the priority value of a given task.
  3499. * @p: the task in question.
  3500. *
  3501. * This is the priority value as seen by users in /proc.
  3502. * RT tasks are offset by -200. Normal tasks are centered
  3503. * around 0, value goes from -16 to +15.
  3504. */
  3505. int task_prio(const struct task_struct *p)
  3506. {
  3507. return p->prio - MAX_RT_PRIO;
  3508. }
  3509. /**
  3510. * task_nice - return the nice value of a given task.
  3511. * @p: the task in question.
  3512. */
  3513. int task_nice(const struct task_struct *p)
  3514. {
  3515. return TASK_NICE(p);
  3516. }
  3517. EXPORT_SYMBOL_GPL(task_nice);
  3518. /**
  3519. * idle_cpu - is a given cpu idle currently?
  3520. * @cpu: the processor in question.
  3521. */
  3522. int idle_cpu(int cpu)
  3523. {
  3524. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3525. }
  3526. /**
  3527. * idle_task - return the idle task for a given cpu.
  3528. * @cpu: the processor in question.
  3529. */
  3530. struct task_struct *idle_task(int cpu)
  3531. {
  3532. return cpu_rq(cpu)->idle;
  3533. }
  3534. /**
  3535. * find_process_by_pid - find a process with a matching PID value.
  3536. * @pid: the pid in question.
  3537. */
  3538. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3539. {
  3540. return pid ? find_task_by_pid(pid) : current;
  3541. }
  3542. /* Actually do priority change: must hold rq lock. */
  3543. static void __setscheduler(struct task_struct *p, int policy, int prio)
  3544. {
  3545. BUG_ON(p->array);
  3546. p->policy = policy;
  3547. p->rt_priority = prio;
  3548. p->normal_prio = normal_prio(p);
  3549. /* we are holding p->pi_lock already */
  3550. p->prio = rt_mutex_getprio(p);
  3551. /*
  3552. * SCHED_BATCH tasks are treated as perpetual CPU hogs:
  3553. */
  3554. if (policy == SCHED_BATCH)
  3555. p->sleep_avg = 0;
  3556. set_load_weight(p);
  3557. }
  3558. /**
  3559. * sched_setscheduler - change the scheduling policy and/or RT priority of
  3560. * a thread.
  3561. * @p: the task in question.
  3562. * @policy: new policy.
  3563. * @param: structure containing the new RT priority.
  3564. */
  3565. int sched_setscheduler(struct task_struct *p, int policy,
  3566. struct sched_param *param)
  3567. {
  3568. int retval, oldprio, oldpolicy = -1;
  3569. struct prio_array *array;
  3570. unsigned long flags;
  3571. struct rq *rq;
  3572. /* may grab non-irq protected spin_locks */
  3573. BUG_ON(in_interrupt());
  3574. recheck:
  3575. /* double check policy once rq lock held */
  3576. if (policy < 0)
  3577. policy = oldpolicy = p->policy;
  3578. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3579. policy != SCHED_NORMAL && policy != SCHED_BATCH)
  3580. return -EINVAL;
  3581. /*
  3582. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3583. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
  3584. * SCHED_BATCH is 0.
  3585. */
  3586. if (param->sched_priority < 0 ||
  3587. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3588. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3589. return -EINVAL;
  3590. if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
  3591. != (param->sched_priority == 0))
  3592. return -EINVAL;
  3593. /*
  3594. * Allow unprivileged RT tasks to decrease priority:
  3595. */
  3596. if (!capable(CAP_SYS_NICE)) {
  3597. /*
  3598. * can't change policy, except between SCHED_NORMAL
  3599. * and SCHED_BATCH:
  3600. */
  3601. if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
  3602. (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
  3603. !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
  3604. return -EPERM;
  3605. /* can't increase priority */
  3606. if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
  3607. param->sched_priority > p->rt_priority &&
  3608. param->sched_priority >
  3609. p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
  3610. return -EPERM;
  3611. /* can't change other user's priorities */
  3612. if ((current->euid != p->euid) &&
  3613. (current->euid != p->uid))
  3614. return -EPERM;
  3615. }
  3616. retval = security_task_setscheduler(p, policy, param);
  3617. if (retval)
  3618. return retval;
  3619. /*
  3620. * make sure no PI-waiters arrive (or leave) while we are
  3621. * changing the priority of the task:
  3622. */
  3623. spin_lock_irqsave(&p->pi_lock, flags);
  3624. /*
  3625. * To be able to change p->policy safely, the apropriate
  3626. * runqueue lock must be held.
  3627. */
  3628. rq = __task_rq_lock(p);
  3629. /* recheck policy now with rq lock held */
  3630. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3631. policy = oldpolicy = -1;
  3632. __task_rq_unlock(rq);
  3633. spin_unlock_irqrestore(&p->pi_lock, flags);
  3634. goto recheck;
  3635. }
  3636. array = p->array;
  3637. if (array)
  3638. deactivate_task(p, rq);
  3639. oldprio = p->prio;
  3640. __setscheduler(p, policy, param->sched_priority);
  3641. if (array) {
  3642. __activate_task(p, rq);
  3643. /*
  3644. * Reschedule if we are currently running on this runqueue and
  3645. * our priority decreased, or if we are not currently running on
  3646. * this runqueue and our priority is higher than the current's
  3647. */
  3648. if (task_running(rq, p)) {
  3649. if (p->prio > oldprio)
  3650. resched_task(rq->curr);
  3651. } else if (TASK_PREEMPTS_CURR(p, rq))
  3652. resched_task(rq->curr);
  3653. }
  3654. __task_rq_unlock(rq);
  3655. spin_unlock_irqrestore(&p->pi_lock, flags);
  3656. rt_mutex_adjust_pi(p);
  3657. return 0;
  3658. }
  3659. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3660. static int
  3661. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3662. {
  3663. struct sched_param lparam;
  3664. struct task_struct *p;
  3665. int retval;
  3666. if (!param || pid < 0)
  3667. return -EINVAL;
  3668. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3669. return -EFAULT;
  3670. read_lock_irq(&tasklist_lock);
  3671. p = find_process_by_pid(pid);
  3672. if (!p) {
  3673. read_unlock_irq(&tasklist_lock);
  3674. return -ESRCH;
  3675. }
  3676. retval = sched_setscheduler(p, policy, &lparam);
  3677. read_unlock_irq(&tasklist_lock);
  3678. return retval;
  3679. }
  3680. /**
  3681. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3682. * @pid: the pid in question.
  3683. * @policy: new policy.
  3684. * @param: structure containing the new RT priority.
  3685. */
  3686. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3687. struct sched_param __user *param)
  3688. {
  3689. /* negative values for policy are not valid */
  3690. if (policy < 0)
  3691. return -EINVAL;
  3692. return do_sched_setscheduler(pid, policy, param);
  3693. }
  3694. /**
  3695. * sys_sched_setparam - set/change the RT priority of a thread
  3696. * @pid: the pid in question.
  3697. * @param: structure containing the new RT priority.
  3698. */
  3699. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3700. {
  3701. return do_sched_setscheduler(pid, -1, param);
  3702. }
  3703. /**
  3704. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3705. * @pid: the pid in question.
  3706. */
  3707. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3708. {
  3709. struct task_struct *p;
  3710. int retval = -EINVAL;
  3711. if (pid < 0)
  3712. goto out_nounlock;
  3713. retval = -ESRCH;
  3714. read_lock(&tasklist_lock);
  3715. p = find_process_by_pid(pid);
  3716. if (p) {
  3717. retval = security_task_getscheduler(p);
  3718. if (!retval)
  3719. retval = p->policy;
  3720. }
  3721. read_unlock(&tasklist_lock);
  3722. out_nounlock:
  3723. return retval;
  3724. }
  3725. /**
  3726. * sys_sched_getscheduler - get the RT priority of a thread
  3727. * @pid: the pid in question.
  3728. * @param: structure containing the RT priority.
  3729. */
  3730. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3731. {
  3732. struct sched_param lp;
  3733. struct task_struct *p;
  3734. int retval = -EINVAL;
  3735. if (!param || pid < 0)
  3736. goto out_nounlock;
  3737. read_lock(&tasklist_lock);
  3738. p = find_process_by_pid(pid);
  3739. retval = -ESRCH;
  3740. if (!p)
  3741. goto out_unlock;
  3742. retval = security_task_getscheduler(p);
  3743. if (retval)
  3744. goto out_unlock;
  3745. lp.sched_priority = p->rt_priority;
  3746. read_unlock(&tasklist_lock);
  3747. /*
  3748. * This one might sleep, we cannot do it with a spinlock held ...
  3749. */
  3750. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3751. out_nounlock:
  3752. return retval;
  3753. out_unlock:
  3754. read_unlock(&tasklist_lock);
  3755. return retval;
  3756. }
  3757. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3758. {
  3759. cpumask_t cpus_allowed;
  3760. struct task_struct *p;
  3761. int retval;
  3762. lock_cpu_hotplug();
  3763. read_lock(&tasklist_lock);
  3764. p = find_process_by_pid(pid);
  3765. if (!p) {
  3766. read_unlock(&tasklist_lock);
  3767. unlock_cpu_hotplug();
  3768. return -ESRCH;
  3769. }
  3770. /*
  3771. * It is not safe to call set_cpus_allowed with the
  3772. * tasklist_lock held. We will bump the task_struct's
  3773. * usage count and then drop tasklist_lock.
  3774. */
  3775. get_task_struct(p);
  3776. read_unlock(&tasklist_lock);
  3777. retval = -EPERM;
  3778. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3779. !capable(CAP_SYS_NICE))
  3780. goto out_unlock;
  3781. retval = security_task_setscheduler(p, 0, NULL);
  3782. if (retval)
  3783. goto out_unlock;
  3784. cpus_allowed = cpuset_cpus_allowed(p);
  3785. cpus_and(new_mask, new_mask, cpus_allowed);
  3786. retval = set_cpus_allowed(p, new_mask);
  3787. out_unlock:
  3788. put_task_struct(p);
  3789. unlock_cpu_hotplug();
  3790. return retval;
  3791. }
  3792. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3793. cpumask_t *new_mask)
  3794. {
  3795. if (len < sizeof(cpumask_t)) {
  3796. memset(new_mask, 0, sizeof(cpumask_t));
  3797. } else if (len > sizeof(cpumask_t)) {
  3798. len = sizeof(cpumask_t);
  3799. }
  3800. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3801. }
  3802. /**
  3803. * sys_sched_setaffinity - set the cpu affinity of a process
  3804. * @pid: pid of the process
  3805. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3806. * @user_mask_ptr: user-space pointer to the new cpu mask
  3807. */
  3808. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3809. unsigned long __user *user_mask_ptr)
  3810. {
  3811. cpumask_t new_mask;
  3812. int retval;
  3813. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3814. if (retval)
  3815. return retval;
  3816. return sched_setaffinity(pid, new_mask);
  3817. }
  3818. /*
  3819. * Represents all cpu's present in the system
  3820. * In systems capable of hotplug, this map could dynamically grow
  3821. * as new cpu's are detected in the system via any platform specific
  3822. * method, such as ACPI for e.g.
  3823. */
  3824. cpumask_t cpu_present_map __read_mostly;
  3825. EXPORT_SYMBOL(cpu_present_map);
  3826. #ifndef CONFIG_SMP
  3827. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3828. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3829. #endif
  3830. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3831. {
  3832. struct task_struct *p;
  3833. int retval;
  3834. lock_cpu_hotplug();
  3835. read_lock(&tasklist_lock);
  3836. retval = -ESRCH;
  3837. p = find_process_by_pid(pid);
  3838. if (!p)
  3839. goto out_unlock;
  3840. retval = security_task_getscheduler(p);
  3841. if (retval)
  3842. goto out_unlock;
  3843. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3844. out_unlock:
  3845. read_unlock(&tasklist_lock);
  3846. unlock_cpu_hotplug();
  3847. if (retval)
  3848. return retval;
  3849. return 0;
  3850. }
  3851. /**
  3852. * sys_sched_getaffinity - get the cpu affinity of a process
  3853. * @pid: pid of the process
  3854. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3855. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3856. */
  3857. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3858. unsigned long __user *user_mask_ptr)
  3859. {
  3860. int ret;
  3861. cpumask_t mask;
  3862. if (len < sizeof(cpumask_t))
  3863. return -EINVAL;
  3864. ret = sched_getaffinity(pid, &mask);
  3865. if (ret < 0)
  3866. return ret;
  3867. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3868. return -EFAULT;
  3869. return sizeof(cpumask_t);
  3870. }
  3871. /**
  3872. * sys_sched_yield - yield the current processor to other threads.
  3873. *
  3874. * this function yields the current CPU by moving the calling thread
  3875. * to the expired array. If there are no other threads running on this
  3876. * CPU then this function will return.
  3877. */
  3878. asmlinkage long sys_sched_yield(void)
  3879. {
  3880. struct rq *rq = this_rq_lock();
  3881. struct prio_array *array = current->array, *target = rq->expired;
  3882. schedstat_inc(rq, yld_cnt);
  3883. /*
  3884. * We implement yielding by moving the task into the expired
  3885. * queue.
  3886. *
  3887. * (special rule: RT tasks will just roundrobin in the active
  3888. * array.)
  3889. */
  3890. if (rt_task(current))
  3891. target = rq->active;
  3892. if (array->nr_active == 1) {
  3893. schedstat_inc(rq, yld_act_empty);
  3894. if (!rq->expired->nr_active)
  3895. schedstat_inc(rq, yld_both_empty);
  3896. } else if (!rq->expired->nr_active)
  3897. schedstat_inc(rq, yld_exp_empty);
  3898. if (array != target) {
  3899. dequeue_task(current, array);
  3900. enqueue_task(current, target);
  3901. } else
  3902. /*
  3903. * requeue_task is cheaper so perform that if possible.
  3904. */
  3905. requeue_task(current, array);
  3906. /*
  3907. * Since we are going to call schedule() anyway, there's
  3908. * no need to preempt or enable interrupts:
  3909. */
  3910. __release(rq->lock);
  3911. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3912. _raw_spin_unlock(&rq->lock);
  3913. preempt_enable_no_resched();
  3914. schedule();
  3915. return 0;
  3916. }
  3917. static inline int __resched_legal(int expected_preempt_count)
  3918. {
  3919. if (unlikely(preempt_count() != expected_preempt_count))
  3920. return 0;
  3921. if (unlikely(system_state != SYSTEM_RUNNING))
  3922. return 0;
  3923. return 1;
  3924. }
  3925. static void __cond_resched(void)
  3926. {
  3927. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3928. __might_sleep(__FILE__, __LINE__);
  3929. #endif
  3930. /*
  3931. * The BKS might be reacquired before we have dropped
  3932. * PREEMPT_ACTIVE, which could trigger a second
  3933. * cond_resched() call.
  3934. */
  3935. do {
  3936. add_preempt_count(PREEMPT_ACTIVE);
  3937. schedule();
  3938. sub_preempt_count(PREEMPT_ACTIVE);
  3939. } while (need_resched());
  3940. }
  3941. int __sched cond_resched(void)
  3942. {
  3943. if (need_resched() && __resched_legal(0)) {
  3944. __cond_resched();
  3945. return 1;
  3946. }
  3947. return 0;
  3948. }
  3949. EXPORT_SYMBOL(cond_resched);
  3950. /*
  3951. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3952. * call schedule, and on return reacquire the lock.
  3953. *
  3954. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3955. * operations here to prevent schedule() from being called twice (once via
  3956. * spin_unlock(), once by hand).
  3957. */
  3958. int cond_resched_lock(spinlock_t *lock)
  3959. {
  3960. int ret = 0;
  3961. if (need_lockbreak(lock)) {
  3962. spin_unlock(lock);
  3963. cpu_relax();
  3964. ret = 1;
  3965. spin_lock(lock);
  3966. }
  3967. if (need_resched() && __resched_legal(1)) {
  3968. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3969. _raw_spin_unlock(lock);
  3970. preempt_enable_no_resched();
  3971. __cond_resched();
  3972. ret = 1;
  3973. spin_lock(lock);
  3974. }
  3975. return ret;
  3976. }
  3977. EXPORT_SYMBOL(cond_resched_lock);
  3978. int __sched cond_resched_softirq(void)
  3979. {
  3980. BUG_ON(!in_softirq());
  3981. if (need_resched() && __resched_legal(0)) {
  3982. raw_local_irq_disable();
  3983. _local_bh_enable();
  3984. raw_local_irq_enable();
  3985. __cond_resched();
  3986. local_bh_disable();
  3987. return 1;
  3988. }
  3989. return 0;
  3990. }
  3991. EXPORT_SYMBOL(cond_resched_softirq);
  3992. /**
  3993. * yield - yield the current processor to other threads.
  3994. *
  3995. * this is a shortcut for kernel-space yielding - it marks the
  3996. * thread runnable and calls sys_sched_yield().
  3997. */
  3998. void __sched yield(void)
  3999. {
  4000. set_current_state(TASK_RUNNING);
  4001. sys_sched_yield();
  4002. }
  4003. EXPORT_SYMBOL(yield);
  4004. /*
  4005. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4006. * that process accounting knows that this is a task in IO wait state.
  4007. *
  4008. * But don't do that if it is a deliberate, throttling IO wait (this task
  4009. * has set its backing_dev_info: the queue against which it should throttle)
  4010. */
  4011. void __sched io_schedule(void)
  4012. {
  4013. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4014. delayacct_blkio_start();
  4015. atomic_inc(&rq->nr_iowait);
  4016. schedule();
  4017. atomic_dec(&rq->nr_iowait);
  4018. delayacct_blkio_end();
  4019. }
  4020. EXPORT_SYMBOL(io_schedule);
  4021. long __sched io_schedule_timeout(long timeout)
  4022. {
  4023. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4024. long ret;
  4025. delayacct_blkio_start();
  4026. atomic_inc(&rq->nr_iowait);
  4027. ret = schedule_timeout(timeout);
  4028. atomic_dec(&rq->nr_iowait);
  4029. delayacct_blkio_end();
  4030. return ret;
  4031. }
  4032. /**
  4033. * sys_sched_get_priority_max - return maximum RT priority.
  4034. * @policy: scheduling class.
  4035. *
  4036. * this syscall returns the maximum rt_priority that can be used
  4037. * by a given scheduling class.
  4038. */
  4039. asmlinkage long sys_sched_get_priority_max(int policy)
  4040. {
  4041. int ret = -EINVAL;
  4042. switch (policy) {
  4043. case SCHED_FIFO:
  4044. case SCHED_RR:
  4045. ret = MAX_USER_RT_PRIO-1;
  4046. break;
  4047. case SCHED_NORMAL:
  4048. case SCHED_BATCH:
  4049. ret = 0;
  4050. break;
  4051. }
  4052. return ret;
  4053. }
  4054. /**
  4055. * sys_sched_get_priority_min - return minimum RT priority.
  4056. * @policy: scheduling class.
  4057. *
  4058. * this syscall returns the minimum rt_priority that can be used
  4059. * by a given scheduling class.
  4060. */
  4061. asmlinkage long sys_sched_get_priority_min(int policy)
  4062. {
  4063. int ret = -EINVAL;
  4064. switch (policy) {
  4065. case SCHED_FIFO:
  4066. case SCHED_RR:
  4067. ret = 1;
  4068. break;
  4069. case SCHED_NORMAL:
  4070. case SCHED_BATCH:
  4071. ret = 0;
  4072. }
  4073. return ret;
  4074. }
  4075. /**
  4076. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4077. * @pid: pid of the process.
  4078. * @interval: userspace pointer to the timeslice value.
  4079. *
  4080. * this syscall writes the default timeslice value of a given process
  4081. * into the user-space timespec buffer. A value of '0' means infinity.
  4082. */
  4083. asmlinkage
  4084. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4085. {
  4086. struct task_struct *p;
  4087. int retval = -EINVAL;
  4088. struct timespec t;
  4089. if (pid < 0)
  4090. goto out_nounlock;
  4091. retval = -ESRCH;
  4092. read_lock(&tasklist_lock);
  4093. p = find_process_by_pid(pid);
  4094. if (!p)
  4095. goto out_unlock;
  4096. retval = security_task_getscheduler(p);
  4097. if (retval)
  4098. goto out_unlock;
  4099. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4100. 0 : task_timeslice(p), &t);
  4101. read_unlock(&tasklist_lock);
  4102. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4103. out_nounlock:
  4104. return retval;
  4105. out_unlock:
  4106. read_unlock(&tasklist_lock);
  4107. return retval;
  4108. }
  4109. static inline struct task_struct *eldest_child(struct task_struct *p)
  4110. {
  4111. if (list_empty(&p->children))
  4112. return NULL;
  4113. return list_entry(p->children.next,struct task_struct,sibling);
  4114. }
  4115. static inline struct task_struct *older_sibling(struct task_struct *p)
  4116. {
  4117. if (p->sibling.prev==&p->parent->children)
  4118. return NULL;
  4119. return list_entry(p->sibling.prev,struct task_struct,sibling);
  4120. }
  4121. static inline struct task_struct *younger_sibling(struct task_struct *p)
  4122. {
  4123. if (p->sibling.next==&p->parent->children)
  4124. return NULL;
  4125. return list_entry(p->sibling.next,struct task_struct,sibling);
  4126. }
  4127. static const char stat_nam[] = "RSDTtZX";
  4128. static void show_task(struct task_struct *p)
  4129. {
  4130. struct task_struct *relative;
  4131. unsigned long free = 0;
  4132. unsigned state;
  4133. state = p->state ? __ffs(p->state) + 1 : 0;
  4134. printk("%-13.13s %c", p->comm,
  4135. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4136. #if (BITS_PER_LONG == 32)
  4137. if (state == TASK_RUNNING)
  4138. printk(" running ");
  4139. else
  4140. printk(" %08lX ", thread_saved_pc(p));
  4141. #else
  4142. if (state == TASK_RUNNING)
  4143. printk(" running task ");
  4144. else
  4145. printk(" %016lx ", thread_saved_pc(p));
  4146. #endif
  4147. #ifdef CONFIG_DEBUG_STACK_USAGE
  4148. {
  4149. unsigned long *n = end_of_stack(p);
  4150. while (!*n)
  4151. n++;
  4152. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4153. }
  4154. #endif
  4155. printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
  4156. if ((relative = eldest_child(p)))
  4157. printk("%5d ", relative->pid);
  4158. else
  4159. printk(" ");
  4160. if ((relative = younger_sibling(p)))
  4161. printk("%7d", relative->pid);
  4162. else
  4163. printk(" ");
  4164. if ((relative = older_sibling(p)))
  4165. printk(" %5d", relative->pid);
  4166. else
  4167. printk(" ");
  4168. if (!p->mm)
  4169. printk(" (L-TLB)\n");
  4170. else
  4171. printk(" (NOTLB)\n");
  4172. if (state != TASK_RUNNING)
  4173. show_stack(p, NULL);
  4174. }
  4175. void show_state(void)
  4176. {
  4177. struct task_struct *g, *p;
  4178. #if (BITS_PER_LONG == 32)
  4179. printk("\n"
  4180. " sibling\n");
  4181. printk(" task PC pid father child younger older\n");
  4182. #else
  4183. printk("\n"
  4184. " sibling\n");
  4185. printk(" task PC pid father child younger older\n");
  4186. #endif
  4187. read_lock(&tasklist_lock);
  4188. do_each_thread(g, p) {
  4189. /*
  4190. * reset the NMI-timeout, listing all files on a slow
  4191. * console might take alot of time:
  4192. */
  4193. touch_nmi_watchdog();
  4194. show_task(p);
  4195. } while_each_thread(g, p);
  4196. read_unlock(&tasklist_lock);
  4197. debug_show_all_locks();
  4198. }
  4199. /**
  4200. * init_idle - set up an idle thread for a given CPU
  4201. * @idle: task in question
  4202. * @cpu: cpu the idle task belongs to
  4203. *
  4204. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4205. * flag, to make booting more robust.
  4206. */
  4207. void __devinit init_idle(struct task_struct *idle, int cpu)
  4208. {
  4209. struct rq *rq = cpu_rq(cpu);
  4210. unsigned long flags;
  4211. idle->timestamp = sched_clock();
  4212. idle->sleep_avg = 0;
  4213. idle->array = NULL;
  4214. idle->prio = idle->normal_prio = MAX_PRIO;
  4215. idle->state = TASK_RUNNING;
  4216. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4217. set_task_cpu(idle, cpu);
  4218. spin_lock_irqsave(&rq->lock, flags);
  4219. rq->curr = rq->idle = idle;
  4220. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4221. idle->oncpu = 1;
  4222. #endif
  4223. spin_unlock_irqrestore(&rq->lock, flags);
  4224. /* Set the preempt count _outside_ the spinlocks! */
  4225. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4226. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4227. #else
  4228. task_thread_info(idle)->preempt_count = 0;
  4229. #endif
  4230. }
  4231. /*
  4232. * In a system that switches off the HZ timer nohz_cpu_mask
  4233. * indicates which cpus entered this state. This is used
  4234. * in the rcu update to wait only for active cpus. For system
  4235. * which do not switch off the HZ timer nohz_cpu_mask should
  4236. * always be CPU_MASK_NONE.
  4237. */
  4238. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4239. #ifdef CONFIG_SMP
  4240. /*
  4241. * This is how migration works:
  4242. *
  4243. * 1) we queue a struct migration_req structure in the source CPU's
  4244. * runqueue and wake up that CPU's migration thread.
  4245. * 2) we down() the locked semaphore => thread blocks.
  4246. * 3) migration thread wakes up (implicitly it forces the migrated
  4247. * thread off the CPU)
  4248. * 4) it gets the migration request and checks whether the migrated
  4249. * task is still in the wrong runqueue.
  4250. * 5) if it's in the wrong runqueue then the migration thread removes
  4251. * it and puts it into the right queue.
  4252. * 6) migration thread up()s the semaphore.
  4253. * 7) we wake up and the migration is done.
  4254. */
  4255. /*
  4256. * Change a given task's CPU affinity. Migrate the thread to a
  4257. * proper CPU and schedule it away if the CPU it's executing on
  4258. * is removed from the allowed bitmask.
  4259. *
  4260. * NOTE: the caller must have a valid reference to the task, the
  4261. * task must not exit() & deallocate itself prematurely. The
  4262. * call is not atomic; no spinlocks may be held.
  4263. */
  4264. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4265. {
  4266. struct migration_req req;
  4267. unsigned long flags;
  4268. struct rq *rq;
  4269. int ret = 0;
  4270. rq = task_rq_lock(p, &flags);
  4271. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4272. ret = -EINVAL;
  4273. goto out;
  4274. }
  4275. p->cpus_allowed = new_mask;
  4276. /* Can the task run on the task's current CPU? If so, we're done */
  4277. if (cpu_isset(task_cpu(p), new_mask))
  4278. goto out;
  4279. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4280. /* Need help from migration thread: drop lock and wait. */
  4281. task_rq_unlock(rq, &flags);
  4282. wake_up_process(rq->migration_thread);
  4283. wait_for_completion(&req.done);
  4284. tlb_migrate_finish(p->mm);
  4285. return 0;
  4286. }
  4287. out:
  4288. task_rq_unlock(rq, &flags);
  4289. return ret;
  4290. }
  4291. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4292. /*
  4293. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4294. * this because either it can't run here any more (set_cpus_allowed()
  4295. * away from this CPU, or CPU going down), or because we're
  4296. * attempting to rebalance this task on exec (sched_exec).
  4297. *
  4298. * So we race with normal scheduler movements, but that's OK, as long
  4299. * as the task is no longer on this CPU.
  4300. *
  4301. * Returns non-zero if task was successfully migrated.
  4302. */
  4303. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4304. {
  4305. struct rq *rq_dest, *rq_src;
  4306. int ret = 0;
  4307. if (unlikely(cpu_is_offline(dest_cpu)))
  4308. return ret;
  4309. rq_src = cpu_rq(src_cpu);
  4310. rq_dest = cpu_rq(dest_cpu);
  4311. double_rq_lock(rq_src, rq_dest);
  4312. /* Already moved. */
  4313. if (task_cpu(p) != src_cpu)
  4314. goto out;
  4315. /* Affinity changed (again). */
  4316. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4317. goto out;
  4318. set_task_cpu(p, dest_cpu);
  4319. if (p->array) {
  4320. /*
  4321. * Sync timestamp with rq_dest's before activating.
  4322. * The same thing could be achieved by doing this step
  4323. * afterwards, and pretending it was a local activate.
  4324. * This way is cleaner and logically correct.
  4325. */
  4326. p->timestamp = p->timestamp - rq_src->timestamp_last_tick
  4327. + rq_dest->timestamp_last_tick;
  4328. deactivate_task(p, rq_src);
  4329. __activate_task(p, rq_dest);
  4330. if (TASK_PREEMPTS_CURR(p, rq_dest))
  4331. resched_task(rq_dest->curr);
  4332. }
  4333. ret = 1;
  4334. out:
  4335. double_rq_unlock(rq_src, rq_dest);
  4336. return ret;
  4337. }
  4338. /*
  4339. * migration_thread - this is a highprio system thread that performs
  4340. * thread migration by bumping thread off CPU then 'pushing' onto
  4341. * another runqueue.
  4342. */
  4343. static int migration_thread(void *data)
  4344. {
  4345. int cpu = (long)data;
  4346. struct rq *rq;
  4347. rq = cpu_rq(cpu);
  4348. BUG_ON(rq->migration_thread != current);
  4349. set_current_state(TASK_INTERRUPTIBLE);
  4350. while (!kthread_should_stop()) {
  4351. struct migration_req *req;
  4352. struct list_head *head;
  4353. try_to_freeze();
  4354. spin_lock_irq(&rq->lock);
  4355. if (cpu_is_offline(cpu)) {
  4356. spin_unlock_irq(&rq->lock);
  4357. goto wait_to_die;
  4358. }
  4359. if (rq->active_balance) {
  4360. active_load_balance(rq, cpu);
  4361. rq->active_balance = 0;
  4362. }
  4363. head = &rq->migration_queue;
  4364. if (list_empty(head)) {
  4365. spin_unlock_irq(&rq->lock);
  4366. schedule();
  4367. set_current_state(TASK_INTERRUPTIBLE);
  4368. continue;
  4369. }
  4370. req = list_entry(head->next, struct migration_req, list);
  4371. list_del_init(head->next);
  4372. spin_unlock(&rq->lock);
  4373. __migrate_task(req->task, cpu, req->dest_cpu);
  4374. local_irq_enable();
  4375. complete(&req->done);
  4376. }
  4377. __set_current_state(TASK_RUNNING);
  4378. return 0;
  4379. wait_to_die:
  4380. /* Wait for kthread_stop */
  4381. set_current_state(TASK_INTERRUPTIBLE);
  4382. while (!kthread_should_stop()) {
  4383. schedule();
  4384. set_current_state(TASK_INTERRUPTIBLE);
  4385. }
  4386. __set_current_state(TASK_RUNNING);
  4387. return 0;
  4388. }
  4389. #ifdef CONFIG_HOTPLUG_CPU
  4390. /* Figure out where task on dead CPU should go, use force if neccessary. */
  4391. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4392. {
  4393. unsigned long flags;
  4394. cpumask_t mask;
  4395. struct rq *rq;
  4396. int dest_cpu;
  4397. restart:
  4398. /* On same node? */
  4399. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4400. cpus_and(mask, mask, p->cpus_allowed);
  4401. dest_cpu = any_online_cpu(mask);
  4402. /* On any allowed CPU? */
  4403. if (dest_cpu == NR_CPUS)
  4404. dest_cpu = any_online_cpu(p->cpus_allowed);
  4405. /* No more Mr. Nice Guy. */
  4406. if (dest_cpu == NR_CPUS) {
  4407. rq = task_rq_lock(p, &flags);
  4408. cpus_setall(p->cpus_allowed);
  4409. dest_cpu = any_online_cpu(p->cpus_allowed);
  4410. task_rq_unlock(rq, &flags);
  4411. /*
  4412. * Don't tell them about moving exiting tasks or
  4413. * kernel threads (both mm NULL), since they never
  4414. * leave kernel.
  4415. */
  4416. if (p->mm && printk_ratelimit())
  4417. printk(KERN_INFO "process %d (%s) no "
  4418. "longer affine to cpu%d\n",
  4419. p->pid, p->comm, dead_cpu);
  4420. }
  4421. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4422. goto restart;
  4423. }
  4424. /*
  4425. * While a dead CPU has no uninterruptible tasks queued at this point,
  4426. * it might still have a nonzero ->nr_uninterruptible counter, because
  4427. * for performance reasons the counter is not stricly tracking tasks to
  4428. * their home CPUs. So we just add the counter to another CPU's counter,
  4429. * to keep the global sum constant after CPU-down:
  4430. */
  4431. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4432. {
  4433. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4434. unsigned long flags;
  4435. local_irq_save(flags);
  4436. double_rq_lock(rq_src, rq_dest);
  4437. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4438. rq_src->nr_uninterruptible = 0;
  4439. double_rq_unlock(rq_src, rq_dest);
  4440. local_irq_restore(flags);
  4441. }
  4442. /* Run through task list and migrate tasks from the dead cpu. */
  4443. static void migrate_live_tasks(int src_cpu)
  4444. {
  4445. struct task_struct *p, *t;
  4446. write_lock_irq(&tasklist_lock);
  4447. do_each_thread(t, p) {
  4448. if (p == current)
  4449. continue;
  4450. if (task_cpu(p) == src_cpu)
  4451. move_task_off_dead_cpu(src_cpu, p);
  4452. } while_each_thread(t, p);
  4453. write_unlock_irq(&tasklist_lock);
  4454. }
  4455. /* Schedules idle task to be the next runnable task on current CPU.
  4456. * It does so by boosting its priority to highest possible and adding it to
  4457. * the _front_ of the runqueue. Used by CPU offline code.
  4458. */
  4459. void sched_idle_next(void)
  4460. {
  4461. int this_cpu = smp_processor_id();
  4462. struct rq *rq = cpu_rq(this_cpu);
  4463. struct task_struct *p = rq->idle;
  4464. unsigned long flags;
  4465. /* cpu has to be offline */
  4466. BUG_ON(cpu_online(this_cpu));
  4467. /*
  4468. * Strictly not necessary since rest of the CPUs are stopped by now
  4469. * and interrupts disabled on the current cpu.
  4470. */
  4471. spin_lock_irqsave(&rq->lock, flags);
  4472. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4473. /* Add idle task to the _front_ of its priority queue: */
  4474. __activate_idle_task(p, rq);
  4475. spin_unlock_irqrestore(&rq->lock, flags);
  4476. }
  4477. /*
  4478. * Ensures that the idle task is using init_mm right before its cpu goes
  4479. * offline.
  4480. */
  4481. void idle_task_exit(void)
  4482. {
  4483. struct mm_struct *mm = current->active_mm;
  4484. BUG_ON(cpu_online(smp_processor_id()));
  4485. if (mm != &init_mm)
  4486. switch_mm(mm, &init_mm, current);
  4487. mmdrop(mm);
  4488. }
  4489. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4490. {
  4491. struct rq *rq = cpu_rq(dead_cpu);
  4492. /* Must be exiting, otherwise would be on tasklist. */
  4493. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4494. /* Cannot have done final schedule yet: would have vanished. */
  4495. BUG_ON(p->flags & PF_DEAD);
  4496. get_task_struct(p);
  4497. /*
  4498. * Drop lock around migration; if someone else moves it,
  4499. * that's OK. No task can be added to this CPU, so iteration is
  4500. * fine.
  4501. */
  4502. spin_unlock_irq(&rq->lock);
  4503. move_task_off_dead_cpu(dead_cpu, p);
  4504. spin_lock_irq(&rq->lock);
  4505. put_task_struct(p);
  4506. }
  4507. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4508. static void migrate_dead_tasks(unsigned int dead_cpu)
  4509. {
  4510. struct rq *rq = cpu_rq(dead_cpu);
  4511. unsigned int arr, i;
  4512. for (arr = 0; arr < 2; arr++) {
  4513. for (i = 0; i < MAX_PRIO; i++) {
  4514. struct list_head *list = &rq->arrays[arr].queue[i];
  4515. while (!list_empty(list))
  4516. migrate_dead(dead_cpu, list_entry(list->next,
  4517. struct task_struct, run_list));
  4518. }
  4519. }
  4520. }
  4521. #endif /* CONFIG_HOTPLUG_CPU */
  4522. /*
  4523. * migration_call - callback that gets triggered when a CPU is added.
  4524. * Here we can start up the necessary migration thread for the new CPU.
  4525. */
  4526. static int __cpuinit
  4527. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4528. {
  4529. struct task_struct *p;
  4530. int cpu = (long)hcpu;
  4531. unsigned long flags;
  4532. struct rq *rq;
  4533. switch (action) {
  4534. case CPU_UP_PREPARE:
  4535. p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
  4536. if (IS_ERR(p))
  4537. return NOTIFY_BAD;
  4538. p->flags |= PF_NOFREEZE;
  4539. kthread_bind(p, cpu);
  4540. /* Must be high prio: stop_machine expects to yield to it. */
  4541. rq = task_rq_lock(p, &flags);
  4542. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4543. task_rq_unlock(rq, &flags);
  4544. cpu_rq(cpu)->migration_thread = p;
  4545. break;
  4546. case CPU_ONLINE:
  4547. /* Strictly unneccessary, as first user will wake it. */
  4548. wake_up_process(cpu_rq(cpu)->migration_thread);
  4549. break;
  4550. #ifdef CONFIG_HOTPLUG_CPU
  4551. case CPU_UP_CANCELED:
  4552. if (!cpu_rq(cpu)->migration_thread)
  4553. break;
  4554. /* Unbind it from offline cpu so it can run. Fall thru. */
  4555. kthread_bind(cpu_rq(cpu)->migration_thread,
  4556. any_online_cpu(cpu_online_map));
  4557. kthread_stop(cpu_rq(cpu)->migration_thread);
  4558. cpu_rq(cpu)->migration_thread = NULL;
  4559. break;
  4560. case CPU_DEAD:
  4561. migrate_live_tasks(cpu);
  4562. rq = cpu_rq(cpu);
  4563. kthread_stop(rq->migration_thread);
  4564. rq->migration_thread = NULL;
  4565. /* Idle task back to normal (off runqueue, low prio) */
  4566. rq = task_rq_lock(rq->idle, &flags);
  4567. deactivate_task(rq->idle, rq);
  4568. rq->idle->static_prio = MAX_PRIO;
  4569. __setscheduler(rq->idle, SCHED_NORMAL, 0);
  4570. migrate_dead_tasks(cpu);
  4571. task_rq_unlock(rq, &flags);
  4572. migrate_nr_uninterruptible(rq);
  4573. BUG_ON(rq->nr_running != 0);
  4574. /* No need to migrate the tasks: it was best-effort if
  4575. * they didn't do lock_cpu_hotplug(). Just wake up
  4576. * the requestors. */
  4577. spin_lock_irq(&rq->lock);
  4578. while (!list_empty(&rq->migration_queue)) {
  4579. struct migration_req *req;
  4580. req = list_entry(rq->migration_queue.next,
  4581. struct migration_req, list);
  4582. list_del_init(&req->list);
  4583. complete(&req->done);
  4584. }
  4585. spin_unlock_irq(&rq->lock);
  4586. break;
  4587. #endif
  4588. }
  4589. return NOTIFY_OK;
  4590. }
  4591. /* Register at highest priority so that task migration (migrate_all_tasks)
  4592. * happens before everything else.
  4593. */
  4594. static struct notifier_block __cpuinitdata migration_notifier = {
  4595. .notifier_call = migration_call,
  4596. .priority = 10
  4597. };
  4598. int __init migration_init(void)
  4599. {
  4600. void *cpu = (void *)(long)smp_processor_id();
  4601. /* Start one for the boot CPU: */
  4602. migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4603. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4604. register_cpu_notifier(&migration_notifier);
  4605. return 0;
  4606. }
  4607. #endif
  4608. #ifdef CONFIG_SMP
  4609. #undef SCHED_DOMAIN_DEBUG
  4610. #ifdef SCHED_DOMAIN_DEBUG
  4611. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4612. {
  4613. int level = 0;
  4614. if (!sd) {
  4615. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4616. return;
  4617. }
  4618. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4619. do {
  4620. int i;
  4621. char str[NR_CPUS];
  4622. struct sched_group *group = sd->groups;
  4623. cpumask_t groupmask;
  4624. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4625. cpus_clear(groupmask);
  4626. printk(KERN_DEBUG);
  4627. for (i = 0; i < level + 1; i++)
  4628. printk(" ");
  4629. printk("domain %d: ", level);
  4630. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4631. printk("does not load-balance\n");
  4632. if (sd->parent)
  4633. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
  4634. break;
  4635. }
  4636. printk("span %s\n", str);
  4637. if (!cpu_isset(cpu, sd->span))
  4638. printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  4639. if (!cpu_isset(cpu, group->cpumask))
  4640. printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  4641. printk(KERN_DEBUG);
  4642. for (i = 0; i < level + 2; i++)
  4643. printk(" ");
  4644. printk("groups:");
  4645. do {
  4646. if (!group) {
  4647. printk("\n");
  4648. printk(KERN_ERR "ERROR: group is NULL\n");
  4649. break;
  4650. }
  4651. if (!group->cpu_power) {
  4652. printk("\n");
  4653. printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
  4654. }
  4655. if (!cpus_weight(group->cpumask)) {
  4656. printk("\n");
  4657. printk(KERN_ERR "ERROR: empty group\n");
  4658. }
  4659. if (cpus_intersects(groupmask, group->cpumask)) {
  4660. printk("\n");
  4661. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4662. }
  4663. cpus_or(groupmask, groupmask, group->cpumask);
  4664. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4665. printk(" %s", str);
  4666. group = group->next;
  4667. } while (group != sd->groups);
  4668. printk("\n");
  4669. if (!cpus_equal(sd->span, groupmask))
  4670. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4671. level++;
  4672. sd = sd->parent;
  4673. if (sd) {
  4674. if (!cpus_subset(groupmask, sd->span))
  4675. printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
  4676. }
  4677. } while (sd);
  4678. }
  4679. #else
  4680. # define sched_domain_debug(sd, cpu) do { } while (0)
  4681. #endif
  4682. static int sd_degenerate(struct sched_domain *sd)
  4683. {
  4684. if (cpus_weight(sd->span) == 1)
  4685. return 1;
  4686. /* Following flags need at least 2 groups */
  4687. if (sd->flags & (SD_LOAD_BALANCE |
  4688. SD_BALANCE_NEWIDLE |
  4689. SD_BALANCE_FORK |
  4690. SD_BALANCE_EXEC)) {
  4691. if (sd->groups != sd->groups->next)
  4692. return 0;
  4693. }
  4694. /* Following flags don't use groups */
  4695. if (sd->flags & (SD_WAKE_IDLE |
  4696. SD_WAKE_AFFINE |
  4697. SD_WAKE_BALANCE))
  4698. return 0;
  4699. return 1;
  4700. }
  4701. static int
  4702. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4703. {
  4704. unsigned long cflags = sd->flags, pflags = parent->flags;
  4705. if (sd_degenerate(parent))
  4706. return 1;
  4707. if (!cpus_equal(sd->span, parent->span))
  4708. return 0;
  4709. /* Does parent contain flags not in child? */
  4710. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4711. if (cflags & SD_WAKE_AFFINE)
  4712. pflags &= ~SD_WAKE_BALANCE;
  4713. /* Flags needing groups don't count if only 1 group in parent */
  4714. if (parent->groups == parent->groups->next) {
  4715. pflags &= ~(SD_LOAD_BALANCE |
  4716. SD_BALANCE_NEWIDLE |
  4717. SD_BALANCE_FORK |
  4718. SD_BALANCE_EXEC);
  4719. }
  4720. if (~cflags & pflags)
  4721. return 0;
  4722. return 1;
  4723. }
  4724. /*
  4725. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4726. * hold the hotplug lock.
  4727. */
  4728. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4729. {
  4730. struct rq *rq = cpu_rq(cpu);
  4731. struct sched_domain *tmp;
  4732. /* Remove the sched domains which do not contribute to scheduling. */
  4733. for (tmp = sd; tmp; tmp = tmp->parent) {
  4734. struct sched_domain *parent = tmp->parent;
  4735. if (!parent)
  4736. break;
  4737. if (sd_parent_degenerate(tmp, parent))
  4738. tmp->parent = parent->parent;
  4739. }
  4740. if (sd && sd_degenerate(sd))
  4741. sd = sd->parent;
  4742. sched_domain_debug(sd, cpu);
  4743. rcu_assign_pointer(rq->sd, sd);
  4744. }
  4745. /* cpus with isolated domains */
  4746. static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
  4747. /* Setup the mask of cpus configured for isolated domains */
  4748. static int __init isolated_cpu_setup(char *str)
  4749. {
  4750. int ints[NR_CPUS], i;
  4751. str = get_options(str, ARRAY_SIZE(ints), ints);
  4752. cpus_clear(cpu_isolated_map);
  4753. for (i = 1; i <= ints[0]; i++)
  4754. if (ints[i] < NR_CPUS)
  4755. cpu_set(ints[i], cpu_isolated_map);
  4756. return 1;
  4757. }
  4758. __setup ("isolcpus=", isolated_cpu_setup);
  4759. /*
  4760. * init_sched_build_groups takes an array of groups, the cpumask we wish
  4761. * to span, and a pointer to a function which identifies what group a CPU
  4762. * belongs to. The return value of group_fn must be a valid index into the
  4763. * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
  4764. * keep track of groups covered with a cpumask_t).
  4765. *
  4766. * init_sched_build_groups will build a circular linked list of the groups
  4767. * covered by the given span, and will set each group's ->cpumask correctly,
  4768. * and ->cpu_power to 0.
  4769. */
  4770. static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
  4771. int (*group_fn)(int cpu))
  4772. {
  4773. struct sched_group *first = NULL, *last = NULL;
  4774. cpumask_t covered = CPU_MASK_NONE;
  4775. int i;
  4776. for_each_cpu_mask(i, span) {
  4777. int group = group_fn(i);
  4778. struct sched_group *sg = &groups[group];
  4779. int j;
  4780. if (cpu_isset(i, covered))
  4781. continue;
  4782. sg->cpumask = CPU_MASK_NONE;
  4783. sg->cpu_power = 0;
  4784. for_each_cpu_mask(j, span) {
  4785. if (group_fn(j) != group)
  4786. continue;
  4787. cpu_set(j, covered);
  4788. cpu_set(j, sg->cpumask);
  4789. }
  4790. if (!first)
  4791. first = sg;
  4792. if (last)
  4793. last->next = sg;
  4794. last = sg;
  4795. }
  4796. last->next = first;
  4797. }
  4798. #define SD_NODES_PER_DOMAIN 16
  4799. /*
  4800. * Self-tuning task migration cost measurement between source and target CPUs.
  4801. *
  4802. * This is done by measuring the cost of manipulating buffers of varying
  4803. * sizes. For a given buffer-size here are the steps that are taken:
  4804. *
  4805. * 1) the source CPU reads+dirties a shared buffer
  4806. * 2) the target CPU reads+dirties the same shared buffer
  4807. *
  4808. * We measure how long they take, in the following 4 scenarios:
  4809. *
  4810. * - source: CPU1, target: CPU2 | cost1
  4811. * - source: CPU2, target: CPU1 | cost2
  4812. * - source: CPU1, target: CPU1 | cost3
  4813. * - source: CPU2, target: CPU2 | cost4
  4814. *
  4815. * We then calculate the cost3+cost4-cost1-cost2 difference - this is
  4816. * the cost of migration.
  4817. *
  4818. * We then start off from a small buffer-size and iterate up to larger
  4819. * buffer sizes, in 5% steps - measuring each buffer-size separately, and
  4820. * doing a maximum search for the cost. (The maximum cost for a migration
  4821. * normally occurs when the working set size is around the effective cache
  4822. * size.)
  4823. */
  4824. #define SEARCH_SCOPE 2
  4825. #define MIN_CACHE_SIZE (64*1024U)
  4826. #define DEFAULT_CACHE_SIZE (5*1024*1024U)
  4827. #define ITERATIONS 1
  4828. #define SIZE_THRESH 130
  4829. #define COST_THRESH 130
  4830. /*
  4831. * The migration cost is a function of 'domain distance'. Domain
  4832. * distance is the number of steps a CPU has to iterate down its
  4833. * domain tree to share a domain with the other CPU. The farther
  4834. * two CPUs are from each other, the larger the distance gets.
  4835. *
  4836. * Note that we use the distance only to cache measurement results,
  4837. * the distance value is not used numerically otherwise. When two
  4838. * CPUs have the same distance it is assumed that the migration
  4839. * cost is the same. (this is a simplification but quite practical)
  4840. */
  4841. #define MAX_DOMAIN_DISTANCE 32
  4842. static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
  4843. { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
  4844. /*
  4845. * Architectures may override the migration cost and thus avoid
  4846. * boot-time calibration. Unit is nanoseconds. Mostly useful for
  4847. * virtualized hardware:
  4848. */
  4849. #ifdef CONFIG_DEFAULT_MIGRATION_COST
  4850. CONFIG_DEFAULT_MIGRATION_COST
  4851. #else
  4852. -1LL
  4853. #endif
  4854. };
  4855. /*
  4856. * Allow override of migration cost - in units of microseconds.
  4857. * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
  4858. * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
  4859. */
  4860. static int __init migration_cost_setup(char *str)
  4861. {
  4862. int ints[MAX_DOMAIN_DISTANCE+1], i;
  4863. str = get_options(str, ARRAY_SIZE(ints), ints);
  4864. printk("#ints: %d\n", ints[0]);
  4865. for (i = 1; i <= ints[0]; i++) {
  4866. migration_cost[i-1] = (unsigned long long)ints[i]*1000;
  4867. printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
  4868. }
  4869. return 1;
  4870. }
  4871. __setup ("migration_cost=", migration_cost_setup);
  4872. /*
  4873. * Global multiplier (divisor) for migration-cutoff values,
  4874. * in percentiles. E.g. use a value of 150 to get 1.5 times
  4875. * longer cache-hot cutoff times.
  4876. *
  4877. * (We scale it from 100 to 128 to long long handling easier.)
  4878. */
  4879. #define MIGRATION_FACTOR_SCALE 128
  4880. static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
  4881. static int __init setup_migration_factor(char *str)
  4882. {
  4883. get_option(&str, &migration_factor);
  4884. migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
  4885. return 1;
  4886. }
  4887. __setup("migration_factor=", setup_migration_factor);
  4888. /*
  4889. * Estimated distance of two CPUs, measured via the number of domains
  4890. * we have to pass for the two CPUs to be in the same span:
  4891. */
  4892. static unsigned long domain_distance(int cpu1, int cpu2)
  4893. {
  4894. unsigned long distance = 0;
  4895. struct sched_domain *sd;
  4896. for_each_domain(cpu1, sd) {
  4897. WARN_ON(!cpu_isset(cpu1, sd->span));
  4898. if (cpu_isset(cpu2, sd->span))
  4899. return distance;
  4900. distance++;
  4901. }
  4902. if (distance >= MAX_DOMAIN_DISTANCE) {
  4903. WARN_ON(1);
  4904. distance = MAX_DOMAIN_DISTANCE-1;
  4905. }
  4906. return distance;
  4907. }
  4908. static unsigned int migration_debug;
  4909. static int __init setup_migration_debug(char *str)
  4910. {
  4911. get_option(&str, &migration_debug);
  4912. return 1;
  4913. }
  4914. __setup("migration_debug=", setup_migration_debug);
  4915. /*
  4916. * Maximum cache-size that the scheduler should try to measure.
  4917. * Architectures with larger caches should tune this up during
  4918. * bootup. Gets used in the domain-setup code (i.e. during SMP
  4919. * bootup).
  4920. */
  4921. unsigned int max_cache_size;
  4922. static int __init setup_max_cache_size(char *str)
  4923. {
  4924. get_option(&str, &max_cache_size);
  4925. return 1;
  4926. }
  4927. __setup("max_cache_size=", setup_max_cache_size);
  4928. /*
  4929. * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
  4930. * is the operation that is timed, so we try to generate unpredictable
  4931. * cachemisses that still end up filling the L2 cache:
  4932. */
  4933. static void touch_cache(void *__cache, unsigned long __size)
  4934. {
  4935. unsigned long size = __size/sizeof(long), chunk1 = size/3,
  4936. chunk2 = 2*size/3;
  4937. unsigned long *cache = __cache;
  4938. int i;
  4939. for (i = 0; i < size/6; i += 8) {
  4940. switch (i % 6) {
  4941. case 0: cache[i]++;
  4942. case 1: cache[size-1-i]++;
  4943. case 2: cache[chunk1-i]++;
  4944. case 3: cache[chunk1+i]++;
  4945. case 4: cache[chunk2-i]++;
  4946. case 5: cache[chunk2+i]++;
  4947. }
  4948. }
  4949. }
  4950. /*
  4951. * Measure the cache-cost of one task migration. Returns in units of nsec.
  4952. */
  4953. static unsigned long long
  4954. measure_one(void *cache, unsigned long size, int source, int target)
  4955. {
  4956. cpumask_t mask, saved_mask;
  4957. unsigned long long t0, t1, t2, t3, cost;
  4958. saved_mask = current->cpus_allowed;
  4959. /*
  4960. * Flush source caches to RAM and invalidate them:
  4961. */
  4962. sched_cacheflush();
  4963. /*
  4964. * Migrate to the source CPU:
  4965. */
  4966. mask = cpumask_of_cpu(source);
  4967. set_cpus_allowed(current, mask);
  4968. WARN_ON(smp_processor_id() != source);
  4969. /*
  4970. * Dirty the working set:
  4971. */
  4972. t0 = sched_clock();
  4973. touch_cache(cache, size);
  4974. t1 = sched_clock();
  4975. /*
  4976. * Migrate to the target CPU, dirty the L2 cache and access
  4977. * the shared buffer. (which represents the working set
  4978. * of a migrated task.)
  4979. */
  4980. mask = cpumask_of_cpu(target);
  4981. set_cpus_allowed(current, mask);
  4982. WARN_ON(smp_processor_id() != target);
  4983. t2 = sched_clock();
  4984. touch_cache(cache, size);
  4985. t3 = sched_clock();
  4986. cost = t1-t0 + t3-t2;
  4987. if (migration_debug >= 2)
  4988. printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
  4989. source, target, t1-t0, t1-t0, t3-t2, cost);
  4990. /*
  4991. * Flush target caches to RAM and invalidate them:
  4992. */
  4993. sched_cacheflush();
  4994. set_cpus_allowed(current, saved_mask);
  4995. return cost;
  4996. }
  4997. /*
  4998. * Measure a series of task migrations and return the average
  4999. * result. Since this code runs early during bootup the system
  5000. * is 'undisturbed' and the average latency makes sense.
  5001. *
  5002. * The algorithm in essence auto-detects the relevant cache-size,
  5003. * so it will properly detect different cachesizes for different
  5004. * cache-hierarchies, depending on how the CPUs are connected.
  5005. *
  5006. * Architectures can prime the upper limit of the search range via
  5007. * max_cache_size, otherwise the search range defaults to 20MB...64K.
  5008. */
  5009. static unsigned long long
  5010. measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
  5011. {
  5012. unsigned long long cost1, cost2;
  5013. int i;
  5014. /*
  5015. * Measure the migration cost of 'size' bytes, over an
  5016. * average of 10 runs:
  5017. *
  5018. * (We perturb the cache size by a small (0..4k)
  5019. * value to compensate size/alignment related artifacts.
  5020. * We also subtract the cost of the operation done on
  5021. * the same CPU.)
  5022. */
  5023. cost1 = 0;
  5024. /*
  5025. * dry run, to make sure we start off cache-cold on cpu1,
  5026. * and to get any vmalloc pagefaults in advance:
  5027. */
  5028. measure_one(cache, size, cpu1, cpu2);
  5029. for (i = 0; i < ITERATIONS; i++)
  5030. cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
  5031. measure_one(cache, size, cpu2, cpu1);
  5032. for (i = 0; i < ITERATIONS; i++)
  5033. cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
  5034. /*
  5035. * (We measure the non-migrating [cached] cost on both
  5036. * cpu1 and cpu2, to handle CPUs with different speeds)
  5037. */
  5038. cost2 = 0;
  5039. measure_one(cache, size, cpu1, cpu1);
  5040. for (i = 0; i < ITERATIONS; i++)
  5041. cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
  5042. measure_one(cache, size, cpu2, cpu2);
  5043. for (i = 0; i < ITERATIONS; i++)
  5044. cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
  5045. /*
  5046. * Get the per-iteration migration cost:
  5047. */
  5048. do_div(cost1, 2*ITERATIONS);
  5049. do_div(cost2, 2*ITERATIONS);
  5050. return cost1 - cost2;
  5051. }
  5052. static unsigned long long measure_migration_cost(int cpu1, int cpu2)
  5053. {
  5054. unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
  5055. unsigned int max_size, size, size_found = 0;
  5056. long long cost = 0, prev_cost;
  5057. void *cache;
  5058. /*
  5059. * Search from max_cache_size*5 down to 64K - the real relevant
  5060. * cachesize has to lie somewhere inbetween.
  5061. */
  5062. if (max_cache_size) {
  5063. max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
  5064. size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
  5065. } else {
  5066. /*
  5067. * Since we have no estimation about the relevant
  5068. * search range
  5069. */
  5070. max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
  5071. size = MIN_CACHE_SIZE;
  5072. }
  5073. if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
  5074. printk("cpu %d and %d not both online!\n", cpu1, cpu2);
  5075. return 0;
  5076. }
  5077. /*
  5078. * Allocate the working set:
  5079. */
  5080. cache = vmalloc(max_size);
  5081. if (!cache) {
  5082. printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
  5083. return 1000000; /* return 1 msec on very small boxen */
  5084. }
  5085. while (size <= max_size) {
  5086. prev_cost = cost;
  5087. cost = measure_cost(cpu1, cpu2, cache, size);
  5088. /*
  5089. * Update the max:
  5090. */
  5091. if (cost > 0) {
  5092. if (max_cost < cost) {
  5093. max_cost = cost;
  5094. size_found = size;
  5095. }
  5096. }
  5097. /*
  5098. * Calculate average fluctuation, we use this to prevent
  5099. * noise from triggering an early break out of the loop:
  5100. */
  5101. fluct = abs(cost - prev_cost);
  5102. avg_fluct = (avg_fluct + fluct)/2;
  5103. if (migration_debug)
  5104. printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
  5105. cpu1, cpu2, size,
  5106. (long)cost / 1000000,
  5107. ((long)cost / 100000) % 10,
  5108. (long)max_cost / 1000000,
  5109. ((long)max_cost / 100000) % 10,
  5110. domain_distance(cpu1, cpu2),
  5111. cost, avg_fluct);
  5112. /*
  5113. * If we iterated at least 20% past the previous maximum,
  5114. * and the cost has dropped by more than 20% already,
  5115. * (taking fluctuations into account) then we assume to
  5116. * have found the maximum and break out of the loop early:
  5117. */
  5118. if (size_found && (size*100 > size_found*SIZE_THRESH))
  5119. if (cost+avg_fluct <= 0 ||
  5120. max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
  5121. if (migration_debug)
  5122. printk("-> found max.\n");
  5123. break;
  5124. }
  5125. /*
  5126. * Increase the cachesize in 10% steps:
  5127. */
  5128. size = size * 10 / 9;
  5129. }
  5130. if (migration_debug)
  5131. printk("[%d][%d] working set size found: %d, cost: %Ld\n",
  5132. cpu1, cpu2, size_found, max_cost);
  5133. vfree(cache);
  5134. /*
  5135. * A task is considered 'cache cold' if at least 2 times
  5136. * the worst-case cost of migration has passed.
  5137. *
  5138. * (this limit is only listened to if the load-balancing
  5139. * situation is 'nice' - if there is a large imbalance we
  5140. * ignore it for the sake of CPU utilization and
  5141. * processing fairness.)
  5142. */
  5143. return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
  5144. }
  5145. static void calibrate_migration_costs(const cpumask_t *cpu_map)
  5146. {
  5147. int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
  5148. unsigned long j0, j1, distance, max_distance = 0;
  5149. struct sched_domain *sd;
  5150. j0 = jiffies;
  5151. /*
  5152. * First pass - calculate the cacheflush times:
  5153. */
  5154. for_each_cpu_mask(cpu1, *cpu_map) {
  5155. for_each_cpu_mask(cpu2, *cpu_map) {
  5156. if (cpu1 == cpu2)
  5157. continue;
  5158. distance = domain_distance(cpu1, cpu2);
  5159. max_distance = max(max_distance, distance);
  5160. /*
  5161. * No result cached yet?
  5162. */
  5163. if (migration_cost[distance] == -1LL)
  5164. migration_cost[distance] =
  5165. measure_migration_cost(cpu1, cpu2);
  5166. }
  5167. }
  5168. /*
  5169. * Second pass - update the sched domain hierarchy with
  5170. * the new cache-hot-time estimations:
  5171. */
  5172. for_each_cpu_mask(cpu, *cpu_map) {
  5173. distance = 0;
  5174. for_each_domain(cpu, sd) {
  5175. sd->cache_hot_time = migration_cost[distance];
  5176. distance++;
  5177. }
  5178. }
  5179. /*
  5180. * Print the matrix:
  5181. */
  5182. if (migration_debug)
  5183. printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
  5184. max_cache_size,
  5185. #ifdef CONFIG_X86
  5186. cpu_khz/1000
  5187. #else
  5188. -1
  5189. #endif
  5190. );
  5191. if (system_state == SYSTEM_BOOTING) {
  5192. printk("migration_cost=");
  5193. for (distance = 0; distance <= max_distance; distance++) {
  5194. if (distance)
  5195. printk(",");
  5196. printk("%ld", (long)migration_cost[distance] / 1000);
  5197. }
  5198. printk("\n");
  5199. }
  5200. j1 = jiffies;
  5201. if (migration_debug)
  5202. printk("migration: %ld seconds\n", (j1-j0)/HZ);
  5203. /*
  5204. * Move back to the original CPU. NUMA-Q gets confused
  5205. * if we migrate to another quad during bootup.
  5206. */
  5207. if (raw_smp_processor_id() != orig_cpu) {
  5208. cpumask_t mask = cpumask_of_cpu(orig_cpu),
  5209. saved_mask = current->cpus_allowed;
  5210. set_cpus_allowed(current, mask);
  5211. set_cpus_allowed(current, saved_mask);
  5212. }
  5213. }
  5214. #ifdef CONFIG_NUMA
  5215. /**
  5216. * find_next_best_node - find the next node to include in a sched_domain
  5217. * @node: node whose sched_domain we're building
  5218. * @used_nodes: nodes already in the sched_domain
  5219. *
  5220. * Find the next node to include in a given scheduling domain. Simply
  5221. * finds the closest node not already in the @used_nodes map.
  5222. *
  5223. * Should use nodemask_t.
  5224. */
  5225. static int find_next_best_node(int node, unsigned long *used_nodes)
  5226. {
  5227. int i, n, val, min_val, best_node = 0;
  5228. min_val = INT_MAX;
  5229. for (i = 0; i < MAX_NUMNODES; i++) {
  5230. /* Start at @node */
  5231. n = (node + i) % MAX_NUMNODES;
  5232. if (!nr_cpus_node(n))
  5233. continue;
  5234. /* Skip already used nodes */
  5235. if (test_bit(n, used_nodes))
  5236. continue;
  5237. /* Simple min distance search */
  5238. val = node_distance(node, n);
  5239. if (val < min_val) {
  5240. min_val = val;
  5241. best_node = n;
  5242. }
  5243. }
  5244. set_bit(best_node, used_nodes);
  5245. return best_node;
  5246. }
  5247. /**
  5248. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5249. * @node: node whose cpumask we're constructing
  5250. * @size: number of nodes to include in this span
  5251. *
  5252. * Given a node, construct a good cpumask for its sched_domain to span. It
  5253. * should be one that prevents unnecessary balancing, but also spreads tasks
  5254. * out optimally.
  5255. */
  5256. static cpumask_t sched_domain_node_span(int node)
  5257. {
  5258. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5259. cpumask_t span, nodemask;
  5260. int i;
  5261. cpus_clear(span);
  5262. bitmap_zero(used_nodes, MAX_NUMNODES);
  5263. nodemask = node_to_cpumask(node);
  5264. cpus_or(span, span, nodemask);
  5265. set_bit(node, used_nodes);
  5266. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5267. int next_node = find_next_best_node(node, used_nodes);
  5268. nodemask = node_to_cpumask(next_node);
  5269. cpus_or(span, span, nodemask);
  5270. }
  5271. return span;
  5272. }
  5273. #endif
  5274. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5275. /*
  5276. * SMT sched-domains:
  5277. */
  5278. #ifdef CONFIG_SCHED_SMT
  5279. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5280. static struct sched_group sched_group_cpus[NR_CPUS];
  5281. static int cpu_to_cpu_group(int cpu)
  5282. {
  5283. return cpu;
  5284. }
  5285. #endif
  5286. /*
  5287. * multi-core sched-domains:
  5288. */
  5289. #ifdef CONFIG_SCHED_MC
  5290. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5291. static struct sched_group *sched_group_core_bycpu[NR_CPUS];
  5292. #endif
  5293. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5294. static int cpu_to_core_group(int cpu)
  5295. {
  5296. return first_cpu(cpu_sibling_map[cpu]);
  5297. }
  5298. #elif defined(CONFIG_SCHED_MC)
  5299. static int cpu_to_core_group(int cpu)
  5300. {
  5301. return cpu;
  5302. }
  5303. #endif
  5304. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5305. static struct sched_group *sched_group_phys_bycpu[NR_CPUS];
  5306. static int cpu_to_phys_group(int cpu)
  5307. {
  5308. #ifdef CONFIG_SCHED_MC
  5309. cpumask_t mask = cpu_coregroup_map(cpu);
  5310. return first_cpu(mask);
  5311. #elif defined(CONFIG_SCHED_SMT)
  5312. return first_cpu(cpu_sibling_map[cpu]);
  5313. #else
  5314. return cpu;
  5315. #endif
  5316. }
  5317. #ifdef CONFIG_NUMA
  5318. /*
  5319. * The init_sched_build_groups can't handle what we want to do with node
  5320. * groups, so roll our own. Now each node has its own list of groups which
  5321. * gets dynamically allocated.
  5322. */
  5323. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5324. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5325. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5326. static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
  5327. static int cpu_to_allnodes_group(int cpu)
  5328. {
  5329. return cpu_to_node(cpu);
  5330. }
  5331. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5332. {
  5333. struct sched_group *sg = group_head;
  5334. int j;
  5335. if (!sg)
  5336. return;
  5337. next_sg:
  5338. for_each_cpu_mask(j, sg->cpumask) {
  5339. struct sched_domain *sd;
  5340. sd = &per_cpu(phys_domains, j);
  5341. if (j != first_cpu(sd->groups->cpumask)) {
  5342. /*
  5343. * Only add "power" once for each
  5344. * physical package.
  5345. */
  5346. continue;
  5347. }
  5348. sg->cpu_power += sd->groups->cpu_power;
  5349. }
  5350. sg = sg->next;
  5351. if (sg != group_head)
  5352. goto next_sg;
  5353. }
  5354. #endif
  5355. /* Free memory allocated for various sched_group structures */
  5356. static void free_sched_groups(const cpumask_t *cpu_map)
  5357. {
  5358. int cpu;
  5359. #ifdef CONFIG_NUMA
  5360. int i;
  5361. for_each_cpu_mask(cpu, *cpu_map) {
  5362. struct sched_group *sched_group_allnodes
  5363. = sched_group_allnodes_bycpu[cpu];
  5364. struct sched_group **sched_group_nodes
  5365. = sched_group_nodes_bycpu[cpu];
  5366. if (sched_group_allnodes) {
  5367. kfree(sched_group_allnodes);
  5368. sched_group_allnodes_bycpu[cpu] = NULL;
  5369. }
  5370. if (!sched_group_nodes)
  5371. continue;
  5372. for (i = 0; i < MAX_NUMNODES; i++) {
  5373. cpumask_t nodemask = node_to_cpumask(i);
  5374. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5375. cpus_and(nodemask, nodemask, *cpu_map);
  5376. if (cpus_empty(nodemask))
  5377. continue;
  5378. if (sg == NULL)
  5379. continue;
  5380. sg = sg->next;
  5381. next_sg:
  5382. oldsg = sg;
  5383. sg = sg->next;
  5384. kfree(oldsg);
  5385. if (oldsg != sched_group_nodes[i])
  5386. goto next_sg;
  5387. }
  5388. kfree(sched_group_nodes);
  5389. sched_group_nodes_bycpu[cpu] = NULL;
  5390. }
  5391. #endif
  5392. for_each_cpu_mask(cpu, *cpu_map) {
  5393. if (sched_group_phys_bycpu[cpu]) {
  5394. kfree(sched_group_phys_bycpu[cpu]);
  5395. sched_group_phys_bycpu[cpu] = NULL;
  5396. }
  5397. #ifdef CONFIG_SCHED_MC
  5398. if (sched_group_core_bycpu[cpu]) {
  5399. kfree(sched_group_core_bycpu[cpu]);
  5400. sched_group_core_bycpu[cpu] = NULL;
  5401. }
  5402. #endif
  5403. }
  5404. }
  5405. /*
  5406. * Build sched domains for a given set of cpus and attach the sched domains
  5407. * to the individual cpus
  5408. */
  5409. static int build_sched_domains(const cpumask_t *cpu_map)
  5410. {
  5411. int i;
  5412. struct sched_group *sched_group_phys = NULL;
  5413. #ifdef CONFIG_SCHED_MC
  5414. struct sched_group *sched_group_core = NULL;
  5415. #endif
  5416. #ifdef CONFIG_NUMA
  5417. struct sched_group **sched_group_nodes = NULL;
  5418. struct sched_group *sched_group_allnodes = NULL;
  5419. /*
  5420. * Allocate the per-node list of sched groups
  5421. */
  5422. sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
  5423. GFP_KERNEL);
  5424. if (!sched_group_nodes) {
  5425. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5426. return -ENOMEM;
  5427. }
  5428. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5429. #endif
  5430. /*
  5431. * Set up domains for cpus specified by the cpu_map.
  5432. */
  5433. for_each_cpu_mask(i, *cpu_map) {
  5434. int group;
  5435. struct sched_domain *sd = NULL, *p;
  5436. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5437. cpus_and(nodemask, nodemask, *cpu_map);
  5438. #ifdef CONFIG_NUMA
  5439. if (cpus_weight(*cpu_map)
  5440. > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5441. if (!sched_group_allnodes) {
  5442. sched_group_allnodes
  5443. = kmalloc(sizeof(struct sched_group)
  5444. * MAX_NUMNODES,
  5445. GFP_KERNEL);
  5446. if (!sched_group_allnodes) {
  5447. printk(KERN_WARNING
  5448. "Can not alloc allnodes sched group\n");
  5449. goto error;
  5450. }
  5451. sched_group_allnodes_bycpu[i]
  5452. = sched_group_allnodes;
  5453. }
  5454. sd = &per_cpu(allnodes_domains, i);
  5455. *sd = SD_ALLNODES_INIT;
  5456. sd->span = *cpu_map;
  5457. group = cpu_to_allnodes_group(i);
  5458. sd->groups = &sched_group_allnodes[group];
  5459. p = sd;
  5460. } else
  5461. p = NULL;
  5462. sd = &per_cpu(node_domains, i);
  5463. *sd = SD_NODE_INIT;
  5464. sd->span = sched_domain_node_span(cpu_to_node(i));
  5465. sd->parent = p;
  5466. cpus_and(sd->span, sd->span, *cpu_map);
  5467. #endif
  5468. if (!sched_group_phys) {
  5469. sched_group_phys
  5470. = kmalloc(sizeof(struct sched_group) * NR_CPUS,
  5471. GFP_KERNEL);
  5472. if (!sched_group_phys) {
  5473. printk (KERN_WARNING "Can not alloc phys sched"
  5474. "group\n");
  5475. goto error;
  5476. }
  5477. sched_group_phys_bycpu[i] = sched_group_phys;
  5478. }
  5479. p = sd;
  5480. sd = &per_cpu(phys_domains, i);
  5481. group = cpu_to_phys_group(i);
  5482. *sd = SD_CPU_INIT;
  5483. sd->span = nodemask;
  5484. sd->parent = p;
  5485. sd->groups = &sched_group_phys[group];
  5486. #ifdef CONFIG_SCHED_MC
  5487. if (!sched_group_core) {
  5488. sched_group_core
  5489. = kmalloc(sizeof(struct sched_group) * NR_CPUS,
  5490. GFP_KERNEL);
  5491. if (!sched_group_core) {
  5492. printk (KERN_WARNING "Can not alloc core sched"
  5493. "group\n");
  5494. goto error;
  5495. }
  5496. sched_group_core_bycpu[i] = sched_group_core;
  5497. }
  5498. p = sd;
  5499. sd = &per_cpu(core_domains, i);
  5500. group = cpu_to_core_group(i);
  5501. *sd = SD_MC_INIT;
  5502. sd->span = cpu_coregroup_map(i);
  5503. cpus_and(sd->span, sd->span, *cpu_map);
  5504. sd->parent = p;
  5505. sd->groups = &sched_group_core[group];
  5506. #endif
  5507. #ifdef CONFIG_SCHED_SMT
  5508. p = sd;
  5509. sd = &per_cpu(cpu_domains, i);
  5510. group = cpu_to_cpu_group(i);
  5511. *sd = SD_SIBLING_INIT;
  5512. sd->span = cpu_sibling_map[i];
  5513. cpus_and(sd->span, sd->span, *cpu_map);
  5514. sd->parent = p;
  5515. sd->groups = &sched_group_cpus[group];
  5516. #endif
  5517. }
  5518. #ifdef CONFIG_SCHED_SMT
  5519. /* Set up CPU (sibling) groups */
  5520. for_each_cpu_mask(i, *cpu_map) {
  5521. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5522. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5523. if (i != first_cpu(this_sibling_map))
  5524. continue;
  5525. init_sched_build_groups(sched_group_cpus, this_sibling_map,
  5526. &cpu_to_cpu_group);
  5527. }
  5528. #endif
  5529. #ifdef CONFIG_SCHED_MC
  5530. /* Set up multi-core groups */
  5531. for_each_cpu_mask(i, *cpu_map) {
  5532. cpumask_t this_core_map = cpu_coregroup_map(i);
  5533. cpus_and(this_core_map, this_core_map, *cpu_map);
  5534. if (i != first_cpu(this_core_map))
  5535. continue;
  5536. init_sched_build_groups(sched_group_core, this_core_map,
  5537. &cpu_to_core_group);
  5538. }
  5539. #endif
  5540. /* Set up physical groups */
  5541. for (i = 0; i < MAX_NUMNODES; i++) {
  5542. cpumask_t nodemask = node_to_cpumask(i);
  5543. cpus_and(nodemask, nodemask, *cpu_map);
  5544. if (cpus_empty(nodemask))
  5545. continue;
  5546. init_sched_build_groups(sched_group_phys, nodemask,
  5547. &cpu_to_phys_group);
  5548. }
  5549. #ifdef CONFIG_NUMA
  5550. /* Set up node groups */
  5551. if (sched_group_allnodes)
  5552. init_sched_build_groups(sched_group_allnodes, *cpu_map,
  5553. &cpu_to_allnodes_group);
  5554. for (i = 0; i < MAX_NUMNODES; i++) {
  5555. /* Set up node groups */
  5556. struct sched_group *sg, *prev;
  5557. cpumask_t nodemask = node_to_cpumask(i);
  5558. cpumask_t domainspan;
  5559. cpumask_t covered = CPU_MASK_NONE;
  5560. int j;
  5561. cpus_and(nodemask, nodemask, *cpu_map);
  5562. if (cpus_empty(nodemask)) {
  5563. sched_group_nodes[i] = NULL;
  5564. continue;
  5565. }
  5566. domainspan = sched_domain_node_span(i);
  5567. cpus_and(domainspan, domainspan, *cpu_map);
  5568. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5569. if (!sg) {
  5570. printk(KERN_WARNING "Can not alloc domain group for "
  5571. "node %d\n", i);
  5572. goto error;
  5573. }
  5574. sched_group_nodes[i] = sg;
  5575. for_each_cpu_mask(j, nodemask) {
  5576. struct sched_domain *sd;
  5577. sd = &per_cpu(node_domains, j);
  5578. sd->groups = sg;
  5579. }
  5580. sg->cpu_power = 0;
  5581. sg->cpumask = nodemask;
  5582. sg->next = sg;
  5583. cpus_or(covered, covered, nodemask);
  5584. prev = sg;
  5585. for (j = 0; j < MAX_NUMNODES; j++) {
  5586. cpumask_t tmp, notcovered;
  5587. int n = (i + j) % MAX_NUMNODES;
  5588. cpus_complement(notcovered, covered);
  5589. cpus_and(tmp, notcovered, *cpu_map);
  5590. cpus_and(tmp, tmp, domainspan);
  5591. if (cpus_empty(tmp))
  5592. break;
  5593. nodemask = node_to_cpumask(n);
  5594. cpus_and(tmp, tmp, nodemask);
  5595. if (cpus_empty(tmp))
  5596. continue;
  5597. sg = kmalloc_node(sizeof(struct sched_group),
  5598. GFP_KERNEL, i);
  5599. if (!sg) {
  5600. printk(KERN_WARNING
  5601. "Can not alloc domain group for node %d\n", j);
  5602. goto error;
  5603. }
  5604. sg->cpu_power = 0;
  5605. sg->cpumask = tmp;
  5606. sg->next = prev->next;
  5607. cpus_or(covered, covered, tmp);
  5608. prev->next = sg;
  5609. prev = sg;
  5610. }
  5611. }
  5612. #endif
  5613. /* Calculate CPU power for physical packages and nodes */
  5614. #ifdef CONFIG_SCHED_SMT
  5615. for_each_cpu_mask(i, *cpu_map) {
  5616. struct sched_domain *sd;
  5617. sd = &per_cpu(cpu_domains, i);
  5618. sd->groups->cpu_power = SCHED_LOAD_SCALE;
  5619. }
  5620. #endif
  5621. #ifdef CONFIG_SCHED_MC
  5622. for_each_cpu_mask(i, *cpu_map) {
  5623. int power;
  5624. struct sched_domain *sd;
  5625. sd = &per_cpu(core_domains, i);
  5626. if (sched_smt_power_savings)
  5627. power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
  5628. else
  5629. power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
  5630. * SCHED_LOAD_SCALE / 10;
  5631. sd->groups->cpu_power = power;
  5632. }
  5633. #endif
  5634. for_each_cpu_mask(i, *cpu_map) {
  5635. struct sched_domain *sd;
  5636. #ifdef CONFIG_SCHED_MC
  5637. sd = &per_cpu(phys_domains, i);
  5638. if (i != first_cpu(sd->groups->cpumask))
  5639. continue;
  5640. sd->groups->cpu_power = 0;
  5641. if (sched_mc_power_savings || sched_smt_power_savings) {
  5642. int j;
  5643. for_each_cpu_mask(j, sd->groups->cpumask) {
  5644. struct sched_domain *sd1;
  5645. sd1 = &per_cpu(core_domains, j);
  5646. /*
  5647. * for each core we will add once
  5648. * to the group in physical domain
  5649. */
  5650. if (j != first_cpu(sd1->groups->cpumask))
  5651. continue;
  5652. if (sched_smt_power_savings)
  5653. sd->groups->cpu_power += sd1->groups->cpu_power;
  5654. else
  5655. sd->groups->cpu_power += SCHED_LOAD_SCALE;
  5656. }
  5657. } else
  5658. /*
  5659. * This has to be < 2 * SCHED_LOAD_SCALE
  5660. * Lets keep it SCHED_LOAD_SCALE, so that
  5661. * while calculating NUMA group's cpu_power
  5662. * we can simply do
  5663. * numa_group->cpu_power += phys_group->cpu_power;
  5664. *
  5665. * See "only add power once for each physical pkg"
  5666. * comment below
  5667. */
  5668. sd->groups->cpu_power = SCHED_LOAD_SCALE;
  5669. #else
  5670. int power;
  5671. sd = &per_cpu(phys_domains, i);
  5672. if (sched_smt_power_savings)
  5673. power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
  5674. else
  5675. power = SCHED_LOAD_SCALE;
  5676. sd->groups->cpu_power = power;
  5677. #endif
  5678. }
  5679. #ifdef CONFIG_NUMA
  5680. for (i = 0; i < MAX_NUMNODES; i++)
  5681. init_numa_sched_groups_power(sched_group_nodes[i]);
  5682. if (sched_group_allnodes) {
  5683. int group = cpu_to_allnodes_group(first_cpu(*cpu_map));
  5684. struct sched_group *sg = &sched_group_allnodes[group];
  5685. init_numa_sched_groups_power(sg);
  5686. }
  5687. #endif
  5688. /* Attach the domains */
  5689. for_each_cpu_mask(i, *cpu_map) {
  5690. struct sched_domain *sd;
  5691. #ifdef CONFIG_SCHED_SMT
  5692. sd = &per_cpu(cpu_domains, i);
  5693. #elif defined(CONFIG_SCHED_MC)
  5694. sd = &per_cpu(core_domains, i);
  5695. #else
  5696. sd = &per_cpu(phys_domains, i);
  5697. #endif
  5698. cpu_attach_domain(sd, i);
  5699. }
  5700. /*
  5701. * Tune cache-hot values:
  5702. */
  5703. calibrate_migration_costs(cpu_map);
  5704. return 0;
  5705. error:
  5706. free_sched_groups(cpu_map);
  5707. return -ENOMEM;
  5708. }
  5709. /*
  5710. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5711. */
  5712. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5713. {
  5714. cpumask_t cpu_default_map;
  5715. int err;
  5716. /*
  5717. * Setup mask for cpus without special case scheduling requirements.
  5718. * For now this just excludes isolated cpus, but could be used to
  5719. * exclude other special cases in the future.
  5720. */
  5721. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5722. err = build_sched_domains(&cpu_default_map);
  5723. return err;
  5724. }
  5725. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5726. {
  5727. free_sched_groups(cpu_map);
  5728. }
  5729. /*
  5730. * Detach sched domains from a group of cpus specified in cpu_map
  5731. * These cpus will now be attached to the NULL domain
  5732. */
  5733. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5734. {
  5735. int i;
  5736. for_each_cpu_mask(i, *cpu_map)
  5737. cpu_attach_domain(NULL, i);
  5738. synchronize_sched();
  5739. arch_destroy_sched_domains(cpu_map);
  5740. }
  5741. /*
  5742. * Partition sched domains as specified by the cpumasks below.
  5743. * This attaches all cpus from the cpumasks to the NULL domain,
  5744. * waits for a RCU quiescent period, recalculates sched
  5745. * domain information and then attaches them back to the
  5746. * correct sched domains
  5747. * Call with hotplug lock held
  5748. */
  5749. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5750. {
  5751. cpumask_t change_map;
  5752. int err = 0;
  5753. cpus_and(*partition1, *partition1, cpu_online_map);
  5754. cpus_and(*partition2, *partition2, cpu_online_map);
  5755. cpus_or(change_map, *partition1, *partition2);
  5756. /* Detach sched domains from all of the affected cpus */
  5757. detach_destroy_domains(&change_map);
  5758. if (!cpus_empty(*partition1))
  5759. err = build_sched_domains(partition1);
  5760. if (!err && !cpus_empty(*partition2))
  5761. err = build_sched_domains(partition2);
  5762. return err;
  5763. }
  5764. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5765. int arch_reinit_sched_domains(void)
  5766. {
  5767. int err;
  5768. lock_cpu_hotplug();
  5769. detach_destroy_domains(&cpu_online_map);
  5770. err = arch_init_sched_domains(&cpu_online_map);
  5771. unlock_cpu_hotplug();
  5772. return err;
  5773. }
  5774. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5775. {
  5776. int ret;
  5777. if (buf[0] != '0' && buf[0] != '1')
  5778. return -EINVAL;
  5779. if (smt)
  5780. sched_smt_power_savings = (buf[0] == '1');
  5781. else
  5782. sched_mc_power_savings = (buf[0] == '1');
  5783. ret = arch_reinit_sched_domains();
  5784. return ret ? ret : count;
  5785. }
  5786. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5787. {
  5788. int err = 0;
  5789. #ifdef CONFIG_SCHED_SMT
  5790. if (smt_capable())
  5791. err = sysfs_create_file(&cls->kset.kobj,
  5792. &attr_sched_smt_power_savings.attr);
  5793. #endif
  5794. #ifdef CONFIG_SCHED_MC
  5795. if (!err && mc_capable())
  5796. err = sysfs_create_file(&cls->kset.kobj,
  5797. &attr_sched_mc_power_savings.attr);
  5798. #endif
  5799. return err;
  5800. }
  5801. #endif
  5802. #ifdef CONFIG_SCHED_MC
  5803. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5804. {
  5805. return sprintf(page, "%u\n", sched_mc_power_savings);
  5806. }
  5807. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5808. const char *buf, size_t count)
  5809. {
  5810. return sched_power_savings_store(buf, count, 0);
  5811. }
  5812. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5813. sched_mc_power_savings_store);
  5814. #endif
  5815. #ifdef CONFIG_SCHED_SMT
  5816. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5817. {
  5818. return sprintf(page, "%u\n", sched_smt_power_savings);
  5819. }
  5820. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5821. const char *buf, size_t count)
  5822. {
  5823. return sched_power_savings_store(buf, count, 1);
  5824. }
  5825. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5826. sched_smt_power_savings_store);
  5827. #endif
  5828. #ifdef CONFIG_HOTPLUG_CPU
  5829. /*
  5830. * Force a reinitialization of the sched domains hierarchy. The domains
  5831. * and groups cannot be updated in place without racing with the balancing
  5832. * code, so we temporarily attach all running cpus to the NULL domain
  5833. * which will prevent rebalancing while the sched domains are recalculated.
  5834. */
  5835. static int update_sched_domains(struct notifier_block *nfb,
  5836. unsigned long action, void *hcpu)
  5837. {
  5838. switch (action) {
  5839. case CPU_UP_PREPARE:
  5840. case CPU_DOWN_PREPARE:
  5841. detach_destroy_domains(&cpu_online_map);
  5842. return NOTIFY_OK;
  5843. case CPU_UP_CANCELED:
  5844. case CPU_DOWN_FAILED:
  5845. case CPU_ONLINE:
  5846. case CPU_DEAD:
  5847. /*
  5848. * Fall through and re-initialise the domains.
  5849. */
  5850. break;
  5851. default:
  5852. return NOTIFY_DONE;
  5853. }
  5854. /* The hotplug lock is already held by cpu_up/cpu_down */
  5855. arch_init_sched_domains(&cpu_online_map);
  5856. return NOTIFY_OK;
  5857. }
  5858. #endif
  5859. void __init sched_init_smp(void)
  5860. {
  5861. lock_cpu_hotplug();
  5862. arch_init_sched_domains(&cpu_online_map);
  5863. unlock_cpu_hotplug();
  5864. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5865. hotcpu_notifier(update_sched_domains, 0);
  5866. }
  5867. #else
  5868. void __init sched_init_smp(void)
  5869. {
  5870. }
  5871. #endif /* CONFIG_SMP */
  5872. int in_sched_functions(unsigned long addr)
  5873. {
  5874. /* Linker adds these: start and end of __sched functions */
  5875. extern char __sched_text_start[], __sched_text_end[];
  5876. return in_lock_functions(addr) ||
  5877. (addr >= (unsigned long)__sched_text_start
  5878. && addr < (unsigned long)__sched_text_end);
  5879. }
  5880. void __init sched_init(void)
  5881. {
  5882. int i, j, k;
  5883. for_each_possible_cpu(i) {
  5884. struct prio_array *array;
  5885. struct rq *rq;
  5886. rq = cpu_rq(i);
  5887. spin_lock_init(&rq->lock);
  5888. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5889. rq->nr_running = 0;
  5890. rq->active = rq->arrays;
  5891. rq->expired = rq->arrays + 1;
  5892. rq->best_expired_prio = MAX_PRIO;
  5893. #ifdef CONFIG_SMP
  5894. rq->sd = NULL;
  5895. for (j = 1; j < 3; j++)
  5896. rq->cpu_load[j] = 0;
  5897. rq->active_balance = 0;
  5898. rq->push_cpu = 0;
  5899. rq->cpu = i;
  5900. rq->migration_thread = NULL;
  5901. INIT_LIST_HEAD(&rq->migration_queue);
  5902. #endif
  5903. atomic_set(&rq->nr_iowait, 0);
  5904. for (j = 0; j < 2; j++) {
  5905. array = rq->arrays + j;
  5906. for (k = 0; k < MAX_PRIO; k++) {
  5907. INIT_LIST_HEAD(array->queue + k);
  5908. __clear_bit(k, array->bitmap);
  5909. }
  5910. // delimiter for bitsearch
  5911. __set_bit(MAX_PRIO, array->bitmap);
  5912. }
  5913. }
  5914. set_load_weight(&init_task);
  5915. #ifdef CONFIG_RT_MUTEXES
  5916. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5917. #endif
  5918. /*
  5919. * The boot idle thread does lazy MMU switching as well:
  5920. */
  5921. atomic_inc(&init_mm.mm_count);
  5922. enter_lazy_tlb(&init_mm, current);
  5923. /*
  5924. * Make us the idle thread. Technically, schedule() should not be
  5925. * called from this thread, however somewhere below it might be,
  5926. * but because we are the idle thread, we just pick up running again
  5927. * when this runqueue becomes "idle".
  5928. */
  5929. init_idle(current, smp_processor_id());
  5930. }
  5931. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5932. void __might_sleep(char *file, int line)
  5933. {
  5934. #ifdef in_atomic
  5935. static unsigned long prev_jiffy; /* ratelimiting */
  5936. if ((in_atomic() || irqs_disabled()) &&
  5937. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5938. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5939. return;
  5940. prev_jiffy = jiffies;
  5941. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5942. " context at %s:%d\n", file, line);
  5943. printk("in_atomic():%d, irqs_disabled():%d\n",
  5944. in_atomic(), irqs_disabled());
  5945. dump_stack();
  5946. }
  5947. #endif
  5948. }
  5949. EXPORT_SYMBOL(__might_sleep);
  5950. #endif
  5951. #ifdef CONFIG_MAGIC_SYSRQ
  5952. void normalize_rt_tasks(void)
  5953. {
  5954. struct prio_array *array;
  5955. struct task_struct *p;
  5956. unsigned long flags;
  5957. struct rq *rq;
  5958. read_lock_irq(&tasklist_lock);
  5959. for_each_process(p) {
  5960. if (!rt_task(p))
  5961. continue;
  5962. spin_lock_irqsave(&p->pi_lock, flags);
  5963. rq = __task_rq_lock(p);
  5964. array = p->array;
  5965. if (array)
  5966. deactivate_task(p, task_rq(p));
  5967. __setscheduler(p, SCHED_NORMAL, 0);
  5968. if (array) {
  5969. __activate_task(p, task_rq(p));
  5970. resched_task(rq->curr);
  5971. }
  5972. __task_rq_unlock(rq);
  5973. spin_unlock_irqrestore(&p->pi_lock, flags);
  5974. }
  5975. read_unlock_irq(&tasklist_lock);
  5976. }
  5977. #endif /* CONFIG_MAGIC_SYSRQ */
  5978. #ifdef CONFIG_IA64
  5979. /*
  5980. * These functions are only useful for the IA64 MCA handling.
  5981. *
  5982. * They can only be called when the whole system has been
  5983. * stopped - every CPU needs to be quiescent, and no scheduling
  5984. * activity can take place. Using them for anything else would
  5985. * be a serious bug, and as a result, they aren't even visible
  5986. * under any other configuration.
  5987. */
  5988. /**
  5989. * curr_task - return the current task for a given cpu.
  5990. * @cpu: the processor in question.
  5991. *
  5992. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5993. */
  5994. struct task_struct *curr_task(int cpu)
  5995. {
  5996. return cpu_curr(cpu);
  5997. }
  5998. /**
  5999. * set_curr_task - set the current task for a given cpu.
  6000. * @cpu: the processor in question.
  6001. * @p: the task pointer to set.
  6002. *
  6003. * Description: This function must only be used when non-maskable interrupts
  6004. * are serviced on a separate stack. It allows the architecture to switch the
  6005. * notion of the current task on a cpu in a non-blocking manner. This function
  6006. * must be called with all CPU's synchronized, and interrupts disabled, the
  6007. * and caller must save the original value of the current task (see
  6008. * curr_task() above) and restore that value before reenabling interrupts and
  6009. * re-starting the system.
  6010. *
  6011. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6012. */
  6013. void set_curr_task(int cpu, struct task_struct *p)
  6014. {
  6015. cpu_curr(cpu) = p;
  6016. }
  6017. #endif