fork.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/smp_lock.h>
  16. #include <linux/module.h>
  17. #include <linux/vmalloc.h>
  18. #include <linux/completion.h>
  19. #include <linux/namespace.h>
  20. #include <linux/personality.h>
  21. #include <linux/mempolicy.h>
  22. #include <linux/sem.h>
  23. #include <linux/file.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/fs.h>
  28. #include <linux/capability.h>
  29. #include <linux/cpu.h>
  30. #include <linux/cpuset.h>
  31. #include <linux/security.h>
  32. #include <linux/swap.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/jiffies.h>
  35. #include <linux/futex.h>
  36. #include <linux/rcupdate.h>
  37. #include <linux/ptrace.h>
  38. #include <linux/mount.h>
  39. #include <linux/audit.h>
  40. #include <linux/profile.h>
  41. #include <linux/rmap.h>
  42. #include <linux/acct.h>
  43. #include <linux/cn_proc.h>
  44. #include <linux/delayacct.h>
  45. #include <linux/taskstats_kern.h>
  46. #include <linux/random.h>
  47. #include <asm/pgtable.h>
  48. #include <asm/pgalloc.h>
  49. #include <asm/uaccess.h>
  50. #include <asm/mmu_context.h>
  51. #include <asm/cacheflush.h>
  52. #include <asm/tlbflush.h>
  53. /*
  54. * Protected counters by write_lock_irq(&tasklist_lock)
  55. */
  56. unsigned long total_forks; /* Handle normal Linux uptimes. */
  57. int nr_threads; /* The idle threads do not count.. */
  58. int max_threads; /* tunable limit on nr_threads */
  59. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  60. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  61. int nr_processes(void)
  62. {
  63. int cpu;
  64. int total = 0;
  65. for_each_online_cpu(cpu)
  66. total += per_cpu(process_counts, cpu);
  67. return total;
  68. }
  69. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  70. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  71. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  72. static kmem_cache_t *task_struct_cachep;
  73. #endif
  74. /* SLAB cache for signal_struct structures (tsk->signal) */
  75. static kmem_cache_t *signal_cachep;
  76. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  77. kmem_cache_t *sighand_cachep;
  78. /* SLAB cache for files_struct structures (tsk->files) */
  79. kmem_cache_t *files_cachep;
  80. /* SLAB cache for fs_struct structures (tsk->fs) */
  81. kmem_cache_t *fs_cachep;
  82. /* SLAB cache for vm_area_struct structures */
  83. kmem_cache_t *vm_area_cachep;
  84. /* SLAB cache for mm_struct structures (tsk->mm) */
  85. static kmem_cache_t *mm_cachep;
  86. void free_task(struct task_struct *tsk)
  87. {
  88. free_thread_info(tsk->thread_info);
  89. rt_mutex_debug_task_free(tsk);
  90. free_task_struct(tsk);
  91. }
  92. EXPORT_SYMBOL(free_task);
  93. void __put_task_struct(struct task_struct *tsk)
  94. {
  95. WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
  96. WARN_ON(atomic_read(&tsk->usage));
  97. WARN_ON(tsk == current);
  98. security_task_free(tsk);
  99. free_uid(tsk->user);
  100. put_group_info(tsk->group_info);
  101. delayacct_tsk_free(tsk);
  102. if (!profile_handoff_task(tsk))
  103. free_task(tsk);
  104. }
  105. void __init fork_init(unsigned long mempages)
  106. {
  107. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  108. #ifndef ARCH_MIN_TASKALIGN
  109. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  110. #endif
  111. /* create a slab on which task_structs can be allocated */
  112. task_struct_cachep =
  113. kmem_cache_create("task_struct", sizeof(struct task_struct),
  114. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
  115. #endif
  116. /*
  117. * The default maximum number of threads is set to a safe
  118. * value: the thread structures can take up at most half
  119. * of memory.
  120. */
  121. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  122. /*
  123. * we need to allow at least 20 threads to boot a system
  124. */
  125. if(max_threads < 20)
  126. max_threads = 20;
  127. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  128. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  129. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  130. init_task.signal->rlim[RLIMIT_NPROC];
  131. }
  132. static struct task_struct *dup_task_struct(struct task_struct *orig)
  133. {
  134. struct task_struct *tsk;
  135. struct thread_info *ti;
  136. prepare_to_copy(orig);
  137. tsk = alloc_task_struct();
  138. if (!tsk)
  139. return NULL;
  140. ti = alloc_thread_info(tsk);
  141. if (!ti) {
  142. free_task_struct(tsk);
  143. return NULL;
  144. }
  145. *tsk = *orig;
  146. tsk->thread_info = ti;
  147. setup_thread_stack(tsk, orig);
  148. #ifdef CONFIG_CC_STACKPROTECTOR
  149. tsk->stack_canary = get_random_int();
  150. #endif
  151. /* One for us, one for whoever does the "release_task()" (usually parent) */
  152. atomic_set(&tsk->usage,2);
  153. atomic_set(&tsk->fs_excl, 0);
  154. tsk->btrace_seq = 0;
  155. tsk->splice_pipe = NULL;
  156. return tsk;
  157. }
  158. #ifdef CONFIG_MMU
  159. static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  160. {
  161. struct vm_area_struct *mpnt, *tmp, **pprev;
  162. struct rb_node **rb_link, *rb_parent;
  163. int retval;
  164. unsigned long charge;
  165. struct mempolicy *pol;
  166. down_write(&oldmm->mmap_sem);
  167. flush_cache_mm(oldmm);
  168. /*
  169. * Not linked in yet - no deadlock potential:
  170. */
  171. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  172. mm->locked_vm = 0;
  173. mm->mmap = NULL;
  174. mm->mmap_cache = NULL;
  175. mm->free_area_cache = oldmm->mmap_base;
  176. mm->cached_hole_size = ~0UL;
  177. mm->map_count = 0;
  178. cpus_clear(mm->cpu_vm_mask);
  179. mm->mm_rb = RB_ROOT;
  180. rb_link = &mm->mm_rb.rb_node;
  181. rb_parent = NULL;
  182. pprev = &mm->mmap;
  183. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  184. struct file *file;
  185. if (mpnt->vm_flags & VM_DONTCOPY) {
  186. long pages = vma_pages(mpnt);
  187. mm->total_vm -= pages;
  188. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  189. -pages);
  190. continue;
  191. }
  192. charge = 0;
  193. if (mpnt->vm_flags & VM_ACCOUNT) {
  194. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  195. if (security_vm_enough_memory(len))
  196. goto fail_nomem;
  197. charge = len;
  198. }
  199. tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
  200. if (!tmp)
  201. goto fail_nomem;
  202. *tmp = *mpnt;
  203. pol = mpol_copy(vma_policy(mpnt));
  204. retval = PTR_ERR(pol);
  205. if (IS_ERR(pol))
  206. goto fail_nomem_policy;
  207. vma_set_policy(tmp, pol);
  208. tmp->vm_flags &= ~VM_LOCKED;
  209. tmp->vm_mm = mm;
  210. tmp->vm_next = NULL;
  211. anon_vma_link(tmp);
  212. file = tmp->vm_file;
  213. if (file) {
  214. struct inode *inode = file->f_dentry->d_inode;
  215. get_file(file);
  216. if (tmp->vm_flags & VM_DENYWRITE)
  217. atomic_dec(&inode->i_writecount);
  218. /* insert tmp into the share list, just after mpnt */
  219. spin_lock(&file->f_mapping->i_mmap_lock);
  220. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  221. flush_dcache_mmap_lock(file->f_mapping);
  222. vma_prio_tree_add(tmp, mpnt);
  223. flush_dcache_mmap_unlock(file->f_mapping);
  224. spin_unlock(&file->f_mapping->i_mmap_lock);
  225. }
  226. /*
  227. * Link in the new vma and copy the page table entries.
  228. */
  229. *pprev = tmp;
  230. pprev = &tmp->vm_next;
  231. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  232. rb_link = &tmp->vm_rb.rb_right;
  233. rb_parent = &tmp->vm_rb;
  234. mm->map_count++;
  235. retval = copy_page_range(mm, oldmm, mpnt);
  236. if (tmp->vm_ops && tmp->vm_ops->open)
  237. tmp->vm_ops->open(tmp);
  238. if (retval)
  239. goto out;
  240. }
  241. retval = 0;
  242. out:
  243. up_write(&mm->mmap_sem);
  244. flush_tlb_mm(oldmm);
  245. up_write(&oldmm->mmap_sem);
  246. return retval;
  247. fail_nomem_policy:
  248. kmem_cache_free(vm_area_cachep, tmp);
  249. fail_nomem:
  250. retval = -ENOMEM;
  251. vm_unacct_memory(charge);
  252. goto out;
  253. }
  254. static inline int mm_alloc_pgd(struct mm_struct * mm)
  255. {
  256. mm->pgd = pgd_alloc(mm);
  257. if (unlikely(!mm->pgd))
  258. return -ENOMEM;
  259. return 0;
  260. }
  261. static inline void mm_free_pgd(struct mm_struct * mm)
  262. {
  263. pgd_free(mm->pgd);
  264. }
  265. #else
  266. #define dup_mmap(mm, oldmm) (0)
  267. #define mm_alloc_pgd(mm) (0)
  268. #define mm_free_pgd(mm)
  269. #endif /* CONFIG_MMU */
  270. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  271. #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
  272. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  273. #include <linux/init_task.h>
  274. static struct mm_struct * mm_init(struct mm_struct * mm)
  275. {
  276. atomic_set(&mm->mm_users, 1);
  277. atomic_set(&mm->mm_count, 1);
  278. init_rwsem(&mm->mmap_sem);
  279. INIT_LIST_HEAD(&mm->mmlist);
  280. mm->core_waiters = 0;
  281. mm->nr_ptes = 0;
  282. set_mm_counter(mm, file_rss, 0);
  283. set_mm_counter(mm, anon_rss, 0);
  284. spin_lock_init(&mm->page_table_lock);
  285. rwlock_init(&mm->ioctx_list_lock);
  286. mm->ioctx_list = NULL;
  287. mm->free_area_cache = TASK_UNMAPPED_BASE;
  288. mm->cached_hole_size = ~0UL;
  289. if (likely(!mm_alloc_pgd(mm))) {
  290. mm->def_flags = 0;
  291. return mm;
  292. }
  293. free_mm(mm);
  294. return NULL;
  295. }
  296. /*
  297. * Allocate and initialize an mm_struct.
  298. */
  299. struct mm_struct * mm_alloc(void)
  300. {
  301. struct mm_struct * mm;
  302. mm = allocate_mm();
  303. if (mm) {
  304. memset(mm, 0, sizeof(*mm));
  305. mm = mm_init(mm);
  306. }
  307. return mm;
  308. }
  309. /*
  310. * Called when the last reference to the mm
  311. * is dropped: either by a lazy thread or by
  312. * mmput. Free the page directory and the mm.
  313. */
  314. void fastcall __mmdrop(struct mm_struct *mm)
  315. {
  316. BUG_ON(mm == &init_mm);
  317. mm_free_pgd(mm);
  318. destroy_context(mm);
  319. free_mm(mm);
  320. }
  321. /*
  322. * Decrement the use count and release all resources for an mm.
  323. */
  324. void mmput(struct mm_struct *mm)
  325. {
  326. might_sleep();
  327. if (atomic_dec_and_test(&mm->mm_users)) {
  328. exit_aio(mm);
  329. exit_mmap(mm);
  330. if (!list_empty(&mm->mmlist)) {
  331. spin_lock(&mmlist_lock);
  332. list_del(&mm->mmlist);
  333. spin_unlock(&mmlist_lock);
  334. }
  335. put_swap_token(mm);
  336. mmdrop(mm);
  337. }
  338. }
  339. EXPORT_SYMBOL_GPL(mmput);
  340. /**
  341. * get_task_mm - acquire a reference to the task's mm
  342. *
  343. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  344. * this kernel workthread has transiently adopted a user mm with use_mm,
  345. * to do its AIO) is not set and if so returns a reference to it, after
  346. * bumping up the use count. User must release the mm via mmput()
  347. * after use. Typically used by /proc and ptrace.
  348. */
  349. struct mm_struct *get_task_mm(struct task_struct *task)
  350. {
  351. struct mm_struct *mm;
  352. task_lock(task);
  353. mm = task->mm;
  354. if (mm) {
  355. if (task->flags & PF_BORROWED_MM)
  356. mm = NULL;
  357. else
  358. atomic_inc(&mm->mm_users);
  359. }
  360. task_unlock(task);
  361. return mm;
  362. }
  363. EXPORT_SYMBOL_GPL(get_task_mm);
  364. /* Please note the differences between mmput and mm_release.
  365. * mmput is called whenever we stop holding onto a mm_struct,
  366. * error success whatever.
  367. *
  368. * mm_release is called after a mm_struct has been removed
  369. * from the current process.
  370. *
  371. * This difference is important for error handling, when we
  372. * only half set up a mm_struct for a new process and need to restore
  373. * the old one. Because we mmput the new mm_struct before
  374. * restoring the old one. . .
  375. * Eric Biederman 10 January 1998
  376. */
  377. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  378. {
  379. struct completion *vfork_done = tsk->vfork_done;
  380. /* Get rid of any cached register state */
  381. deactivate_mm(tsk, mm);
  382. /* notify parent sleeping on vfork() */
  383. if (vfork_done) {
  384. tsk->vfork_done = NULL;
  385. complete(vfork_done);
  386. }
  387. if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
  388. u32 __user * tidptr = tsk->clear_child_tid;
  389. tsk->clear_child_tid = NULL;
  390. /*
  391. * We don't check the error code - if userspace has
  392. * not set up a proper pointer then tough luck.
  393. */
  394. put_user(0, tidptr);
  395. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  396. }
  397. }
  398. /*
  399. * Allocate a new mm structure and copy contents from the
  400. * mm structure of the passed in task structure.
  401. */
  402. static struct mm_struct *dup_mm(struct task_struct *tsk)
  403. {
  404. struct mm_struct *mm, *oldmm = current->mm;
  405. int err;
  406. if (!oldmm)
  407. return NULL;
  408. mm = allocate_mm();
  409. if (!mm)
  410. goto fail_nomem;
  411. memcpy(mm, oldmm, sizeof(*mm));
  412. if (!mm_init(mm))
  413. goto fail_nomem;
  414. if (init_new_context(tsk, mm))
  415. goto fail_nocontext;
  416. err = dup_mmap(mm, oldmm);
  417. if (err)
  418. goto free_pt;
  419. mm->hiwater_rss = get_mm_rss(mm);
  420. mm->hiwater_vm = mm->total_vm;
  421. return mm;
  422. free_pt:
  423. mmput(mm);
  424. fail_nomem:
  425. return NULL;
  426. fail_nocontext:
  427. /*
  428. * If init_new_context() failed, we cannot use mmput() to free the mm
  429. * because it calls destroy_context()
  430. */
  431. mm_free_pgd(mm);
  432. free_mm(mm);
  433. return NULL;
  434. }
  435. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  436. {
  437. struct mm_struct * mm, *oldmm;
  438. int retval;
  439. tsk->min_flt = tsk->maj_flt = 0;
  440. tsk->nvcsw = tsk->nivcsw = 0;
  441. tsk->mm = NULL;
  442. tsk->active_mm = NULL;
  443. /*
  444. * Are we cloning a kernel thread?
  445. *
  446. * We need to steal a active VM for that..
  447. */
  448. oldmm = current->mm;
  449. if (!oldmm)
  450. return 0;
  451. if (clone_flags & CLONE_VM) {
  452. atomic_inc(&oldmm->mm_users);
  453. mm = oldmm;
  454. goto good_mm;
  455. }
  456. retval = -ENOMEM;
  457. mm = dup_mm(tsk);
  458. if (!mm)
  459. goto fail_nomem;
  460. good_mm:
  461. tsk->mm = mm;
  462. tsk->active_mm = mm;
  463. return 0;
  464. fail_nomem:
  465. return retval;
  466. }
  467. static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  468. {
  469. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  470. /* We don't need to lock fs - think why ;-) */
  471. if (fs) {
  472. atomic_set(&fs->count, 1);
  473. rwlock_init(&fs->lock);
  474. fs->umask = old->umask;
  475. read_lock(&old->lock);
  476. fs->rootmnt = mntget(old->rootmnt);
  477. fs->root = dget(old->root);
  478. fs->pwdmnt = mntget(old->pwdmnt);
  479. fs->pwd = dget(old->pwd);
  480. if (old->altroot) {
  481. fs->altrootmnt = mntget(old->altrootmnt);
  482. fs->altroot = dget(old->altroot);
  483. } else {
  484. fs->altrootmnt = NULL;
  485. fs->altroot = NULL;
  486. }
  487. read_unlock(&old->lock);
  488. }
  489. return fs;
  490. }
  491. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  492. {
  493. return __copy_fs_struct(old);
  494. }
  495. EXPORT_SYMBOL_GPL(copy_fs_struct);
  496. static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
  497. {
  498. if (clone_flags & CLONE_FS) {
  499. atomic_inc(&current->fs->count);
  500. return 0;
  501. }
  502. tsk->fs = __copy_fs_struct(current->fs);
  503. if (!tsk->fs)
  504. return -ENOMEM;
  505. return 0;
  506. }
  507. static int count_open_files(struct fdtable *fdt)
  508. {
  509. int size = fdt->max_fdset;
  510. int i;
  511. /* Find the last open fd */
  512. for (i = size/(8*sizeof(long)); i > 0; ) {
  513. if (fdt->open_fds->fds_bits[--i])
  514. break;
  515. }
  516. i = (i+1) * 8 * sizeof(long);
  517. return i;
  518. }
  519. static struct files_struct *alloc_files(void)
  520. {
  521. struct files_struct *newf;
  522. struct fdtable *fdt;
  523. newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
  524. if (!newf)
  525. goto out;
  526. atomic_set(&newf->count, 1);
  527. spin_lock_init(&newf->file_lock);
  528. newf->next_fd = 0;
  529. fdt = &newf->fdtab;
  530. fdt->max_fds = NR_OPEN_DEFAULT;
  531. fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
  532. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  533. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  534. fdt->fd = &newf->fd_array[0];
  535. INIT_RCU_HEAD(&fdt->rcu);
  536. fdt->free_files = NULL;
  537. fdt->next = NULL;
  538. rcu_assign_pointer(newf->fdt, fdt);
  539. out:
  540. return newf;
  541. }
  542. /*
  543. * Allocate a new files structure and copy contents from the
  544. * passed in files structure.
  545. * errorp will be valid only when the returned files_struct is NULL.
  546. */
  547. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  548. {
  549. struct files_struct *newf;
  550. struct file **old_fds, **new_fds;
  551. int open_files, size, i, expand;
  552. struct fdtable *old_fdt, *new_fdt;
  553. *errorp = -ENOMEM;
  554. newf = alloc_files();
  555. if (!newf)
  556. goto out;
  557. spin_lock(&oldf->file_lock);
  558. old_fdt = files_fdtable(oldf);
  559. new_fdt = files_fdtable(newf);
  560. size = old_fdt->max_fdset;
  561. open_files = count_open_files(old_fdt);
  562. expand = 0;
  563. /*
  564. * Check whether we need to allocate a larger fd array or fd set.
  565. * Note: we're not a clone task, so the open count won't change.
  566. */
  567. if (open_files > new_fdt->max_fdset) {
  568. new_fdt->max_fdset = 0;
  569. expand = 1;
  570. }
  571. if (open_files > new_fdt->max_fds) {
  572. new_fdt->max_fds = 0;
  573. expand = 1;
  574. }
  575. /* if the old fdset gets grown now, we'll only copy up to "size" fds */
  576. if (expand) {
  577. spin_unlock(&oldf->file_lock);
  578. spin_lock(&newf->file_lock);
  579. *errorp = expand_files(newf, open_files-1);
  580. spin_unlock(&newf->file_lock);
  581. if (*errorp < 0)
  582. goto out_release;
  583. new_fdt = files_fdtable(newf);
  584. /*
  585. * Reacquire the oldf lock and a pointer to its fd table
  586. * who knows it may have a new bigger fd table. We need
  587. * the latest pointer.
  588. */
  589. spin_lock(&oldf->file_lock);
  590. old_fdt = files_fdtable(oldf);
  591. }
  592. old_fds = old_fdt->fd;
  593. new_fds = new_fdt->fd;
  594. memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
  595. memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
  596. for (i = open_files; i != 0; i--) {
  597. struct file *f = *old_fds++;
  598. if (f) {
  599. get_file(f);
  600. } else {
  601. /*
  602. * The fd may be claimed in the fd bitmap but not yet
  603. * instantiated in the files array if a sibling thread
  604. * is partway through open(). So make sure that this
  605. * fd is available to the new process.
  606. */
  607. FD_CLR(open_files - i, new_fdt->open_fds);
  608. }
  609. rcu_assign_pointer(*new_fds++, f);
  610. }
  611. spin_unlock(&oldf->file_lock);
  612. /* compute the remainder to be cleared */
  613. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  614. /* This is long word aligned thus could use a optimized version */
  615. memset(new_fds, 0, size);
  616. if (new_fdt->max_fdset > open_files) {
  617. int left = (new_fdt->max_fdset-open_files)/8;
  618. int start = open_files / (8 * sizeof(unsigned long));
  619. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  620. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  621. }
  622. out:
  623. return newf;
  624. out_release:
  625. free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
  626. free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
  627. free_fd_array(new_fdt->fd, new_fdt->max_fds);
  628. kmem_cache_free(files_cachep, newf);
  629. return NULL;
  630. }
  631. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  632. {
  633. struct files_struct *oldf, *newf;
  634. int error = 0;
  635. /*
  636. * A background process may not have any files ...
  637. */
  638. oldf = current->files;
  639. if (!oldf)
  640. goto out;
  641. if (clone_flags & CLONE_FILES) {
  642. atomic_inc(&oldf->count);
  643. goto out;
  644. }
  645. /*
  646. * Note: we may be using current for both targets (See exec.c)
  647. * This works because we cache current->files (old) as oldf. Don't
  648. * break this.
  649. */
  650. tsk->files = NULL;
  651. newf = dup_fd(oldf, &error);
  652. if (!newf)
  653. goto out;
  654. tsk->files = newf;
  655. error = 0;
  656. out:
  657. return error;
  658. }
  659. /*
  660. * Helper to unshare the files of the current task.
  661. * We don't want to expose copy_files internals to
  662. * the exec layer of the kernel.
  663. */
  664. int unshare_files(void)
  665. {
  666. struct files_struct *files = current->files;
  667. int rc;
  668. BUG_ON(!files);
  669. /* This can race but the race causes us to copy when we don't
  670. need to and drop the copy */
  671. if(atomic_read(&files->count) == 1)
  672. {
  673. atomic_inc(&files->count);
  674. return 0;
  675. }
  676. rc = copy_files(0, current);
  677. if(rc)
  678. current->files = files;
  679. return rc;
  680. }
  681. EXPORT_SYMBOL(unshare_files);
  682. static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
  683. {
  684. struct sighand_struct *sig;
  685. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  686. atomic_inc(&current->sighand->count);
  687. return 0;
  688. }
  689. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  690. rcu_assign_pointer(tsk->sighand, sig);
  691. if (!sig)
  692. return -ENOMEM;
  693. atomic_set(&sig->count, 1);
  694. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  695. return 0;
  696. }
  697. void __cleanup_sighand(struct sighand_struct *sighand)
  698. {
  699. if (atomic_dec_and_test(&sighand->count))
  700. kmem_cache_free(sighand_cachep, sighand);
  701. }
  702. static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
  703. {
  704. struct signal_struct *sig;
  705. int ret;
  706. if (clone_flags & CLONE_THREAD) {
  707. atomic_inc(&current->signal->count);
  708. atomic_inc(&current->signal->live);
  709. taskstats_tgid_alloc(current->signal);
  710. return 0;
  711. }
  712. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  713. tsk->signal = sig;
  714. if (!sig)
  715. return -ENOMEM;
  716. ret = copy_thread_group_keys(tsk);
  717. if (ret < 0) {
  718. kmem_cache_free(signal_cachep, sig);
  719. return ret;
  720. }
  721. atomic_set(&sig->count, 1);
  722. atomic_set(&sig->live, 1);
  723. init_waitqueue_head(&sig->wait_chldexit);
  724. sig->flags = 0;
  725. sig->group_exit_code = 0;
  726. sig->group_exit_task = NULL;
  727. sig->group_stop_count = 0;
  728. sig->curr_target = NULL;
  729. init_sigpending(&sig->shared_pending);
  730. INIT_LIST_HEAD(&sig->posix_timers);
  731. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
  732. sig->it_real_incr.tv64 = 0;
  733. sig->real_timer.function = it_real_fn;
  734. sig->tsk = tsk;
  735. sig->it_virt_expires = cputime_zero;
  736. sig->it_virt_incr = cputime_zero;
  737. sig->it_prof_expires = cputime_zero;
  738. sig->it_prof_incr = cputime_zero;
  739. sig->leader = 0; /* session leadership doesn't inherit */
  740. sig->tty_old_pgrp = 0;
  741. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  742. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  743. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  744. sig->sched_time = 0;
  745. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  746. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  747. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  748. taskstats_tgid_init(sig);
  749. task_lock(current->group_leader);
  750. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  751. task_unlock(current->group_leader);
  752. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  753. /*
  754. * New sole thread in the process gets an expiry time
  755. * of the whole CPU time limit.
  756. */
  757. tsk->it_prof_expires =
  758. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  759. }
  760. acct_init_pacct(&sig->pacct);
  761. return 0;
  762. }
  763. void __cleanup_signal(struct signal_struct *sig)
  764. {
  765. exit_thread_group_keys(sig);
  766. taskstats_tgid_free(sig);
  767. kmem_cache_free(signal_cachep, sig);
  768. }
  769. static inline void cleanup_signal(struct task_struct *tsk)
  770. {
  771. struct signal_struct *sig = tsk->signal;
  772. atomic_dec(&sig->live);
  773. if (atomic_dec_and_test(&sig->count))
  774. __cleanup_signal(sig);
  775. }
  776. static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
  777. {
  778. unsigned long new_flags = p->flags;
  779. new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
  780. new_flags |= PF_FORKNOEXEC;
  781. if (!(clone_flags & CLONE_PTRACE))
  782. p->ptrace = 0;
  783. p->flags = new_flags;
  784. }
  785. asmlinkage long sys_set_tid_address(int __user *tidptr)
  786. {
  787. current->clear_child_tid = tidptr;
  788. return current->pid;
  789. }
  790. static inline void rt_mutex_init_task(struct task_struct *p)
  791. {
  792. #ifdef CONFIG_RT_MUTEXES
  793. spin_lock_init(&p->pi_lock);
  794. plist_head_init(&p->pi_waiters, &p->pi_lock);
  795. p->pi_blocked_on = NULL;
  796. #endif
  797. }
  798. /*
  799. * This creates a new process as a copy of the old one,
  800. * but does not actually start it yet.
  801. *
  802. * It copies the registers, and all the appropriate
  803. * parts of the process environment (as per the clone
  804. * flags). The actual kick-off is left to the caller.
  805. */
  806. static struct task_struct *copy_process(unsigned long clone_flags,
  807. unsigned long stack_start,
  808. struct pt_regs *regs,
  809. unsigned long stack_size,
  810. int __user *parent_tidptr,
  811. int __user *child_tidptr,
  812. int pid)
  813. {
  814. int retval;
  815. struct task_struct *p = NULL;
  816. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  817. return ERR_PTR(-EINVAL);
  818. /*
  819. * Thread groups must share signals as well, and detached threads
  820. * can only be started up within the thread group.
  821. */
  822. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  823. return ERR_PTR(-EINVAL);
  824. /*
  825. * Shared signal handlers imply shared VM. By way of the above,
  826. * thread groups also imply shared VM. Blocking this case allows
  827. * for various simplifications in other code.
  828. */
  829. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  830. return ERR_PTR(-EINVAL);
  831. retval = security_task_create(clone_flags);
  832. if (retval)
  833. goto fork_out;
  834. retval = -ENOMEM;
  835. p = dup_task_struct(current);
  836. if (!p)
  837. goto fork_out;
  838. #ifdef CONFIG_TRACE_IRQFLAGS
  839. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  840. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  841. #endif
  842. retval = -EAGAIN;
  843. if (atomic_read(&p->user->processes) >=
  844. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  845. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  846. p->user != &root_user)
  847. goto bad_fork_free;
  848. }
  849. atomic_inc(&p->user->__count);
  850. atomic_inc(&p->user->processes);
  851. get_group_info(p->group_info);
  852. /*
  853. * If multiple threads are within copy_process(), then this check
  854. * triggers too late. This doesn't hurt, the check is only there
  855. * to stop root fork bombs.
  856. */
  857. if (nr_threads >= max_threads)
  858. goto bad_fork_cleanup_count;
  859. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  860. goto bad_fork_cleanup_count;
  861. if (p->binfmt && !try_module_get(p->binfmt->module))
  862. goto bad_fork_cleanup_put_domain;
  863. p->did_exec = 0;
  864. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  865. copy_flags(clone_flags, p);
  866. p->pid = pid;
  867. retval = -EFAULT;
  868. if (clone_flags & CLONE_PARENT_SETTID)
  869. if (put_user(p->pid, parent_tidptr))
  870. goto bad_fork_cleanup_delays_binfmt;
  871. INIT_LIST_HEAD(&p->children);
  872. INIT_LIST_HEAD(&p->sibling);
  873. p->vfork_done = NULL;
  874. spin_lock_init(&p->alloc_lock);
  875. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  876. init_sigpending(&p->pending);
  877. p->utime = cputime_zero;
  878. p->stime = cputime_zero;
  879. p->sched_time = 0;
  880. p->rchar = 0; /* I/O counter: bytes read */
  881. p->wchar = 0; /* I/O counter: bytes written */
  882. p->syscr = 0; /* I/O counter: read syscalls */
  883. p->syscw = 0; /* I/O counter: write syscalls */
  884. acct_clear_integrals(p);
  885. p->it_virt_expires = cputime_zero;
  886. p->it_prof_expires = cputime_zero;
  887. p->it_sched_expires = 0;
  888. INIT_LIST_HEAD(&p->cpu_timers[0]);
  889. INIT_LIST_HEAD(&p->cpu_timers[1]);
  890. INIT_LIST_HEAD(&p->cpu_timers[2]);
  891. p->lock_depth = -1; /* -1 = no lock */
  892. do_posix_clock_monotonic_gettime(&p->start_time);
  893. p->security = NULL;
  894. p->io_context = NULL;
  895. p->io_wait = NULL;
  896. p->audit_context = NULL;
  897. cpuset_fork(p);
  898. #ifdef CONFIG_NUMA
  899. p->mempolicy = mpol_copy(p->mempolicy);
  900. if (IS_ERR(p->mempolicy)) {
  901. retval = PTR_ERR(p->mempolicy);
  902. p->mempolicy = NULL;
  903. goto bad_fork_cleanup_cpuset;
  904. }
  905. mpol_fix_fork_child_flag(p);
  906. #endif
  907. #ifdef CONFIG_TRACE_IRQFLAGS
  908. p->irq_events = 0;
  909. p->hardirqs_enabled = 0;
  910. p->hardirq_enable_ip = 0;
  911. p->hardirq_enable_event = 0;
  912. p->hardirq_disable_ip = _THIS_IP_;
  913. p->hardirq_disable_event = 0;
  914. p->softirqs_enabled = 1;
  915. p->softirq_enable_ip = _THIS_IP_;
  916. p->softirq_enable_event = 0;
  917. p->softirq_disable_ip = 0;
  918. p->softirq_disable_event = 0;
  919. p->hardirq_context = 0;
  920. p->softirq_context = 0;
  921. #endif
  922. #ifdef CONFIG_LOCKDEP
  923. p->lockdep_depth = 0; /* no locks held yet */
  924. p->curr_chain_key = 0;
  925. p->lockdep_recursion = 0;
  926. #endif
  927. rt_mutex_init_task(p);
  928. #ifdef CONFIG_DEBUG_MUTEXES
  929. p->blocked_on = NULL; /* not blocked yet */
  930. #endif
  931. p->tgid = p->pid;
  932. if (clone_flags & CLONE_THREAD)
  933. p->tgid = current->tgid;
  934. if ((retval = security_task_alloc(p)))
  935. goto bad_fork_cleanup_policy;
  936. if ((retval = audit_alloc(p)))
  937. goto bad_fork_cleanup_security;
  938. /* copy all the process information */
  939. if ((retval = copy_semundo(clone_flags, p)))
  940. goto bad_fork_cleanup_audit;
  941. if ((retval = copy_files(clone_flags, p)))
  942. goto bad_fork_cleanup_semundo;
  943. if ((retval = copy_fs(clone_flags, p)))
  944. goto bad_fork_cleanup_files;
  945. if ((retval = copy_sighand(clone_flags, p)))
  946. goto bad_fork_cleanup_fs;
  947. if ((retval = copy_signal(clone_flags, p)))
  948. goto bad_fork_cleanup_sighand;
  949. if ((retval = copy_mm(clone_flags, p)))
  950. goto bad_fork_cleanup_signal;
  951. if ((retval = copy_keys(clone_flags, p)))
  952. goto bad_fork_cleanup_mm;
  953. if ((retval = copy_namespace(clone_flags, p)))
  954. goto bad_fork_cleanup_keys;
  955. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  956. if (retval)
  957. goto bad_fork_cleanup_namespace;
  958. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  959. /*
  960. * Clear TID on mm_release()?
  961. */
  962. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  963. p->robust_list = NULL;
  964. #ifdef CONFIG_COMPAT
  965. p->compat_robust_list = NULL;
  966. #endif
  967. INIT_LIST_HEAD(&p->pi_state_list);
  968. p->pi_state_cache = NULL;
  969. /*
  970. * sigaltstack should be cleared when sharing the same VM
  971. */
  972. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  973. p->sas_ss_sp = p->sas_ss_size = 0;
  974. /*
  975. * Syscall tracing should be turned off in the child regardless
  976. * of CLONE_PTRACE.
  977. */
  978. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  979. #ifdef TIF_SYSCALL_EMU
  980. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  981. #endif
  982. /* Our parent execution domain becomes current domain
  983. These must match for thread signalling to apply */
  984. p->parent_exec_id = p->self_exec_id;
  985. /* ok, now we should be set up.. */
  986. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  987. p->pdeath_signal = 0;
  988. p->exit_state = 0;
  989. /*
  990. * Ok, make it visible to the rest of the system.
  991. * We dont wake it up yet.
  992. */
  993. p->group_leader = p;
  994. INIT_LIST_HEAD(&p->thread_group);
  995. INIT_LIST_HEAD(&p->ptrace_children);
  996. INIT_LIST_HEAD(&p->ptrace_list);
  997. /* Perform scheduler related setup. Assign this task to a CPU. */
  998. sched_fork(p, clone_flags);
  999. /* Need tasklist lock for parent etc handling! */
  1000. write_lock_irq(&tasklist_lock);
  1001. /*
  1002. * The task hasn't been attached yet, so its cpus_allowed mask will
  1003. * not be changed, nor will its assigned CPU.
  1004. *
  1005. * The cpus_allowed mask of the parent may have changed after it was
  1006. * copied first time - so re-copy it here, then check the child's CPU
  1007. * to ensure it is on a valid CPU (and if not, just force it back to
  1008. * parent's CPU). This avoids alot of nasty races.
  1009. */
  1010. p->cpus_allowed = current->cpus_allowed;
  1011. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1012. !cpu_online(task_cpu(p))))
  1013. set_task_cpu(p, smp_processor_id());
  1014. /* CLONE_PARENT re-uses the old parent */
  1015. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1016. p->real_parent = current->real_parent;
  1017. else
  1018. p->real_parent = current;
  1019. p->parent = p->real_parent;
  1020. spin_lock(&current->sighand->siglock);
  1021. /*
  1022. * Process group and session signals need to be delivered to just the
  1023. * parent before the fork or both the parent and the child after the
  1024. * fork. Restart if a signal comes in before we add the new process to
  1025. * it's process group.
  1026. * A fatal signal pending means that current will exit, so the new
  1027. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1028. */
  1029. recalc_sigpending();
  1030. if (signal_pending(current)) {
  1031. spin_unlock(&current->sighand->siglock);
  1032. write_unlock_irq(&tasklist_lock);
  1033. retval = -ERESTARTNOINTR;
  1034. goto bad_fork_cleanup_namespace;
  1035. }
  1036. if (clone_flags & CLONE_THREAD) {
  1037. p->group_leader = current->group_leader;
  1038. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1039. if (!cputime_eq(current->signal->it_virt_expires,
  1040. cputime_zero) ||
  1041. !cputime_eq(current->signal->it_prof_expires,
  1042. cputime_zero) ||
  1043. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1044. !list_empty(&current->signal->cpu_timers[0]) ||
  1045. !list_empty(&current->signal->cpu_timers[1]) ||
  1046. !list_empty(&current->signal->cpu_timers[2])) {
  1047. /*
  1048. * Have child wake up on its first tick to check
  1049. * for process CPU timers.
  1050. */
  1051. p->it_prof_expires = jiffies_to_cputime(1);
  1052. }
  1053. }
  1054. /*
  1055. * inherit ioprio
  1056. */
  1057. p->ioprio = current->ioprio;
  1058. if (likely(p->pid)) {
  1059. add_parent(p);
  1060. if (unlikely(p->ptrace & PT_PTRACED))
  1061. __ptrace_link(p, current->parent);
  1062. if (thread_group_leader(p)) {
  1063. p->signal->tty = current->signal->tty;
  1064. p->signal->pgrp = process_group(current);
  1065. p->signal->session = current->signal->session;
  1066. attach_pid(p, PIDTYPE_PGID, process_group(p));
  1067. attach_pid(p, PIDTYPE_SID, p->signal->session);
  1068. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1069. __get_cpu_var(process_counts)++;
  1070. }
  1071. attach_pid(p, PIDTYPE_PID, p->pid);
  1072. nr_threads++;
  1073. }
  1074. total_forks++;
  1075. spin_unlock(&current->sighand->siglock);
  1076. write_unlock_irq(&tasklist_lock);
  1077. proc_fork_connector(p);
  1078. return p;
  1079. bad_fork_cleanup_namespace:
  1080. exit_namespace(p);
  1081. bad_fork_cleanup_keys:
  1082. exit_keys(p);
  1083. bad_fork_cleanup_mm:
  1084. if (p->mm)
  1085. mmput(p->mm);
  1086. bad_fork_cleanup_signal:
  1087. cleanup_signal(p);
  1088. bad_fork_cleanup_sighand:
  1089. __cleanup_sighand(p->sighand);
  1090. bad_fork_cleanup_fs:
  1091. exit_fs(p); /* blocking */
  1092. bad_fork_cleanup_files:
  1093. exit_files(p); /* blocking */
  1094. bad_fork_cleanup_semundo:
  1095. exit_sem(p);
  1096. bad_fork_cleanup_audit:
  1097. audit_free(p);
  1098. bad_fork_cleanup_security:
  1099. security_task_free(p);
  1100. bad_fork_cleanup_policy:
  1101. #ifdef CONFIG_NUMA
  1102. mpol_free(p->mempolicy);
  1103. bad_fork_cleanup_cpuset:
  1104. #endif
  1105. cpuset_exit(p);
  1106. bad_fork_cleanup_delays_binfmt:
  1107. delayacct_tsk_free(p);
  1108. if (p->binfmt)
  1109. module_put(p->binfmt->module);
  1110. bad_fork_cleanup_put_domain:
  1111. module_put(task_thread_info(p)->exec_domain->module);
  1112. bad_fork_cleanup_count:
  1113. put_group_info(p->group_info);
  1114. atomic_dec(&p->user->processes);
  1115. free_uid(p->user);
  1116. bad_fork_free:
  1117. free_task(p);
  1118. fork_out:
  1119. return ERR_PTR(retval);
  1120. }
  1121. struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1122. {
  1123. memset(regs, 0, sizeof(struct pt_regs));
  1124. return regs;
  1125. }
  1126. struct task_struct * __devinit fork_idle(int cpu)
  1127. {
  1128. struct task_struct *task;
  1129. struct pt_regs regs;
  1130. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
  1131. if (!task)
  1132. return ERR_PTR(-ENOMEM);
  1133. init_idle(task, cpu);
  1134. return task;
  1135. }
  1136. static inline int fork_traceflag (unsigned clone_flags)
  1137. {
  1138. if (clone_flags & CLONE_UNTRACED)
  1139. return 0;
  1140. else if (clone_flags & CLONE_VFORK) {
  1141. if (current->ptrace & PT_TRACE_VFORK)
  1142. return PTRACE_EVENT_VFORK;
  1143. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1144. if (current->ptrace & PT_TRACE_CLONE)
  1145. return PTRACE_EVENT_CLONE;
  1146. } else if (current->ptrace & PT_TRACE_FORK)
  1147. return PTRACE_EVENT_FORK;
  1148. return 0;
  1149. }
  1150. /*
  1151. * Ok, this is the main fork-routine.
  1152. *
  1153. * It copies the process, and if successful kick-starts
  1154. * it and waits for it to finish using the VM if required.
  1155. */
  1156. long do_fork(unsigned long clone_flags,
  1157. unsigned long stack_start,
  1158. struct pt_regs *regs,
  1159. unsigned long stack_size,
  1160. int __user *parent_tidptr,
  1161. int __user *child_tidptr)
  1162. {
  1163. struct task_struct *p;
  1164. int trace = 0;
  1165. struct pid *pid = alloc_pid();
  1166. long nr;
  1167. if (!pid)
  1168. return -EAGAIN;
  1169. nr = pid->nr;
  1170. if (unlikely(current->ptrace)) {
  1171. trace = fork_traceflag (clone_flags);
  1172. if (trace)
  1173. clone_flags |= CLONE_PTRACE;
  1174. }
  1175. p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
  1176. /*
  1177. * Do this prior waking up the new thread - the thread pointer
  1178. * might get invalid after that point, if the thread exits quickly.
  1179. */
  1180. if (!IS_ERR(p)) {
  1181. struct completion vfork;
  1182. if (clone_flags & CLONE_VFORK) {
  1183. p->vfork_done = &vfork;
  1184. init_completion(&vfork);
  1185. }
  1186. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1187. /*
  1188. * We'll start up with an immediate SIGSTOP.
  1189. */
  1190. sigaddset(&p->pending.signal, SIGSTOP);
  1191. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1192. }
  1193. if (!(clone_flags & CLONE_STOPPED))
  1194. wake_up_new_task(p, clone_flags);
  1195. else
  1196. p->state = TASK_STOPPED;
  1197. if (unlikely (trace)) {
  1198. current->ptrace_message = nr;
  1199. ptrace_notify ((trace << 8) | SIGTRAP);
  1200. }
  1201. if (clone_flags & CLONE_VFORK) {
  1202. wait_for_completion(&vfork);
  1203. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
  1204. current->ptrace_message = nr;
  1205. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1206. }
  1207. }
  1208. } else {
  1209. free_pid(pid);
  1210. nr = PTR_ERR(p);
  1211. }
  1212. return nr;
  1213. }
  1214. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1215. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1216. #endif
  1217. static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
  1218. {
  1219. struct sighand_struct *sighand = data;
  1220. if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
  1221. SLAB_CTOR_CONSTRUCTOR)
  1222. spin_lock_init(&sighand->siglock);
  1223. }
  1224. void __init proc_caches_init(void)
  1225. {
  1226. sighand_cachep = kmem_cache_create("sighand_cache",
  1227. sizeof(struct sighand_struct), 0,
  1228. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1229. sighand_ctor, NULL);
  1230. signal_cachep = kmem_cache_create("signal_cache",
  1231. sizeof(struct signal_struct), 0,
  1232. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1233. files_cachep = kmem_cache_create("files_cache",
  1234. sizeof(struct files_struct), 0,
  1235. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1236. fs_cachep = kmem_cache_create("fs_cache",
  1237. sizeof(struct fs_struct), 0,
  1238. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1239. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1240. sizeof(struct vm_area_struct), 0,
  1241. SLAB_PANIC, NULL, NULL);
  1242. mm_cachep = kmem_cache_create("mm_struct",
  1243. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1244. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  1245. }
  1246. /*
  1247. * Check constraints on flags passed to the unshare system call and
  1248. * force unsharing of additional process context as appropriate.
  1249. */
  1250. static inline void check_unshare_flags(unsigned long *flags_ptr)
  1251. {
  1252. /*
  1253. * If unsharing a thread from a thread group, must also
  1254. * unshare vm.
  1255. */
  1256. if (*flags_ptr & CLONE_THREAD)
  1257. *flags_ptr |= CLONE_VM;
  1258. /*
  1259. * If unsharing vm, must also unshare signal handlers.
  1260. */
  1261. if (*flags_ptr & CLONE_VM)
  1262. *flags_ptr |= CLONE_SIGHAND;
  1263. /*
  1264. * If unsharing signal handlers and the task was created
  1265. * using CLONE_THREAD, then must unshare the thread
  1266. */
  1267. if ((*flags_ptr & CLONE_SIGHAND) &&
  1268. (atomic_read(&current->signal->count) > 1))
  1269. *flags_ptr |= CLONE_THREAD;
  1270. /*
  1271. * If unsharing namespace, must also unshare filesystem information.
  1272. */
  1273. if (*flags_ptr & CLONE_NEWNS)
  1274. *flags_ptr |= CLONE_FS;
  1275. }
  1276. /*
  1277. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1278. */
  1279. static int unshare_thread(unsigned long unshare_flags)
  1280. {
  1281. if (unshare_flags & CLONE_THREAD)
  1282. return -EINVAL;
  1283. return 0;
  1284. }
  1285. /*
  1286. * Unshare the filesystem structure if it is being shared
  1287. */
  1288. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1289. {
  1290. struct fs_struct *fs = current->fs;
  1291. if ((unshare_flags & CLONE_FS) &&
  1292. (fs && atomic_read(&fs->count) > 1)) {
  1293. *new_fsp = __copy_fs_struct(current->fs);
  1294. if (!*new_fsp)
  1295. return -ENOMEM;
  1296. }
  1297. return 0;
  1298. }
  1299. /*
  1300. * Unshare the namespace structure if it is being shared
  1301. */
  1302. static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
  1303. {
  1304. struct namespace *ns = current->namespace;
  1305. if ((unshare_flags & CLONE_NEWNS) &&
  1306. (ns && atomic_read(&ns->count) > 1)) {
  1307. if (!capable(CAP_SYS_ADMIN))
  1308. return -EPERM;
  1309. *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
  1310. if (!*new_nsp)
  1311. return -ENOMEM;
  1312. }
  1313. return 0;
  1314. }
  1315. /*
  1316. * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
  1317. * supported yet
  1318. */
  1319. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1320. {
  1321. struct sighand_struct *sigh = current->sighand;
  1322. if ((unshare_flags & CLONE_SIGHAND) &&
  1323. (sigh && atomic_read(&sigh->count) > 1))
  1324. return -EINVAL;
  1325. else
  1326. return 0;
  1327. }
  1328. /*
  1329. * Unshare vm if it is being shared
  1330. */
  1331. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1332. {
  1333. struct mm_struct *mm = current->mm;
  1334. if ((unshare_flags & CLONE_VM) &&
  1335. (mm && atomic_read(&mm->mm_users) > 1)) {
  1336. return -EINVAL;
  1337. }
  1338. return 0;
  1339. }
  1340. /*
  1341. * Unshare file descriptor table if it is being shared
  1342. */
  1343. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1344. {
  1345. struct files_struct *fd = current->files;
  1346. int error = 0;
  1347. if ((unshare_flags & CLONE_FILES) &&
  1348. (fd && atomic_read(&fd->count) > 1)) {
  1349. *new_fdp = dup_fd(fd, &error);
  1350. if (!*new_fdp)
  1351. return error;
  1352. }
  1353. return 0;
  1354. }
  1355. /*
  1356. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1357. * supported yet
  1358. */
  1359. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1360. {
  1361. if (unshare_flags & CLONE_SYSVSEM)
  1362. return -EINVAL;
  1363. return 0;
  1364. }
  1365. /*
  1366. * unshare allows a process to 'unshare' part of the process
  1367. * context which was originally shared using clone. copy_*
  1368. * functions used by do_fork() cannot be used here directly
  1369. * because they modify an inactive task_struct that is being
  1370. * constructed. Here we are modifying the current, active,
  1371. * task_struct.
  1372. */
  1373. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1374. {
  1375. int err = 0;
  1376. struct fs_struct *fs, *new_fs = NULL;
  1377. struct namespace *ns, *new_ns = NULL;
  1378. struct sighand_struct *sigh, *new_sigh = NULL;
  1379. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1380. struct files_struct *fd, *new_fd = NULL;
  1381. struct sem_undo_list *new_ulist = NULL;
  1382. check_unshare_flags(&unshare_flags);
  1383. /* Return -EINVAL for all unsupported flags */
  1384. err = -EINVAL;
  1385. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1386. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
  1387. goto bad_unshare_out;
  1388. if ((err = unshare_thread(unshare_flags)))
  1389. goto bad_unshare_out;
  1390. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1391. goto bad_unshare_cleanup_thread;
  1392. if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
  1393. goto bad_unshare_cleanup_fs;
  1394. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1395. goto bad_unshare_cleanup_ns;
  1396. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1397. goto bad_unshare_cleanup_sigh;
  1398. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1399. goto bad_unshare_cleanup_vm;
  1400. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1401. goto bad_unshare_cleanup_fd;
  1402. if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
  1403. task_lock(current);
  1404. if (new_fs) {
  1405. fs = current->fs;
  1406. current->fs = new_fs;
  1407. new_fs = fs;
  1408. }
  1409. if (new_ns) {
  1410. ns = current->namespace;
  1411. current->namespace = new_ns;
  1412. new_ns = ns;
  1413. }
  1414. if (new_sigh) {
  1415. sigh = current->sighand;
  1416. rcu_assign_pointer(current->sighand, new_sigh);
  1417. new_sigh = sigh;
  1418. }
  1419. if (new_mm) {
  1420. mm = current->mm;
  1421. active_mm = current->active_mm;
  1422. current->mm = new_mm;
  1423. current->active_mm = new_mm;
  1424. activate_mm(active_mm, new_mm);
  1425. new_mm = mm;
  1426. }
  1427. if (new_fd) {
  1428. fd = current->files;
  1429. current->files = new_fd;
  1430. new_fd = fd;
  1431. }
  1432. task_unlock(current);
  1433. }
  1434. bad_unshare_cleanup_fd:
  1435. if (new_fd)
  1436. put_files_struct(new_fd);
  1437. bad_unshare_cleanup_vm:
  1438. if (new_mm)
  1439. mmput(new_mm);
  1440. bad_unshare_cleanup_sigh:
  1441. if (new_sigh)
  1442. if (atomic_dec_and_test(&new_sigh->count))
  1443. kmem_cache_free(sighand_cachep, new_sigh);
  1444. bad_unshare_cleanup_ns:
  1445. if (new_ns)
  1446. put_namespace(new_ns);
  1447. bad_unshare_cleanup_fs:
  1448. if (new_fs)
  1449. put_fs_struct(new_fs);
  1450. bad_unshare_cleanup_thread:
  1451. bad_unshare_out:
  1452. return err;
  1453. }