mmu.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422
  1. #ifndef _ASM_POWERPC_MMU_H_
  2. #define _ASM_POWERPC_MMU_H_
  3. #ifdef __KERNEL__
  4. #ifndef CONFIG_PPC64
  5. #include <asm-ppc/mmu.h>
  6. #else
  7. /*
  8. * PowerPC memory management structures
  9. *
  10. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  11. * PPC64 rework.
  12. *
  13. * This program is free software; you can redistribute it and/or
  14. * modify it under the terms of the GNU General Public License
  15. * as published by the Free Software Foundation; either version
  16. * 2 of the License, or (at your option) any later version.
  17. */
  18. #include <asm/asm-compat.h>
  19. #include <asm/page.h>
  20. /*
  21. * Segment table
  22. */
  23. #define STE_ESID_V 0x80
  24. #define STE_ESID_KS 0x20
  25. #define STE_ESID_KP 0x10
  26. #define STE_ESID_N 0x08
  27. #define STE_VSID_SHIFT 12
  28. /* Location of cpu0's segment table */
  29. #define STAB0_PAGE 0x6
  30. #define STAB0_OFFSET (STAB0_PAGE << 12)
  31. #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
  32. #ifndef __ASSEMBLY__
  33. extern char initial_stab[];
  34. #endif /* ! __ASSEMBLY */
  35. /*
  36. * SLB
  37. */
  38. #define SLB_NUM_BOLTED 3
  39. #define SLB_CACHE_ENTRIES 8
  40. /* Bits in the SLB ESID word */
  41. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  42. /* Bits in the SLB VSID word */
  43. #define SLB_VSID_SHIFT 12
  44. #define SLB_VSID_B ASM_CONST(0xc000000000000000)
  45. #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
  46. #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
  47. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  48. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  49. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  50. #define SLB_VSID_L ASM_CONST(0x0000000000000100)
  51. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  52. #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
  53. #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
  54. #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
  55. #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
  56. #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
  57. #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
  58. #define SLB_VSID_KERNEL (SLB_VSID_KP)
  59. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  60. #define SLBIE_C (0x08000000)
  61. /*
  62. * Hash table
  63. */
  64. #define HPTES_PER_GROUP 8
  65. #define HPTE_V_AVPN_SHIFT 7
  66. #define HPTE_V_AVPN ASM_CONST(0xffffffffffffff80)
  67. #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  68. #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & HPTE_V_AVPN))
  69. #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
  70. #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
  71. #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
  72. #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
  73. #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
  74. #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
  75. #define HPTE_R_TS ASM_CONST(0x4000000000000000)
  76. #define HPTE_R_RPN_SHIFT 12
  77. #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
  78. #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
  79. #define HPTE_R_PP ASM_CONST(0x0000000000000003)
  80. #define HPTE_R_N ASM_CONST(0x0000000000000004)
  81. #define HPTE_R_C ASM_CONST(0x0000000000000080)
  82. #define HPTE_R_R ASM_CONST(0x0000000000000100)
  83. /* Values for PP (assumes Ks=0, Kp=1) */
  84. /* pp0 will always be 0 for linux */
  85. #define PP_RWXX 0 /* Supervisor read/write, User none */
  86. #define PP_RWRX 1 /* Supervisor read/write, User read */
  87. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  88. #define PP_RXRX 3 /* Supervisor read, User read */
  89. #ifndef __ASSEMBLY__
  90. typedef struct {
  91. unsigned long v;
  92. unsigned long r;
  93. } hpte_t;
  94. extern hpte_t *htab_address;
  95. extern unsigned long htab_size_bytes;
  96. extern unsigned long htab_hash_mask;
  97. /*
  98. * Page size definition
  99. *
  100. * shift : is the "PAGE_SHIFT" value for that page size
  101. * sllp : is a bit mask with the value of SLB L || LP to be or'ed
  102. * directly to a slbmte "vsid" value
  103. * penc : is the HPTE encoding mask for the "LP" field:
  104. *
  105. */
  106. struct mmu_psize_def
  107. {
  108. unsigned int shift; /* number of bits */
  109. unsigned int penc; /* HPTE encoding */
  110. unsigned int tlbiel; /* tlbiel supported for that page size */
  111. unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
  112. unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
  113. };
  114. #endif /* __ASSEMBLY__ */
  115. /*
  116. * The kernel use the constants below to index in the page sizes array.
  117. * The use of fixed constants for this purpose is better for performances
  118. * of the low level hash refill handlers.
  119. *
  120. * A non supported page size has a "shift" field set to 0
  121. *
  122. * Any new page size being implemented can get a new entry in here. Whether
  123. * the kernel will use it or not is a different matter though. The actual page
  124. * size used by hugetlbfs is not defined here and may be made variable
  125. */
  126. #define MMU_PAGE_4K 0 /* 4K */
  127. #define MMU_PAGE_64K 1 /* 64K */
  128. #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
  129. #define MMU_PAGE_1M 3 /* 1M */
  130. #define MMU_PAGE_16M 4 /* 16M */
  131. #define MMU_PAGE_16G 5 /* 16G */
  132. #define MMU_PAGE_COUNT 6
  133. #ifndef __ASSEMBLY__
  134. /*
  135. * The current system page sizes
  136. */
  137. extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  138. extern int mmu_linear_psize;
  139. extern int mmu_virtual_psize;
  140. extern int mmu_vmalloc_psize;
  141. extern int mmu_io_psize;
  142. /*
  143. * If the processor supports 64k normal pages but not 64k cache
  144. * inhibited pages, we have to be prepared to switch processes
  145. * to use 4k pages when they create cache-inhibited mappings.
  146. * If this is the case, mmu_ci_restrictions will be set to 1.
  147. */
  148. extern int mmu_ci_restrictions;
  149. #ifdef CONFIG_HUGETLB_PAGE
  150. /*
  151. * The page size index of the huge pages for use by hugetlbfs
  152. */
  153. extern int mmu_huge_psize;
  154. #endif /* CONFIG_HUGETLB_PAGE */
  155. /*
  156. * This function sets the AVPN and L fields of the HPTE appropriately
  157. * for the page size
  158. */
  159. static inline unsigned long hpte_encode_v(unsigned long va, int psize)
  160. {
  161. unsigned long v =
  162. v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
  163. v <<= HPTE_V_AVPN_SHIFT;
  164. if (psize != MMU_PAGE_4K)
  165. v |= HPTE_V_LARGE;
  166. return v;
  167. }
  168. /*
  169. * This function sets the ARPN, and LP fields of the HPTE appropriately
  170. * for the page size. We assume the pa is already "clean" that is properly
  171. * aligned for the requested page size
  172. */
  173. static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
  174. {
  175. unsigned long r;
  176. /* A 4K page needs no special encoding */
  177. if (psize == MMU_PAGE_4K)
  178. return pa & HPTE_R_RPN;
  179. else {
  180. unsigned int penc = mmu_psize_defs[psize].penc;
  181. unsigned int shift = mmu_psize_defs[psize].shift;
  182. return (pa & ~((1ul << shift) - 1)) | (penc << 12);
  183. }
  184. return r;
  185. }
  186. /*
  187. * This hashes a virtual address for a 256Mb segment only for now
  188. */
  189. static inline unsigned long hpt_hash(unsigned long va, unsigned int shift)
  190. {
  191. return ((va >> 28) & 0x7fffffffffUL) ^ ((va & 0x0fffffffUL) >> shift);
  192. }
  193. extern int __hash_page_4K(unsigned long ea, unsigned long access,
  194. unsigned long vsid, pte_t *ptep, unsigned long trap,
  195. unsigned int local);
  196. extern int __hash_page_64K(unsigned long ea, unsigned long access,
  197. unsigned long vsid, pte_t *ptep, unsigned long trap,
  198. unsigned int local);
  199. struct mm_struct;
  200. extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
  201. unsigned long ea, unsigned long vsid, int local,
  202. unsigned long trap);
  203. extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
  204. unsigned long pstart, unsigned long mode,
  205. int psize);
  206. extern void htab_initialize(void);
  207. extern void htab_initialize_secondary(void);
  208. extern void hpte_init_native(void);
  209. extern void hpte_init_lpar(void);
  210. extern void hpte_init_iSeries(void);
  211. extern long pSeries_lpar_hpte_insert(unsigned long hpte_group,
  212. unsigned long va, unsigned long prpn,
  213. unsigned long rflags,
  214. unsigned long vflags, int psize);
  215. extern long native_hpte_insert(unsigned long hpte_group,
  216. unsigned long va, unsigned long prpn,
  217. unsigned long rflags,
  218. unsigned long vflags, int psize);
  219. extern long iSeries_hpte_insert(unsigned long hpte_group,
  220. unsigned long va, unsigned long prpn,
  221. unsigned long rflags,
  222. unsigned long vflags, int psize);
  223. extern void stabs_alloc(void);
  224. extern void slb_initialize(void);
  225. extern void slb_flush_and_rebolt(void);
  226. extern void stab_initialize(unsigned long stab);
  227. #endif /* __ASSEMBLY__ */
  228. /*
  229. * VSID allocation
  230. *
  231. * We first generate a 36-bit "proto-VSID". For kernel addresses this
  232. * is equal to the ESID, for user addresses it is:
  233. * (context << 15) | (esid & 0x7fff)
  234. *
  235. * The two forms are distinguishable because the top bit is 0 for user
  236. * addresses, whereas the top two bits are 1 for kernel addresses.
  237. * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
  238. * now.
  239. *
  240. * The proto-VSIDs are then scrambled into real VSIDs with the
  241. * multiplicative hash:
  242. *
  243. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  244. * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
  245. * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
  246. *
  247. * This scramble is only well defined for proto-VSIDs below
  248. * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
  249. * reserved. VSID_MULTIPLIER is prime, so in particular it is
  250. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  251. * Because the modulus is 2^n-1 we can compute it efficiently without
  252. * a divide or extra multiply (see below).
  253. *
  254. * This scheme has several advantages over older methods:
  255. *
  256. * - We have VSIDs allocated for every kernel address
  257. * (i.e. everything above 0xC000000000000000), except the very top
  258. * segment, which simplifies several things.
  259. *
  260. * - We allow for 15 significant bits of ESID and 20 bits of
  261. * context for user addresses. i.e. 8T (43 bits) of address space for
  262. * up to 1M contexts (although the page table structure and context
  263. * allocation will need changes to take advantage of this).
  264. *
  265. * - The scramble function gives robust scattering in the hash
  266. * table (at least based on some initial results). The previous
  267. * method was more susceptible to pathological cases giving excessive
  268. * hash collisions.
  269. */
  270. /*
  271. * WARNING - If you change these you must make sure the asm
  272. * implementations in slb_allocate (slb_low.S), do_stab_bolted
  273. * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
  274. *
  275. * You'll also need to change the precomputed VSID values in head.S
  276. * which are used by the iSeries firmware.
  277. */
  278. #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
  279. #define VSID_BITS 36
  280. #define VSID_MODULUS ((1UL<<VSID_BITS)-1)
  281. #define CONTEXT_BITS 19
  282. #define USER_ESID_BITS 16
  283. #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
  284. /*
  285. * This macro generates asm code to compute the VSID scramble
  286. * function. Used in slb_allocate() and do_stab_bolted. The function
  287. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  288. *
  289. * rt = register continaing the proto-VSID and into which the
  290. * VSID will be stored
  291. * rx = scratch register (clobbered)
  292. *
  293. * - rt and rx must be different registers
  294. * - The answer will end up in the low 36 bits of rt. The higher
  295. * bits may contain other garbage, so you may need to mask the
  296. * result.
  297. */
  298. #define ASM_VSID_SCRAMBLE(rt, rx) \
  299. lis rx,VSID_MULTIPLIER@h; \
  300. ori rx,rx,VSID_MULTIPLIER@l; \
  301. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  302. \
  303. srdi rx,rt,VSID_BITS; \
  304. clrldi rt,rt,(64-VSID_BITS); \
  305. add rt,rt,rx; /* add high and low bits */ \
  306. /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  307. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  308. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  309. * the bit clear, r3 already has the answer we want, if it \
  310. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  311. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  312. addi rx,rt,1; \
  313. srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
  314. add rt,rt,rx
  315. #ifndef __ASSEMBLY__
  316. typedef unsigned long mm_context_id_t;
  317. typedef struct {
  318. mm_context_id_t id;
  319. u16 user_psize; /* page size index */
  320. u16 sllp; /* SLB entry page size encoding */
  321. #ifdef CONFIG_HUGETLB_PAGE
  322. u16 low_htlb_areas, high_htlb_areas;
  323. #endif
  324. unsigned long vdso_base;
  325. } mm_context_t;
  326. static inline unsigned long vsid_scramble(unsigned long protovsid)
  327. {
  328. #if 0
  329. /* The code below is equivalent to this function for arguments
  330. * < 2^VSID_BITS, which is all this should ever be called
  331. * with. However gcc is not clever enough to compute the
  332. * modulus (2^n-1) without a second multiply. */
  333. return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
  334. #else /* 1 */
  335. unsigned long x;
  336. x = protovsid * VSID_MULTIPLIER;
  337. x = (x >> VSID_BITS) + (x & VSID_MODULUS);
  338. return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
  339. #endif /* 1 */
  340. }
  341. /* This is only valid for addresses >= KERNELBASE */
  342. static inline unsigned long get_kernel_vsid(unsigned long ea)
  343. {
  344. return vsid_scramble(ea >> SID_SHIFT);
  345. }
  346. /* This is only valid for user addresses (which are below 2^41) */
  347. static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
  348. {
  349. return vsid_scramble((context << USER_ESID_BITS)
  350. | (ea >> SID_SHIFT));
  351. }
  352. #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS)
  353. #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
  354. /* Physical address used by some IO functions */
  355. typedef unsigned long phys_addr_t;
  356. #endif /* __ASSEMBLY */
  357. #endif /* CONFIG_PPC64 */
  358. #endif /* __KERNEL__ */
  359. #endif /* _ASM_POWERPC_MMU_H_ */