eeh.h 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360
  1. /*
  2. * eeh.h
  3. * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #ifndef _PPC64_EEH_H
  20. #define _PPC64_EEH_H
  21. #ifdef __KERNEL__
  22. #include <linux/init.h>
  23. #include <linux/list.h>
  24. #include <linux/string.h>
  25. struct pci_dev;
  26. struct pci_bus;
  27. struct device_node;
  28. #ifdef CONFIG_EEH
  29. extern int eeh_subsystem_enabled;
  30. /* Values for eeh_mode bits in device_node */
  31. #define EEH_MODE_SUPPORTED (1<<0)
  32. #define EEH_MODE_NOCHECK (1<<1)
  33. #define EEH_MODE_ISOLATED (1<<2)
  34. #define EEH_MODE_RECOVERING (1<<3)
  35. #define EEH_MODE_IRQ_DISABLED (1<<4)
  36. /* Max number of EEH freezes allowed before we consider the device
  37. * to be permanently disabled. */
  38. #define EEH_MAX_ALLOWED_FREEZES 5
  39. void __init eeh_init(void);
  40. unsigned long eeh_check_failure(const volatile void __iomem *token,
  41. unsigned long val);
  42. int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev);
  43. void __init pci_addr_cache_build(void);
  44. /**
  45. * eeh_add_device_early
  46. * eeh_add_device_late
  47. *
  48. * Perform eeh initialization for devices added after boot.
  49. * Call eeh_add_device_early before doing any i/o to the
  50. * device (including config space i/o). Call eeh_add_device_late
  51. * to finish the eeh setup for this device.
  52. */
  53. void eeh_add_device_tree_early(struct device_node *);
  54. void eeh_add_device_tree_late(struct pci_bus *);
  55. /**
  56. * eeh_remove_device_recursive - undo EEH for device & children.
  57. * @dev: pci device to be removed
  58. *
  59. * As above, this removes the device; it also removes child
  60. * pci devices as well.
  61. */
  62. void eeh_remove_bus_device(struct pci_dev *);
  63. /**
  64. * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
  65. *
  66. * If this macro yields TRUE, the caller relays to eeh_check_failure()
  67. * which does further tests out of line.
  68. */
  69. #define EEH_POSSIBLE_ERROR(val, type) ((val) == (type)~0 && eeh_subsystem_enabled)
  70. /*
  71. * Reads from a device which has been isolated by EEH will return
  72. * all 1s. This macro gives an all-1s value of the given size (in
  73. * bytes: 1, 2, or 4) for comparing with the result of a read.
  74. */
  75. #define EEH_IO_ERROR_VALUE(size) (~0U >> ((4 - (size)) * 8))
  76. #else /* !CONFIG_EEH */
  77. static inline void eeh_init(void) { }
  78. static inline unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
  79. {
  80. return val;
  81. }
  82. static inline int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
  83. {
  84. return 0;
  85. }
  86. static inline void pci_addr_cache_build(void) { }
  87. static inline void eeh_add_device_tree_early(struct device_node *dn) { }
  88. static inline void eeh_add_device_tree_late(struct pci_bus *bus) { }
  89. static inline void eeh_remove_bus_device(struct pci_dev *dev) { }
  90. #define EEH_POSSIBLE_ERROR(val, type) (0)
  91. #define EEH_IO_ERROR_VALUE(size) (-1UL)
  92. #endif /* CONFIG_EEH */
  93. /*
  94. * MMIO read/write operations with EEH support.
  95. */
  96. static inline u8 eeh_readb(const volatile void __iomem *addr)
  97. {
  98. u8 val = in_8(addr);
  99. if (EEH_POSSIBLE_ERROR(val, u8))
  100. return eeh_check_failure(addr, val);
  101. return val;
  102. }
  103. static inline void eeh_writeb(u8 val, volatile void __iomem *addr)
  104. {
  105. out_8(addr, val);
  106. }
  107. static inline u16 eeh_readw(const volatile void __iomem *addr)
  108. {
  109. u16 val = in_le16(addr);
  110. if (EEH_POSSIBLE_ERROR(val, u16))
  111. return eeh_check_failure(addr, val);
  112. return val;
  113. }
  114. static inline void eeh_writew(u16 val, volatile void __iomem *addr)
  115. {
  116. out_le16(addr, val);
  117. }
  118. static inline u16 eeh_raw_readw(const volatile void __iomem *addr)
  119. {
  120. u16 val = in_be16(addr);
  121. if (EEH_POSSIBLE_ERROR(val, u16))
  122. return eeh_check_failure(addr, val);
  123. return val;
  124. }
  125. static inline void eeh_raw_writew(u16 val, volatile void __iomem *addr) {
  126. volatile u16 __iomem *vaddr = (volatile u16 __iomem *) addr;
  127. out_be16(vaddr, val);
  128. }
  129. static inline u32 eeh_readl(const volatile void __iomem *addr)
  130. {
  131. u32 val = in_le32(addr);
  132. if (EEH_POSSIBLE_ERROR(val, u32))
  133. return eeh_check_failure(addr, val);
  134. return val;
  135. }
  136. static inline void eeh_writel(u32 val, volatile void __iomem *addr)
  137. {
  138. out_le32(addr, val);
  139. }
  140. static inline u32 eeh_raw_readl(const volatile void __iomem *addr)
  141. {
  142. u32 val = in_be32(addr);
  143. if (EEH_POSSIBLE_ERROR(val, u32))
  144. return eeh_check_failure(addr, val);
  145. return val;
  146. }
  147. static inline void eeh_raw_writel(u32 val, volatile void __iomem *addr)
  148. {
  149. out_be32(addr, val);
  150. }
  151. static inline u64 eeh_readq(const volatile void __iomem *addr)
  152. {
  153. u64 val = in_le64(addr);
  154. if (EEH_POSSIBLE_ERROR(val, u64))
  155. return eeh_check_failure(addr, val);
  156. return val;
  157. }
  158. static inline void eeh_writeq(u64 val, volatile void __iomem *addr)
  159. {
  160. out_le64(addr, val);
  161. }
  162. static inline u64 eeh_raw_readq(const volatile void __iomem *addr)
  163. {
  164. u64 val = in_be64(addr);
  165. if (EEH_POSSIBLE_ERROR(val, u64))
  166. return eeh_check_failure(addr, val);
  167. return val;
  168. }
  169. static inline void eeh_raw_writeq(u64 val, volatile void __iomem *addr)
  170. {
  171. out_be64(addr, val);
  172. }
  173. #define EEH_CHECK_ALIGN(v,a) \
  174. ((((unsigned long)(v)) & ((a) - 1)) == 0)
  175. static inline void eeh_memset_io(volatile void __iomem *addr, int c,
  176. unsigned long n)
  177. {
  178. void *p = (void __force *)addr;
  179. u32 lc = c;
  180. lc |= lc << 8;
  181. lc |= lc << 16;
  182. __asm__ __volatile__ ("sync" : : : "memory");
  183. while(n && !EEH_CHECK_ALIGN(p, 4)) {
  184. *((volatile u8 *)p) = c;
  185. p++;
  186. n--;
  187. }
  188. while(n >= 4) {
  189. *((volatile u32 *)p) = lc;
  190. p += 4;
  191. n -= 4;
  192. }
  193. while(n) {
  194. *((volatile u8 *)p) = c;
  195. p++;
  196. n--;
  197. }
  198. __asm__ __volatile__ ("sync" : : : "memory");
  199. }
  200. static inline void eeh_memcpy_fromio(void *dest, const volatile void __iomem *src,
  201. unsigned long n)
  202. {
  203. void *vsrc = (void __force *) src;
  204. void *destsave = dest;
  205. unsigned long nsave = n;
  206. __asm__ __volatile__ ("sync" : : : "memory");
  207. while(n && (!EEH_CHECK_ALIGN(vsrc, 4) || !EEH_CHECK_ALIGN(dest, 4))) {
  208. *((u8 *)dest) = *((volatile u8 *)vsrc);
  209. __asm__ __volatile__ ("eieio" : : : "memory");
  210. vsrc++;
  211. dest++;
  212. n--;
  213. }
  214. while(n > 4) {
  215. *((u32 *)dest) = *((volatile u32 *)vsrc);
  216. __asm__ __volatile__ ("eieio" : : : "memory");
  217. vsrc += 4;
  218. dest += 4;
  219. n -= 4;
  220. }
  221. while(n) {
  222. *((u8 *)dest) = *((volatile u8 *)vsrc);
  223. __asm__ __volatile__ ("eieio" : : : "memory");
  224. vsrc++;
  225. dest++;
  226. n--;
  227. }
  228. __asm__ __volatile__ ("sync" : : : "memory");
  229. /* Look for ffff's here at dest[n]. Assume that at least 4 bytes
  230. * were copied. Check all four bytes.
  231. */
  232. if ((nsave >= 4) &&
  233. (EEH_POSSIBLE_ERROR((*((u32 *) destsave+nsave-4)), u32))) {
  234. eeh_check_failure(src, (*((u32 *) destsave+nsave-4)));
  235. }
  236. }
  237. static inline void eeh_memcpy_toio(volatile void __iomem *dest, const void *src,
  238. unsigned long n)
  239. {
  240. void *vdest = (void __force *) dest;
  241. __asm__ __volatile__ ("sync" : : : "memory");
  242. while(n && (!EEH_CHECK_ALIGN(vdest, 4) || !EEH_CHECK_ALIGN(src, 4))) {
  243. *((volatile u8 *)vdest) = *((u8 *)src);
  244. src++;
  245. vdest++;
  246. n--;
  247. }
  248. while(n > 4) {
  249. *((volatile u32 *)vdest) = *((volatile u32 *)src);
  250. src += 4;
  251. vdest += 4;
  252. n-=4;
  253. }
  254. while(n) {
  255. *((volatile u8 *)vdest) = *((u8 *)src);
  256. src++;
  257. vdest++;
  258. n--;
  259. }
  260. __asm__ __volatile__ ("sync" : : : "memory");
  261. }
  262. #undef EEH_CHECK_ALIGN
  263. static inline u8 eeh_inb(unsigned long port)
  264. {
  265. u8 val;
  266. val = in_8((u8 __iomem *)(port+pci_io_base));
  267. if (EEH_POSSIBLE_ERROR(val, u8))
  268. return eeh_check_failure((void __iomem *)(port), val);
  269. return val;
  270. }
  271. static inline void eeh_outb(u8 val, unsigned long port)
  272. {
  273. out_8((u8 __iomem *)(port+pci_io_base), val);
  274. }
  275. static inline u16 eeh_inw(unsigned long port)
  276. {
  277. u16 val;
  278. val = in_le16((u16 __iomem *)(port+pci_io_base));
  279. if (EEH_POSSIBLE_ERROR(val, u16))
  280. return eeh_check_failure((void __iomem *)(port), val);
  281. return val;
  282. }
  283. static inline void eeh_outw(u16 val, unsigned long port)
  284. {
  285. out_le16((u16 __iomem *)(port+pci_io_base), val);
  286. }
  287. static inline u32 eeh_inl(unsigned long port)
  288. {
  289. u32 val;
  290. val = in_le32((u32 __iomem *)(port+pci_io_base));
  291. if (EEH_POSSIBLE_ERROR(val, u32))
  292. return eeh_check_failure((void __iomem *)(port), val);
  293. return val;
  294. }
  295. static inline void eeh_outl(u32 val, unsigned long port)
  296. {
  297. out_le32((u32 __iomem *)(port+pci_io_base), val);
  298. }
  299. /* in-string eeh macros */
  300. static inline void eeh_insb(unsigned long port, void * buf, int ns)
  301. {
  302. _insb((u8 __iomem *)(port+pci_io_base), buf, ns);
  303. if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
  304. eeh_check_failure((void __iomem *)(port), *(u8*)buf);
  305. }
  306. static inline void eeh_insw_ns(unsigned long port, void * buf, int ns)
  307. {
  308. _insw_ns((u16 __iomem *)(port+pci_io_base), buf, ns);
  309. if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
  310. eeh_check_failure((void __iomem *)(port), *(u16*)buf);
  311. }
  312. static inline void eeh_insl_ns(unsigned long port, void * buf, int nl)
  313. {
  314. _insl_ns((u32 __iomem *)(port+pci_io_base), buf, nl);
  315. if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
  316. eeh_check_failure((void __iomem *)(port), *(u32*)buf);
  317. }
  318. #endif /* __KERNEL__ */
  319. #endif /* _PPC64_EEH_H */