system.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524
  1. #ifndef __ASM_SYSTEM_H
  2. #define __ASM_SYSTEM_H
  3. #include <linux/kernel.h>
  4. #include <asm/segment.h>
  5. #include <asm/cpufeature.h>
  6. #include <linux/bitops.h> /* for LOCK_PREFIX */
  7. #ifdef __KERNEL__
  8. struct task_struct; /* one of the stranger aspects of C forward declarations.. */
  9. extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
  10. /*
  11. * Saving eflags is important. It switches not only IOPL between tasks,
  12. * it also protects other tasks from NT leaking through sysenter etc.
  13. */
  14. #define switch_to(prev,next,last) do { \
  15. unsigned long esi,edi; \
  16. asm volatile("pushfl\n\t" /* Save flags */ \
  17. "pushl %%ebp\n\t" \
  18. "movl %%esp,%0\n\t" /* save ESP */ \
  19. "movl %5,%%esp\n\t" /* restore ESP */ \
  20. "movl $1f,%1\n\t" /* save EIP */ \
  21. "pushl %6\n\t" /* restore EIP */ \
  22. "jmp __switch_to\n" \
  23. "1:\t" \
  24. "popl %%ebp\n\t" \
  25. "popfl" \
  26. :"=m" (prev->thread.esp),"=m" (prev->thread.eip), \
  27. "=a" (last),"=S" (esi),"=D" (edi) \
  28. :"m" (next->thread.esp),"m" (next->thread.eip), \
  29. "2" (prev), "d" (next)); \
  30. } while (0)
  31. #define _set_base(addr,base) do { unsigned long __pr; \
  32. __asm__ __volatile__ ("movw %%dx,%1\n\t" \
  33. "rorl $16,%%edx\n\t" \
  34. "movb %%dl,%2\n\t" \
  35. "movb %%dh,%3" \
  36. :"=&d" (__pr) \
  37. :"m" (*((addr)+2)), \
  38. "m" (*((addr)+4)), \
  39. "m" (*((addr)+7)), \
  40. "0" (base) \
  41. ); } while(0)
  42. #define _set_limit(addr,limit) do { unsigned long __lr; \
  43. __asm__ __volatile__ ("movw %%dx,%1\n\t" \
  44. "rorl $16,%%edx\n\t" \
  45. "movb %2,%%dh\n\t" \
  46. "andb $0xf0,%%dh\n\t" \
  47. "orb %%dh,%%dl\n\t" \
  48. "movb %%dl,%2" \
  49. :"=&d" (__lr) \
  50. :"m" (*(addr)), \
  51. "m" (*((addr)+6)), \
  52. "0" (limit) \
  53. ); } while(0)
  54. #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
  55. #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) )
  56. /*
  57. * Load a segment. Fall back on loading the zero
  58. * segment if something goes wrong..
  59. */
  60. #define loadsegment(seg,value) \
  61. asm volatile("\n" \
  62. "1:\t" \
  63. "mov %0,%%" #seg "\n" \
  64. "2:\n" \
  65. ".section .fixup,\"ax\"\n" \
  66. "3:\t" \
  67. "pushl $0\n\t" \
  68. "popl %%" #seg "\n\t" \
  69. "jmp 2b\n" \
  70. ".previous\n" \
  71. ".section __ex_table,\"a\"\n\t" \
  72. ".align 4\n\t" \
  73. ".long 1b,3b\n" \
  74. ".previous" \
  75. : :"rm" (value))
  76. /*
  77. * Save a segment register away
  78. */
  79. #define savesegment(seg, value) \
  80. asm volatile("mov %%" #seg ",%0":"=rm" (value))
  81. #define read_cr0() ({ \
  82. unsigned int __dummy; \
  83. __asm__ __volatile__( \
  84. "movl %%cr0,%0\n\t" \
  85. :"=r" (__dummy)); \
  86. __dummy; \
  87. })
  88. #define write_cr0(x) \
  89. __asm__ __volatile__("movl %0,%%cr0": :"r" (x))
  90. #define read_cr2() ({ \
  91. unsigned int __dummy; \
  92. __asm__ __volatile__( \
  93. "movl %%cr2,%0\n\t" \
  94. :"=r" (__dummy)); \
  95. __dummy; \
  96. })
  97. #define write_cr2(x) \
  98. __asm__ __volatile__("movl %0,%%cr2": :"r" (x))
  99. #define read_cr3() ({ \
  100. unsigned int __dummy; \
  101. __asm__ ( \
  102. "movl %%cr3,%0\n\t" \
  103. :"=r" (__dummy)); \
  104. __dummy; \
  105. })
  106. #define write_cr3(x) \
  107. __asm__ __volatile__("movl %0,%%cr3": :"r" (x))
  108. #define read_cr4() ({ \
  109. unsigned int __dummy; \
  110. __asm__( \
  111. "movl %%cr4,%0\n\t" \
  112. :"=r" (__dummy)); \
  113. __dummy; \
  114. })
  115. #define read_cr4_safe() ({ \
  116. unsigned int __dummy; \
  117. /* This could fault if %cr4 does not exist */ \
  118. __asm__("1: movl %%cr4, %0 \n" \
  119. "2: \n" \
  120. ".section __ex_table,\"a\" \n" \
  121. ".long 1b,2b \n" \
  122. ".previous \n" \
  123. : "=r" (__dummy): "0" (0)); \
  124. __dummy; \
  125. })
  126. #define write_cr4(x) \
  127. __asm__ __volatile__("movl %0,%%cr4": :"r" (x))
  128. /*
  129. * Clear and set 'TS' bit respectively
  130. */
  131. #define clts() __asm__ __volatile__ ("clts")
  132. #define stts() write_cr0(8 | read_cr0())
  133. #endif /* __KERNEL__ */
  134. #define wbinvd() \
  135. __asm__ __volatile__ ("wbinvd": : :"memory")
  136. static inline unsigned long get_limit(unsigned long segment)
  137. {
  138. unsigned long __limit;
  139. __asm__("lsll %1,%0"
  140. :"=r" (__limit):"r" (segment));
  141. return __limit+1;
  142. }
  143. #define nop() __asm__ __volatile__ ("nop")
  144. #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
  145. #define tas(ptr) (xchg((ptr),1))
  146. struct __xchg_dummy { unsigned long a[100]; };
  147. #define __xg(x) ((struct __xchg_dummy *)(x))
  148. #ifdef CONFIG_X86_CMPXCHG64
  149. /*
  150. * The semantics of XCHGCMP8B are a bit strange, this is why
  151. * there is a loop and the loading of %%eax and %%edx has to
  152. * be inside. This inlines well in most cases, the cached
  153. * cost is around ~38 cycles. (in the future we might want
  154. * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
  155. * might have an implicit FPU-save as a cost, so it's not
  156. * clear which path to go.)
  157. *
  158. * cmpxchg8b must be used with the lock prefix here to allow
  159. * the instruction to be executed atomically, see page 3-102
  160. * of the instruction set reference 24319102.pdf. We need
  161. * the reader side to see the coherent 64bit value.
  162. */
  163. static inline void __set_64bit (unsigned long long * ptr,
  164. unsigned int low, unsigned int high)
  165. {
  166. __asm__ __volatile__ (
  167. "\n1:\t"
  168. "movl (%0), %%eax\n\t"
  169. "movl 4(%0), %%edx\n\t"
  170. "lock cmpxchg8b (%0)\n\t"
  171. "jnz 1b"
  172. : /* no outputs */
  173. : "D"(ptr),
  174. "b"(low),
  175. "c"(high)
  176. : "ax","dx","memory");
  177. }
  178. static inline void __set_64bit_constant (unsigned long long *ptr,
  179. unsigned long long value)
  180. {
  181. __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL));
  182. }
  183. #define ll_low(x) *(((unsigned int*)&(x))+0)
  184. #define ll_high(x) *(((unsigned int*)&(x))+1)
  185. static inline void __set_64bit_var (unsigned long long *ptr,
  186. unsigned long long value)
  187. {
  188. __set_64bit(ptr,ll_low(value), ll_high(value));
  189. }
  190. #define set_64bit(ptr,value) \
  191. (__builtin_constant_p(value) ? \
  192. __set_64bit_constant(ptr, value) : \
  193. __set_64bit_var(ptr, value) )
  194. #define _set_64bit(ptr,value) \
  195. (__builtin_constant_p(value) ? \
  196. __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \
  197. __set_64bit(ptr, ll_low(value), ll_high(value)) )
  198. #endif
  199. /*
  200. * Note: no "lock" prefix even on SMP: xchg always implies lock anyway
  201. * Note 2: xchg has side effect, so that attribute volatile is necessary,
  202. * but generally the primitive is invalid, *ptr is output argument. --ANK
  203. */
  204. static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size)
  205. {
  206. switch (size) {
  207. case 1:
  208. __asm__ __volatile__("xchgb %b0,%1"
  209. :"=q" (x)
  210. :"m" (*__xg(ptr)), "0" (x)
  211. :"memory");
  212. break;
  213. case 2:
  214. __asm__ __volatile__("xchgw %w0,%1"
  215. :"=r" (x)
  216. :"m" (*__xg(ptr)), "0" (x)
  217. :"memory");
  218. break;
  219. case 4:
  220. __asm__ __volatile__("xchgl %0,%1"
  221. :"=r" (x)
  222. :"m" (*__xg(ptr)), "0" (x)
  223. :"memory");
  224. break;
  225. }
  226. return x;
  227. }
  228. /*
  229. * Atomic compare and exchange. Compare OLD with MEM, if identical,
  230. * store NEW in MEM. Return the initial value in MEM. Success is
  231. * indicated by comparing RETURN with OLD.
  232. */
  233. #ifdef CONFIG_X86_CMPXCHG
  234. #define __HAVE_ARCH_CMPXCHG 1
  235. #define cmpxchg(ptr,o,n)\
  236. ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\
  237. (unsigned long)(n),sizeof(*(ptr))))
  238. #define sync_cmpxchg(ptr,o,n)\
  239. ((__typeof__(*(ptr)))__sync_cmpxchg((ptr),(unsigned long)(o),\
  240. (unsigned long)(n),sizeof(*(ptr))))
  241. #endif
  242. static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,
  243. unsigned long new, int size)
  244. {
  245. unsigned long prev;
  246. switch (size) {
  247. case 1:
  248. __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2"
  249. : "=a"(prev)
  250. : "q"(new), "m"(*__xg(ptr)), "0"(old)
  251. : "memory");
  252. return prev;
  253. case 2:
  254. __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2"
  255. : "=a"(prev)
  256. : "r"(new), "m"(*__xg(ptr)), "0"(old)
  257. : "memory");
  258. return prev;
  259. case 4:
  260. __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2"
  261. : "=a"(prev)
  262. : "r"(new), "m"(*__xg(ptr)), "0"(old)
  263. : "memory");
  264. return prev;
  265. }
  266. return old;
  267. }
  268. /*
  269. * Always use locked operations when touching memory shared with a
  270. * hypervisor, since the system may be SMP even if the guest kernel
  271. * isn't.
  272. */
  273. static inline unsigned long __sync_cmpxchg(volatile void *ptr,
  274. unsigned long old,
  275. unsigned long new, int size)
  276. {
  277. unsigned long prev;
  278. switch (size) {
  279. case 1:
  280. __asm__ __volatile__("lock; cmpxchgb %b1,%2"
  281. : "=a"(prev)
  282. : "q"(new), "m"(*__xg(ptr)), "0"(old)
  283. : "memory");
  284. return prev;
  285. case 2:
  286. __asm__ __volatile__("lock; cmpxchgw %w1,%2"
  287. : "=a"(prev)
  288. : "r"(new), "m"(*__xg(ptr)), "0"(old)
  289. : "memory");
  290. return prev;
  291. case 4:
  292. __asm__ __volatile__("lock; cmpxchgl %1,%2"
  293. : "=a"(prev)
  294. : "r"(new), "m"(*__xg(ptr)), "0"(old)
  295. : "memory");
  296. return prev;
  297. }
  298. return old;
  299. }
  300. #ifndef CONFIG_X86_CMPXCHG
  301. /*
  302. * Building a kernel capable running on 80386. It may be necessary to
  303. * simulate the cmpxchg on the 80386 CPU. For that purpose we define
  304. * a function for each of the sizes we support.
  305. */
  306. extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8);
  307. extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16);
  308. extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32);
  309. static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old,
  310. unsigned long new, int size)
  311. {
  312. switch (size) {
  313. case 1:
  314. return cmpxchg_386_u8(ptr, old, new);
  315. case 2:
  316. return cmpxchg_386_u16(ptr, old, new);
  317. case 4:
  318. return cmpxchg_386_u32(ptr, old, new);
  319. }
  320. return old;
  321. }
  322. #define cmpxchg(ptr,o,n) \
  323. ({ \
  324. __typeof__(*(ptr)) __ret; \
  325. if (likely(boot_cpu_data.x86 > 3)) \
  326. __ret = __cmpxchg((ptr), (unsigned long)(o), \
  327. (unsigned long)(n), sizeof(*(ptr))); \
  328. else \
  329. __ret = cmpxchg_386((ptr), (unsigned long)(o), \
  330. (unsigned long)(n), sizeof(*(ptr))); \
  331. __ret; \
  332. })
  333. #endif
  334. #ifdef CONFIG_X86_CMPXCHG64
  335. static inline unsigned long long __cmpxchg64(volatile void *ptr, unsigned long long old,
  336. unsigned long long new)
  337. {
  338. unsigned long long prev;
  339. __asm__ __volatile__(LOCK_PREFIX "cmpxchg8b %3"
  340. : "=A"(prev)
  341. : "b"((unsigned long)new),
  342. "c"((unsigned long)(new >> 32)),
  343. "m"(*__xg(ptr)),
  344. "0"(old)
  345. : "memory");
  346. return prev;
  347. }
  348. #define cmpxchg64(ptr,o,n)\
  349. ((__typeof__(*(ptr)))__cmpxchg64((ptr),(unsigned long long)(o),\
  350. (unsigned long long)(n)))
  351. #endif
  352. /*
  353. * Force strict CPU ordering.
  354. * And yes, this is required on UP too when we're talking
  355. * to devices.
  356. *
  357. * For now, "wmb()" doesn't actually do anything, as all
  358. * Intel CPU's follow what Intel calls a *Processor Order*,
  359. * in which all writes are seen in the program order even
  360. * outside the CPU.
  361. *
  362. * I expect future Intel CPU's to have a weaker ordering,
  363. * but I'd also expect them to finally get their act together
  364. * and add some real memory barriers if so.
  365. *
  366. * Some non intel clones support out of order store. wmb() ceases to be a
  367. * nop for these.
  368. */
  369. /*
  370. * Actually only lfence would be needed for mb() because all stores done
  371. * by the kernel should be already ordered. But keep a full barrier for now.
  372. */
  373. #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
  374. #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
  375. /**
  376. * read_barrier_depends - Flush all pending reads that subsequents reads
  377. * depend on.
  378. *
  379. * No data-dependent reads from memory-like regions are ever reordered
  380. * over this barrier. All reads preceding this primitive are guaranteed
  381. * to access memory (but not necessarily other CPUs' caches) before any
  382. * reads following this primitive that depend on the data return by
  383. * any of the preceding reads. This primitive is much lighter weight than
  384. * rmb() on most CPUs, and is never heavier weight than is
  385. * rmb().
  386. *
  387. * These ordering constraints are respected by both the local CPU
  388. * and the compiler.
  389. *
  390. * Ordering is not guaranteed by anything other than these primitives,
  391. * not even by data dependencies. See the documentation for
  392. * memory_barrier() for examples and URLs to more information.
  393. *
  394. * For example, the following code would force ordering (the initial
  395. * value of "a" is zero, "b" is one, and "p" is "&a"):
  396. *
  397. * <programlisting>
  398. * CPU 0 CPU 1
  399. *
  400. * b = 2;
  401. * memory_barrier();
  402. * p = &b; q = p;
  403. * read_barrier_depends();
  404. * d = *q;
  405. * </programlisting>
  406. *
  407. * because the read of "*q" depends on the read of "p" and these
  408. * two reads are separated by a read_barrier_depends(). However,
  409. * the following code, with the same initial values for "a" and "b":
  410. *
  411. * <programlisting>
  412. * CPU 0 CPU 1
  413. *
  414. * a = 2;
  415. * memory_barrier();
  416. * b = 3; y = b;
  417. * read_barrier_depends();
  418. * x = a;
  419. * </programlisting>
  420. *
  421. * does not enforce ordering, since there is no data dependency between
  422. * the read of "a" and the read of "b". Therefore, on some CPUs, such
  423. * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
  424. * in cases like this where there are no data dependencies.
  425. **/
  426. #define read_barrier_depends() do { } while(0)
  427. #ifdef CONFIG_X86_OOSTORE
  428. /* Actually there are no OOO store capable CPUs for now that do SSE,
  429. but make it already an possibility. */
  430. #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
  431. #else
  432. #define wmb() __asm__ __volatile__ ("": : :"memory")
  433. #endif
  434. #ifdef CONFIG_SMP
  435. #define smp_mb() mb()
  436. #define smp_rmb() rmb()
  437. #define smp_wmb() wmb()
  438. #define smp_read_barrier_depends() read_barrier_depends()
  439. #define set_mb(var, value) do { (void) xchg(&var, value); } while (0)
  440. #else
  441. #define smp_mb() barrier()
  442. #define smp_rmb() barrier()
  443. #define smp_wmb() barrier()
  444. #define smp_read_barrier_depends() do { } while(0)
  445. #define set_mb(var, value) do { var = value; barrier(); } while (0)
  446. #endif
  447. #include <linux/irqflags.h>
  448. /*
  449. * disable hlt during certain critical i/o operations
  450. */
  451. #define HAVE_DISABLE_HLT
  452. void disable_hlt(void);
  453. void enable_hlt(void);
  454. extern int es7000_plat;
  455. void cpu_idle_wait(void);
  456. /*
  457. * On SMP systems, when the scheduler does migration-cost autodetection,
  458. * it needs a way to flush as much of the CPU's caches as possible:
  459. */
  460. static inline void sched_cacheflush(void)
  461. {
  462. wbinvd();
  463. }
  464. extern unsigned long arch_align_stack(unsigned long sp);
  465. extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
  466. void default_idle(void);
  467. #endif