unaligned.h 3.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118
  1. #ifndef __ASM_ARM_UNALIGNED_H
  2. #define __ASM_ARM_UNALIGNED_H
  3. #include <asm/types.h>
  4. extern int __bug_unaligned_x(void *ptr);
  5. /*
  6. * What is the most efficient way of loading/storing an unaligned value?
  7. *
  8. * That is the subject of this file. Efficiency here is defined as
  9. * minimum code size with minimum register usage for the common cases.
  10. * It is currently not believed that long longs are common, so we
  11. * trade efficiency for the chars, shorts and longs against the long
  12. * longs.
  13. *
  14. * Current stats with gcc 2.7.2.2 for these functions:
  15. *
  16. * ptrsize get: code regs put: code regs
  17. * 1 1 1 1 2
  18. * 2 3 2 3 2
  19. * 4 7 3 7 3
  20. * 8 20 6 16 6
  21. *
  22. * gcc 2.95.1 seems to code differently:
  23. *
  24. * ptrsize get: code regs put: code regs
  25. * 1 1 1 1 2
  26. * 2 3 2 3 2
  27. * 4 7 4 7 4
  28. * 8 19 8 15 6
  29. *
  30. * which may or may not be more efficient (depending upon whether
  31. * you can afford the extra registers). Hopefully the gcc 2.95
  32. * is inteligent enough to decide if it is better to use the
  33. * extra register, but evidence so far seems to suggest otherwise.
  34. *
  35. * Unfortunately, gcc is not able to optimise the high word
  36. * out of long long >> 32, or the low word from long long << 32
  37. */
  38. #define __get_unaligned_2_le(__p) \
  39. (__p[0] | __p[1] << 8)
  40. #define __get_unaligned_4_le(__p) \
  41. (__p[0] | __p[1] << 8 | __p[2] << 16 | __p[3] << 24)
  42. #define __get_unaligned_le(ptr) \
  43. ({ \
  44. __typeof__(*(ptr)) __v; \
  45. __u8 *__p = (__u8 *)(ptr); \
  46. switch (sizeof(*(ptr))) { \
  47. case 1: __v = *(ptr); break; \
  48. case 2: __v = __get_unaligned_2_le(__p); break; \
  49. case 4: __v = __get_unaligned_4_le(__p); break; \
  50. case 8: { \
  51. unsigned int __v1, __v2; \
  52. __v2 = __get_unaligned_4_le((__p+4)); \
  53. __v1 = __get_unaligned_4_le(__p); \
  54. __v = ((unsigned long long)__v2 << 32 | __v1); \
  55. } \
  56. break; \
  57. default: __v = __bug_unaligned_x(__p); break; \
  58. } \
  59. __v; \
  60. })
  61. static inline void __put_unaligned_2_le(__u32 __v, register __u8 *__p)
  62. {
  63. *__p++ = __v;
  64. *__p++ = __v >> 8;
  65. }
  66. static inline void __put_unaligned_4_le(__u32 __v, register __u8 *__p)
  67. {
  68. __put_unaligned_2_le(__v >> 16, __p + 2);
  69. __put_unaligned_2_le(__v, __p);
  70. }
  71. static inline void __put_unaligned_8_le(const unsigned long long __v, register __u8 *__p)
  72. {
  73. /*
  74. * tradeoff: 8 bytes of stack for all unaligned puts (2
  75. * instructions), or an extra register in the long long
  76. * case - go for the extra register.
  77. */
  78. __put_unaligned_4_le(__v >> 32, __p+4);
  79. __put_unaligned_4_le(__v, __p);
  80. }
  81. /*
  82. * Try to store an unaligned value as efficiently as possible.
  83. */
  84. #define __put_unaligned_le(val,ptr) \
  85. ({ \
  86. switch (sizeof(*(ptr))) { \
  87. case 1: \
  88. *(ptr) = (val); \
  89. break; \
  90. case 2: __put_unaligned_2_le((val),(__u8 *)(ptr)); \
  91. break; \
  92. case 4: __put_unaligned_4_le((val),(__u8 *)(ptr)); \
  93. break; \
  94. case 8: __put_unaligned_8_le((val),(__u8 *)(ptr)); \
  95. break; \
  96. default: __bug_unaligned_x(ptr); \
  97. break; \
  98. } \
  99. (void) 0; \
  100. })
  101. /*
  102. * Select endianness
  103. */
  104. #define get_unaligned __get_unaligned_le
  105. #define put_unaligned __put_unaligned_le
  106. #endif