pgtable.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389
  1. /*
  2. * linux/include/asm-arm/pgtable.h
  3. *
  4. * Copyright (C) 1995-2002 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #ifndef _ASMARM_PGTABLE_H
  11. #define _ASMARM_PGTABLE_H
  12. #include <asm-generic/4level-fixup.h>
  13. #include <asm/proc-fns.h>
  14. #ifndef CONFIG_MMU
  15. #include "pgtable-nommu.h"
  16. #else
  17. #include <asm/memory.h>
  18. #include <asm/arch/vmalloc.h>
  19. /*
  20. * Just any arbitrary offset to the start of the vmalloc VM area: the
  21. * current 8MB value just means that there will be a 8MB "hole" after the
  22. * physical memory until the kernel virtual memory starts. That means that
  23. * any out-of-bounds memory accesses will hopefully be caught.
  24. * The vmalloc() routines leaves a hole of 4kB between each vmalloced
  25. * area for the same reason. ;)
  26. *
  27. * Note that platforms may override VMALLOC_START, but they must provide
  28. * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
  29. * which may not overlap IO space.
  30. */
  31. #ifndef VMALLOC_START
  32. #define VMALLOC_OFFSET (8*1024*1024)
  33. #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
  34. #endif
  35. /*
  36. * Hardware-wise, we have a two level page table structure, where the first
  37. * level has 4096 entries, and the second level has 256 entries. Each entry
  38. * is one 32-bit word. Most of the bits in the second level entry are used
  39. * by hardware, and there aren't any "accessed" and "dirty" bits.
  40. *
  41. * Linux on the other hand has a three level page table structure, which can
  42. * be wrapped to fit a two level page table structure easily - using the PGD
  43. * and PTE only. However, Linux also expects one "PTE" table per page, and
  44. * at least a "dirty" bit.
  45. *
  46. * Therefore, we tweak the implementation slightly - we tell Linux that we
  47. * have 2048 entries in the first level, each of which is 8 bytes (iow, two
  48. * hardware pointers to the second level.) The second level contains two
  49. * hardware PTE tables arranged contiguously, followed by Linux versions
  50. * which contain the state information Linux needs. We, therefore, end up
  51. * with 512 entries in the "PTE" level.
  52. *
  53. * This leads to the page tables having the following layout:
  54. *
  55. * pgd pte
  56. * | |
  57. * +--------+ +0
  58. * | |-----> +------------+ +0
  59. * +- - - - + +4 | h/w pt 0 |
  60. * | |-----> +------------+ +1024
  61. * +--------+ +8 | h/w pt 1 |
  62. * | | +------------+ +2048
  63. * +- - - - + | Linux pt 0 |
  64. * | | +------------+ +3072
  65. * +--------+ | Linux pt 1 |
  66. * | | +------------+ +4096
  67. *
  68. * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
  69. * PTE_xxx for definitions of bits appearing in the "h/w pt".
  70. *
  71. * PMD_xxx definitions refer to bits in the first level page table.
  72. *
  73. * The "dirty" bit is emulated by only granting hardware write permission
  74. * iff the page is marked "writable" and "dirty" in the Linux PTE. This
  75. * means that a write to a clean page will cause a permission fault, and
  76. * the Linux MM layer will mark the page dirty via handle_pte_fault().
  77. * For the hardware to notice the permission change, the TLB entry must
  78. * be flushed, and ptep_establish() does that for us.
  79. *
  80. * The "accessed" or "young" bit is emulated by a similar method; we only
  81. * allow accesses to the page if the "young" bit is set. Accesses to the
  82. * page will cause a fault, and handle_pte_fault() will set the young bit
  83. * for us as long as the page is marked present in the corresponding Linux
  84. * PTE entry. Again, ptep_establish() will ensure that the TLB is up to
  85. * date.
  86. *
  87. * However, when the "young" bit is cleared, we deny access to the page
  88. * by clearing the hardware PTE. Currently Linux does not flush the TLB
  89. * for us in this case, which means the TLB will retain the transation
  90. * until either the TLB entry is evicted under pressure, or a context
  91. * switch which changes the user space mapping occurs.
  92. */
  93. #define PTRS_PER_PTE 512
  94. #define PTRS_PER_PMD 1
  95. #define PTRS_PER_PGD 2048
  96. /*
  97. * PMD_SHIFT determines the size of the area a second-level page table can map
  98. * PGDIR_SHIFT determines what a third-level page table entry can map
  99. */
  100. #define PMD_SHIFT 21
  101. #define PGDIR_SHIFT 21
  102. #define LIBRARY_TEXT_START 0x0c000000
  103. #ifndef __ASSEMBLY__
  104. extern void __pte_error(const char *file, int line, unsigned long val);
  105. extern void __pmd_error(const char *file, int line, unsigned long val);
  106. extern void __pgd_error(const char *file, int line, unsigned long val);
  107. #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
  108. #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
  109. #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
  110. #endif /* !__ASSEMBLY__ */
  111. #define PMD_SIZE (1UL << PMD_SHIFT)
  112. #define PMD_MASK (~(PMD_SIZE-1))
  113. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  114. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  115. /*
  116. * This is the lowest virtual address we can permit any user space
  117. * mapping to be mapped at. This is particularly important for
  118. * non-high vector CPUs.
  119. */
  120. #define FIRST_USER_ADDRESS PAGE_SIZE
  121. #define FIRST_USER_PGD_NR 1
  122. #define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
  123. /*
  124. * ARMv6 supersection address mask and size definitions.
  125. */
  126. #define SUPERSECTION_SHIFT 24
  127. #define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
  128. #define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
  129. /*
  130. * "Linux" PTE definitions.
  131. *
  132. * We keep two sets of PTEs - the hardware and the linux version.
  133. * This allows greater flexibility in the way we map the Linux bits
  134. * onto the hardware tables, and allows us to have YOUNG and DIRTY
  135. * bits.
  136. *
  137. * The PTE table pointer refers to the hardware entries; the "Linux"
  138. * entries are stored 1024 bytes below.
  139. */
  140. #define L_PTE_PRESENT (1 << 0)
  141. #define L_PTE_FILE (1 << 1) /* only when !PRESENT */
  142. #define L_PTE_YOUNG (1 << 1)
  143. #define L_PTE_BUFFERABLE (1 << 2) /* matches PTE */
  144. #define L_PTE_CACHEABLE (1 << 3) /* matches PTE */
  145. #define L_PTE_USER (1 << 4)
  146. #define L_PTE_WRITE (1 << 5)
  147. #define L_PTE_EXEC (1 << 6)
  148. #define L_PTE_DIRTY (1 << 7)
  149. #define L_PTE_COHERENT (1 << 9) /* I/O coherent (xsc3) */
  150. #define L_PTE_SHARED (1 << 10) /* shared between CPUs (v6) */
  151. #define L_PTE_ASID (1 << 11) /* non-global (use ASID, v6) */
  152. #ifndef __ASSEMBLY__
  153. /*
  154. * The following macros handle the cache and bufferable bits...
  155. */
  156. #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE
  157. #define _L_PTE_READ L_PTE_USER | L_PTE_EXEC
  158. extern pgprot_t pgprot_kernel;
  159. #define PAGE_NONE __pgprot(_L_PTE_DEFAULT)
  160. #define PAGE_COPY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
  161. #define PAGE_SHARED __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE)
  162. #define PAGE_READONLY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
  163. #define PAGE_KERNEL pgprot_kernel
  164. #endif /* __ASSEMBLY__ */
  165. /*
  166. * The table below defines the page protection levels that we insert into our
  167. * Linux page table version. These get translated into the best that the
  168. * architecture can perform. Note that on most ARM hardware:
  169. * 1) We cannot do execute protection
  170. * 2) If we could do execute protection, then read is implied
  171. * 3) write implies read permissions
  172. */
  173. #define __P000 PAGE_NONE
  174. #define __P001 PAGE_READONLY
  175. #define __P010 PAGE_COPY
  176. #define __P011 PAGE_COPY
  177. #define __P100 PAGE_READONLY
  178. #define __P101 PAGE_READONLY
  179. #define __P110 PAGE_COPY
  180. #define __P111 PAGE_COPY
  181. #define __S000 PAGE_NONE
  182. #define __S001 PAGE_READONLY
  183. #define __S010 PAGE_SHARED
  184. #define __S011 PAGE_SHARED
  185. #define __S100 PAGE_READONLY
  186. #define __S101 PAGE_READONLY
  187. #define __S110 PAGE_SHARED
  188. #define __S111 PAGE_SHARED
  189. #ifndef __ASSEMBLY__
  190. /*
  191. * ZERO_PAGE is a global shared page that is always zero: used
  192. * for zero-mapped memory areas etc..
  193. */
  194. extern struct page *empty_zero_page;
  195. #define ZERO_PAGE(vaddr) (empty_zero_page)
  196. #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
  197. #define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
  198. #define pte_none(pte) (!pte_val(pte))
  199. #define pte_clear(mm,addr,ptep) set_pte_at((mm),(addr),(ptep), __pte(0))
  200. #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
  201. #define pte_offset_kernel(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr))
  202. #define pte_offset_map(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr))
  203. #define pte_offset_map_nested(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr))
  204. #define pte_unmap(pte) do { } while (0)
  205. #define pte_unmap_nested(pte) do { } while (0)
  206. #define set_pte(ptep, pte) cpu_set_pte(ptep,pte)
  207. #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
  208. /*
  209. * The following only work if pte_present() is true.
  210. * Undefined behaviour if not..
  211. */
  212. #define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
  213. #define pte_read(pte) (pte_val(pte) & L_PTE_USER)
  214. #define pte_write(pte) (pte_val(pte) & L_PTE_WRITE)
  215. #define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC)
  216. #define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
  217. #define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
  218. /*
  219. * The following only works if pte_present() is not true.
  220. */
  221. #define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
  222. #define pte_to_pgoff(x) (pte_val(x) >> 2)
  223. #define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE)
  224. #define PTE_FILE_MAX_BITS 30
  225. #define PTE_BIT_FUNC(fn,op) \
  226. static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
  227. /*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/
  228. /*PTE_BIT_FUNC(mkread, |= L_PTE_USER);*/
  229. PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
  230. PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE);
  231. PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC);
  232. PTE_BIT_FUNC(mkexec, |= L_PTE_EXEC);
  233. PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
  234. PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
  235. PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
  236. PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
  237. /*
  238. * Mark the prot value as uncacheable and unbufferable.
  239. */
  240. #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE))
  241. #define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE)
  242. #define pmd_none(pmd) (!pmd_val(pmd))
  243. #define pmd_present(pmd) (pmd_val(pmd))
  244. #define pmd_bad(pmd) (pmd_val(pmd) & 2)
  245. #define copy_pmd(pmdpd,pmdps) \
  246. do { \
  247. pmdpd[0] = pmdps[0]; \
  248. pmdpd[1] = pmdps[1]; \
  249. flush_pmd_entry(pmdpd); \
  250. } while (0)
  251. #define pmd_clear(pmdp) \
  252. do { \
  253. pmdp[0] = __pmd(0); \
  254. pmdp[1] = __pmd(0); \
  255. clean_pmd_entry(pmdp); \
  256. } while (0)
  257. static inline pte_t *pmd_page_vaddr(pmd_t pmd)
  258. {
  259. unsigned long ptr;
  260. ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
  261. ptr += PTRS_PER_PTE * sizeof(void *);
  262. return __va(ptr);
  263. }
  264. #define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd)))
  265. /*
  266. * Permanent address of a page. We never have highmem, so this is trivial.
  267. */
  268. #define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT))
  269. /*
  270. * Conversion functions: convert a page and protection to a page entry,
  271. * and a page entry and page directory to the page they refer to.
  272. */
  273. #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
  274. /*
  275. * The "pgd_xxx()" functions here are trivial for a folded two-level
  276. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  277. * into the pgd entry)
  278. */
  279. #define pgd_none(pgd) (0)
  280. #define pgd_bad(pgd) (0)
  281. #define pgd_present(pgd) (1)
  282. #define pgd_clear(pgdp) do { } while (0)
  283. #define set_pgd(pgd,pgdp) do { } while (0)
  284. /* to find an entry in a page-table-directory */
  285. #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
  286. #define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
  287. /* to find an entry in a kernel page-table-directory */
  288. #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
  289. /* Find an entry in the second-level page table.. */
  290. #define pmd_offset(dir, addr) ((pmd_t *)(dir))
  291. /* Find an entry in the third-level page table.. */
  292. #define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
  293. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  294. {
  295. const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
  296. pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
  297. return pte;
  298. }
  299. extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  300. /* Encode and decode a swap entry.
  301. *
  302. * We support up to 32GB of swap on 4k machines
  303. */
  304. #define __swp_type(x) (((x).val >> 2) & 0x7f)
  305. #define __swp_offset(x) ((x).val >> 9)
  306. #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) })
  307. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  308. #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
  309. /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
  310. /* FIXME: this is not correct */
  311. #define kern_addr_valid(addr) (1)
  312. #include <asm-generic/pgtable.h>
  313. /*
  314. * We provide our own arch_get_unmapped_area to cope with VIPT caches.
  315. */
  316. #define HAVE_ARCH_UNMAPPED_AREA
  317. /*
  318. * remap a physical page `pfn' of size `size' with page protection `prot'
  319. * into virtual address `from'
  320. */
  321. #define io_remap_pfn_range(vma,from,pfn,size,prot) \
  322. remap_pfn_range(vma, from, pfn, size, prot)
  323. #define MK_IOSPACE_PFN(space, pfn) (pfn)
  324. #define GET_IOSPACE(pfn) 0
  325. #define GET_PFN(pfn) (pfn)
  326. #define pgtable_cache_init() do { } while (0)
  327. #endif /* !__ASSEMBLY__ */
  328. #endif /* CONFIG_MMU */
  329. #endif /* _ASMARM_PGTABLE_H */