inode.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865
  1. /*
  2. * linux/fs/ufs/inode.c
  3. *
  4. * Copyright (C) 1998
  5. * Daniel Pirkl <daniel.pirkl@email.cz>
  6. * Charles University, Faculty of Mathematics and Physics
  7. *
  8. * from
  9. *
  10. * linux/fs/ext2/inode.c
  11. *
  12. * Copyright (C) 1992, 1993, 1994, 1995
  13. * Remy Card (card@masi.ibp.fr)
  14. * Laboratoire MASI - Institut Blaise Pascal
  15. * Universite Pierre et Marie Curie (Paris VI)
  16. *
  17. * from
  18. *
  19. * linux/fs/minix/inode.c
  20. *
  21. * Copyright (C) 1991, 1992 Linus Torvalds
  22. *
  23. * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
  24. * Big-endian to little-endian byte-swapping/bitmaps by
  25. * David S. Miller (davem@caip.rutgers.edu), 1995
  26. */
  27. #include <asm/uaccess.h>
  28. #include <asm/system.h>
  29. #include <linux/errno.h>
  30. #include <linux/fs.h>
  31. #include <linux/ufs_fs.h>
  32. #include <linux/time.h>
  33. #include <linux/stat.h>
  34. #include <linux/string.h>
  35. #include <linux/mm.h>
  36. #include <linux/smp_lock.h>
  37. #include <linux/buffer_head.h>
  38. #include "swab.h"
  39. #include "util.h"
  40. static u64 ufs_frag_map(struct inode *inode, sector_t frag);
  41. static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4])
  42. {
  43. struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
  44. int ptrs = uspi->s_apb;
  45. int ptrs_bits = uspi->s_apbshift;
  46. const long direct_blocks = UFS_NDADDR,
  47. indirect_blocks = ptrs,
  48. double_blocks = (1 << (ptrs_bits * 2));
  49. int n = 0;
  50. UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
  51. if (i_block < 0) {
  52. ufs_warning(inode->i_sb, "ufs_block_to_path", "block < 0");
  53. } else if (i_block < direct_blocks) {
  54. offsets[n++] = i_block;
  55. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  56. offsets[n++] = UFS_IND_BLOCK;
  57. offsets[n++] = i_block;
  58. } else if ((i_block -= indirect_blocks) < double_blocks) {
  59. offsets[n++] = UFS_DIND_BLOCK;
  60. offsets[n++] = i_block >> ptrs_bits;
  61. offsets[n++] = i_block & (ptrs - 1);
  62. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  63. offsets[n++] = UFS_TIND_BLOCK;
  64. offsets[n++] = i_block >> (ptrs_bits * 2);
  65. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  66. offsets[n++] = i_block & (ptrs - 1);
  67. } else {
  68. ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
  69. }
  70. return n;
  71. }
  72. /*
  73. * Returns the location of the fragment from
  74. * the begining of the filesystem.
  75. */
  76. static u64 ufs_frag_map(struct inode *inode, sector_t frag)
  77. {
  78. struct ufs_inode_info *ufsi = UFS_I(inode);
  79. struct super_block *sb = inode->i_sb;
  80. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  81. u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
  82. int shift = uspi->s_apbshift-uspi->s_fpbshift;
  83. sector_t offsets[4], *p;
  84. int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
  85. u64 ret = 0L;
  86. __fs32 block;
  87. __fs64 u2_block = 0L;
  88. unsigned flags = UFS_SB(sb)->s_flags;
  89. u64 temp = 0L;
  90. UFSD(": frag = %llu depth = %d\n", (unsigned long long)frag, depth);
  91. UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
  92. uspi->s_fpbshift, uspi->s_apbmask,
  93. (unsigned long long)mask);
  94. if (depth == 0)
  95. return 0;
  96. p = offsets;
  97. lock_kernel();
  98. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  99. goto ufs2;
  100. block = ufsi->i_u1.i_data[*p++];
  101. if (!block)
  102. goto out;
  103. while (--depth) {
  104. struct buffer_head *bh;
  105. sector_t n = *p++;
  106. bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift));
  107. if (!bh)
  108. goto out;
  109. block = ((__fs32 *) bh->b_data)[n & mask];
  110. brelse (bh);
  111. if (!block)
  112. goto out;
  113. }
  114. ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask));
  115. goto out;
  116. ufs2:
  117. u2_block = ufsi->i_u1.u2_i_data[*p++];
  118. if (!u2_block)
  119. goto out;
  120. while (--depth) {
  121. struct buffer_head *bh;
  122. sector_t n = *p++;
  123. temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block);
  124. bh = sb_bread(sb, temp +(u64) (n>>shift));
  125. if (!bh)
  126. goto out;
  127. u2_block = ((__fs64 *)bh->b_data)[n & mask];
  128. brelse(bh);
  129. if (!u2_block)
  130. goto out;
  131. }
  132. temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block);
  133. ret = temp + (u64) (frag & uspi->s_fpbmask);
  134. out:
  135. unlock_kernel();
  136. return ret;
  137. }
  138. static void ufs_clear_frag(struct inode *inode, struct buffer_head *bh)
  139. {
  140. lock_buffer(bh);
  141. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  142. set_buffer_uptodate(bh);
  143. mark_buffer_dirty(bh);
  144. unlock_buffer(bh);
  145. if (IS_SYNC(inode))
  146. sync_dirty_buffer(bh);
  147. }
  148. static struct buffer_head *
  149. ufs_clear_frags(struct inode *inode, sector_t beg,
  150. unsigned int n, sector_t want)
  151. {
  152. struct buffer_head *res = NULL, *bh;
  153. sector_t end = beg + n;
  154. for (; beg < end; ++beg) {
  155. bh = sb_getblk(inode->i_sb, beg);
  156. ufs_clear_frag(inode, bh);
  157. if (want != beg)
  158. brelse(bh);
  159. else
  160. res = bh;
  161. }
  162. BUG_ON(!res);
  163. return res;
  164. }
  165. /**
  166. * ufs_inode_getfrag() - allocate new fragment(s)
  167. * @inode - pointer to inode
  168. * @fragment - number of `fragment' which hold pointer
  169. * to new allocated fragment(s)
  170. * @new_fragment - number of new allocated fragment(s)
  171. * @required - how many fragment(s) we require
  172. * @err - we set it if something wrong
  173. * @phys - pointer to where we save physical number of new allocated fragments,
  174. * NULL if we allocate not data(indirect blocks for example).
  175. * @new - we set it if we allocate new block
  176. * @locked_page - for ufs_new_fragments()
  177. */
  178. static struct buffer_head *
  179. ufs_inode_getfrag(struct inode *inode, unsigned int fragment,
  180. sector_t new_fragment, unsigned int required, int *err,
  181. long *phys, int *new, struct page *locked_page)
  182. {
  183. struct ufs_inode_info *ufsi = UFS_I(inode);
  184. struct super_block *sb = inode->i_sb;
  185. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  186. struct buffer_head * result;
  187. unsigned block, blockoff, lastfrag, lastblock, lastblockoff;
  188. unsigned tmp, goal;
  189. __fs32 * p, * p2;
  190. UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, required %u, "
  191. "metadata %d\n", inode->i_ino, fragment,
  192. (unsigned long long)new_fragment, required, !phys);
  193. /* TODO : to be done for write support
  194. if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  195. goto ufs2;
  196. */
  197. block = ufs_fragstoblks (fragment);
  198. blockoff = ufs_fragnum (fragment);
  199. p = ufsi->i_u1.i_data + block;
  200. goal = 0;
  201. repeat:
  202. tmp = fs32_to_cpu(sb, *p);
  203. lastfrag = ufsi->i_lastfrag;
  204. if (tmp && fragment < lastfrag) {
  205. if (!phys) {
  206. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  207. if (tmp == fs32_to_cpu(sb, *p)) {
  208. UFSD("EXIT, result %u\n", tmp + blockoff);
  209. return result;
  210. }
  211. brelse (result);
  212. goto repeat;
  213. } else {
  214. *phys = tmp + blockoff;
  215. return NULL;
  216. }
  217. }
  218. lastblock = ufs_fragstoblks (lastfrag);
  219. lastblockoff = ufs_fragnum (lastfrag);
  220. /*
  221. * We will extend file into new block beyond last allocated block
  222. */
  223. if (lastblock < block) {
  224. /*
  225. * We must reallocate last allocated block
  226. */
  227. if (lastblockoff) {
  228. p2 = ufsi->i_u1.i_data + lastblock;
  229. tmp = ufs_new_fragments (inode, p2, lastfrag,
  230. fs32_to_cpu(sb, *p2), uspi->s_fpb - lastblockoff,
  231. err, locked_page);
  232. if (!tmp) {
  233. if (lastfrag != ufsi->i_lastfrag)
  234. goto repeat;
  235. else
  236. return NULL;
  237. }
  238. lastfrag = ufsi->i_lastfrag;
  239. }
  240. tmp = fs32_to_cpu(sb, ufsi->i_u1.i_data[lastblock]);
  241. if (tmp)
  242. goal = tmp + uspi->s_fpb;
  243. tmp = ufs_new_fragments (inode, p, fragment - blockoff,
  244. goal, required + blockoff,
  245. err, locked_page);
  246. }
  247. /*
  248. * We will extend last allocated block
  249. */
  250. else if (lastblock == block) {
  251. tmp = ufs_new_fragments(inode, p, fragment - (blockoff - lastblockoff),
  252. fs32_to_cpu(sb, *p), required + (blockoff - lastblockoff),
  253. err, locked_page);
  254. } else /* (lastblock > block) */ {
  255. /*
  256. * We will allocate new block before last allocated block
  257. */
  258. if (block) {
  259. tmp = fs32_to_cpu(sb, ufsi->i_u1.i_data[block-1]);
  260. if (tmp)
  261. goal = tmp + uspi->s_fpb;
  262. }
  263. tmp = ufs_new_fragments(inode, p, fragment - blockoff,
  264. goal, uspi->s_fpb, err, locked_page);
  265. }
  266. if (!tmp) {
  267. if ((!blockoff && *p) ||
  268. (blockoff && lastfrag != ufsi->i_lastfrag))
  269. goto repeat;
  270. *err = -ENOSPC;
  271. return NULL;
  272. }
  273. if (!phys) {
  274. result = ufs_clear_frags(inode, tmp, required, tmp + blockoff);
  275. } else {
  276. *phys = tmp + blockoff;
  277. result = NULL;
  278. *err = 0;
  279. *new = 1;
  280. }
  281. inode->i_ctime = CURRENT_TIME_SEC;
  282. if (IS_SYNC(inode))
  283. ufs_sync_inode (inode);
  284. mark_inode_dirty(inode);
  285. UFSD("EXIT, result %u\n", tmp + blockoff);
  286. return result;
  287. /* This part : To be implemented ....
  288. Required only for writing, not required for READ-ONLY.
  289. ufs2:
  290. u2_block = ufs_fragstoblks(fragment);
  291. u2_blockoff = ufs_fragnum(fragment);
  292. p = ufsi->i_u1.u2_i_data + block;
  293. goal = 0;
  294. repeat2:
  295. tmp = fs32_to_cpu(sb, *p);
  296. lastfrag = ufsi->i_lastfrag;
  297. */
  298. }
  299. /**
  300. * ufs_inode_getblock() - allocate new block
  301. * @inode - pointer to inode
  302. * @bh - pointer to block which hold "pointer" to new allocated block
  303. * @fragment - number of `fragment' which hold pointer
  304. * to new allocated block
  305. * @new_fragment - number of new allocated fragment
  306. * (block will hold this fragment and also uspi->s_fpb-1)
  307. * @err - see ufs_inode_getfrag()
  308. * @phys - see ufs_inode_getfrag()
  309. * @new - see ufs_inode_getfrag()
  310. * @locked_page - see ufs_inode_getfrag()
  311. */
  312. static struct buffer_head *
  313. ufs_inode_getblock(struct inode *inode, struct buffer_head *bh,
  314. unsigned int fragment, sector_t new_fragment, int *err,
  315. long *phys, int *new, struct page *locked_page)
  316. {
  317. struct super_block *sb = inode->i_sb;
  318. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  319. struct buffer_head * result;
  320. unsigned tmp, goal, block, blockoff;
  321. __fs32 * p;
  322. block = ufs_fragstoblks (fragment);
  323. blockoff = ufs_fragnum (fragment);
  324. UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, metadata %d\n",
  325. inode->i_ino, fragment, (unsigned long long)new_fragment, !phys);
  326. result = NULL;
  327. if (!bh)
  328. goto out;
  329. if (!buffer_uptodate(bh)) {
  330. ll_rw_block (READ, 1, &bh);
  331. wait_on_buffer (bh);
  332. if (!buffer_uptodate(bh))
  333. goto out;
  334. }
  335. p = (__fs32 *) bh->b_data + block;
  336. repeat:
  337. tmp = fs32_to_cpu(sb, *p);
  338. if (tmp) {
  339. if (!phys) {
  340. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  341. if (tmp == fs32_to_cpu(sb, *p))
  342. goto out;
  343. brelse (result);
  344. goto repeat;
  345. } else {
  346. *phys = tmp + blockoff;
  347. goto out;
  348. }
  349. }
  350. if (block && (tmp = fs32_to_cpu(sb, ((__fs32*)bh->b_data)[block-1])))
  351. goal = tmp + uspi->s_fpb;
  352. else
  353. goal = bh->b_blocknr + uspi->s_fpb;
  354. tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
  355. uspi->s_fpb, err, locked_page);
  356. if (!tmp) {
  357. if (fs32_to_cpu(sb, *p))
  358. goto repeat;
  359. goto out;
  360. }
  361. if (!phys) {
  362. result = ufs_clear_frags(inode, tmp, uspi->s_fpb,
  363. tmp + blockoff);
  364. } else {
  365. *phys = tmp + blockoff;
  366. *new = 1;
  367. }
  368. mark_buffer_dirty(bh);
  369. if (IS_SYNC(inode))
  370. sync_dirty_buffer(bh);
  371. inode->i_ctime = CURRENT_TIME_SEC;
  372. mark_inode_dirty(inode);
  373. UFSD("result %u\n", tmp + blockoff);
  374. out:
  375. brelse (bh);
  376. UFSD("EXIT\n");
  377. return result;
  378. }
  379. /**
  380. * ufs_getfrag_bloc() - `get_block_t' function, interface between UFS and
  381. * readpage, writepage and so on
  382. */
  383. int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
  384. {
  385. struct super_block * sb = inode->i_sb;
  386. struct ufs_sb_private_info * uspi = UFS_SB(sb)->s_uspi;
  387. struct buffer_head * bh;
  388. int ret, err, new;
  389. unsigned long ptr,phys;
  390. u64 phys64 = 0;
  391. if (!create) {
  392. phys64 = ufs_frag_map(inode, fragment);
  393. UFSD("phys64 = %llu\n", (unsigned long long)phys64);
  394. if (phys64)
  395. map_bh(bh_result, sb, phys64);
  396. return 0;
  397. }
  398. /* This code entered only while writing ....? */
  399. err = -EIO;
  400. new = 0;
  401. ret = 0;
  402. bh = NULL;
  403. lock_kernel();
  404. UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
  405. if (fragment < 0)
  406. goto abort_negative;
  407. if (fragment >
  408. ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
  409. << uspi->s_fpbshift))
  410. goto abort_too_big;
  411. err = 0;
  412. ptr = fragment;
  413. /*
  414. * ok, these macros clean the logic up a bit and make
  415. * it much more readable:
  416. */
  417. #define GET_INODE_DATABLOCK(x) \
  418. ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new, bh_result->b_page)
  419. #define GET_INODE_PTR(x) \
  420. ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL, bh_result->b_page)
  421. #define GET_INDIRECT_DATABLOCK(x) \
  422. ufs_inode_getblock(inode, bh, x, fragment, \
  423. &err, &phys, &new, bh_result->b_page);
  424. #define GET_INDIRECT_PTR(x) \
  425. ufs_inode_getblock(inode, bh, x, fragment, \
  426. &err, NULL, NULL, bh_result->b_page);
  427. if (ptr < UFS_NDIR_FRAGMENT) {
  428. bh = GET_INODE_DATABLOCK(ptr);
  429. goto out;
  430. }
  431. ptr -= UFS_NDIR_FRAGMENT;
  432. if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
  433. bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
  434. goto get_indirect;
  435. }
  436. ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
  437. if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
  438. bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
  439. goto get_double;
  440. }
  441. ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
  442. bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
  443. bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
  444. get_double:
  445. bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
  446. get_indirect:
  447. bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
  448. #undef GET_INODE_DATABLOCK
  449. #undef GET_INODE_PTR
  450. #undef GET_INDIRECT_DATABLOCK
  451. #undef GET_INDIRECT_PTR
  452. out:
  453. if (err)
  454. goto abort;
  455. if (new)
  456. set_buffer_new(bh_result);
  457. map_bh(bh_result, sb, phys);
  458. abort:
  459. unlock_kernel();
  460. return err;
  461. abort_negative:
  462. ufs_warning(sb, "ufs_get_block", "block < 0");
  463. goto abort;
  464. abort_too_big:
  465. ufs_warning(sb, "ufs_get_block", "block > big");
  466. goto abort;
  467. }
  468. static struct buffer_head *ufs_getfrag(struct inode *inode,
  469. unsigned int fragment,
  470. int create, int *err)
  471. {
  472. struct buffer_head dummy;
  473. int error;
  474. dummy.b_state = 0;
  475. dummy.b_blocknr = -1000;
  476. error = ufs_getfrag_block(inode, fragment, &dummy, create);
  477. *err = error;
  478. if (!error && buffer_mapped(&dummy)) {
  479. struct buffer_head *bh;
  480. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  481. if (buffer_new(&dummy)) {
  482. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  483. set_buffer_uptodate(bh);
  484. mark_buffer_dirty(bh);
  485. }
  486. return bh;
  487. }
  488. return NULL;
  489. }
  490. struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
  491. int create, int * err)
  492. {
  493. struct buffer_head * bh;
  494. UFSD("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment);
  495. bh = ufs_getfrag (inode, fragment, create, err);
  496. if (!bh || buffer_uptodate(bh))
  497. return bh;
  498. ll_rw_block (READ, 1, &bh);
  499. wait_on_buffer (bh);
  500. if (buffer_uptodate(bh))
  501. return bh;
  502. brelse (bh);
  503. *err = -EIO;
  504. return NULL;
  505. }
  506. static int ufs_writepage(struct page *page, struct writeback_control *wbc)
  507. {
  508. return block_write_full_page(page,ufs_getfrag_block,wbc);
  509. }
  510. static int ufs_readpage(struct file *file, struct page *page)
  511. {
  512. return block_read_full_page(page,ufs_getfrag_block);
  513. }
  514. static int ufs_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)
  515. {
  516. return block_prepare_write(page,from,to,ufs_getfrag_block);
  517. }
  518. static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
  519. {
  520. return generic_block_bmap(mapping,block,ufs_getfrag_block);
  521. }
  522. const struct address_space_operations ufs_aops = {
  523. .readpage = ufs_readpage,
  524. .writepage = ufs_writepage,
  525. .sync_page = block_sync_page,
  526. .prepare_write = ufs_prepare_write,
  527. .commit_write = generic_commit_write,
  528. .bmap = ufs_bmap
  529. };
  530. static void ufs_set_inode_ops(struct inode *inode)
  531. {
  532. if (S_ISREG(inode->i_mode)) {
  533. inode->i_op = &ufs_file_inode_operations;
  534. inode->i_fop = &ufs_file_operations;
  535. inode->i_mapping->a_ops = &ufs_aops;
  536. } else if (S_ISDIR(inode->i_mode)) {
  537. inode->i_op = &ufs_dir_inode_operations;
  538. inode->i_fop = &ufs_dir_operations;
  539. inode->i_mapping->a_ops = &ufs_aops;
  540. } else if (S_ISLNK(inode->i_mode)) {
  541. if (!inode->i_blocks)
  542. inode->i_op = &ufs_fast_symlink_inode_operations;
  543. else {
  544. inode->i_op = &page_symlink_inode_operations;
  545. inode->i_mapping->a_ops = &ufs_aops;
  546. }
  547. } else
  548. init_special_inode(inode, inode->i_mode,
  549. ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
  550. }
  551. static void ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
  552. {
  553. struct ufs_inode_info *ufsi = UFS_I(inode);
  554. struct super_block *sb = inode->i_sb;
  555. mode_t mode;
  556. unsigned i;
  557. /*
  558. * Copy data to the in-core inode.
  559. */
  560. inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
  561. inode->i_nlink = fs16_to_cpu(sb, ufs_inode->ui_nlink);
  562. if (inode->i_nlink == 0)
  563. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  564. /*
  565. * Linux now has 32-bit uid and gid, so we can support EFT.
  566. */
  567. inode->i_uid = ufs_get_inode_uid(sb, ufs_inode);
  568. inode->i_gid = ufs_get_inode_gid(sb, ufs_inode);
  569. inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
  570. inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
  571. inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
  572. inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
  573. inode->i_mtime.tv_nsec = 0;
  574. inode->i_atime.tv_nsec = 0;
  575. inode->i_ctime.tv_nsec = 0;
  576. inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
  577. ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
  578. ufsi->i_gen = fs32_to_cpu(sb, ufs_inode->ui_gen);
  579. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  580. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  581. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  582. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  583. ufsi->i_u1.i_data[i] = ufs_inode->ui_u2.ui_addr.ui_db[i];
  584. } else {
  585. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  586. ufsi->i_u1.i_symlink[i] = ufs_inode->ui_u2.ui_symlink[i];
  587. }
  588. }
  589. static void ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
  590. {
  591. struct ufs_inode_info *ufsi = UFS_I(inode);
  592. struct super_block *sb = inode->i_sb;
  593. mode_t mode;
  594. unsigned i;
  595. UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
  596. /*
  597. * Copy data to the in-core inode.
  598. */
  599. inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
  600. inode->i_nlink = fs16_to_cpu(sb, ufs2_inode->ui_nlink);
  601. if (inode->i_nlink == 0)
  602. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  603. /*
  604. * Linux now has 32-bit uid and gid, so we can support EFT.
  605. */
  606. inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid);
  607. inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid);
  608. inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
  609. inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_atime.tv_sec);
  610. inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_ctime.tv_sec);
  611. inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_mtime.tv_sec);
  612. inode->i_mtime.tv_nsec = 0;
  613. inode->i_atime.tv_nsec = 0;
  614. inode->i_ctime.tv_nsec = 0;
  615. inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
  616. ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
  617. ufsi->i_gen = fs32_to_cpu(sb, ufs2_inode->ui_gen);
  618. /*
  619. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  620. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  621. */
  622. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  623. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  624. ufsi->i_u1.u2_i_data[i] =
  625. ufs2_inode->ui_u2.ui_addr.ui_db[i];
  626. } else {
  627. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  628. ufsi->i_u1.i_symlink[i] = ufs2_inode->ui_u2.ui_symlink[i];
  629. }
  630. }
  631. void ufs_read_inode(struct inode * inode)
  632. {
  633. struct ufs_inode_info *ufsi = UFS_I(inode);
  634. struct super_block * sb;
  635. struct ufs_sb_private_info * uspi;
  636. struct buffer_head * bh;
  637. UFSD("ENTER, ino %lu\n", inode->i_ino);
  638. sb = inode->i_sb;
  639. uspi = UFS_SB(sb)->s_uspi;
  640. if (inode->i_ino < UFS_ROOTINO ||
  641. inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
  642. ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
  643. inode->i_ino);
  644. goto bad_inode;
  645. }
  646. bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
  647. if (!bh) {
  648. ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
  649. inode->i_ino);
  650. goto bad_inode;
  651. }
  652. if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  653. struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
  654. ufs2_read_inode(inode,
  655. ufs2_inode + ufs_inotofsbo(inode->i_ino));
  656. } else {
  657. struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
  658. ufs1_read_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
  659. }
  660. inode->i_version++;
  661. ufsi->i_lastfrag =
  662. (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
  663. ufsi->i_dir_start_lookup = 0;
  664. ufsi->i_osync = 0;
  665. ufs_set_inode_ops(inode);
  666. brelse(bh);
  667. UFSD("EXIT\n");
  668. return;
  669. bad_inode:
  670. make_bad_inode(inode);
  671. }
  672. static int ufs_update_inode(struct inode * inode, int do_sync)
  673. {
  674. struct ufs_inode_info *ufsi = UFS_I(inode);
  675. struct super_block * sb;
  676. struct ufs_sb_private_info * uspi;
  677. struct buffer_head * bh;
  678. struct ufs_inode * ufs_inode;
  679. unsigned i;
  680. unsigned flags;
  681. UFSD("ENTER, ino %lu\n", inode->i_ino);
  682. sb = inode->i_sb;
  683. uspi = UFS_SB(sb)->s_uspi;
  684. flags = UFS_SB(sb)->s_flags;
  685. if (inode->i_ino < UFS_ROOTINO ||
  686. inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
  687. ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
  688. return -1;
  689. }
  690. bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
  691. if (!bh) {
  692. ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
  693. return -1;
  694. }
  695. ufs_inode = (struct ufs_inode *) (bh->b_data + ufs_inotofsbo(inode->i_ino) * sizeof(struct ufs_inode));
  696. ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
  697. ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
  698. ufs_set_inode_uid(sb, ufs_inode, inode->i_uid);
  699. ufs_set_inode_gid(sb, ufs_inode, inode->i_gid);
  700. ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
  701. ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
  702. ufs_inode->ui_atime.tv_usec = 0;
  703. ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
  704. ufs_inode->ui_ctime.tv_usec = 0;
  705. ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
  706. ufs_inode->ui_mtime.tv_usec = 0;
  707. ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
  708. ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
  709. ufs_inode->ui_gen = cpu_to_fs32(sb, ufsi->i_gen);
  710. if ((flags & UFS_UID_MASK) == UFS_UID_EFT) {
  711. ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
  712. ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
  713. }
  714. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  715. /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
  716. ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
  717. } else if (inode->i_blocks) {
  718. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  719. ufs_inode->ui_u2.ui_addr.ui_db[i] = ufsi->i_u1.i_data[i];
  720. }
  721. else {
  722. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  723. ufs_inode->ui_u2.ui_symlink[i] = ufsi->i_u1.i_symlink[i];
  724. }
  725. if (!inode->i_nlink)
  726. memset (ufs_inode, 0, sizeof(struct ufs_inode));
  727. mark_buffer_dirty(bh);
  728. if (do_sync)
  729. sync_dirty_buffer(bh);
  730. brelse (bh);
  731. UFSD("EXIT\n");
  732. return 0;
  733. }
  734. int ufs_write_inode (struct inode * inode, int wait)
  735. {
  736. int ret;
  737. lock_kernel();
  738. ret = ufs_update_inode (inode, wait);
  739. unlock_kernel();
  740. return ret;
  741. }
  742. int ufs_sync_inode (struct inode *inode)
  743. {
  744. return ufs_update_inode (inode, 1);
  745. }
  746. void ufs_delete_inode (struct inode * inode)
  747. {
  748. loff_t old_i_size;
  749. truncate_inode_pages(&inode->i_data, 0);
  750. /*UFS_I(inode)->i_dtime = CURRENT_TIME;*/
  751. lock_kernel();
  752. mark_inode_dirty(inode);
  753. ufs_update_inode(inode, IS_SYNC(inode));
  754. old_i_size = inode->i_size;
  755. inode->i_size = 0;
  756. if (inode->i_blocks && ufs_truncate(inode, old_i_size))
  757. ufs_warning(inode->i_sb, __FUNCTION__, "ufs_truncate failed\n");
  758. ufs_free_inode (inode);
  759. unlock_kernel();
  760. }