intelfbhw.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/errno.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/slab.h>
  26. #include <linux/delay.h>
  27. #include <linux/fb.h>
  28. #include <linux/ioport.h>
  29. #include <linux/init.h>
  30. #include <linux/pci.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/pagemap.h>
  33. #include <asm/io.h>
  34. #include "intelfb.h"
  35. #include "intelfbhw.h"
  36. struct pll_min_max {
  37. int min_m, max_m, min_m1, max_m1;
  38. int min_m2, max_m2, min_n, max_n;
  39. int min_p, max_p, min_p1, max_p1;
  40. int min_vco, max_vco, p_transition_clk, ref_clk;
  41. int p_inc_lo, p_inc_hi;
  42. };
  43. #define PLLS_I8xx 0
  44. #define PLLS_I9xx 1
  45. #define PLLS_MAX 2
  46. static struct pll_min_max plls[PLLS_MAX] = {
  47. { 108, 140, 18, 26,
  48. 6, 16, 3, 16,
  49. 4, 128, 0, 31,
  50. 930000, 1400000, 165000, 48000,
  51. 4, 2 }, //I8xx
  52. { 75, 120, 10, 20,
  53. 5, 9, 4, 7,
  54. 5, 80, 1, 8,
  55. 1400000, 2800000, 200000, 96000,
  56. 10, 5 } //I9xx
  57. };
  58. int
  59. intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  60. {
  61. u32 tmp;
  62. if (!pdev || !dinfo)
  63. return 1;
  64. switch (pdev->device) {
  65. case PCI_DEVICE_ID_INTEL_830M:
  66. dinfo->name = "Intel(R) 830M";
  67. dinfo->chipset = INTEL_830M;
  68. dinfo->mobile = 1;
  69. dinfo->pll_index = PLLS_I8xx;
  70. return 0;
  71. case PCI_DEVICE_ID_INTEL_845G:
  72. dinfo->name = "Intel(R) 845G";
  73. dinfo->chipset = INTEL_845G;
  74. dinfo->mobile = 0;
  75. dinfo->pll_index = PLLS_I8xx;
  76. return 0;
  77. case PCI_DEVICE_ID_INTEL_85XGM:
  78. tmp = 0;
  79. dinfo->mobile = 1;
  80. dinfo->pll_index = PLLS_I8xx;
  81. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  82. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  83. INTEL_85X_VARIANT_MASK) {
  84. case INTEL_VAR_855GME:
  85. dinfo->name = "Intel(R) 855GME";
  86. dinfo->chipset = INTEL_855GME;
  87. return 0;
  88. case INTEL_VAR_855GM:
  89. dinfo->name = "Intel(R) 855GM";
  90. dinfo->chipset = INTEL_855GM;
  91. return 0;
  92. case INTEL_VAR_852GME:
  93. dinfo->name = "Intel(R) 852GME";
  94. dinfo->chipset = INTEL_852GME;
  95. return 0;
  96. case INTEL_VAR_852GM:
  97. dinfo->name = "Intel(R) 852GM";
  98. dinfo->chipset = INTEL_852GM;
  99. return 0;
  100. default:
  101. dinfo->name = "Intel(R) 852GM/855GM";
  102. dinfo->chipset = INTEL_85XGM;
  103. return 0;
  104. }
  105. break;
  106. case PCI_DEVICE_ID_INTEL_865G:
  107. dinfo->name = "Intel(R) 865G";
  108. dinfo->chipset = INTEL_865G;
  109. dinfo->mobile = 0;
  110. dinfo->pll_index = PLLS_I8xx;
  111. return 0;
  112. case PCI_DEVICE_ID_INTEL_915G:
  113. dinfo->name = "Intel(R) 915G";
  114. dinfo->chipset = INTEL_915G;
  115. dinfo->mobile = 0;
  116. dinfo->pll_index = PLLS_I9xx;
  117. return 0;
  118. case PCI_DEVICE_ID_INTEL_915GM:
  119. dinfo->name = "Intel(R) 915GM";
  120. dinfo->chipset = INTEL_915GM;
  121. dinfo->mobile = 1;
  122. dinfo->pll_index = PLLS_I9xx;
  123. return 0;
  124. case PCI_DEVICE_ID_INTEL_945G:
  125. dinfo->name = "Intel(R) 945G";
  126. dinfo->chipset = INTEL_945G;
  127. dinfo->mobile = 0;
  128. dinfo->pll_index = PLLS_I9xx;
  129. return 0;
  130. case PCI_DEVICE_ID_INTEL_945GM:
  131. dinfo->name = "Intel(R) 945GM";
  132. dinfo->chipset = INTEL_945GM;
  133. dinfo->mobile = 1;
  134. dinfo->pll_index = PLLS_I9xx;
  135. return 0;
  136. default:
  137. return 1;
  138. }
  139. }
  140. int
  141. intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  142. int *stolen_size)
  143. {
  144. struct pci_dev *bridge_dev;
  145. u16 tmp;
  146. int stolen_overhead;
  147. if (!pdev || !aperture_size || !stolen_size)
  148. return 1;
  149. /* Find the bridge device. It is always 0:0.0 */
  150. if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
  151. ERR_MSG("cannot find bridge device\n");
  152. return 1;
  153. }
  154. /* Get the fb aperture size and "stolen" memory amount. */
  155. tmp = 0;
  156. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  157. switch (pdev->device) {
  158. case PCI_DEVICE_ID_INTEL_915G:
  159. case PCI_DEVICE_ID_INTEL_915GM:
  160. case PCI_DEVICE_ID_INTEL_945G:
  161. case PCI_DEVICE_ID_INTEL_945GM:
  162. /* 915 and 945 chipsets support a 256MB aperture.
  163. Aperture size is determined by inspected the
  164. base address of the aperture. */
  165. if (pci_resource_start(pdev, 2) & 0x08000000)
  166. *aperture_size = MB(128);
  167. else
  168. *aperture_size = MB(256);
  169. break;
  170. default:
  171. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  172. *aperture_size = MB(64);
  173. else
  174. *aperture_size = MB(128);
  175. break;
  176. }
  177. /* Stolen memory size is reduced by the GTT and the popup.
  178. GTT is 1K per MB of aperture size, and popup is 4K. */
  179. stolen_overhead = (*aperture_size / MB(1)) + 4;
  180. switch(pdev->device) {
  181. case PCI_DEVICE_ID_INTEL_830M:
  182. case PCI_DEVICE_ID_INTEL_845G:
  183. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  184. case INTEL_830_GMCH_GMS_STOLEN_512:
  185. *stolen_size = KB(512) - KB(stolen_overhead);
  186. return 0;
  187. case INTEL_830_GMCH_GMS_STOLEN_1024:
  188. *stolen_size = MB(1) - KB(stolen_overhead);
  189. return 0;
  190. case INTEL_830_GMCH_GMS_STOLEN_8192:
  191. *stolen_size = MB(8) - KB(stolen_overhead);
  192. return 0;
  193. case INTEL_830_GMCH_GMS_LOCAL:
  194. ERR_MSG("only local memory found\n");
  195. return 1;
  196. case INTEL_830_GMCH_GMS_DISABLED:
  197. ERR_MSG("video memory is disabled\n");
  198. return 1;
  199. default:
  200. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  201. tmp & INTEL_830_GMCH_GMS_MASK);
  202. return 1;
  203. }
  204. break;
  205. default:
  206. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  207. case INTEL_855_GMCH_GMS_STOLEN_1M:
  208. *stolen_size = MB(1) - KB(stolen_overhead);
  209. return 0;
  210. case INTEL_855_GMCH_GMS_STOLEN_4M:
  211. *stolen_size = MB(4) - KB(stolen_overhead);
  212. return 0;
  213. case INTEL_855_GMCH_GMS_STOLEN_8M:
  214. *stolen_size = MB(8) - KB(stolen_overhead);
  215. return 0;
  216. case INTEL_855_GMCH_GMS_STOLEN_16M:
  217. *stolen_size = MB(16) - KB(stolen_overhead);
  218. return 0;
  219. case INTEL_855_GMCH_GMS_STOLEN_32M:
  220. *stolen_size = MB(32) - KB(stolen_overhead);
  221. return 0;
  222. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  223. *stolen_size = MB(48) - KB(stolen_overhead);
  224. return 0;
  225. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  226. *stolen_size = MB(64) - KB(stolen_overhead);
  227. return 0;
  228. case INTEL_855_GMCH_GMS_DISABLED:
  229. ERR_MSG("video memory is disabled\n");
  230. return 0;
  231. default:
  232. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  233. tmp & INTEL_855_GMCH_GMS_MASK);
  234. return 1;
  235. }
  236. }
  237. }
  238. int
  239. intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  240. {
  241. int dvo = 0;
  242. if (INREG(LVDS) & PORT_ENABLE)
  243. dvo |= LVDS_PORT;
  244. if (INREG(DVOA) & PORT_ENABLE)
  245. dvo |= DVOA_PORT;
  246. if (INREG(DVOB) & PORT_ENABLE)
  247. dvo |= DVOB_PORT;
  248. if (INREG(DVOC) & PORT_ENABLE)
  249. dvo |= DVOC_PORT;
  250. return dvo;
  251. }
  252. const char *
  253. intelfbhw_dvo_to_string(int dvo)
  254. {
  255. if (dvo & DVOA_PORT)
  256. return "DVO port A";
  257. else if (dvo & DVOB_PORT)
  258. return "DVO port B";
  259. else if (dvo & DVOC_PORT)
  260. return "DVO port C";
  261. else if (dvo & LVDS_PORT)
  262. return "LVDS port";
  263. else
  264. return NULL;
  265. }
  266. int
  267. intelfbhw_validate_mode(struct intelfb_info *dinfo,
  268. struct fb_var_screeninfo *var)
  269. {
  270. int bytes_per_pixel;
  271. int tmp;
  272. #if VERBOSE > 0
  273. DBG_MSG("intelfbhw_validate_mode\n");
  274. #endif
  275. bytes_per_pixel = var->bits_per_pixel / 8;
  276. if (bytes_per_pixel == 3)
  277. bytes_per_pixel = 4;
  278. /* Check if enough video memory. */
  279. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  280. if (tmp > dinfo->fb.size) {
  281. WRN_MSG("Not enough video ram for mode "
  282. "(%d KByte vs %d KByte).\n",
  283. BtoKB(tmp), BtoKB(dinfo->fb.size));
  284. return 1;
  285. }
  286. /* Check if x/y limits are OK. */
  287. if (var->xres - 1 > HACTIVE_MASK) {
  288. WRN_MSG("X resolution too large (%d vs %d).\n",
  289. var->xres, HACTIVE_MASK + 1);
  290. return 1;
  291. }
  292. if (var->yres - 1 > VACTIVE_MASK) {
  293. WRN_MSG("Y resolution too large (%d vs %d).\n",
  294. var->yres, VACTIVE_MASK + 1);
  295. return 1;
  296. }
  297. /* Check for interlaced/doublescan modes. */
  298. if (var->vmode & FB_VMODE_INTERLACED) {
  299. WRN_MSG("Mode is interlaced.\n");
  300. return 1;
  301. }
  302. if (var->vmode & FB_VMODE_DOUBLE) {
  303. WRN_MSG("Mode is double-scan.\n");
  304. return 1;
  305. }
  306. /* Check if clock is OK. */
  307. tmp = 1000000000 / var->pixclock;
  308. if (tmp < MIN_CLOCK) {
  309. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  310. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  311. return 1;
  312. }
  313. if (tmp > MAX_CLOCK) {
  314. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  315. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  316. return 1;
  317. }
  318. return 0;
  319. }
  320. int
  321. intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  322. {
  323. struct intelfb_info *dinfo = GET_DINFO(info);
  324. u32 offset, xoffset, yoffset;
  325. #if VERBOSE > 0
  326. DBG_MSG("intelfbhw_pan_display\n");
  327. #endif
  328. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  329. yoffset = var->yoffset;
  330. if ((xoffset + var->xres > var->xres_virtual) ||
  331. (yoffset + var->yres > var->yres_virtual))
  332. return -EINVAL;
  333. offset = (yoffset * dinfo->pitch) +
  334. (xoffset * var->bits_per_pixel) / 8;
  335. offset += dinfo->fb.offset << 12;
  336. OUTREG(DSPABASE, offset);
  337. return 0;
  338. }
  339. /* Blank the screen. */
  340. void
  341. intelfbhw_do_blank(int blank, struct fb_info *info)
  342. {
  343. struct intelfb_info *dinfo = GET_DINFO(info);
  344. u32 tmp;
  345. #if VERBOSE > 0
  346. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  347. #endif
  348. /* Turn plane A on or off */
  349. tmp = INREG(DSPACNTR);
  350. if (blank)
  351. tmp &= ~DISPPLANE_PLANE_ENABLE;
  352. else
  353. tmp |= DISPPLANE_PLANE_ENABLE;
  354. OUTREG(DSPACNTR, tmp);
  355. /* Flush */
  356. tmp = INREG(DSPABASE);
  357. OUTREG(DSPABASE, tmp);
  358. /* Turn off/on the HW cursor */
  359. #if VERBOSE > 0
  360. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  361. #endif
  362. if (dinfo->cursor_on) {
  363. if (blank) {
  364. intelfbhw_cursor_hide(dinfo);
  365. } else {
  366. intelfbhw_cursor_show(dinfo);
  367. }
  368. dinfo->cursor_on = 1;
  369. }
  370. dinfo->cursor_blanked = blank;
  371. /* Set DPMS level */
  372. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  373. switch (blank) {
  374. case FB_BLANK_UNBLANK:
  375. case FB_BLANK_NORMAL:
  376. tmp |= ADPA_DPMS_D0;
  377. break;
  378. case FB_BLANK_VSYNC_SUSPEND:
  379. tmp |= ADPA_DPMS_D1;
  380. break;
  381. case FB_BLANK_HSYNC_SUSPEND:
  382. tmp |= ADPA_DPMS_D2;
  383. break;
  384. case FB_BLANK_POWERDOWN:
  385. tmp |= ADPA_DPMS_D3;
  386. break;
  387. }
  388. OUTREG(ADPA, tmp);
  389. return;
  390. }
  391. void
  392. intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  393. unsigned red, unsigned green, unsigned blue,
  394. unsigned transp)
  395. {
  396. #if VERBOSE > 0
  397. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  398. regno, red, green, blue);
  399. #endif
  400. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  401. PALETTE_A : PALETTE_B;
  402. OUTREG(palette_reg + (regno << 2),
  403. (red << PALETTE_8_RED_SHIFT) |
  404. (green << PALETTE_8_GREEN_SHIFT) |
  405. (blue << PALETTE_8_BLUE_SHIFT));
  406. }
  407. int
  408. intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  409. int flag)
  410. {
  411. int i;
  412. #if VERBOSE > 0
  413. DBG_MSG("intelfbhw_read_hw_state\n");
  414. #endif
  415. if (!hw || !dinfo)
  416. return -1;
  417. /* Read in as much of the HW state as possible. */
  418. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  419. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  420. hw->vga_pd = INREG(VGAPD);
  421. hw->dpll_a = INREG(DPLL_A);
  422. hw->dpll_b = INREG(DPLL_B);
  423. hw->fpa0 = INREG(FPA0);
  424. hw->fpa1 = INREG(FPA1);
  425. hw->fpb0 = INREG(FPB0);
  426. hw->fpb1 = INREG(FPB1);
  427. if (flag == 1)
  428. return flag;
  429. #if 0
  430. /* This seems to be a problem with the 852GM/855GM */
  431. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  432. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  433. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  434. }
  435. #endif
  436. if (flag == 2)
  437. return flag;
  438. hw->htotal_a = INREG(HTOTAL_A);
  439. hw->hblank_a = INREG(HBLANK_A);
  440. hw->hsync_a = INREG(HSYNC_A);
  441. hw->vtotal_a = INREG(VTOTAL_A);
  442. hw->vblank_a = INREG(VBLANK_A);
  443. hw->vsync_a = INREG(VSYNC_A);
  444. hw->src_size_a = INREG(SRC_SIZE_A);
  445. hw->bclrpat_a = INREG(BCLRPAT_A);
  446. hw->htotal_b = INREG(HTOTAL_B);
  447. hw->hblank_b = INREG(HBLANK_B);
  448. hw->hsync_b = INREG(HSYNC_B);
  449. hw->vtotal_b = INREG(VTOTAL_B);
  450. hw->vblank_b = INREG(VBLANK_B);
  451. hw->vsync_b = INREG(VSYNC_B);
  452. hw->src_size_b = INREG(SRC_SIZE_B);
  453. hw->bclrpat_b = INREG(BCLRPAT_B);
  454. if (flag == 3)
  455. return flag;
  456. hw->adpa = INREG(ADPA);
  457. hw->dvoa = INREG(DVOA);
  458. hw->dvob = INREG(DVOB);
  459. hw->dvoc = INREG(DVOC);
  460. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  461. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  462. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  463. hw->lvds = INREG(LVDS);
  464. if (flag == 4)
  465. return flag;
  466. hw->pipe_a_conf = INREG(PIPEACONF);
  467. hw->pipe_b_conf = INREG(PIPEBCONF);
  468. hw->disp_arb = INREG(DISPARB);
  469. if (flag == 5)
  470. return flag;
  471. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  472. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  473. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  474. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  475. if (flag == 6)
  476. return flag;
  477. for (i = 0; i < 4; i++) {
  478. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  479. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  480. }
  481. if (flag == 7)
  482. return flag;
  483. hw->cursor_size = INREG(CURSOR_SIZE);
  484. if (flag == 8)
  485. return flag;
  486. hw->disp_a_ctrl = INREG(DSPACNTR);
  487. hw->disp_b_ctrl = INREG(DSPBCNTR);
  488. hw->disp_a_base = INREG(DSPABASE);
  489. hw->disp_b_base = INREG(DSPBBASE);
  490. hw->disp_a_stride = INREG(DSPASTRIDE);
  491. hw->disp_b_stride = INREG(DSPBSTRIDE);
  492. if (flag == 9)
  493. return flag;
  494. hw->vgacntrl = INREG(VGACNTRL);
  495. if (flag == 10)
  496. return flag;
  497. hw->add_id = INREG(ADD_ID);
  498. if (flag == 11)
  499. return flag;
  500. for (i = 0; i < 7; i++) {
  501. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  502. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  503. if (i < 3)
  504. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  505. }
  506. for (i = 0; i < 8; i++)
  507. hw->fence[i] = INREG(FENCE + (i << 2));
  508. hw->instpm = INREG(INSTPM);
  509. hw->mem_mode = INREG(MEM_MODE);
  510. hw->fw_blc_0 = INREG(FW_BLC_0);
  511. hw->fw_blc_1 = INREG(FW_BLC_1);
  512. return 0;
  513. }
  514. static int calc_vclock3(int index, int m, int n, int p)
  515. {
  516. if (p == 0 || n == 0)
  517. return 0;
  518. return plls[index].ref_clk * m / n / p;
  519. }
  520. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds)
  521. {
  522. struct pll_min_max *pll = &plls[index];
  523. u32 m, vco, p;
  524. m = (5 * (m1 + 2)) + (m2 + 2);
  525. n += 2;
  526. vco = pll->ref_clk * m / n;
  527. if (index == PLLS_I8xx) {
  528. p = ((p1 + 2) * (1 << (p2 + 1)));
  529. } else {
  530. p = ((p1) * (p2 ? 5 : 10));
  531. }
  532. return vco / p;
  533. }
  534. static void
  535. intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, int *o_p1, int *o_p2)
  536. {
  537. int p1, p2;
  538. if (IS_I9XX(dinfo)) {
  539. if (dpll & DPLL_P1_FORCE_DIV2)
  540. p1 = 1;
  541. else
  542. p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
  543. p1 = ffs(p1);
  544. p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  545. } else {
  546. if (dpll & DPLL_P1_FORCE_DIV2)
  547. p1 = 0;
  548. else
  549. p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  550. p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  551. }
  552. *o_p1 = p1;
  553. *o_p2 = p2;
  554. }
  555. void
  556. intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
  557. {
  558. #if REGDUMP
  559. int i, m1, m2, n, p1, p2;
  560. int index = dinfo->pll_index;
  561. DBG_MSG("intelfbhw_print_hw_state\n");
  562. if (!hw || !dinfo)
  563. return;
  564. /* Read in as much of the HW state as possible. */
  565. printk("hw state dump start\n");
  566. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  567. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  568. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  569. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  570. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  571. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  572. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  573. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  574. m1, m2, n, p1, p2);
  575. printk(" VGA0: clock is %d\n",
  576. calc_vclock(index, m1, m2, n, p1, p2, 0));
  577. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  578. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  579. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  580. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  581. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  582. m1, m2, n, p1, p2);
  583. printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  584. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  585. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  586. printk(" FPA0: 0x%08x\n", hw->fpa0);
  587. printk(" FPA1: 0x%08x\n", hw->fpa1);
  588. printk(" FPB0: 0x%08x\n", hw->fpb0);
  589. printk(" FPB1: 0x%08x\n", hw->fpb1);
  590. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  591. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  592. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  593. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  594. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  595. m1, m2, n, p1, p2);
  596. printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  597. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  598. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  599. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  600. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  601. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  602. m1, m2, n, p1, p2);
  603. printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  604. #if 0
  605. printk(" PALETTE_A:\n");
  606. for (i = 0; i < PALETTE_8_ENTRIES)
  607. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  608. printk(" PALETTE_B:\n");
  609. for (i = 0; i < PALETTE_8_ENTRIES)
  610. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  611. #endif
  612. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  613. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  614. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  615. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  616. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  617. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  618. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  619. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  620. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  621. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  622. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  623. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  624. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  625. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  626. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  627. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  628. printk(" ADPA: 0x%08x\n", hw->adpa);
  629. printk(" DVOA: 0x%08x\n", hw->dvoa);
  630. printk(" DVOB: 0x%08x\n", hw->dvob);
  631. printk(" DVOC: 0x%08x\n", hw->dvoc);
  632. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  633. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  634. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  635. printk(" LVDS: 0x%08x\n", hw->lvds);
  636. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  637. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  638. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  639. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  640. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  641. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  642. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  643. printk(" CURSOR_A_PALETTE: ");
  644. for (i = 0; i < 4; i++) {
  645. printk("0x%08x", hw->cursor_a_palette[i]);
  646. if (i < 3)
  647. printk(", ");
  648. }
  649. printk("\n");
  650. printk(" CURSOR_B_PALETTE: ");
  651. for (i = 0; i < 4; i++) {
  652. printk("0x%08x", hw->cursor_b_palette[i]);
  653. if (i < 3)
  654. printk(", ");
  655. }
  656. printk("\n");
  657. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  658. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  659. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  660. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  661. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  662. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  663. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  664. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  665. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  666. for (i = 0; i < 7; i++) {
  667. printk(" SWF0%d 0x%08x\n", i,
  668. hw->swf0x[i]);
  669. }
  670. for (i = 0; i < 7; i++) {
  671. printk(" SWF1%d 0x%08x\n", i,
  672. hw->swf1x[i]);
  673. }
  674. for (i = 0; i < 3; i++) {
  675. printk(" SWF3%d 0x%08x\n", i,
  676. hw->swf3x[i]);
  677. }
  678. for (i = 0; i < 8; i++)
  679. printk(" FENCE%d 0x%08x\n", i,
  680. hw->fence[i]);
  681. printk(" INSTPM 0x%08x\n", hw->instpm);
  682. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  683. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  684. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  685. printk("hw state dump end\n");
  686. #endif
  687. }
  688. /* Split the M parameter into M1 and M2. */
  689. static int
  690. splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
  691. {
  692. int m1, m2;
  693. int testm;
  694. struct pll_min_max *pll = &plls[index];
  695. /* no point optimising too much - brute force m */
  696. for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
  697. for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
  698. testm = (5 * (m1 + 2)) + (m2 + 2);
  699. if (testm == m) {
  700. *retm1 = (unsigned int)m1;
  701. *retm2 = (unsigned int)m2;
  702. return 0;
  703. }
  704. }
  705. }
  706. return 1;
  707. }
  708. /* Split the P parameter into P1 and P2. */
  709. static int
  710. splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
  711. {
  712. int p1, p2;
  713. struct pll_min_max *pll = &plls[index];
  714. if (index == PLLS_I9xx) {
  715. p2 = (p % 10) ? 1 : 0;
  716. p1 = p / (p2 ? 5 : 10);
  717. *retp1 = (unsigned int)p1;
  718. *retp2 = (unsigned int)p2;
  719. return 0;
  720. }
  721. if (p % 4 == 0)
  722. p2 = 1;
  723. else
  724. p2 = 0;
  725. p1 = (p / (1 << (p2 + 1))) - 2;
  726. if (p % 4 == 0 && p1 < pll->min_p1) {
  727. p2 = 0;
  728. p1 = (p / (1 << (p2 + 1))) - 2;
  729. }
  730. if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
  731. (p1 + 2) * (1 << (p2 + 1)) != p) {
  732. return 1;
  733. } else {
  734. *retp1 = (unsigned int)p1;
  735. *retp2 = (unsigned int)p2;
  736. return 0;
  737. }
  738. }
  739. static int
  740. calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
  741. u32 *retp2, u32 *retclock)
  742. {
  743. u32 m1, m2, n, p1, p2, n1, testm;
  744. u32 f_vco, p, p_best = 0, m, f_out = 0;
  745. u32 err_max, err_target, err_best = 10000000;
  746. u32 n_best = 0, m_best = 0, f_best, f_err;
  747. u32 p_min, p_max, p_inc, div_max;
  748. struct pll_min_max *pll = &plls[index];
  749. /* Accept 0.5% difference, but aim for 0.1% */
  750. err_max = 5 * clock / 1000;
  751. err_target = clock / 1000;
  752. DBG_MSG("Clock is %d\n", clock);
  753. div_max = pll->max_vco / clock;
  754. p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
  755. p_min = p_inc;
  756. p_max = ROUND_DOWN_TO(div_max, p_inc);
  757. if (p_min < pll->min_p)
  758. p_min = pll->min_p;
  759. if (p_max > pll->max_p)
  760. p_max = pll->max_p;
  761. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  762. p = p_min;
  763. do {
  764. if (splitp(index, p, &p1, &p2)) {
  765. WRN_MSG("cannot split p = %d\n", p);
  766. p += p_inc;
  767. continue;
  768. }
  769. n = pll->min_n;
  770. f_vco = clock * p;
  771. do {
  772. m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
  773. if (m < pll->min_m)
  774. m = pll->min_m + 1;
  775. if (m > pll->max_m)
  776. m = pll->max_m - 1;
  777. for (testm = m - 1; testm <= m; testm++) {
  778. f_out = calc_vclock3(index, m, n, p);
  779. if (splitm(index, testm, &m1, &m2)) {
  780. WRN_MSG("cannot split m = %d\n", m);
  781. n++;
  782. continue;
  783. }
  784. if (clock > f_out)
  785. f_err = clock - f_out;
  786. else/* slightly bias the error for bigger clocks */
  787. f_err = f_out - clock + 1;
  788. if (f_err < err_best) {
  789. m_best = testm;
  790. n_best = n;
  791. p_best = p;
  792. f_best = f_out;
  793. err_best = f_err;
  794. }
  795. }
  796. n++;
  797. } while ((n <= pll->max_n) && (f_out >= clock));
  798. p += p_inc;
  799. } while ((p <= p_max));
  800. if (!m_best) {
  801. WRN_MSG("cannot find parameters for clock %d\n", clock);
  802. return 1;
  803. }
  804. m = m_best;
  805. n = n_best;
  806. p = p_best;
  807. splitm(index, m, &m1, &m2);
  808. splitp(index, p, &p1, &p2);
  809. n1 = n - 2;
  810. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  811. "f: %d (%d), VCO: %d\n",
  812. m, m1, m2, n, n1, p, p1, p2,
  813. calc_vclock3(index, m, n, p),
  814. calc_vclock(index, m1, m2, n1, p1, p2, 0),
  815. calc_vclock3(index, m, n, p) * p);
  816. *retm1 = m1;
  817. *retm2 = m2;
  818. *retn = n1;
  819. *retp1 = p1;
  820. *retp2 = p2;
  821. *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
  822. return 0;
  823. }
  824. static __inline__ int
  825. check_overflow(u32 value, u32 limit, const char *description)
  826. {
  827. if (value > limit) {
  828. WRN_MSG("%s value %d exceeds limit %d\n",
  829. description, value, limit);
  830. return 1;
  831. }
  832. return 0;
  833. }
  834. /* It is assumed that hw is filled in with the initial state information. */
  835. int
  836. intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  837. struct fb_var_screeninfo *var)
  838. {
  839. int pipe = PIPE_A;
  840. u32 *dpll, *fp0, *fp1;
  841. u32 m1, m2, n, p1, p2, clock_target, clock;
  842. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  843. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  844. u32 vsync_pol, hsync_pol;
  845. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  846. u32 stride_alignment;
  847. DBG_MSG("intelfbhw_mode_to_hw\n");
  848. /* Disable VGA */
  849. hw->vgacntrl |= VGA_DISABLE;
  850. /* Check whether pipe A or pipe B is enabled. */
  851. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  852. pipe = PIPE_A;
  853. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  854. pipe = PIPE_B;
  855. /* Set which pipe's registers will be set. */
  856. if (pipe == PIPE_B) {
  857. dpll = &hw->dpll_b;
  858. fp0 = &hw->fpb0;
  859. fp1 = &hw->fpb1;
  860. hs = &hw->hsync_b;
  861. hb = &hw->hblank_b;
  862. ht = &hw->htotal_b;
  863. vs = &hw->vsync_b;
  864. vb = &hw->vblank_b;
  865. vt = &hw->vtotal_b;
  866. ss = &hw->src_size_b;
  867. pipe_conf = &hw->pipe_b_conf;
  868. } else {
  869. dpll = &hw->dpll_a;
  870. fp0 = &hw->fpa0;
  871. fp1 = &hw->fpa1;
  872. hs = &hw->hsync_a;
  873. hb = &hw->hblank_a;
  874. ht = &hw->htotal_a;
  875. vs = &hw->vsync_a;
  876. vb = &hw->vblank_a;
  877. vt = &hw->vtotal_a;
  878. ss = &hw->src_size_a;
  879. pipe_conf = &hw->pipe_a_conf;
  880. }
  881. /* Use ADPA register for sync control. */
  882. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  883. /* sync polarity */
  884. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  885. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  886. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  887. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  888. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  889. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  890. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  891. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  892. /* Connect correct pipe to the analog port DAC */
  893. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  894. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  895. /* Set DPMS state to D0 (on) */
  896. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  897. hw->adpa |= ADPA_DPMS_D0;
  898. hw->adpa |= ADPA_DAC_ENABLE;
  899. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  900. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  901. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  902. /* Desired clock in kHz */
  903. clock_target = 1000000000 / var->pixclock;
  904. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  905. &n, &p1, &p2, &clock)) {
  906. WRN_MSG("calc_pll_params failed\n");
  907. return 1;
  908. }
  909. /* Check for overflow. */
  910. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  911. return 1;
  912. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  913. return 1;
  914. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  915. return 1;
  916. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  917. return 1;
  918. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  919. return 1;
  920. *dpll &= ~DPLL_P1_FORCE_DIV2;
  921. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  922. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  923. if (IS_I9XX(dinfo)) {
  924. *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
  925. *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
  926. } else {
  927. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  928. }
  929. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  930. (m1 << FP_M1_DIVISOR_SHIFT) |
  931. (m2 << FP_M2_DIVISOR_SHIFT);
  932. *fp1 = *fp0;
  933. hw->dvob &= ~PORT_ENABLE;
  934. hw->dvoc &= ~PORT_ENABLE;
  935. /* Use display plane A. */
  936. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  937. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  938. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  939. switch (intelfb_var_to_depth(var)) {
  940. case 8:
  941. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  942. break;
  943. case 15:
  944. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  945. break;
  946. case 16:
  947. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  948. break;
  949. case 24:
  950. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  951. break;
  952. }
  953. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  954. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  955. /* Set CRTC registers. */
  956. hactive = var->xres;
  957. hsync_start = hactive + var->right_margin;
  958. hsync_end = hsync_start + var->hsync_len;
  959. htotal = hsync_end + var->left_margin;
  960. hblank_start = hactive;
  961. hblank_end = htotal;
  962. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  963. hactive, hsync_start, hsync_end, htotal, hblank_start,
  964. hblank_end);
  965. vactive = var->yres;
  966. vsync_start = vactive + var->lower_margin;
  967. vsync_end = vsync_start + var->vsync_len;
  968. vtotal = vsync_end + var->upper_margin;
  969. vblank_start = vactive;
  970. vblank_end = vtotal;
  971. vblank_end = vsync_end + 1;
  972. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  973. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  974. vblank_end);
  975. /* Adjust for register values, and check for overflow. */
  976. hactive--;
  977. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  978. return 1;
  979. hsync_start--;
  980. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  981. return 1;
  982. hsync_end--;
  983. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  984. return 1;
  985. htotal--;
  986. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  987. return 1;
  988. hblank_start--;
  989. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  990. return 1;
  991. hblank_end--;
  992. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  993. return 1;
  994. vactive--;
  995. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  996. return 1;
  997. vsync_start--;
  998. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  999. return 1;
  1000. vsync_end--;
  1001. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  1002. return 1;
  1003. vtotal--;
  1004. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1005. return 1;
  1006. vblank_start--;
  1007. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1008. return 1;
  1009. vblank_end--;
  1010. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1011. return 1;
  1012. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1013. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1014. (hblank_end << HSYNCEND_SHIFT);
  1015. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1016. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1017. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1018. (vblank_end << VSYNCEND_SHIFT);
  1019. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1020. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1021. (vactive << SRC_SIZE_VERT_SHIFT);
  1022. hw->disp_a_stride = dinfo->pitch;
  1023. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1024. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1025. var->xoffset * var->bits_per_pixel / 8;
  1026. hw->disp_a_base += dinfo->fb.offset << 12;
  1027. /* Check stride alignment. */
  1028. stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
  1029. STRIDE_ALIGNMENT;
  1030. if (hw->disp_a_stride % stride_alignment != 0) {
  1031. WRN_MSG("display stride %d has bad alignment %d\n",
  1032. hw->disp_a_stride, stride_alignment);
  1033. return 1;
  1034. }
  1035. /* Set the palette to 8-bit mode. */
  1036. *pipe_conf &= ~PIPECONF_GAMMA;
  1037. return 0;
  1038. }
  1039. /* Program a (non-VGA) video mode. */
  1040. int
  1041. intelfbhw_program_mode(struct intelfb_info *dinfo,
  1042. const struct intelfb_hwstate *hw, int blank)
  1043. {
  1044. int pipe = PIPE_A;
  1045. u32 tmp;
  1046. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1047. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1048. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
  1049. u32 hsync_reg, htotal_reg, hblank_reg;
  1050. u32 vsync_reg, vtotal_reg, vblank_reg;
  1051. u32 src_size_reg;
  1052. u32 count, tmp_val[3];
  1053. /* Assume single pipe, display plane A, analog CRT. */
  1054. #if VERBOSE > 0
  1055. DBG_MSG("intelfbhw_program_mode\n");
  1056. #endif
  1057. /* Disable VGA */
  1058. tmp = INREG(VGACNTRL);
  1059. tmp |= VGA_DISABLE;
  1060. OUTREG(VGACNTRL, tmp);
  1061. /* Check whether pipe A or pipe B is enabled. */
  1062. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1063. pipe = PIPE_A;
  1064. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1065. pipe = PIPE_B;
  1066. dinfo->pipe = pipe;
  1067. if (pipe == PIPE_B) {
  1068. dpll = &hw->dpll_b;
  1069. fp0 = &hw->fpb0;
  1070. fp1 = &hw->fpb1;
  1071. pipe_conf = &hw->pipe_b_conf;
  1072. hs = &hw->hsync_b;
  1073. hb = &hw->hblank_b;
  1074. ht = &hw->htotal_b;
  1075. vs = &hw->vsync_b;
  1076. vb = &hw->vblank_b;
  1077. vt = &hw->vtotal_b;
  1078. ss = &hw->src_size_b;
  1079. dpll_reg = DPLL_B;
  1080. fp0_reg = FPB0;
  1081. fp1_reg = FPB1;
  1082. pipe_conf_reg = PIPEBCONF;
  1083. hsync_reg = HSYNC_B;
  1084. htotal_reg = HTOTAL_B;
  1085. hblank_reg = HBLANK_B;
  1086. vsync_reg = VSYNC_B;
  1087. vtotal_reg = VTOTAL_B;
  1088. vblank_reg = VBLANK_B;
  1089. src_size_reg = SRC_SIZE_B;
  1090. } else {
  1091. dpll = &hw->dpll_a;
  1092. fp0 = &hw->fpa0;
  1093. fp1 = &hw->fpa1;
  1094. pipe_conf = &hw->pipe_a_conf;
  1095. hs = &hw->hsync_a;
  1096. hb = &hw->hblank_a;
  1097. ht = &hw->htotal_a;
  1098. vs = &hw->vsync_a;
  1099. vb = &hw->vblank_a;
  1100. vt = &hw->vtotal_a;
  1101. ss = &hw->src_size_a;
  1102. dpll_reg = DPLL_A;
  1103. fp0_reg = FPA0;
  1104. fp1_reg = FPA1;
  1105. pipe_conf_reg = PIPEACONF;
  1106. hsync_reg = HSYNC_A;
  1107. htotal_reg = HTOTAL_A;
  1108. hblank_reg = HBLANK_A;
  1109. vsync_reg = VSYNC_A;
  1110. vtotal_reg = VTOTAL_A;
  1111. vblank_reg = VBLANK_A;
  1112. src_size_reg = SRC_SIZE_A;
  1113. }
  1114. /* turn off pipe */
  1115. tmp = INREG(pipe_conf_reg);
  1116. tmp &= ~PIPECONF_ENABLE;
  1117. OUTREG(pipe_conf_reg, tmp);
  1118. count = 0;
  1119. do {
  1120. tmp_val[count%3] = INREG(0x70000);
  1121. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
  1122. break;
  1123. count++;
  1124. udelay(1);
  1125. if (count % 200 == 0) {
  1126. tmp = INREG(pipe_conf_reg);
  1127. tmp &= ~PIPECONF_ENABLE;
  1128. OUTREG(pipe_conf_reg, tmp);
  1129. }
  1130. } while(count < 2000);
  1131. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1132. /* Disable planes A and B. */
  1133. tmp = INREG(DSPACNTR);
  1134. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1135. OUTREG(DSPACNTR, tmp);
  1136. tmp = INREG(DSPBCNTR);
  1137. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1138. OUTREG(DSPBCNTR, tmp);
  1139. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1140. mdelay(20);
  1141. OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
  1142. OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
  1143. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1144. /* Disable Sync */
  1145. tmp = INREG(ADPA);
  1146. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1147. tmp |= ADPA_DPMS_D3;
  1148. OUTREG(ADPA, tmp);
  1149. /* do some funky magic - xyzzy */
  1150. OUTREG(0x61204, 0xabcd0000);
  1151. /* turn off PLL */
  1152. tmp = INREG(dpll_reg);
  1153. dpll_reg &= ~DPLL_VCO_ENABLE;
  1154. OUTREG(dpll_reg, tmp);
  1155. /* Set PLL parameters */
  1156. OUTREG(fp0_reg, *fp0);
  1157. OUTREG(fp1_reg, *fp1);
  1158. /* Enable PLL */
  1159. OUTREG(dpll_reg, *dpll);
  1160. /* Set DVOs B/C */
  1161. OUTREG(DVOB, hw->dvob);
  1162. OUTREG(DVOC, hw->dvoc);
  1163. /* undo funky magic */
  1164. OUTREG(0x61204, 0x00000000);
  1165. /* Set ADPA */
  1166. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1167. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1168. /* Set pipe parameters */
  1169. OUTREG(hsync_reg, *hs);
  1170. OUTREG(hblank_reg, *hb);
  1171. OUTREG(htotal_reg, *ht);
  1172. OUTREG(vsync_reg, *vs);
  1173. OUTREG(vblank_reg, *vb);
  1174. OUTREG(vtotal_reg, *vt);
  1175. OUTREG(src_size_reg, *ss);
  1176. /* Enable pipe */
  1177. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1178. /* Enable sync */
  1179. tmp = INREG(ADPA);
  1180. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1181. tmp |= ADPA_DPMS_D0;
  1182. OUTREG(ADPA, tmp);
  1183. /* setup display plane */
  1184. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1185. /*
  1186. * i830M errata: the display plane must be enabled
  1187. * to allow writes to the other bits in the plane
  1188. * control register.
  1189. */
  1190. tmp = INREG(DSPACNTR);
  1191. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1192. tmp |= DISPPLANE_PLANE_ENABLE;
  1193. OUTREG(DSPACNTR, tmp);
  1194. OUTREG(DSPACNTR,
  1195. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1196. mdelay(1);
  1197. }
  1198. }
  1199. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1200. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1201. OUTREG(DSPABASE, hw->disp_a_base);
  1202. /* Enable plane */
  1203. if (!blank) {
  1204. tmp = INREG(DSPACNTR);
  1205. tmp |= DISPPLANE_PLANE_ENABLE;
  1206. OUTREG(DSPACNTR, tmp);
  1207. OUTREG(DSPABASE, hw->disp_a_base);
  1208. }
  1209. return 0;
  1210. }
  1211. /* forward declarations */
  1212. static void refresh_ring(struct intelfb_info *dinfo);
  1213. static void reset_state(struct intelfb_info *dinfo);
  1214. static void do_flush(struct intelfb_info *dinfo);
  1215. static int
  1216. wait_ring(struct intelfb_info *dinfo, int n)
  1217. {
  1218. int i = 0;
  1219. unsigned long end;
  1220. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1221. #if VERBOSE > 0
  1222. DBG_MSG("wait_ring: %d\n", n);
  1223. #endif
  1224. end = jiffies + (HZ * 3);
  1225. while (dinfo->ring_space < n) {
  1226. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1227. if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
  1228. dinfo->ring_space = dinfo->ring_head
  1229. - (dinfo->ring_tail + RING_MIN_FREE);
  1230. else
  1231. dinfo->ring_space = (dinfo->ring.size +
  1232. dinfo->ring_head)
  1233. - (dinfo->ring_tail + RING_MIN_FREE);
  1234. if (dinfo->ring_head != last_head) {
  1235. end = jiffies + (HZ * 3);
  1236. last_head = dinfo->ring_head;
  1237. }
  1238. i++;
  1239. if (time_before(end, jiffies)) {
  1240. if (!i) {
  1241. /* Try again */
  1242. reset_state(dinfo);
  1243. refresh_ring(dinfo);
  1244. do_flush(dinfo);
  1245. end = jiffies + (HZ * 3);
  1246. i = 1;
  1247. } else {
  1248. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1249. dinfo->ring_space, n);
  1250. WRN_MSG("lockup - turning off hardware "
  1251. "acceleration\n");
  1252. dinfo->ring_lockup = 1;
  1253. break;
  1254. }
  1255. }
  1256. udelay(1);
  1257. }
  1258. return i;
  1259. }
  1260. static void
  1261. do_flush(struct intelfb_info *dinfo) {
  1262. START_RING(2);
  1263. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1264. OUT_RING(MI_NOOP);
  1265. ADVANCE_RING();
  1266. }
  1267. void
  1268. intelfbhw_do_sync(struct intelfb_info *dinfo)
  1269. {
  1270. #if VERBOSE > 0
  1271. DBG_MSG("intelfbhw_do_sync\n");
  1272. #endif
  1273. if (!dinfo->accel)
  1274. return;
  1275. /*
  1276. * Send a flush, then wait until the ring is empty. This is what
  1277. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1278. * than the recommended method (both have problems).
  1279. */
  1280. do_flush(dinfo);
  1281. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1282. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1283. }
  1284. static void
  1285. refresh_ring(struct intelfb_info *dinfo)
  1286. {
  1287. #if VERBOSE > 0
  1288. DBG_MSG("refresh_ring\n");
  1289. #endif
  1290. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1291. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1292. if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
  1293. dinfo->ring_space = dinfo->ring_head
  1294. - (dinfo->ring_tail + RING_MIN_FREE);
  1295. else
  1296. dinfo->ring_space = (dinfo->ring.size + dinfo->ring_head)
  1297. - (dinfo->ring_tail + RING_MIN_FREE);
  1298. }
  1299. static void
  1300. reset_state(struct intelfb_info *dinfo)
  1301. {
  1302. int i;
  1303. u32 tmp;
  1304. #if VERBOSE > 0
  1305. DBG_MSG("reset_state\n");
  1306. #endif
  1307. for (i = 0; i < FENCE_NUM; i++)
  1308. OUTREG(FENCE + (i << 2), 0);
  1309. /* Flush the ring buffer if it's enabled. */
  1310. tmp = INREG(PRI_RING_LENGTH);
  1311. if (tmp & RING_ENABLE) {
  1312. #if VERBOSE > 0
  1313. DBG_MSG("reset_state: ring was enabled\n");
  1314. #endif
  1315. refresh_ring(dinfo);
  1316. intelfbhw_do_sync(dinfo);
  1317. DO_RING_IDLE();
  1318. }
  1319. OUTREG(PRI_RING_LENGTH, 0);
  1320. OUTREG(PRI_RING_HEAD, 0);
  1321. OUTREG(PRI_RING_TAIL, 0);
  1322. OUTREG(PRI_RING_START, 0);
  1323. }
  1324. /* Stop the 2D engine, and turn off the ring buffer. */
  1325. void
  1326. intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1327. {
  1328. #if VERBOSE > 0
  1329. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
  1330. dinfo->ring_active);
  1331. #endif
  1332. if (!dinfo->accel)
  1333. return;
  1334. dinfo->ring_active = 0;
  1335. reset_state(dinfo);
  1336. }
  1337. /*
  1338. * Enable the ring buffer, and initialise the 2D engine.
  1339. * It is assumed that the graphics engine has been stopped by previously
  1340. * calling intelfb_2d_stop().
  1341. */
  1342. void
  1343. intelfbhw_2d_start(struct intelfb_info *dinfo)
  1344. {
  1345. #if VERBOSE > 0
  1346. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1347. dinfo->accel, dinfo->ring_active);
  1348. #endif
  1349. if (!dinfo->accel)
  1350. return;
  1351. /* Initialise the primary ring buffer. */
  1352. OUTREG(PRI_RING_LENGTH, 0);
  1353. OUTREG(PRI_RING_TAIL, 0);
  1354. OUTREG(PRI_RING_HEAD, 0);
  1355. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1356. OUTREG(PRI_RING_LENGTH,
  1357. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1358. RING_NO_REPORT | RING_ENABLE);
  1359. refresh_ring(dinfo);
  1360. dinfo->ring_active = 1;
  1361. }
  1362. /* 2D fillrect (solid fill or invert) */
  1363. void
  1364. intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
  1365. u32 color, u32 pitch, u32 bpp, u32 rop)
  1366. {
  1367. u32 br00, br09, br13, br14, br16;
  1368. #if VERBOSE > 0
  1369. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1370. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1371. #endif
  1372. br00 = COLOR_BLT_CMD;
  1373. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1374. br13 = (rop << ROP_SHIFT) | pitch;
  1375. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1376. br16 = color;
  1377. switch (bpp) {
  1378. case 8:
  1379. br13 |= COLOR_DEPTH_8;
  1380. break;
  1381. case 16:
  1382. br13 |= COLOR_DEPTH_16;
  1383. break;
  1384. case 32:
  1385. br13 |= COLOR_DEPTH_32;
  1386. br00 |= WRITE_ALPHA | WRITE_RGB;
  1387. break;
  1388. }
  1389. START_RING(6);
  1390. OUT_RING(br00);
  1391. OUT_RING(br13);
  1392. OUT_RING(br14);
  1393. OUT_RING(br09);
  1394. OUT_RING(br16);
  1395. OUT_RING(MI_NOOP);
  1396. ADVANCE_RING();
  1397. #if VERBOSE > 0
  1398. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1399. dinfo->ring_tail, dinfo->ring_space);
  1400. #endif
  1401. }
  1402. void
  1403. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1404. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1405. {
  1406. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1407. #if VERBOSE > 0
  1408. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1409. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1410. #endif
  1411. br00 = XY_SRC_COPY_BLT_CMD;
  1412. br09 = dinfo->fb_start;
  1413. br11 = (pitch << PITCH_SHIFT);
  1414. br12 = dinfo->fb_start;
  1415. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1416. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1417. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1418. ((dsty + h) << HEIGHT_SHIFT);
  1419. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1420. switch (bpp) {
  1421. case 8:
  1422. br13 |= COLOR_DEPTH_8;
  1423. break;
  1424. case 16:
  1425. br13 |= COLOR_DEPTH_16;
  1426. break;
  1427. case 32:
  1428. br13 |= COLOR_DEPTH_32;
  1429. br00 |= WRITE_ALPHA | WRITE_RGB;
  1430. break;
  1431. }
  1432. START_RING(8);
  1433. OUT_RING(br00);
  1434. OUT_RING(br13);
  1435. OUT_RING(br22);
  1436. OUT_RING(br23);
  1437. OUT_RING(br09);
  1438. OUT_RING(br26);
  1439. OUT_RING(br11);
  1440. OUT_RING(br12);
  1441. ADVANCE_RING();
  1442. }
  1443. int
  1444. intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1445. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
  1446. {
  1447. int nbytes, ndwords, pad, tmp;
  1448. u32 br00, br09, br13, br18, br19, br22, br23;
  1449. int dat, ix, iy, iw;
  1450. int i, j;
  1451. #if VERBOSE > 0
  1452. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1453. #endif
  1454. /* size in bytes of a padded scanline */
  1455. nbytes = ROUND_UP_TO(w, 16) / 8;
  1456. /* Total bytes of padded scanline data to write out. */
  1457. nbytes = nbytes * h;
  1458. /*
  1459. * Check if the glyph data exceeds the immediate mode limit.
  1460. * It would take a large font (1K pixels) to hit this limit.
  1461. */
  1462. if (nbytes > MAX_MONO_IMM_SIZE)
  1463. return 0;
  1464. /* Src data is packaged a dword (32-bit) at a time. */
  1465. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1466. /*
  1467. * Ring has to be padded to a quad word. But because the command starts
  1468. with 7 bytes, pad only if there is an even number of ndwords
  1469. */
  1470. pad = !(ndwords % 2);
  1471. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1472. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1473. br09 = dinfo->fb_start;
  1474. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1475. br18 = bg;
  1476. br19 = fg;
  1477. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1478. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1479. switch (bpp) {
  1480. case 8:
  1481. br13 |= COLOR_DEPTH_8;
  1482. break;
  1483. case 16:
  1484. br13 |= COLOR_DEPTH_16;
  1485. break;
  1486. case 32:
  1487. br13 |= COLOR_DEPTH_32;
  1488. br00 |= WRITE_ALPHA | WRITE_RGB;
  1489. break;
  1490. }
  1491. START_RING(8 + ndwords);
  1492. OUT_RING(br00);
  1493. OUT_RING(br13);
  1494. OUT_RING(br22);
  1495. OUT_RING(br23);
  1496. OUT_RING(br09);
  1497. OUT_RING(br18);
  1498. OUT_RING(br19);
  1499. ix = iy = 0;
  1500. iw = ROUND_UP_TO(w, 8) / 8;
  1501. while (ndwords--) {
  1502. dat = 0;
  1503. for (j = 0; j < 2; ++j) {
  1504. for (i = 0; i < 2; ++i) {
  1505. if (ix != iw || i == 0)
  1506. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1507. }
  1508. if (ix == iw && iy != (h-1)) {
  1509. ix = 0;
  1510. ++iy;
  1511. }
  1512. }
  1513. OUT_RING(dat);
  1514. }
  1515. if (pad)
  1516. OUT_RING(MI_NOOP);
  1517. ADVANCE_RING();
  1518. return 1;
  1519. }
  1520. /* HW cursor functions. */
  1521. void
  1522. intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1523. {
  1524. u32 tmp;
  1525. #if VERBOSE > 0
  1526. DBG_MSG("intelfbhw_cursor_init\n");
  1527. #endif
  1528. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1529. if (!dinfo->cursor.physical)
  1530. return;
  1531. tmp = INREG(CURSOR_A_CONTROL);
  1532. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1533. CURSOR_MEM_TYPE_LOCAL |
  1534. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1535. tmp |= CURSOR_MODE_DISABLE;
  1536. OUTREG(CURSOR_A_CONTROL, tmp);
  1537. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1538. } else {
  1539. tmp = INREG(CURSOR_CONTROL);
  1540. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1541. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1542. tmp = CURSOR_FORMAT_3C;
  1543. OUTREG(CURSOR_CONTROL, tmp);
  1544. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1545. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1546. (64 << CURSOR_SIZE_V_SHIFT);
  1547. OUTREG(CURSOR_SIZE, tmp);
  1548. }
  1549. }
  1550. void
  1551. intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1552. {
  1553. u32 tmp;
  1554. #if VERBOSE > 0
  1555. DBG_MSG("intelfbhw_cursor_hide\n");
  1556. #endif
  1557. dinfo->cursor_on = 0;
  1558. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1559. if (!dinfo->cursor.physical)
  1560. return;
  1561. tmp = INREG(CURSOR_A_CONTROL);
  1562. tmp &= ~CURSOR_MODE_MASK;
  1563. tmp |= CURSOR_MODE_DISABLE;
  1564. OUTREG(CURSOR_A_CONTROL, tmp);
  1565. /* Flush changes */
  1566. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1567. } else {
  1568. tmp = INREG(CURSOR_CONTROL);
  1569. tmp &= ~CURSOR_ENABLE;
  1570. OUTREG(CURSOR_CONTROL, tmp);
  1571. }
  1572. }
  1573. void
  1574. intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1575. {
  1576. u32 tmp;
  1577. #if VERBOSE > 0
  1578. DBG_MSG("intelfbhw_cursor_show\n");
  1579. #endif
  1580. dinfo->cursor_on = 1;
  1581. if (dinfo->cursor_blanked)
  1582. return;
  1583. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1584. if (!dinfo->cursor.physical)
  1585. return;
  1586. tmp = INREG(CURSOR_A_CONTROL);
  1587. tmp &= ~CURSOR_MODE_MASK;
  1588. tmp |= CURSOR_MODE_64_4C_AX;
  1589. OUTREG(CURSOR_A_CONTROL, tmp);
  1590. /* Flush changes */
  1591. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1592. } else {
  1593. tmp = INREG(CURSOR_CONTROL);
  1594. tmp |= CURSOR_ENABLE;
  1595. OUTREG(CURSOR_CONTROL, tmp);
  1596. }
  1597. }
  1598. void
  1599. intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1600. {
  1601. u32 tmp;
  1602. #if VERBOSE > 0
  1603. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1604. #endif
  1605. /*
  1606. * Sets the position. The coordinates are assumed to already
  1607. * have any offset adjusted. Assume that the cursor is never
  1608. * completely off-screen, and that x, y are always >= 0.
  1609. */
  1610. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1611. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1612. OUTREG(CURSOR_A_POSITION, tmp);
  1613. if (IS_I9XX(dinfo)) {
  1614. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1615. }
  1616. }
  1617. void
  1618. intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1619. {
  1620. #if VERBOSE > 0
  1621. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1622. #endif
  1623. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1624. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1625. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1626. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1627. }
  1628. void
  1629. intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1630. u8 *data)
  1631. {
  1632. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1633. int i, j, w = width / 8;
  1634. int mod = width % 8, t_mask, d_mask;
  1635. #if VERBOSE > 0
  1636. DBG_MSG("intelfbhw_cursor_load\n");
  1637. #endif
  1638. if (!dinfo->cursor.virtual)
  1639. return;
  1640. t_mask = 0xff >> mod;
  1641. d_mask = ~(0xff >> mod);
  1642. for (i = height; i--; ) {
  1643. for (j = 0; j < w; j++) {
  1644. writeb(0x00, addr + j);
  1645. writeb(*(data++), addr + j+8);
  1646. }
  1647. if (mod) {
  1648. writeb(t_mask, addr + j);
  1649. writeb(*(data++) & d_mask, addr + j+8);
  1650. }
  1651. addr += 16;
  1652. }
  1653. }
  1654. void
  1655. intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
  1656. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1657. int i, j;
  1658. #if VERBOSE > 0
  1659. DBG_MSG("intelfbhw_cursor_reset\n");
  1660. #endif
  1661. if (!dinfo->cursor.virtual)
  1662. return;
  1663. for (i = 64; i--; ) {
  1664. for (j = 0; j < 8; j++) {
  1665. writeb(0xff, addr + j+0);
  1666. writeb(0x00, addr + j+8);
  1667. }
  1668. addr += 16;
  1669. }
  1670. }