powermate.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461
  1. /*
  2. * A driver for the Griffin Technology, Inc. "PowerMate" USB controller dial.
  3. *
  4. * v1.1, (c)2002 William R Sowerbutts <will@sowerbutts.com>
  5. *
  6. * This device is a anodised aluminium knob which connects over USB. It can measure
  7. * clockwise and anticlockwise rotation. The dial also acts as a pushbutton with
  8. * a spring for automatic release. The base contains a pair of LEDs which illuminate
  9. * the translucent base. It rotates without limit and reports its relative rotation
  10. * back to the host when polled by the USB controller.
  11. *
  12. * Testing with the knob I have has shown that it measures approximately 94 "clicks"
  13. * for one full rotation. Testing with my High Speed Rotation Actuator (ok, it was
  14. * a variable speed cordless electric drill) has shown that the device can measure
  15. * speeds of up to 7 clicks either clockwise or anticlockwise between pollings from
  16. * the host. If it counts more than 7 clicks before it is polled, it will wrap back
  17. * to zero and start counting again. This was at quite high speed, however, almost
  18. * certainly faster than the human hand could turn it. Griffin say that it loses a
  19. * pulse or two on a direction change; the granularity is so fine that I never
  20. * noticed this in practice.
  21. *
  22. * The device's microcontroller can be programmed to set the LED to either a constant
  23. * intensity, or to a rhythmic pulsing. Several patterns and speeds are available.
  24. *
  25. * Griffin were very happy to provide documentation and free hardware for development.
  26. *
  27. * Some userspace tools are available on the web: http://sowerbutts.com/powermate/
  28. *
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/module.h>
  33. #include <linux/init.h>
  34. #include <linux/spinlock.h>
  35. #include <linux/usb/input.h>
  36. #define POWERMATE_VENDOR 0x077d /* Griffin Technology, Inc. */
  37. #define POWERMATE_PRODUCT_NEW 0x0410 /* Griffin PowerMate */
  38. #define POWERMATE_PRODUCT_OLD 0x04AA /* Griffin soundKnob */
  39. #define CONTOUR_VENDOR 0x05f3 /* Contour Design, Inc. */
  40. #define CONTOUR_JOG 0x0240 /* Jog and Shuttle */
  41. /* these are the command codes we send to the device */
  42. #define SET_STATIC_BRIGHTNESS 0x01
  43. #define SET_PULSE_ASLEEP 0x02
  44. #define SET_PULSE_AWAKE 0x03
  45. #define SET_PULSE_MODE 0x04
  46. /* these refer to bits in the powermate_device's requires_update field. */
  47. #define UPDATE_STATIC_BRIGHTNESS (1<<0)
  48. #define UPDATE_PULSE_ASLEEP (1<<1)
  49. #define UPDATE_PULSE_AWAKE (1<<2)
  50. #define UPDATE_PULSE_MODE (1<<3)
  51. /* at least two versions of the hardware exist, with differing payload
  52. sizes. the first three bytes always contain the "interesting" data in
  53. the relevant format. */
  54. #define POWERMATE_PAYLOAD_SIZE_MAX 6
  55. #define POWERMATE_PAYLOAD_SIZE_MIN 3
  56. struct powermate_device {
  57. signed char *data;
  58. dma_addr_t data_dma;
  59. struct urb *irq, *config;
  60. struct usb_ctrlrequest *configcr;
  61. dma_addr_t configcr_dma;
  62. struct usb_device *udev;
  63. struct input_dev *input;
  64. spinlock_t lock;
  65. int static_brightness;
  66. int pulse_speed;
  67. int pulse_table;
  68. int pulse_asleep;
  69. int pulse_awake;
  70. int requires_update; // physical settings which are out of sync
  71. char phys[64];
  72. };
  73. static char pm_name_powermate[] = "Griffin PowerMate";
  74. static char pm_name_soundknob[] = "Griffin SoundKnob";
  75. static void powermate_config_complete(struct urb *urb, struct pt_regs *regs);
  76. /* Callback for data arriving from the PowerMate over the USB interrupt pipe */
  77. static void powermate_irq(struct urb *urb, struct pt_regs *regs)
  78. {
  79. struct powermate_device *pm = urb->context;
  80. int retval;
  81. switch (urb->status) {
  82. case 0:
  83. /* success */
  84. break;
  85. case -ECONNRESET:
  86. case -ENOENT:
  87. case -ESHUTDOWN:
  88. /* this urb is terminated, clean up */
  89. dbg("%s - urb shutting down with status: %d", __FUNCTION__, urb->status);
  90. return;
  91. default:
  92. dbg("%s - nonzero urb status received: %d", __FUNCTION__, urb->status);
  93. goto exit;
  94. }
  95. /* handle updates to device state */
  96. input_regs(pm->input, regs);
  97. input_report_key(pm->input, BTN_0, pm->data[0] & 0x01);
  98. input_report_rel(pm->input, REL_DIAL, pm->data[1]);
  99. input_sync(pm->input);
  100. exit:
  101. retval = usb_submit_urb (urb, GFP_ATOMIC);
  102. if (retval)
  103. err ("%s - usb_submit_urb failed with result %d",
  104. __FUNCTION__, retval);
  105. }
  106. /* Decide if we need to issue a control message and do so. Must be called with pm->lock taken */
  107. static void powermate_sync_state(struct powermate_device *pm)
  108. {
  109. if (pm->requires_update == 0)
  110. return; /* no updates are required */
  111. if (pm->config->status == -EINPROGRESS)
  112. return; /* an update is already in progress; it'll issue this update when it completes */
  113. if (pm->requires_update & UPDATE_PULSE_ASLEEP){
  114. pm->configcr->wValue = cpu_to_le16( SET_PULSE_ASLEEP );
  115. pm->configcr->wIndex = cpu_to_le16( pm->pulse_asleep ? 1 : 0 );
  116. pm->requires_update &= ~UPDATE_PULSE_ASLEEP;
  117. }else if (pm->requires_update & UPDATE_PULSE_AWAKE){
  118. pm->configcr->wValue = cpu_to_le16( SET_PULSE_AWAKE );
  119. pm->configcr->wIndex = cpu_to_le16( pm->pulse_awake ? 1 : 0 );
  120. pm->requires_update &= ~UPDATE_PULSE_AWAKE;
  121. }else if (pm->requires_update & UPDATE_PULSE_MODE){
  122. int op, arg;
  123. /* the powermate takes an operation and an argument for its pulse algorithm.
  124. the operation can be:
  125. 0: divide the speed
  126. 1: pulse at normal speed
  127. 2: multiply the speed
  128. the argument only has an effect for operations 0 and 2, and ranges between
  129. 1 (least effect) to 255 (maximum effect).
  130. thus, several states are equivalent and are coalesced into one state.
  131. we map this onto a range from 0 to 510, with:
  132. 0 -- 254 -- use divide (0 = slowest)
  133. 255 -- use normal speed
  134. 256 -- 510 -- use multiple (510 = fastest).
  135. Only values of 'arg' quite close to 255 are particularly useful/spectacular.
  136. */
  137. if (pm->pulse_speed < 255) {
  138. op = 0; // divide
  139. arg = 255 - pm->pulse_speed;
  140. } else if (pm->pulse_speed > 255) {
  141. op = 2; // multiply
  142. arg = pm->pulse_speed - 255;
  143. } else {
  144. op = 1; // normal speed
  145. arg = 0; // can be any value
  146. }
  147. pm->configcr->wValue = cpu_to_le16( (pm->pulse_table << 8) | SET_PULSE_MODE );
  148. pm->configcr->wIndex = cpu_to_le16( (arg << 8) | op );
  149. pm->requires_update &= ~UPDATE_PULSE_MODE;
  150. } else if (pm->requires_update & UPDATE_STATIC_BRIGHTNESS) {
  151. pm->configcr->wValue = cpu_to_le16( SET_STATIC_BRIGHTNESS );
  152. pm->configcr->wIndex = cpu_to_le16( pm->static_brightness );
  153. pm->requires_update &= ~UPDATE_STATIC_BRIGHTNESS;
  154. } else {
  155. printk(KERN_ERR "powermate: unknown update required");
  156. pm->requires_update = 0; /* fudge the bug */
  157. return;
  158. }
  159. /* printk("powermate: %04x %04x\n", pm->configcr->wValue, pm->configcr->wIndex); */
  160. pm->configcr->bRequestType = 0x41; /* vendor request */
  161. pm->configcr->bRequest = 0x01;
  162. pm->configcr->wLength = 0;
  163. usb_fill_control_urb(pm->config, pm->udev, usb_sndctrlpipe(pm->udev, 0),
  164. (void *) pm->configcr, NULL, 0,
  165. powermate_config_complete, pm);
  166. pm->config->setup_dma = pm->configcr_dma;
  167. pm->config->transfer_flags |= URB_NO_SETUP_DMA_MAP;
  168. if (usb_submit_urb(pm->config, GFP_ATOMIC))
  169. printk(KERN_ERR "powermate: usb_submit_urb(config) failed");
  170. }
  171. /* Called when our asynchronous control message completes. We may need to issue another immediately */
  172. static void powermate_config_complete(struct urb *urb, struct pt_regs *regs)
  173. {
  174. struct powermate_device *pm = urb->context;
  175. unsigned long flags;
  176. if (urb->status)
  177. printk(KERN_ERR "powermate: config urb returned %d\n", urb->status);
  178. spin_lock_irqsave(&pm->lock, flags);
  179. powermate_sync_state(pm);
  180. spin_unlock_irqrestore(&pm->lock, flags);
  181. }
  182. /* Set the LED up as described and begin the sync with the hardware if required */
  183. static void powermate_pulse_led(struct powermate_device *pm, int static_brightness, int pulse_speed,
  184. int pulse_table, int pulse_asleep, int pulse_awake)
  185. {
  186. unsigned long flags;
  187. if (pulse_speed < 0)
  188. pulse_speed = 0;
  189. if (pulse_table < 0)
  190. pulse_table = 0;
  191. if (pulse_speed > 510)
  192. pulse_speed = 510;
  193. if (pulse_table > 2)
  194. pulse_table = 2;
  195. pulse_asleep = !!pulse_asleep;
  196. pulse_awake = !!pulse_awake;
  197. spin_lock_irqsave(&pm->lock, flags);
  198. /* mark state updates which are required */
  199. if (static_brightness != pm->static_brightness) {
  200. pm->static_brightness = static_brightness;
  201. pm->requires_update |= UPDATE_STATIC_BRIGHTNESS;
  202. }
  203. if (pulse_asleep != pm->pulse_asleep) {
  204. pm->pulse_asleep = pulse_asleep;
  205. pm->requires_update |= (UPDATE_PULSE_ASLEEP | UPDATE_STATIC_BRIGHTNESS);
  206. }
  207. if (pulse_awake != pm->pulse_awake) {
  208. pm->pulse_awake = pulse_awake;
  209. pm->requires_update |= (UPDATE_PULSE_AWAKE | UPDATE_STATIC_BRIGHTNESS);
  210. }
  211. if (pulse_speed != pm->pulse_speed || pulse_table != pm->pulse_table) {
  212. pm->pulse_speed = pulse_speed;
  213. pm->pulse_table = pulse_table;
  214. pm->requires_update |= UPDATE_PULSE_MODE;
  215. }
  216. powermate_sync_state(pm);
  217. spin_unlock_irqrestore(&pm->lock, flags);
  218. }
  219. /* Callback from the Input layer when an event arrives from userspace to configure the LED */
  220. static int powermate_input_event(struct input_dev *dev, unsigned int type, unsigned int code, int _value)
  221. {
  222. unsigned int command = (unsigned int)_value;
  223. struct powermate_device *pm = dev->private;
  224. if (type == EV_MSC && code == MSC_PULSELED){
  225. /*
  226. bits 0- 7: 8 bits: LED brightness
  227. bits 8-16: 9 bits: pulsing speed modifier (0 ... 510); 0-254 = slower, 255 = standard, 256-510 = faster.
  228. bits 17-18: 2 bits: pulse table (0, 1, 2 valid)
  229. bit 19: 1 bit : pulse whilst asleep?
  230. bit 20: 1 bit : pulse constantly?
  231. */
  232. int static_brightness = command & 0xFF; // bits 0-7
  233. int pulse_speed = (command >> 8) & 0x1FF; // bits 8-16
  234. int pulse_table = (command >> 17) & 0x3; // bits 17-18
  235. int pulse_asleep = (command >> 19) & 0x1; // bit 19
  236. int pulse_awake = (command >> 20) & 0x1; // bit 20
  237. powermate_pulse_led(pm, static_brightness, pulse_speed, pulse_table, pulse_asleep, pulse_awake);
  238. }
  239. return 0;
  240. }
  241. static int powermate_alloc_buffers(struct usb_device *udev, struct powermate_device *pm)
  242. {
  243. pm->data = usb_buffer_alloc(udev, POWERMATE_PAYLOAD_SIZE_MAX,
  244. SLAB_ATOMIC, &pm->data_dma);
  245. if (!pm->data)
  246. return -1;
  247. pm->configcr = usb_buffer_alloc(udev, sizeof(*(pm->configcr)),
  248. SLAB_ATOMIC, &pm->configcr_dma);
  249. if (!pm->configcr)
  250. return -1;
  251. return 0;
  252. }
  253. static void powermate_free_buffers(struct usb_device *udev, struct powermate_device *pm)
  254. {
  255. if (pm->data)
  256. usb_buffer_free(udev, POWERMATE_PAYLOAD_SIZE_MAX,
  257. pm->data, pm->data_dma);
  258. if (pm->configcr)
  259. usb_buffer_free(udev, sizeof(*(pm->configcr)),
  260. pm->configcr, pm->configcr_dma);
  261. }
  262. /* Called whenever a USB device matching one in our supported devices table is connected */
  263. static int powermate_probe(struct usb_interface *intf, const struct usb_device_id *id)
  264. {
  265. struct usb_device *udev = interface_to_usbdev (intf);
  266. struct usb_host_interface *interface;
  267. struct usb_endpoint_descriptor *endpoint;
  268. struct powermate_device *pm;
  269. struct input_dev *input_dev;
  270. int pipe, maxp;
  271. int err = -ENOMEM;
  272. interface = intf->cur_altsetting;
  273. endpoint = &interface->endpoint[0].desc;
  274. if (!usb_endpoint_is_int_in(endpoint))
  275. return -EIO;
  276. usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
  277. 0x0a, USB_TYPE_CLASS | USB_RECIP_INTERFACE,
  278. 0, interface->desc.bInterfaceNumber, NULL, 0,
  279. USB_CTRL_SET_TIMEOUT);
  280. pm = kzalloc(sizeof(struct powermate_device), GFP_KERNEL);
  281. input_dev = input_allocate_device();
  282. if (!pm || !input_dev)
  283. goto fail1;
  284. if (powermate_alloc_buffers(udev, pm))
  285. goto fail2;
  286. pm->irq = usb_alloc_urb(0, GFP_KERNEL);
  287. if (!pm->irq)
  288. goto fail2;
  289. pm->config = usb_alloc_urb(0, GFP_KERNEL);
  290. if (!pm->config)
  291. goto fail3;
  292. pm->udev = udev;
  293. pm->input = input_dev;
  294. usb_make_path(udev, pm->phys, sizeof(pm->phys));
  295. strlcpy(pm->phys, "/input0", sizeof(pm->phys));
  296. spin_lock_init(&pm->lock);
  297. switch (le16_to_cpu(udev->descriptor.idProduct)) {
  298. case POWERMATE_PRODUCT_NEW:
  299. input_dev->name = pm_name_powermate;
  300. break;
  301. case POWERMATE_PRODUCT_OLD:
  302. input_dev->name = pm_name_soundknob;
  303. break;
  304. default:
  305. input_dev->name = pm_name_soundknob;
  306. printk(KERN_WARNING "powermate: unknown product id %04x\n",
  307. le16_to_cpu(udev->descriptor.idProduct));
  308. }
  309. input_dev->phys = pm->phys;
  310. usb_to_input_id(udev, &input_dev->id);
  311. input_dev->cdev.dev = &intf->dev;
  312. input_dev->private = pm;
  313. input_dev->event = powermate_input_event;
  314. input_dev->evbit[0] = BIT(EV_KEY) | BIT(EV_REL) | BIT(EV_MSC);
  315. input_dev->keybit[LONG(BTN_0)] = BIT(BTN_0);
  316. input_dev->relbit[LONG(REL_DIAL)] = BIT(REL_DIAL);
  317. input_dev->mscbit[LONG(MSC_PULSELED)] = BIT(MSC_PULSELED);
  318. /* get a handle to the interrupt data pipe */
  319. pipe = usb_rcvintpipe(udev, endpoint->bEndpointAddress);
  320. maxp = usb_maxpacket(udev, pipe, usb_pipeout(pipe));
  321. if (maxp < POWERMATE_PAYLOAD_SIZE_MIN || maxp > POWERMATE_PAYLOAD_SIZE_MAX) {
  322. printk(KERN_WARNING "powermate: Expected payload of %d--%d bytes, found %d bytes!\n",
  323. POWERMATE_PAYLOAD_SIZE_MIN, POWERMATE_PAYLOAD_SIZE_MAX, maxp);
  324. maxp = POWERMATE_PAYLOAD_SIZE_MAX;
  325. }
  326. usb_fill_int_urb(pm->irq, udev, pipe, pm->data,
  327. maxp, powermate_irq,
  328. pm, endpoint->bInterval);
  329. pm->irq->transfer_dma = pm->data_dma;
  330. pm->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  331. /* register our interrupt URB with the USB system */
  332. if (usb_submit_urb(pm->irq, GFP_KERNEL)) {
  333. err = -EIO;
  334. goto fail4;
  335. }
  336. input_register_device(pm->input);
  337. /* force an update of everything */
  338. pm->requires_update = UPDATE_PULSE_ASLEEP | UPDATE_PULSE_AWAKE | UPDATE_PULSE_MODE | UPDATE_STATIC_BRIGHTNESS;
  339. powermate_pulse_led(pm, 0x80, 255, 0, 1, 0); // set default pulse parameters
  340. usb_set_intfdata(intf, pm);
  341. return 0;
  342. fail4: usb_free_urb(pm->config);
  343. fail3: usb_free_urb(pm->irq);
  344. fail2: powermate_free_buffers(udev, pm);
  345. fail1: input_free_device(input_dev);
  346. kfree(pm);
  347. return err;
  348. }
  349. /* Called when a USB device we've accepted ownership of is removed */
  350. static void powermate_disconnect(struct usb_interface *intf)
  351. {
  352. struct powermate_device *pm = usb_get_intfdata (intf);
  353. usb_set_intfdata(intf, NULL);
  354. if (pm) {
  355. pm->requires_update = 0;
  356. usb_kill_urb(pm->irq);
  357. input_unregister_device(pm->input);
  358. usb_free_urb(pm->irq);
  359. usb_free_urb(pm->config);
  360. powermate_free_buffers(interface_to_usbdev(intf), pm);
  361. kfree(pm);
  362. }
  363. }
  364. static struct usb_device_id powermate_devices [] = {
  365. { USB_DEVICE(POWERMATE_VENDOR, POWERMATE_PRODUCT_NEW) },
  366. { USB_DEVICE(POWERMATE_VENDOR, POWERMATE_PRODUCT_OLD) },
  367. { USB_DEVICE(CONTOUR_VENDOR, CONTOUR_JOG) },
  368. { } /* Terminating entry */
  369. };
  370. MODULE_DEVICE_TABLE (usb, powermate_devices);
  371. static struct usb_driver powermate_driver = {
  372. .name = "powermate",
  373. .probe = powermate_probe,
  374. .disconnect = powermate_disconnect,
  375. .id_table = powermate_devices,
  376. };
  377. static int __init powermate_init(void)
  378. {
  379. return usb_register(&powermate_driver);
  380. }
  381. static void __exit powermate_cleanup(void)
  382. {
  383. usb_deregister(&powermate_driver);
  384. }
  385. module_init(powermate_init);
  386. module_exit(powermate_cleanup);
  387. MODULE_AUTHOR( "William R Sowerbutts" );
  388. MODULE_DESCRIPTION( "Griffin Technology, Inc PowerMate driver" );
  389. MODULE_LICENSE("GPL");