skge.c 91 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/in.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/mii.h>
  40. #include <asm/irq.h>
  41. #include "skge.h"
  42. #define DRV_NAME "skge"
  43. #define DRV_VERSION "1.8"
  44. #define PFX DRV_NAME " "
  45. #define DEFAULT_TX_RING_SIZE 128
  46. #define DEFAULT_RX_RING_SIZE 512
  47. #define MAX_TX_RING_SIZE 1024
  48. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  49. #define MAX_RX_RING_SIZE 4096
  50. #define RX_COPY_THRESHOLD 128
  51. #define RX_BUF_SIZE 1536
  52. #define PHY_RETRIES 1000
  53. #define ETH_JUMBO_MTU 9000
  54. #define TX_WATCHDOG (5 * HZ)
  55. #define NAPI_WEIGHT 64
  56. #define BLINK_MS 250
  57. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  58. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  59. MODULE_LICENSE("GPL");
  60. MODULE_VERSION(DRV_VERSION);
  61. static const u32 default_msg
  62. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  63. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  64. static int debug = -1; /* defaults above */
  65. module_param(debug, int, 0);
  66. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  67. static const struct pci_device_id skge_id_table[] = {
  68. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  71. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
  73. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  74. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  76. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  77. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  78. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
  79. { 0 }
  80. };
  81. MODULE_DEVICE_TABLE(pci, skge_id_table);
  82. static int skge_up(struct net_device *dev);
  83. static int skge_down(struct net_device *dev);
  84. static void skge_phy_reset(struct skge_port *skge);
  85. static void skge_tx_clean(struct net_device *dev);
  86. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  87. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  88. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  89. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  90. static void yukon_init(struct skge_hw *hw, int port);
  91. static void genesis_mac_init(struct skge_hw *hw, int port);
  92. static void genesis_link_up(struct skge_port *skge);
  93. /* Avoid conditionals by using array */
  94. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  95. static const int rxqaddr[] = { Q_R1, Q_R2 };
  96. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  97. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  98. static const u32 irqmask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  99. static int skge_get_regs_len(struct net_device *dev)
  100. {
  101. return 0x4000;
  102. }
  103. /*
  104. * Returns copy of whole control register region
  105. * Note: skip RAM address register because accessing it will
  106. * cause bus hangs!
  107. */
  108. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  109. void *p)
  110. {
  111. const struct skge_port *skge = netdev_priv(dev);
  112. const void __iomem *io = skge->hw->regs;
  113. regs->version = 1;
  114. memset(p, 0, regs->len);
  115. memcpy_fromio(p, io, B3_RAM_ADDR);
  116. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  117. regs->len - B3_RI_WTO_R1);
  118. }
  119. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  120. static int wol_supported(const struct skge_hw *hw)
  121. {
  122. return !((hw->chip_id == CHIP_ID_GENESIS ||
  123. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
  124. }
  125. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  126. {
  127. struct skge_port *skge = netdev_priv(dev);
  128. wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
  129. wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
  130. }
  131. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  132. {
  133. struct skge_port *skge = netdev_priv(dev);
  134. struct skge_hw *hw = skge->hw;
  135. if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  136. return -EOPNOTSUPP;
  137. if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
  138. return -EOPNOTSUPP;
  139. skge->wol = wol->wolopts == WAKE_MAGIC;
  140. if (skge->wol) {
  141. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  142. skge_write16(hw, WOL_CTRL_STAT,
  143. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  144. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  145. } else
  146. skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  147. return 0;
  148. }
  149. /* Determine supported/advertised modes based on hardware.
  150. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  151. */
  152. static u32 skge_supported_modes(const struct skge_hw *hw)
  153. {
  154. u32 supported;
  155. if (hw->copper) {
  156. supported = SUPPORTED_10baseT_Half
  157. | SUPPORTED_10baseT_Full
  158. | SUPPORTED_100baseT_Half
  159. | SUPPORTED_100baseT_Full
  160. | SUPPORTED_1000baseT_Half
  161. | SUPPORTED_1000baseT_Full
  162. | SUPPORTED_Autoneg| SUPPORTED_TP;
  163. if (hw->chip_id == CHIP_ID_GENESIS)
  164. supported &= ~(SUPPORTED_10baseT_Half
  165. | SUPPORTED_10baseT_Full
  166. | SUPPORTED_100baseT_Half
  167. | SUPPORTED_100baseT_Full);
  168. else if (hw->chip_id == CHIP_ID_YUKON)
  169. supported &= ~SUPPORTED_1000baseT_Half;
  170. } else
  171. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  172. | SUPPORTED_Autoneg;
  173. return supported;
  174. }
  175. static int skge_get_settings(struct net_device *dev,
  176. struct ethtool_cmd *ecmd)
  177. {
  178. struct skge_port *skge = netdev_priv(dev);
  179. struct skge_hw *hw = skge->hw;
  180. ecmd->transceiver = XCVR_INTERNAL;
  181. ecmd->supported = skge_supported_modes(hw);
  182. if (hw->copper) {
  183. ecmd->port = PORT_TP;
  184. ecmd->phy_address = hw->phy_addr;
  185. } else
  186. ecmd->port = PORT_FIBRE;
  187. ecmd->advertising = skge->advertising;
  188. ecmd->autoneg = skge->autoneg;
  189. ecmd->speed = skge->speed;
  190. ecmd->duplex = skge->duplex;
  191. return 0;
  192. }
  193. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  194. {
  195. struct skge_port *skge = netdev_priv(dev);
  196. const struct skge_hw *hw = skge->hw;
  197. u32 supported = skge_supported_modes(hw);
  198. if (ecmd->autoneg == AUTONEG_ENABLE) {
  199. ecmd->advertising = supported;
  200. skge->duplex = -1;
  201. skge->speed = -1;
  202. } else {
  203. u32 setting;
  204. switch (ecmd->speed) {
  205. case SPEED_1000:
  206. if (ecmd->duplex == DUPLEX_FULL)
  207. setting = SUPPORTED_1000baseT_Full;
  208. else if (ecmd->duplex == DUPLEX_HALF)
  209. setting = SUPPORTED_1000baseT_Half;
  210. else
  211. return -EINVAL;
  212. break;
  213. case SPEED_100:
  214. if (ecmd->duplex == DUPLEX_FULL)
  215. setting = SUPPORTED_100baseT_Full;
  216. else if (ecmd->duplex == DUPLEX_HALF)
  217. setting = SUPPORTED_100baseT_Half;
  218. else
  219. return -EINVAL;
  220. break;
  221. case SPEED_10:
  222. if (ecmd->duplex == DUPLEX_FULL)
  223. setting = SUPPORTED_10baseT_Full;
  224. else if (ecmd->duplex == DUPLEX_HALF)
  225. setting = SUPPORTED_10baseT_Half;
  226. else
  227. return -EINVAL;
  228. break;
  229. default:
  230. return -EINVAL;
  231. }
  232. if ((setting & supported) == 0)
  233. return -EINVAL;
  234. skge->speed = ecmd->speed;
  235. skge->duplex = ecmd->duplex;
  236. }
  237. skge->autoneg = ecmd->autoneg;
  238. skge->advertising = ecmd->advertising;
  239. if (netif_running(dev))
  240. skge_phy_reset(skge);
  241. return (0);
  242. }
  243. static void skge_get_drvinfo(struct net_device *dev,
  244. struct ethtool_drvinfo *info)
  245. {
  246. struct skge_port *skge = netdev_priv(dev);
  247. strcpy(info->driver, DRV_NAME);
  248. strcpy(info->version, DRV_VERSION);
  249. strcpy(info->fw_version, "N/A");
  250. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  251. }
  252. static const struct skge_stat {
  253. char name[ETH_GSTRING_LEN];
  254. u16 xmac_offset;
  255. u16 gma_offset;
  256. } skge_stats[] = {
  257. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  258. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  259. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  260. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  261. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  262. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  263. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  264. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  265. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  266. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  267. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  268. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  269. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  270. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  271. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  272. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  273. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  274. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  275. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  276. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  277. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  278. };
  279. static int skge_get_stats_count(struct net_device *dev)
  280. {
  281. return ARRAY_SIZE(skge_stats);
  282. }
  283. static void skge_get_ethtool_stats(struct net_device *dev,
  284. struct ethtool_stats *stats, u64 *data)
  285. {
  286. struct skge_port *skge = netdev_priv(dev);
  287. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  288. genesis_get_stats(skge, data);
  289. else
  290. yukon_get_stats(skge, data);
  291. }
  292. /* Use hardware MIB variables for critical path statistics and
  293. * transmit feedback not reported at interrupt.
  294. * Other errors are accounted for in interrupt handler.
  295. */
  296. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  297. {
  298. struct skge_port *skge = netdev_priv(dev);
  299. u64 data[ARRAY_SIZE(skge_stats)];
  300. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  301. genesis_get_stats(skge, data);
  302. else
  303. yukon_get_stats(skge, data);
  304. skge->net_stats.tx_bytes = data[0];
  305. skge->net_stats.rx_bytes = data[1];
  306. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  307. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  308. skge->net_stats.multicast = data[3] + data[5];
  309. skge->net_stats.collisions = data[10];
  310. skge->net_stats.tx_aborted_errors = data[12];
  311. return &skge->net_stats;
  312. }
  313. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  314. {
  315. int i;
  316. switch (stringset) {
  317. case ETH_SS_STATS:
  318. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  319. memcpy(data + i * ETH_GSTRING_LEN,
  320. skge_stats[i].name, ETH_GSTRING_LEN);
  321. break;
  322. }
  323. }
  324. static void skge_get_ring_param(struct net_device *dev,
  325. struct ethtool_ringparam *p)
  326. {
  327. struct skge_port *skge = netdev_priv(dev);
  328. p->rx_max_pending = MAX_RX_RING_SIZE;
  329. p->tx_max_pending = MAX_TX_RING_SIZE;
  330. p->rx_mini_max_pending = 0;
  331. p->rx_jumbo_max_pending = 0;
  332. p->rx_pending = skge->rx_ring.count;
  333. p->tx_pending = skge->tx_ring.count;
  334. p->rx_mini_pending = 0;
  335. p->rx_jumbo_pending = 0;
  336. }
  337. static int skge_set_ring_param(struct net_device *dev,
  338. struct ethtool_ringparam *p)
  339. {
  340. struct skge_port *skge = netdev_priv(dev);
  341. int err;
  342. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  343. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  344. return -EINVAL;
  345. skge->rx_ring.count = p->rx_pending;
  346. skge->tx_ring.count = p->tx_pending;
  347. if (netif_running(dev)) {
  348. skge_down(dev);
  349. err = skge_up(dev);
  350. if (err)
  351. dev_close(dev);
  352. }
  353. return 0;
  354. }
  355. static u32 skge_get_msglevel(struct net_device *netdev)
  356. {
  357. struct skge_port *skge = netdev_priv(netdev);
  358. return skge->msg_enable;
  359. }
  360. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  361. {
  362. struct skge_port *skge = netdev_priv(netdev);
  363. skge->msg_enable = value;
  364. }
  365. static int skge_nway_reset(struct net_device *dev)
  366. {
  367. struct skge_port *skge = netdev_priv(dev);
  368. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  369. return -EINVAL;
  370. skge_phy_reset(skge);
  371. return 0;
  372. }
  373. static int skge_set_sg(struct net_device *dev, u32 data)
  374. {
  375. struct skge_port *skge = netdev_priv(dev);
  376. struct skge_hw *hw = skge->hw;
  377. if (hw->chip_id == CHIP_ID_GENESIS && data)
  378. return -EOPNOTSUPP;
  379. return ethtool_op_set_sg(dev, data);
  380. }
  381. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  382. {
  383. struct skge_port *skge = netdev_priv(dev);
  384. struct skge_hw *hw = skge->hw;
  385. if (hw->chip_id == CHIP_ID_GENESIS && data)
  386. return -EOPNOTSUPP;
  387. return ethtool_op_set_tx_csum(dev, data);
  388. }
  389. static u32 skge_get_rx_csum(struct net_device *dev)
  390. {
  391. struct skge_port *skge = netdev_priv(dev);
  392. return skge->rx_csum;
  393. }
  394. /* Only Yukon supports checksum offload. */
  395. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  396. {
  397. struct skge_port *skge = netdev_priv(dev);
  398. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  399. return -EOPNOTSUPP;
  400. skge->rx_csum = data;
  401. return 0;
  402. }
  403. static void skge_get_pauseparam(struct net_device *dev,
  404. struct ethtool_pauseparam *ecmd)
  405. {
  406. struct skge_port *skge = netdev_priv(dev);
  407. ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
  408. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  409. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
  410. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  411. ecmd->autoneg = skge->autoneg;
  412. }
  413. static int skge_set_pauseparam(struct net_device *dev,
  414. struct ethtool_pauseparam *ecmd)
  415. {
  416. struct skge_port *skge = netdev_priv(dev);
  417. skge->autoneg = ecmd->autoneg;
  418. if (ecmd->rx_pause && ecmd->tx_pause)
  419. skge->flow_control = FLOW_MODE_SYMMETRIC;
  420. else if (ecmd->rx_pause && !ecmd->tx_pause)
  421. skge->flow_control = FLOW_MODE_REM_SEND;
  422. else if (!ecmd->rx_pause && ecmd->tx_pause)
  423. skge->flow_control = FLOW_MODE_LOC_SEND;
  424. else
  425. skge->flow_control = FLOW_MODE_NONE;
  426. if (netif_running(dev))
  427. skge_phy_reset(skge);
  428. return 0;
  429. }
  430. /* Chip internal frequency for clock calculations */
  431. static inline u32 hwkhz(const struct skge_hw *hw)
  432. {
  433. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  434. }
  435. /* Chip HZ to microseconds */
  436. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  437. {
  438. return (ticks * 1000) / hwkhz(hw);
  439. }
  440. /* Microseconds to chip HZ */
  441. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  442. {
  443. return hwkhz(hw) * usec / 1000;
  444. }
  445. static int skge_get_coalesce(struct net_device *dev,
  446. struct ethtool_coalesce *ecmd)
  447. {
  448. struct skge_port *skge = netdev_priv(dev);
  449. struct skge_hw *hw = skge->hw;
  450. int port = skge->port;
  451. ecmd->rx_coalesce_usecs = 0;
  452. ecmd->tx_coalesce_usecs = 0;
  453. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  454. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  455. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  456. if (msk & rxirqmask[port])
  457. ecmd->rx_coalesce_usecs = delay;
  458. if (msk & txirqmask[port])
  459. ecmd->tx_coalesce_usecs = delay;
  460. }
  461. return 0;
  462. }
  463. /* Note: interrupt timer is per board, but can turn on/off per port */
  464. static int skge_set_coalesce(struct net_device *dev,
  465. struct ethtool_coalesce *ecmd)
  466. {
  467. struct skge_port *skge = netdev_priv(dev);
  468. struct skge_hw *hw = skge->hw;
  469. int port = skge->port;
  470. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  471. u32 delay = 25;
  472. if (ecmd->rx_coalesce_usecs == 0)
  473. msk &= ~rxirqmask[port];
  474. else if (ecmd->rx_coalesce_usecs < 25 ||
  475. ecmd->rx_coalesce_usecs > 33333)
  476. return -EINVAL;
  477. else {
  478. msk |= rxirqmask[port];
  479. delay = ecmd->rx_coalesce_usecs;
  480. }
  481. if (ecmd->tx_coalesce_usecs == 0)
  482. msk &= ~txirqmask[port];
  483. else if (ecmd->tx_coalesce_usecs < 25 ||
  484. ecmd->tx_coalesce_usecs > 33333)
  485. return -EINVAL;
  486. else {
  487. msk |= txirqmask[port];
  488. delay = min(delay, ecmd->rx_coalesce_usecs);
  489. }
  490. skge_write32(hw, B2_IRQM_MSK, msk);
  491. if (msk == 0)
  492. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  493. else {
  494. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  495. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  496. }
  497. return 0;
  498. }
  499. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  500. static void skge_led(struct skge_port *skge, enum led_mode mode)
  501. {
  502. struct skge_hw *hw = skge->hw;
  503. int port = skge->port;
  504. mutex_lock(&hw->phy_mutex);
  505. if (hw->chip_id == CHIP_ID_GENESIS) {
  506. switch (mode) {
  507. case LED_MODE_OFF:
  508. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  509. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  510. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  511. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  512. break;
  513. case LED_MODE_ON:
  514. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  515. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  516. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  517. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  518. break;
  519. case LED_MODE_TST:
  520. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  521. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  522. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  523. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  524. break;
  525. }
  526. } else {
  527. switch (mode) {
  528. case LED_MODE_OFF:
  529. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  530. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  531. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  532. PHY_M_LED_MO_10(MO_LED_OFF) |
  533. PHY_M_LED_MO_100(MO_LED_OFF) |
  534. PHY_M_LED_MO_1000(MO_LED_OFF) |
  535. PHY_M_LED_MO_RX(MO_LED_OFF));
  536. break;
  537. case LED_MODE_ON:
  538. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  539. PHY_M_LED_PULS_DUR(PULS_170MS) |
  540. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  541. PHY_M_LEDC_TX_CTRL |
  542. PHY_M_LEDC_DP_CTRL);
  543. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  544. PHY_M_LED_MO_RX(MO_LED_OFF) |
  545. (skge->speed == SPEED_100 ?
  546. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  547. break;
  548. case LED_MODE_TST:
  549. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  550. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  551. PHY_M_LED_MO_DUP(MO_LED_ON) |
  552. PHY_M_LED_MO_10(MO_LED_ON) |
  553. PHY_M_LED_MO_100(MO_LED_ON) |
  554. PHY_M_LED_MO_1000(MO_LED_ON) |
  555. PHY_M_LED_MO_RX(MO_LED_ON));
  556. }
  557. }
  558. mutex_unlock(&hw->phy_mutex);
  559. }
  560. /* blink LED's for finding board */
  561. static int skge_phys_id(struct net_device *dev, u32 data)
  562. {
  563. struct skge_port *skge = netdev_priv(dev);
  564. unsigned long ms;
  565. enum led_mode mode = LED_MODE_TST;
  566. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  567. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  568. else
  569. ms = data * 1000;
  570. while (ms > 0) {
  571. skge_led(skge, mode);
  572. mode ^= LED_MODE_TST;
  573. if (msleep_interruptible(BLINK_MS))
  574. break;
  575. ms -= BLINK_MS;
  576. }
  577. /* back to regular LED state */
  578. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  579. return 0;
  580. }
  581. static const struct ethtool_ops skge_ethtool_ops = {
  582. .get_settings = skge_get_settings,
  583. .set_settings = skge_set_settings,
  584. .get_drvinfo = skge_get_drvinfo,
  585. .get_regs_len = skge_get_regs_len,
  586. .get_regs = skge_get_regs,
  587. .get_wol = skge_get_wol,
  588. .set_wol = skge_set_wol,
  589. .get_msglevel = skge_get_msglevel,
  590. .set_msglevel = skge_set_msglevel,
  591. .nway_reset = skge_nway_reset,
  592. .get_link = ethtool_op_get_link,
  593. .get_ringparam = skge_get_ring_param,
  594. .set_ringparam = skge_set_ring_param,
  595. .get_pauseparam = skge_get_pauseparam,
  596. .set_pauseparam = skge_set_pauseparam,
  597. .get_coalesce = skge_get_coalesce,
  598. .set_coalesce = skge_set_coalesce,
  599. .get_sg = ethtool_op_get_sg,
  600. .set_sg = skge_set_sg,
  601. .get_tx_csum = ethtool_op_get_tx_csum,
  602. .set_tx_csum = skge_set_tx_csum,
  603. .get_rx_csum = skge_get_rx_csum,
  604. .set_rx_csum = skge_set_rx_csum,
  605. .get_strings = skge_get_strings,
  606. .phys_id = skge_phys_id,
  607. .get_stats_count = skge_get_stats_count,
  608. .get_ethtool_stats = skge_get_ethtool_stats,
  609. .get_perm_addr = ethtool_op_get_perm_addr,
  610. };
  611. /*
  612. * Allocate ring elements and chain them together
  613. * One-to-one association of board descriptors with ring elements
  614. */
  615. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  616. {
  617. struct skge_tx_desc *d;
  618. struct skge_element *e;
  619. int i;
  620. ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
  621. if (!ring->start)
  622. return -ENOMEM;
  623. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  624. e->desc = d;
  625. if (i == ring->count - 1) {
  626. e->next = ring->start;
  627. d->next_offset = base;
  628. } else {
  629. e->next = e + 1;
  630. d->next_offset = base + (i+1) * sizeof(*d);
  631. }
  632. }
  633. ring->to_use = ring->to_clean = ring->start;
  634. return 0;
  635. }
  636. /* Allocate and setup a new buffer for receiving */
  637. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  638. struct sk_buff *skb, unsigned int bufsize)
  639. {
  640. struct skge_rx_desc *rd = e->desc;
  641. u64 map;
  642. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  643. PCI_DMA_FROMDEVICE);
  644. rd->dma_lo = map;
  645. rd->dma_hi = map >> 32;
  646. e->skb = skb;
  647. rd->csum1_start = ETH_HLEN;
  648. rd->csum2_start = ETH_HLEN;
  649. rd->csum1 = 0;
  650. rd->csum2 = 0;
  651. wmb();
  652. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  653. pci_unmap_addr_set(e, mapaddr, map);
  654. pci_unmap_len_set(e, maplen, bufsize);
  655. }
  656. /* Resume receiving using existing skb,
  657. * Note: DMA address is not changed by chip.
  658. * MTU not changed while receiver active.
  659. */
  660. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  661. {
  662. struct skge_rx_desc *rd = e->desc;
  663. rd->csum2 = 0;
  664. rd->csum2_start = ETH_HLEN;
  665. wmb();
  666. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  667. }
  668. /* Free all buffers in receive ring, assumes receiver stopped */
  669. static void skge_rx_clean(struct skge_port *skge)
  670. {
  671. struct skge_hw *hw = skge->hw;
  672. struct skge_ring *ring = &skge->rx_ring;
  673. struct skge_element *e;
  674. e = ring->start;
  675. do {
  676. struct skge_rx_desc *rd = e->desc;
  677. rd->control = 0;
  678. if (e->skb) {
  679. pci_unmap_single(hw->pdev,
  680. pci_unmap_addr(e, mapaddr),
  681. pci_unmap_len(e, maplen),
  682. PCI_DMA_FROMDEVICE);
  683. dev_kfree_skb(e->skb);
  684. e->skb = NULL;
  685. }
  686. } while ((e = e->next) != ring->start);
  687. }
  688. /* Allocate buffers for receive ring
  689. * For receive: to_clean is next received frame.
  690. */
  691. static int skge_rx_fill(struct net_device *dev)
  692. {
  693. struct skge_port *skge = netdev_priv(dev);
  694. struct skge_ring *ring = &skge->rx_ring;
  695. struct skge_element *e;
  696. e = ring->start;
  697. do {
  698. struct sk_buff *skb;
  699. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  700. GFP_KERNEL);
  701. if (!skb)
  702. return -ENOMEM;
  703. skb_reserve(skb, NET_IP_ALIGN);
  704. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  705. } while ( (e = e->next) != ring->start);
  706. ring->to_clean = ring->start;
  707. return 0;
  708. }
  709. static void skge_link_up(struct skge_port *skge)
  710. {
  711. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  712. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  713. netif_carrier_on(skge->netdev);
  714. netif_wake_queue(skge->netdev);
  715. if (netif_msg_link(skge))
  716. printk(KERN_INFO PFX
  717. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  718. skge->netdev->name, skge->speed,
  719. skge->duplex == DUPLEX_FULL ? "full" : "half",
  720. (skge->flow_control == FLOW_MODE_NONE) ? "none" :
  721. (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
  722. (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
  723. (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
  724. "unknown");
  725. }
  726. static void skge_link_down(struct skge_port *skge)
  727. {
  728. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  729. netif_carrier_off(skge->netdev);
  730. netif_stop_queue(skge->netdev);
  731. if (netif_msg_link(skge))
  732. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  733. }
  734. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  735. {
  736. int i;
  737. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  738. *val = xm_read16(hw, port, XM_PHY_DATA);
  739. for (i = 0; i < PHY_RETRIES; i++) {
  740. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  741. goto ready;
  742. udelay(1);
  743. }
  744. return -ETIMEDOUT;
  745. ready:
  746. *val = xm_read16(hw, port, XM_PHY_DATA);
  747. return 0;
  748. }
  749. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  750. {
  751. u16 v = 0;
  752. if (__xm_phy_read(hw, port, reg, &v))
  753. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  754. hw->dev[port]->name);
  755. return v;
  756. }
  757. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  758. {
  759. int i;
  760. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  761. for (i = 0; i < PHY_RETRIES; i++) {
  762. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  763. goto ready;
  764. udelay(1);
  765. }
  766. return -EIO;
  767. ready:
  768. xm_write16(hw, port, XM_PHY_DATA, val);
  769. for (i = 0; i < PHY_RETRIES; i++) {
  770. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  771. return 0;
  772. udelay(1);
  773. }
  774. return -ETIMEDOUT;
  775. }
  776. static void genesis_init(struct skge_hw *hw)
  777. {
  778. /* set blink source counter */
  779. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  780. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  781. /* configure mac arbiter */
  782. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  783. /* configure mac arbiter timeout values */
  784. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  785. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  786. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  787. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  788. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  789. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  790. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  791. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  792. /* configure packet arbiter timeout */
  793. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  794. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  795. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  796. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  797. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  798. }
  799. static void genesis_reset(struct skge_hw *hw, int port)
  800. {
  801. const u8 zero[8] = { 0 };
  802. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  803. /* reset the statistics module */
  804. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  805. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  806. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  807. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  808. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  809. /* disable Broadcom PHY IRQ */
  810. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  811. xm_outhash(hw, port, XM_HSM, zero);
  812. }
  813. /* Convert mode to MII values */
  814. static const u16 phy_pause_map[] = {
  815. [FLOW_MODE_NONE] = 0,
  816. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  817. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  818. [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  819. };
  820. /* Check status of Broadcom phy link */
  821. static void bcom_check_link(struct skge_hw *hw, int port)
  822. {
  823. struct net_device *dev = hw->dev[port];
  824. struct skge_port *skge = netdev_priv(dev);
  825. u16 status;
  826. /* read twice because of latch */
  827. (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
  828. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  829. if ((status & PHY_ST_LSYNC) == 0) {
  830. u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
  831. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  832. xm_write16(hw, port, XM_MMU_CMD, cmd);
  833. /* dummy read to ensure writing */
  834. (void) xm_read16(hw, port, XM_MMU_CMD);
  835. if (netif_carrier_ok(dev))
  836. skge_link_down(skge);
  837. } else {
  838. if (skge->autoneg == AUTONEG_ENABLE &&
  839. (status & PHY_ST_AN_OVER)) {
  840. u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
  841. u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  842. if (lpa & PHY_B_AN_RF) {
  843. printk(KERN_NOTICE PFX "%s: remote fault\n",
  844. dev->name);
  845. return;
  846. }
  847. /* Check Duplex mismatch */
  848. switch (aux & PHY_B_AS_AN_RES_MSK) {
  849. case PHY_B_RES_1000FD:
  850. skge->duplex = DUPLEX_FULL;
  851. break;
  852. case PHY_B_RES_1000HD:
  853. skge->duplex = DUPLEX_HALF;
  854. break;
  855. default:
  856. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  857. dev->name);
  858. return;
  859. }
  860. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  861. switch (aux & PHY_B_AS_PAUSE_MSK) {
  862. case PHY_B_AS_PAUSE_MSK:
  863. skge->flow_control = FLOW_MODE_SYMMETRIC;
  864. break;
  865. case PHY_B_AS_PRR:
  866. skge->flow_control = FLOW_MODE_REM_SEND;
  867. break;
  868. case PHY_B_AS_PRT:
  869. skge->flow_control = FLOW_MODE_LOC_SEND;
  870. break;
  871. default:
  872. skge->flow_control = FLOW_MODE_NONE;
  873. }
  874. skge->speed = SPEED_1000;
  875. }
  876. if (!netif_carrier_ok(dev))
  877. genesis_link_up(skge);
  878. }
  879. }
  880. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  881. * Phy on for 100 or 10Mbit operation
  882. */
  883. static void bcom_phy_init(struct skge_port *skge, int jumbo)
  884. {
  885. struct skge_hw *hw = skge->hw;
  886. int port = skge->port;
  887. int i;
  888. u16 id1, r, ext, ctl;
  889. /* magic workaround patterns for Broadcom */
  890. static const struct {
  891. u16 reg;
  892. u16 val;
  893. } A1hack[] = {
  894. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  895. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  896. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  897. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  898. }, C0hack[] = {
  899. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  900. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  901. };
  902. /* read Id from external PHY (all have the same address) */
  903. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  904. /* Optimize MDIO transfer by suppressing preamble. */
  905. r = xm_read16(hw, port, XM_MMU_CMD);
  906. r |= XM_MMU_NO_PRE;
  907. xm_write16(hw, port, XM_MMU_CMD,r);
  908. switch (id1) {
  909. case PHY_BCOM_ID1_C0:
  910. /*
  911. * Workaround BCOM Errata for the C0 type.
  912. * Write magic patterns to reserved registers.
  913. */
  914. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  915. xm_phy_write(hw, port,
  916. C0hack[i].reg, C0hack[i].val);
  917. break;
  918. case PHY_BCOM_ID1_A1:
  919. /*
  920. * Workaround BCOM Errata for the A1 type.
  921. * Write magic patterns to reserved registers.
  922. */
  923. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  924. xm_phy_write(hw, port,
  925. A1hack[i].reg, A1hack[i].val);
  926. break;
  927. }
  928. /*
  929. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  930. * Disable Power Management after reset.
  931. */
  932. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  933. r |= PHY_B_AC_DIS_PM;
  934. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  935. /* Dummy read */
  936. xm_read16(hw, port, XM_ISRC);
  937. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  938. ctl = PHY_CT_SP1000; /* always 1000mbit */
  939. if (skge->autoneg == AUTONEG_ENABLE) {
  940. /*
  941. * Workaround BCOM Errata #1 for the C5 type.
  942. * 1000Base-T Link Acquisition Failure in Slave Mode
  943. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  944. */
  945. u16 adv = PHY_B_1000C_RD;
  946. if (skge->advertising & ADVERTISED_1000baseT_Half)
  947. adv |= PHY_B_1000C_AHD;
  948. if (skge->advertising & ADVERTISED_1000baseT_Full)
  949. adv |= PHY_B_1000C_AFD;
  950. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  951. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  952. } else {
  953. if (skge->duplex == DUPLEX_FULL)
  954. ctl |= PHY_CT_DUP_MD;
  955. /* Force to slave */
  956. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  957. }
  958. /* Set autonegotiation pause parameters */
  959. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  960. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  961. /* Handle Jumbo frames */
  962. if (jumbo) {
  963. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  964. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  965. ext |= PHY_B_PEC_HIGH_LA;
  966. }
  967. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  968. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  969. /* Use link status change interrupt */
  970. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  971. bcom_check_link(hw, port);
  972. }
  973. static void genesis_mac_init(struct skge_hw *hw, int port)
  974. {
  975. struct net_device *dev = hw->dev[port];
  976. struct skge_port *skge = netdev_priv(dev);
  977. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  978. int i;
  979. u32 r;
  980. const u8 zero[6] = { 0 };
  981. for (i = 0; i < 10; i++) {
  982. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  983. MFF_SET_MAC_RST);
  984. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  985. goto reset_ok;
  986. udelay(1);
  987. }
  988. printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
  989. reset_ok:
  990. /* Unreset the XMAC. */
  991. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  992. /*
  993. * Perform additional initialization for external PHYs,
  994. * namely for the 1000baseTX cards that use the XMAC's
  995. * GMII mode.
  996. */
  997. /* Take external Phy out of reset */
  998. r = skge_read32(hw, B2_GP_IO);
  999. if (port == 0)
  1000. r |= GP_DIR_0|GP_IO_0;
  1001. else
  1002. r |= GP_DIR_2|GP_IO_2;
  1003. skge_write32(hw, B2_GP_IO, r);
  1004. /* Enable GMII interface */
  1005. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1006. bcom_phy_init(skge, jumbo);
  1007. /* Set Station Address */
  1008. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1009. /* We don't use match addresses so clear */
  1010. for (i = 1; i < 16; i++)
  1011. xm_outaddr(hw, port, XM_EXM(i), zero);
  1012. /* Clear MIB counters */
  1013. xm_write16(hw, port, XM_STAT_CMD,
  1014. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1015. /* Clear two times according to Errata #3 */
  1016. xm_write16(hw, port, XM_STAT_CMD,
  1017. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1018. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1019. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1020. /* We don't need the FCS appended to the packet. */
  1021. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1022. if (jumbo)
  1023. r |= XM_RX_BIG_PK_OK;
  1024. if (skge->duplex == DUPLEX_HALF) {
  1025. /*
  1026. * If in manual half duplex mode the other side might be in
  1027. * full duplex mode, so ignore if a carrier extension is not seen
  1028. * on frames received
  1029. */
  1030. r |= XM_RX_DIS_CEXT;
  1031. }
  1032. xm_write16(hw, port, XM_RX_CMD, r);
  1033. /* We want short frames padded to 60 bytes. */
  1034. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1035. /*
  1036. * Bump up the transmit threshold. This helps hold off transmit
  1037. * underruns when we're blasting traffic from both ports at once.
  1038. */
  1039. xm_write16(hw, port, XM_TX_THR, 512);
  1040. /*
  1041. * Enable the reception of all error frames. This is is
  1042. * a necessary evil due to the design of the XMAC. The
  1043. * XMAC's receive FIFO is only 8K in size, however jumbo
  1044. * frames can be up to 9000 bytes in length. When bad
  1045. * frame filtering is enabled, the XMAC's RX FIFO operates
  1046. * in 'store and forward' mode. For this to work, the
  1047. * entire frame has to fit into the FIFO, but that means
  1048. * that jumbo frames larger than 8192 bytes will be
  1049. * truncated. Disabling all bad frame filtering causes
  1050. * the RX FIFO to operate in streaming mode, in which
  1051. * case the XMAC will start transferring frames out of the
  1052. * RX FIFO as soon as the FIFO threshold is reached.
  1053. */
  1054. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1055. /*
  1056. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1057. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1058. * and 'Octets Rx OK Hi Cnt Ov'.
  1059. */
  1060. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1061. /*
  1062. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1063. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1064. * and 'Octets Tx OK Hi Cnt Ov'.
  1065. */
  1066. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1067. /* Configure MAC arbiter */
  1068. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1069. /* configure timeout values */
  1070. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1071. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1072. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1073. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1074. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1075. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1076. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1077. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1078. /* Configure Rx MAC FIFO */
  1079. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1080. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1081. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1082. /* Configure Tx MAC FIFO */
  1083. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1084. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1085. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1086. if (jumbo) {
  1087. /* Enable frame flushing if jumbo frames used */
  1088. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1089. } else {
  1090. /* enable timeout timers if normal frames */
  1091. skge_write16(hw, B3_PA_CTRL,
  1092. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1093. }
  1094. }
  1095. static void genesis_stop(struct skge_port *skge)
  1096. {
  1097. struct skge_hw *hw = skge->hw;
  1098. int port = skge->port;
  1099. u32 reg;
  1100. genesis_reset(hw, port);
  1101. /* Clear Tx packet arbiter timeout IRQ */
  1102. skge_write16(hw, B3_PA_CTRL,
  1103. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1104. /*
  1105. * If the transfer sticks at the MAC the STOP command will not
  1106. * terminate if we don't flush the XMAC's transmit FIFO !
  1107. */
  1108. xm_write32(hw, port, XM_MODE,
  1109. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1110. /* Reset the MAC */
  1111. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1112. /* For external PHYs there must be special handling */
  1113. reg = skge_read32(hw, B2_GP_IO);
  1114. if (port == 0) {
  1115. reg |= GP_DIR_0;
  1116. reg &= ~GP_IO_0;
  1117. } else {
  1118. reg |= GP_DIR_2;
  1119. reg &= ~GP_IO_2;
  1120. }
  1121. skge_write32(hw, B2_GP_IO, reg);
  1122. skge_read32(hw, B2_GP_IO);
  1123. xm_write16(hw, port, XM_MMU_CMD,
  1124. xm_read16(hw, port, XM_MMU_CMD)
  1125. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1126. xm_read16(hw, port, XM_MMU_CMD);
  1127. }
  1128. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1129. {
  1130. struct skge_hw *hw = skge->hw;
  1131. int port = skge->port;
  1132. int i;
  1133. unsigned long timeout = jiffies + HZ;
  1134. xm_write16(hw, port,
  1135. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1136. /* wait for update to complete */
  1137. while (xm_read16(hw, port, XM_STAT_CMD)
  1138. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1139. if (time_after(jiffies, timeout))
  1140. break;
  1141. udelay(10);
  1142. }
  1143. /* special case for 64 bit octet counter */
  1144. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1145. | xm_read32(hw, port, XM_TXO_OK_LO);
  1146. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1147. | xm_read32(hw, port, XM_RXO_OK_LO);
  1148. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1149. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1150. }
  1151. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1152. {
  1153. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1154. u16 status = xm_read16(hw, port, XM_ISRC);
  1155. if (netif_msg_intr(skge))
  1156. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1157. skge->netdev->name, status);
  1158. if (status & XM_IS_TXF_UR) {
  1159. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1160. ++skge->net_stats.tx_fifo_errors;
  1161. }
  1162. if (status & XM_IS_RXF_OV) {
  1163. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1164. ++skge->net_stats.rx_fifo_errors;
  1165. }
  1166. }
  1167. static void genesis_link_up(struct skge_port *skge)
  1168. {
  1169. struct skge_hw *hw = skge->hw;
  1170. int port = skge->port;
  1171. u16 cmd;
  1172. u32 mode, msk;
  1173. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1174. /*
  1175. * enabling pause frame reception is required for 1000BT
  1176. * because the XMAC is not reset if the link is going down
  1177. */
  1178. if (skge->flow_control == FLOW_MODE_NONE ||
  1179. skge->flow_control == FLOW_MODE_LOC_SEND)
  1180. /* Disable Pause Frame Reception */
  1181. cmd |= XM_MMU_IGN_PF;
  1182. else
  1183. /* Enable Pause Frame Reception */
  1184. cmd &= ~XM_MMU_IGN_PF;
  1185. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1186. mode = xm_read32(hw, port, XM_MODE);
  1187. if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1188. skge->flow_control == FLOW_MODE_LOC_SEND) {
  1189. /*
  1190. * Configure Pause Frame Generation
  1191. * Use internal and external Pause Frame Generation.
  1192. * Sending pause frames is edge triggered.
  1193. * Send a Pause frame with the maximum pause time if
  1194. * internal oder external FIFO full condition occurs.
  1195. * Send a zero pause time frame to re-start transmission.
  1196. */
  1197. /* XM_PAUSE_DA = '010000C28001' (default) */
  1198. /* XM_MAC_PTIME = 0xffff (maximum) */
  1199. /* remember this value is defined in big endian (!) */
  1200. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1201. mode |= XM_PAUSE_MODE;
  1202. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1203. } else {
  1204. /*
  1205. * disable pause frame generation is required for 1000BT
  1206. * because the XMAC is not reset if the link is going down
  1207. */
  1208. /* Disable Pause Mode in Mode Register */
  1209. mode &= ~XM_PAUSE_MODE;
  1210. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1211. }
  1212. xm_write32(hw, port, XM_MODE, mode);
  1213. msk = XM_DEF_MSK;
  1214. /* disable GP0 interrupt bit for external Phy */
  1215. msk |= XM_IS_INP_ASS;
  1216. xm_write16(hw, port, XM_IMSK, msk);
  1217. xm_read16(hw, port, XM_ISRC);
  1218. /* get MMU Command Reg. */
  1219. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1220. if (skge->duplex == DUPLEX_FULL)
  1221. cmd |= XM_MMU_GMII_FD;
  1222. /*
  1223. * Workaround BCOM Errata (#10523) for all BCom Phys
  1224. * Enable Power Management after link up
  1225. */
  1226. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1227. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1228. & ~PHY_B_AC_DIS_PM);
  1229. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1230. /* enable Rx/Tx */
  1231. xm_write16(hw, port, XM_MMU_CMD,
  1232. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1233. skge_link_up(skge);
  1234. }
  1235. static inline void bcom_phy_intr(struct skge_port *skge)
  1236. {
  1237. struct skge_hw *hw = skge->hw;
  1238. int port = skge->port;
  1239. u16 isrc;
  1240. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1241. if (netif_msg_intr(skge))
  1242. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1243. skge->netdev->name, isrc);
  1244. if (isrc & PHY_B_IS_PSE)
  1245. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1246. hw->dev[port]->name);
  1247. /* Workaround BCom Errata:
  1248. * enable and disable loopback mode if "NO HCD" occurs.
  1249. */
  1250. if (isrc & PHY_B_IS_NO_HDCL) {
  1251. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1252. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1253. ctrl | PHY_CT_LOOP);
  1254. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1255. ctrl & ~PHY_CT_LOOP);
  1256. }
  1257. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1258. bcom_check_link(hw, port);
  1259. }
  1260. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1261. {
  1262. int i;
  1263. gma_write16(hw, port, GM_SMI_DATA, val);
  1264. gma_write16(hw, port, GM_SMI_CTRL,
  1265. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1266. for (i = 0; i < PHY_RETRIES; i++) {
  1267. udelay(1);
  1268. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1269. return 0;
  1270. }
  1271. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1272. hw->dev[port]->name);
  1273. return -EIO;
  1274. }
  1275. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1276. {
  1277. int i;
  1278. gma_write16(hw, port, GM_SMI_CTRL,
  1279. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1280. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1281. for (i = 0; i < PHY_RETRIES; i++) {
  1282. udelay(1);
  1283. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1284. goto ready;
  1285. }
  1286. return -ETIMEDOUT;
  1287. ready:
  1288. *val = gma_read16(hw, port, GM_SMI_DATA);
  1289. return 0;
  1290. }
  1291. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1292. {
  1293. u16 v = 0;
  1294. if (__gm_phy_read(hw, port, reg, &v))
  1295. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1296. hw->dev[port]->name);
  1297. return v;
  1298. }
  1299. /* Marvell Phy Initialization */
  1300. static void yukon_init(struct skge_hw *hw, int port)
  1301. {
  1302. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1303. u16 ctrl, ct1000, adv;
  1304. if (skge->autoneg == AUTONEG_ENABLE) {
  1305. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1306. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1307. PHY_M_EC_MAC_S_MSK);
  1308. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1309. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1310. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1311. }
  1312. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1313. if (skge->autoneg == AUTONEG_DISABLE)
  1314. ctrl &= ~PHY_CT_ANE;
  1315. ctrl |= PHY_CT_RESET;
  1316. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1317. ctrl = 0;
  1318. ct1000 = 0;
  1319. adv = PHY_AN_CSMA;
  1320. if (skge->autoneg == AUTONEG_ENABLE) {
  1321. if (hw->copper) {
  1322. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1323. ct1000 |= PHY_M_1000C_AFD;
  1324. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1325. ct1000 |= PHY_M_1000C_AHD;
  1326. if (skge->advertising & ADVERTISED_100baseT_Full)
  1327. adv |= PHY_M_AN_100_FD;
  1328. if (skge->advertising & ADVERTISED_100baseT_Half)
  1329. adv |= PHY_M_AN_100_HD;
  1330. if (skge->advertising & ADVERTISED_10baseT_Full)
  1331. adv |= PHY_M_AN_10_FD;
  1332. if (skge->advertising & ADVERTISED_10baseT_Half)
  1333. adv |= PHY_M_AN_10_HD;
  1334. } else /* special defines for FIBER (88E1011S only) */
  1335. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  1336. /* Set Flow-control capabilities */
  1337. adv |= phy_pause_map[skge->flow_control];
  1338. /* Restart Auto-negotiation */
  1339. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1340. } else {
  1341. /* forced speed/duplex settings */
  1342. ct1000 = PHY_M_1000C_MSE;
  1343. if (skge->duplex == DUPLEX_FULL)
  1344. ctrl |= PHY_CT_DUP_MD;
  1345. switch (skge->speed) {
  1346. case SPEED_1000:
  1347. ctrl |= PHY_CT_SP1000;
  1348. break;
  1349. case SPEED_100:
  1350. ctrl |= PHY_CT_SP100;
  1351. break;
  1352. }
  1353. ctrl |= PHY_CT_RESET;
  1354. }
  1355. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1356. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1357. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1358. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1359. if (skge->autoneg == AUTONEG_ENABLE)
  1360. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1361. else
  1362. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1363. }
  1364. static void yukon_reset(struct skge_hw *hw, int port)
  1365. {
  1366. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1367. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1368. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1369. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1370. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1371. gma_write16(hw, port, GM_RX_CTRL,
  1372. gma_read16(hw, port, GM_RX_CTRL)
  1373. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1374. }
  1375. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1376. static int is_yukon_lite_a0(struct skge_hw *hw)
  1377. {
  1378. u32 reg;
  1379. int ret;
  1380. if (hw->chip_id != CHIP_ID_YUKON)
  1381. return 0;
  1382. reg = skge_read32(hw, B2_FAR);
  1383. skge_write8(hw, B2_FAR + 3, 0xff);
  1384. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1385. skge_write32(hw, B2_FAR, reg);
  1386. return ret;
  1387. }
  1388. static void yukon_mac_init(struct skge_hw *hw, int port)
  1389. {
  1390. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1391. int i;
  1392. u32 reg;
  1393. const u8 *addr = hw->dev[port]->dev_addr;
  1394. /* WA code for COMA mode -- set PHY reset */
  1395. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1396. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1397. reg = skge_read32(hw, B2_GP_IO);
  1398. reg |= GP_DIR_9 | GP_IO_9;
  1399. skge_write32(hw, B2_GP_IO, reg);
  1400. }
  1401. /* hard reset */
  1402. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1403. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1404. /* WA code for COMA mode -- clear PHY reset */
  1405. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1406. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1407. reg = skge_read32(hw, B2_GP_IO);
  1408. reg |= GP_DIR_9;
  1409. reg &= ~GP_IO_9;
  1410. skge_write32(hw, B2_GP_IO, reg);
  1411. }
  1412. /* Set hardware config mode */
  1413. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1414. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1415. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1416. /* Clear GMC reset */
  1417. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1418. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1419. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1420. if (skge->autoneg == AUTONEG_DISABLE) {
  1421. reg = GM_GPCR_AU_ALL_DIS;
  1422. gma_write16(hw, port, GM_GP_CTRL,
  1423. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1424. switch (skge->speed) {
  1425. case SPEED_1000:
  1426. reg &= ~GM_GPCR_SPEED_100;
  1427. reg |= GM_GPCR_SPEED_1000;
  1428. break;
  1429. case SPEED_100:
  1430. reg &= ~GM_GPCR_SPEED_1000;
  1431. reg |= GM_GPCR_SPEED_100;
  1432. break;
  1433. case SPEED_10:
  1434. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1435. break;
  1436. }
  1437. if (skge->duplex == DUPLEX_FULL)
  1438. reg |= GM_GPCR_DUP_FULL;
  1439. } else
  1440. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1441. switch (skge->flow_control) {
  1442. case FLOW_MODE_NONE:
  1443. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1444. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1445. break;
  1446. case FLOW_MODE_LOC_SEND:
  1447. /* disable Rx flow-control */
  1448. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1449. }
  1450. gma_write16(hw, port, GM_GP_CTRL, reg);
  1451. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1452. yukon_init(hw, port);
  1453. /* MIB clear */
  1454. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1455. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1456. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1457. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1458. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1459. /* transmit control */
  1460. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1461. /* receive control reg: unicast + multicast + no FCS */
  1462. gma_write16(hw, port, GM_RX_CTRL,
  1463. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1464. /* transmit flow control */
  1465. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1466. /* transmit parameter */
  1467. gma_write16(hw, port, GM_TX_PARAM,
  1468. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1469. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1470. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1471. /* serial mode register */
  1472. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1473. if (hw->dev[port]->mtu > 1500)
  1474. reg |= GM_SMOD_JUMBO_ENA;
  1475. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1476. /* physical address: used for pause frames */
  1477. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1478. /* virtual address for data */
  1479. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1480. /* enable interrupt mask for counter overflows */
  1481. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1482. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1483. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1484. /* Initialize Mac Fifo */
  1485. /* Configure Rx MAC FIFO */
  1486. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1487. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1488. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1489. if (is_yukon_lite_a0(hw))
  1490. reg &= ~GMF_RX_F_FL_ON;
  1491. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1492. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1493. /*
  1494. * because Pause Packet Truncation in GMAC is not working
  1495. * we have to increase the Flush Threshold to 64 bytes
  1496. * in order to flush pause packets in Rx FIFO on Yukon-1
  1497. */
  1498. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1499. /* Configure Tx MAC FIFO */
  1500. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1501. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1502. }
  1503. /* Go into power down mode */
  1504. static void yukon_suspend(struct skge_hw *hw, int port)
  1505. {
  1506. u16 ctrl;
  1507. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1508. ctrl |= PHY_M_PC_POL_R_DIS;
  1509. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1510. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1511. ctrl |= PHY_CT_RESET;
  1512. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1513. /* switch IEEE compatible power down mode on */
  1514. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1515. ctrl |= PHY_CT_PDOWN;
  1516. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1517. }
  1518. static void yukon_stop(struct skge_port *skge)
  1519. {
  1520. struct skge_hw *hw = skge->hw;
  1521. int port = skge->port;
  1522. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1523. yukon_reset(hw, port);
  1524. gma_write16(hw, port, GM_GP_CTRL,
  1525. gma_read16(hw, port, GM_GP_CTRL)
  1526. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1527. gma_read16(hw, port, GM_GP_CTRL);
  1528. yukon_suspend(hw, port);
  1529. /* set GPHY Control reset */
  1530. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1531. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1532. }
  1533. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1534. {
  1535. struct skge_hw *hw = skge->hw;
  1536. int port = skge->port;
  1537. int i;
  1538. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1539. | gma_read32(hw, port, GM_TXO_OK_LO);
  1540. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1541. | gma_read32(hw, port, GM_RXO_OK_LO);
  1542. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1543. data[i] = gma_read32(hw, port,
  1544. skge_stats[i].gma_offset);
  1545. }
  1546. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1547. {
  1548. struct net_device *dev = hw->dev[port];
  1549. struct skge_port *skge = netdev_priv(dev);
  1550. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1551. if (netif_msg_intr(skge))
  1552. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1553. dev->name, status);
  1554. if (status & GM_IS_RX_FF_OR) {
  1555. ++skge->net_stats.rx_fifo_errors;
  1556. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1557. }
  1558. if (status & GM_IS_TX_FF_UR) {
  1559. ++skge->net_stats.tx_fifo_errors;
  1560. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1561. }
  1562. }
  1563. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1564. {
  1565. switch (aux & PHY_M_PS_SPEED_MSK) {
  1566. case PHY_M_PS_SPEED_1000:
  1567. return SPEED_1000;
  1568. case PHY_M_PS_SPEED_100:
  1569. return SPEED_100;
  1570. default:
  1571. return SPEED_10;
  1572. }
  1573. }
  1574. static void yukon_link_up(struct skge_port *skge)
  1575. {
  1576. struct skge_hw *hw = skge->hw;
  1577. int port = skge->port;
  1578. u16 reg;
  1579. /* Enable Transmit FIFO Underrun */
  1580. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1581. reg = gma_read16(hw, port, GM_GP_CTRL);
  1582. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1583. reg |= GM_GPCR_DUP_FULL;
  1584. /* enable Rx/Tx */
  1585. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1586. gma_write16(hw, port, GM_GP_CTRL, reg);
  1587. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1588. skge_link_up(skge);
  1589. }
  1590. static void yukon_link_down(struct skge_port *skge)
  1591. {
  1592. struct skge_hw *hw = skge->hw;
  1593. int port = skge->port;
  1594. u16 ctrl;
  1595. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1596. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1597. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1598. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1599. if (skge->flow_control == FLOW_MODE_REM_SEND) {
  1600. /* restore Asymmetric Pause bit */
  1601. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1602. gm_phy_read(hw, port,
  1603. PHY_MARV_AUNE_ADV)
  1604. | PHY_M_AN_ASP);
  1605. }
  1606. yukon_reset(hw, port);
  1607. skge_link_down(skge);
  1608. yukon_init(hw, port);
  1609. }
  1610. static void yukon_phy_intr(struct skge_port *skge)
  1611. {
  1612. struct skge_hw *hw = skge->hw;
  1613. int port = skge->port;
  1614. const char *reason = NULL;
  1615. u16 istatus, phystat;
  1616. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1617. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1618. if (netif_msg_intr(skge))
  1619. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1620. skge->netdev->name, istatus, phystat);
  1621. if (istatus & PHY_M_IS_AN_COMPL) {
  1622. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1623. & PHY_M_AN_RF) {
  1624. reason = "remote fault";
  1625. goto failed;
  1626. }
  1627. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1628. reason = "master/slave fault";
  1629. goto failed;
  1630. }
  1631. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1632. reason = "speed/duplex";
  1633. goto failed;
  1634. }
  1635. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1636. ? DUPLEX_FULL : DUPLEX_HALF;
  1637. skge->speed = yukon_speed(hw, phystat);
  1638. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1639. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1640. case PHY_M_PS_PAUSE_MSK:
  1641. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1642. break;
  1643. case PHY_M_PS_RX_P_EN:
  1644. skge->flow_control = FLOW_MODE_REM_SEND;
  1645. break;
  1646. case PHY_M_PS_TX_P_EN:
  1647. skge->flow_control = FLOW_MODE_LOC_SEND;
  1648. break;
  1649. default:
  1650. skge->flow_control = FLOW_MODE_NONE;
  1651. }
  1652. if (skge->flow_control == FLOW_MODE_NONE ||
  1653. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1654. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1655. else
  1656. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1657. yukon_link_up(skge);
  1658. return;
  1659. }
  1660. if (istatus & PHY_M_IS_LSP_CHANGE)
  1661. skge->speed = yukon_speed(hw, phystat);
  1662. if (istatus & PHY_M_IS_DUP_CHANGE)
  1663. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1664. if (istatus & PHY_M_IS_LST_CHANGE) {
  1665. if (phystat & PHY_M_PS_LINK_UP)
  1666. yukon_link_up(skge);
  1667. else
  1668. yukon_link_down(skge);
  1669. }
  1670. return;
  1671. failed:
  1672. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1673. skge->netdev->name, reason);
  1674. /* XXX restart autonegotiation? */
  1675. }
  1676. static void skge_phy_reset(struct skge_port *skge)
  1677. {
  1678. struct skge_hw *hw = skge->hw;
  1679. int port = skge->port;
  1680. netif_stop_queue(skge->netdev);
  1681. netif_carrier_off(skge->netdev);
  1682. mutex_lock(&hw->phy_mutex);
  1683. if (hw->chip_id == CHIP_ID_GENESIS) {
  1684. genesis_reset(hw, port);
  1685. genesis_mac_init(hw, port);
  1686. } else {
  1687. yukon_reset(hw, port);
  1688. yukon_init(hw, port);
  1689. }
  1690. mutex_unlock(&hw->phy_mutex);
  1691. }
  1692. /* Basic MII support */
  1693. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  1694. {
  1695. struct mii_ioctl_data *data = if_mii(ifr);
  1696. struct skge_port *skge = netdev_priv(dev);
  1697. struct skge_hw *hw = skge->hw;
  1698. int err = -EOPNOTSUPP;
  1699. if (!netif_running(dev))
  1700. return -ENODEV; /* Phy still in reset */
  1701. switch(cmd) {
  1702. case SIOCGMIIPHY:
  1703. data->phy_id = hw->phy_addr;
  1704. /* fallthru */
  1705. case SIOCGMIIREG: {
  1706. u16 val = 0;
  1707. mutex_lock(&hw->phy_mutex);
  1708. if (hw->chip_id == CHIP_ID_GENESIS)
  1709. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1710. else
  1711. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1712. mutex_unlock(&hw->phy_mutex);
  1713. data->val_out = val;
  1714. break;
  1715. }
  1716. case SIOCSMIIREG:
  1717. if (!capable(CAP_NET_ADMIN))
  1718. return -EPERM;
  1719. mutex_lock(&hw->phy_mutex);
  1720. if (hw->chip_id == CHIP_ID_GENESIS)
  1721. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1722. data->val_in);
  1723. else
  1724. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1725. data->val_in);
  1726. mutex_unlock(&hw->phy_mutex);
  1727. break;
  1728. }
  1729. return err;
  1730. }
  1731. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1732. {
  1733. u32 end;
  1734. start /= 8;
  1735. len /= 8;
  1736. end = start + len - 1;
  1737. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1738. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1739. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1740. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1741. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1742. if (q == Q_R1 || q == Q_R2) {
  1743. /* Set thresholds on receive queue's */
  1744. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1745. start + (2*len)/3);
  1746. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1747. start + (len/3));
  1748. } else {
  1749. /* Enable store & forward on Tx queue's because
  1750. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1751. */
  1752. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1753. }
  1754. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1755. }
  1756. /* Setup Bus Memory Interface */
  1757. static void skge_qset(struct skge_port *skge, u16 q,
  1758. const struct skge_element *e)
  1759. {
  1760. struct skge_hw *hw = skge->hw;
  1761. u32 watermark = 0x600;
  1762. u64 base = skge->dma + (e->desc - skge->mem);
  1763. /* optimization to reduce window on 32bit/33mhz */
  1764. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1765. watermark /= 2;
  1766. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1767. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1768. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1769. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1770. }
  1771. static int skge_up(struct net_device *dev)
  1772. {
  1773. struct skge_port *skge = netdev_priv(dev);
  1774. struct skge_hw *hw = skge->hw;
  1775. int port = skge->port;
  1776. u32 chunk, ram_addr;
  1777. size_t rx_size, tx_size;
  1778. int err;
  1779. if (netif_msg_ifup(skge))
  1780. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  1781. if (dev->mtu > RX_BUF_SIZE)
  1782. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  1783. else
  1784. skge->rx_buf_size = RX_BUF_SIZE;
  1785. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  1786. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  1787. skge->mem_size = tx_size + rx_size;
  1788. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  1789. if (!skge->mem)
  1790. return -ENOMEM;
  1791. BUG_ON(skge->dma & 7);
  1792. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  1793. printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
  1794. err = -EINVAL;
  1795. goto free_pci_mem;
  1796. }
  1797. memset(skge->mem, 0, skge->mem_size);
  1798. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  1799. if (err)
  1800. goto free_pci_mem;
  1801. err = skge_rx_fill(dev);
  1802. if (err)
  1803. goto free_rx_ring;
  1804. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  1805. skge->dma + rx_size);
  1806. if (err)
  1807. goto free_rx_ring;
  1808. /* Initialize MAC */
  1809. mutex_lock(&hw->phy_mutex);
  1810. if (hw->chip_id == CHIP_ID_GENESIS)
  1811. genesis_mac_init(hw, port);
  1812. else
  1813. yukon_mac_init(hw, port);
  1814. mutex_unlock(&hw->phy_mutex);
  1815. /* Configure RAMbuffers */
  1816. chunk = hw->ram_size / ((hw->ports + 1)*2);
  1817. ram_addr = hw->ram_offset + 2 * chunk * port;
  1818. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1819. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1820. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  1821. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1822. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1823. /* Start receiver BMU */
  1824. wmb();
  1825. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1826. skge_led(skge, LED_MODE_ON);
  1827. netif_poll_enable(dev);
  1828. return 0;
  1829. free_rx_ring:
  1830. skge_rx_clean(skge);
  1831. kfree(skge->rx_ring.start);
  1832. free_pci_mem:
  1833. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1834. skge->mem = NULL;
  1835. return err;
  1836. }
  1837. static int skge_down(struct net_device *dev)
  1838. {
  1839. struct skge_port *skge = netdev_priv(dev);
  1840. struct skge_hw *hw = skge->hw;
  1841. int port = skge->port;
  1842. if (skge->mem == NULL)
  1843. return 0;
  1844. if (netif_msg_ifdown(skge))
  1845. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1846. netif_stop_queue(dev);
  1847. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  1848. if (hw->chip_id == CHIP_ID_GENESIS)
  1849. genesis_stop(skge);
  1850. else
  1851. yukon_stop(skge);
  1852. /* Stop transmitter */
  1853. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  1854. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1855. RB_RST_SET|RB_DIS_OP_MD);
  1856. /* Disable Force Sync bit and Enable Alloc bit */
  1857. skge_write8(hw, SK_REG(port, TXA_CTRL),
  1858. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1859. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1860. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1861. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1862. /* Reset PCI FIFO */
  1863. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  1864. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1865. /* Reset the RAM Buffer async Tx queue */
  1866. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  1867. /* stop receiver */
  1868. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  1869. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  1870. RB_RST_SET|RB_DIS_OP_MD);
  1871. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  1872. if (hw->chip_id == CHIP_ID_GENESIS) {
  1873. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  1874. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  1875. } else {
  1876. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1877. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1878. }
  1879. skge_led(skge, LED_MODE_OFF);
  1880. netif_poll_disable(dev);
  1881. skge_tx_clean(dev);
  1882. skge_rx_clean(skge);
  1883. kfree(skge->rx_ring.start);
  1884. kfree(skge->tx_ring.start);
  1885. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1886. skge->mem = NULL;
  1887. return 0;
  1888. }
  1889. static inline int skge_avail(const struct skge_ring *ring)
  1890. {
  1891. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  1892. + (ring->to_clean - ring->to_use) - 1;
  1893. }
  1894. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1895. {
  1896. struct skge_port *skge = netdev_priv(dev);
  1897. struct skge_hw *hw = skge->hw;
  1898. struct skge_element *e;
  1899. struct skge_tx_desc *td;
  1900. int i;
  1901. u32 control, len;
  1902. u64 map;
  1903. if (skb_padto(skb, ETH_ZLEN))
  1904. return NETDEV_TX_OK;
  1905. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  1906. return NETDEV_TX_BUSY;
  1907. e = skge->tx_ring.to_use;
  1908. td = e->desc;
  1909. BUG_ON(td->control & BMU_OWN);
  1910. e->skb = skb;
  1911. len = skb_headlen(skb);
  1912. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1913. pci_unmap_addr_set(e, mapaddr, map);
  1914. pci_unmap_len_set(e, maplen, len);
  1915. td->dma_lo = map;
  1916. td->dma_hi = map >> 32;
  1917. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1918. int offset = skb->h.raw - skb->data;
  1919. /* This seems backwards, but it is what the sk98lin
  1920. * does. Looks like hardware is wrong?
  1921. */
  1922. if (skb->h.ipiph->protocol == IPPROTO_UDP
  1923. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  1924. control = BMU_TCP_CHECK;
  1925. else
  1926. control = BMU_UDP_CHECK;
  1927. td->csum_offs = 0;
  1928. td->csum_start = offset;
  1929. td->csum_write = offset + skb->csum;
  1930. } else
  1931. control = BMU_CHECK;
  1932. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  1933. control |= BMU_EOF| BMU_IRQ_EOF;
  1934. else {
  1935. struct skge_tx_desc *tf = td;
  1936. control |= BMU_STFWD;
  1937. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1938. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1939. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1940. frag->size, PCI_DMA_TODEVICE);
  1941. e = e->next;
  1942. e->skb = skb;
  1943. tf = e->desc;
  1944. BUG_ON(tf->control & BMU_OWN);
  1945. tf->dma_lo = map;
  1946. tf->dma_hi = (u64) map >> 32;
  1947. pci_unmap_addr_set(e, mapaddr, map);
  1948. pci_unmap_len_set(e, maplen, frag->size);
  1949. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  1950. }
  1951. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  1952. }
  1953. /* Make sure all the descriptors written */
  1954. wmb();
  1955. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  1956. wmb();
  1957. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  1958. if (unlikely(netif_msg_tx_queued(skge)))
  1959. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  1960. dev->name, e - skge->tx_ring.start, skb->len);
  1961. skge->tx_ring.to_use = e->next;
  1962. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  1963. pr_debug("%s: transmit queue full\n", dev->name);
  1964. netif_stop_queue(dev);
  1965. }
  1966. dev->trans_start = jiffies;
  1967. return NETDEV_TX_OK;
  1968. }
  1969. /* Free resources associated with this reing element */
  1970. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  1971. u32 control)
  1972. {
  1973. struct pci_dev *pdev = skge->hw->pdev;
  1974. BUG_ON(!e->skb);
  1975. /* skb header vs. fragment */
  1976. if (control & BMU_STF)
  1977. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  1978. pci_unmap_len(e, maplen),
  1979. PCI_DMA_TODEVICE);
  1980. else
  1981. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  1982. pci_unmap_len(e, maplen),
  1983. PCI_DMA_TODEVICE);
  1984. if (control & BMU_EOF) {
  1985. if (unlikely(netif_msg_tx_done(skge)))
  1986. printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
  1987. skge->netdev->name, e - skge->tx_ring.start);
  1988. dev_kfree_skb(e->skb);
  1989. }
  1990. e->skb = NULL;
  1991. }
  1992. /* Free all buffers in transmit ring */
  1993. static void skge_tx_clean(struct net_device *dev)
  1994. {
  1995. struct skge_port *skge = netdev_priv(dev);
  1996. struct skge_element *e;
  1997. netif_tx_lock_bh(dev);
  1998. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  1999. struct skge_tx_desc *td = e->desc;
  2000. skge_tx_free(skge, e, td->control);
  2001. td->control = 0;
  2002. }
  2003. skge->tx_ring.to_clean = e;
  2004. netif_wake_queue(dev);
  2005. netif_tx_unlock_bh(dev);
  2006. }
  2007. static void skge_tx_timeout(struct net_device *dev)
  2008. {
  2009. struct skge_port *skge = netdev_priv(dev);
  2010. if (netif_msg_timer(skge))
  2011. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2012. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2013. skge_tx_clean(dev);
  2014. }
  2015. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2016. {
  2017. int err;
  2018. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2019. return -EINVAL;
  2020. if (!netif_running(dev)) {
  2021. dev->mtu = new_mtu;
  2022. return 0;
  2023. }
  2024. skge_down(dev);
  2025. dev->mtu = new_mtu;
  2026. err = skge_up(dev);
  2027. if (err)
  2028. dev_close(dev);
  2029. return err;
  2030. }
  2031. static void genesis_set_multicast(struct net_device *dev)
  2032. {
  2033. struct skge_port *skge = netdev_priv(dev);
  2034. struct skge_hw *hw = skge->hw;
  2035. int port = skge->port;
  2036. int i, count = dev->mc_count;
  2037. struct dev_mc_list *list = dev->mc_list;
  2038. u32 mode;
  2039. u8 filter[8];
  2040. mode = xm_read32(hw, port, XM_MODE);
  2041. mode |= XM_MD_ENA_HASH;
  2042. if (dev->flags & IFF_PROMISC)
  2043. mode |= XM_MD_ENA_PROM;
  2044. else
  2045. mode &= ~XM_MD_ENA_PROM;
  2046. if (dev->flags & IFF_ALLMULTI)
  2047. memset(filter, 0xff, sizeof(filter));
  2048. else {
  2049. memset(filter, 0, sizeof(filter));
  2050. for (i = 0; list && i < count; i++, list = list->next) {
  2051. u32 crc, bit;
  2052. crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
  2053. bit = ~crc & 0x3f;
  2054. filter[bit/8] |= 1 << (bit%8);
  2055. }
  2056. }
  2057. xm_write32(hw, port, XM_MODE, mode);
  2058. xm_outhash(hw, port, XM_HSM, filter);
  2059. }
  2060. static void yukon_set_multicast(struct net_device *dev)
  2061. {
  2062. struct skge_port *skge = netdev_priv(dev);
  2063. struct skge_hw *hw = skge->hw;
  2064. int port = skge->port;
  2065. struct dev_mc_list *list = dev->mc_list;
  2066. u16 reg;
  2067. u8 filter[8];
  2068. memset(filter, 0, sizeof(filter));
  2069. reg = gma_read16(hw, port, GM_RX_CTRL);
  2070. reg |= GM_RXCR_UCF_ENA;
  2071. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2072. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2073. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2074. memset(filter, 0xff, sizeof(filter));
  2075. else if (dev->mc_count == 0) /* no multicast */
  2076. reg &= ~GM_RXCR_MCF_ENA;
  2077. else {
  2078. int i;
  2079. reg |= GM_RXCR_MCF_ENA;
  2080. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2081. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2082. filter[bit/8] |= 1 << (bit%8);
  2083. }
  2084. }
  2085. gma_write16(hw, port, GM_MC_ADDR_H1,
  2086. (u16)filter[0] | ((u16)filter[1] << 8));
  2087. gma_write16(hw, port, GM_MC_ADDR_H2,
  2088. (u16)filter[2] | ((u16)filter[3] << 8));
  2089. gma_write16(hw, port, GM_MC_ADDR_H3,
  2090. (u16)filter[4] | ((u16)filter[5] << 8));
  2091. gma_write16(hw, port, GM_MC_ADDR_H4,
  2092. (u16)filter[6] | ((u16)filter[7] << 8));
  2093. gma_write16(hw, port, GM_RX_CTRL, reg);
  2094. }
  2095. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2096. {
  2097. if (hw->chip_id == CHIP_ID_GENESIS)
  2098. return status >> XMR_FS_LEN_SHIFT;
  2099. else
  2100. return status >> GMR_FS_LEN_SHIFT;
  2101. }
  2102. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2103. {
  2104. if (hw->chip_id == CHIP_ID_GENESIS)
  2105. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2106. else
  2107. return (status & GMR_FS_ANY_ERR) ||
  2108. (status & GMR_FS_RX_OK) == 0;
  2109. }
  2110. /* Get receive buffer from descriptor.
  2111. * Handles copy of small buffers and reallocation failures
  2112. */
  2113. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2114. struct skge_element *e,
  2115. u32 control, u32 status, u16 csum)
  2116. {
  2117. struct skge_port *skge = netdev_priv(dev);
  2118. struct sk_buff *skb;
  2119. u16 len = control & BMU_BBC;
  2120. if (unlikely(netif_msg_rx_status(skge)))
  2121. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2122. dev->name, e - skge->rx_ring.start,
  2123. status, len);
  2124. if (len > skge->rx_buf_size)
  2125. goto error;
  2126. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2127. goto error;
  2128. if (bad_phy_status(skge->hw, status))
  2129. goto error;
  2130. if (phy_length(skge->hw, status) != len)
  2131. goto error;
  2132. if (len < RX_COPY_THRESHOLD) {
  2133. skb = netdev_alloc_skb(dev, len + 2);
  2134. if (!skb)
  2135. goto resubmit;
  2136. skb_reserve(skb, 2);
  2137. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2138. pci_unmap_addr(e, mapaddr),
  2139. len, PCI_DMA_FROMDEVICE);
  2140. memcpy(skb->data, e->skb->data, len);
  2141. pci_dma_sync_single_for_device(skge->hw->pdev,
  2142. pci_unmap_addr(e, mapaddr),
  2143. len, PCI_DMA_FROMDEVICE);
  2144. skge_rx_reuse(e, skge->rx_buf_size);
  2145. } else {
  2146. struct sk_buff *nskb;
  2147. nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
  2148. if (!nskb)
  2149. goto resubmit;
  2150. skb_reserve(nskb, NET_IP_ALIGN);
  2151. pci_unmap_single(skge->hw->pdev,
  2152. pci_unmap_addr(e, mapaddr),
  2153. pci_unmap_len(e, maplen),
  2154. PCI_DMA_FROMDEVICE);
  2155. skb = e->skb;
  2156. prefetch(skb->data);
  2157. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2158. }
  2159. skb_put(skb, len);
  2160. if (skge->rx_csum) {
  2161. skb->csum = csum;
  2162. skb->ip_summed = CHECKSUM_COMPLETE;
  2163. }
  2164. skb->protocol = eth_type_trans(skb, dev);
  2165. return skb;
  2166. error:
  2167. if (netif_msg_rx_err(skge))
  2168. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2169. dev->name, e - skge->rx_ring.start,
  2170. control, status);
  2171. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2172. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2173. skge->net_stats.rx_length_errors++;
  2174. if (status & XMR_FS_FRA_ERR)
  2175. skge->net_stats.rx_frame_errors++;
  2176. if (status & XMR_FS_FCS_ERR)
  2177. skge->net_stats.rx_crc_errors++;
  2178. } else {
  2179. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2180. skge->net_stats.rx_length_errors++;
  2181. if (status & GMR_FS_FRAGMENT)
  2182. skge->net_stats.rx_frame_errors++;
  2183. if (status & GMR_FS_CRC_ERR)
  2184. skge->net_stats.rx_crc_errors++;
  2185. }
  2186. resubmit:
  2187. skge_rx_reuse(e, skge->rx_buf_size);
  2188. return NULL;
  2189. }
  2190. /* Free all buffers in Tx ring which are no longer owned by device */
  2191. static void skge_tx_done(struct net_device *dev)
  2192. {
  2193. struct skge_port *skge = netdev_priv(dev);
  2194. struct skge_ring *ring = &skge->tx_ring;
  2195. struct skge_element *e;
  2196. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2197. netif_tx_lock(dev);
  2198. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2199. struct skge_tx_desc *td = e->desc;
  2200. if (td->control & BMU_OWN)
  2201. break;
  2202. skge_tx_free(skge, e, td->control);
  2203. }
  2204. skge->tx_ring.to_clean = e;
  2205. if (skge_avail(&skge->tx_ring) > TX_LOW_WATER)
  2206. netif_wake_queue(dev);
  2207. netif_tx_unlock(dev);
  2208. }
  2209. static int skge_poll(struct net_device *dev, int *budget)
  2210. {
  2211. struct skge_port *skge = netdev_priv(dev);
  2212. struct skge_hw *hw = skge->hw;
  2213. struct skge_ring *ring = &skge->rx_ring;
  2214. struct skge_element *e;
  2215. int to_do = min(dev->quota, *budget);
  2216. int work_done = 0;
  2217. skge_tx_done(dev);
  2218. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2219. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2220. struct skge_rx_desc *rd = e->desc;
  2221. struct sk_buff *skb;
  2222. u32 control;
  2223. rmb();
  2224. control = rd->control;
  2225. if (control & BMU_OWN)
  2226. break;
  2227. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2228. if (likely(skb)) {
  2229. dev->last_rx = jiffies;
  2230. netif_receive_skb(skb);
  2231. ++work_done;
  2232. }
  2233. }
  2234. ring->to_clean = e;
  2235. /* restart receiver */
  2236. wmb();
  2237. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2238. *budget -= work_done;
  2239. dev->quota -= work_done;
  2240. if (work_done >= to_do)
  2241. return 1; /* not done */
  2242. spin_lock_irq(&hw->hw_lock);
  2243. __netif_rx_complete(dev);
  2244. hw->intr_mask |= irqmask[skge->port];
  2245. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2246. skge_read32(hw, B0_IMSK);
  2247. spin_unlock_irq(&hw->hw_lock);
  2248. return 0;
  2249. }
  2250. /* Parity errors seem to happen when Genesis is connected to a switch
  2251. * with no other ports present. Heartbeat error??
  2252. */
  2253. static void skge_mac_parity(struct skge_hw *hw, int port)
  2254. {
  2255. struct net_device *dev = hw->dev[port];
  2256. if (dev) {
  2257. struct skge_port *skge = netdev_priv(dev);
  2258. ++skge->net_stats.tx_heartbeat_errors;
  2259. }
  2260. if (hw->chip_id == CHIP_ID_GENESIS)
  2261. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2262. MFF_CLR_PERR);
  2263. else
  2264. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2265. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2266. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2267. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2268. }
  2269. static void skge_mac_intr(struct skge_hw *hw, int port)
  2270. {
  2271. if (hw->chip_id == CHIP_ID_GENESIS)
  2272. genesis_mac_intr(hw, port);
  2273. else
  2274. yukon_mac_intr(hw, port);
  2275. }
  2276. /* Handle device specific framing and timeout interrupts */
  2277. static void skge_error_irq(struct skge_hw *hw)
  2278. {
  2279. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2280. if (hw->chip_id == CHIP_ID_GENESIS) {
  2281. /* clear xmac errors */
  2282. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2283. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2284. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2285. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2286. } else {
  2287. /* Timestamp (unused) overflow */
  2288. if (hwstatus & IS_IRQ_TIST_OV)
  2289. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2290. }
  2291. if (hwstatus & IS_RAM_RD_PAR) {
  2292. printk(KERN_ERR PFX "Ram read data parity error\n");
  2293. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2294. }
  2295. if (hwstatus & IS_RAM_WR_PAR) {
  2296. printk(KERN_ERR PFX "Ram write data parity error\n");
  2297. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2298. }
  2299. if (hwstatus & IS_M1_PAR_ERR)
  2300. skge_mac_parity(hw, 0);
  2301. if (hwstatus & IS_M2_PAR_ERR)
  2302. skge_mac_parity(hw, 1);
  2303. if (hwstatus & IS_R1_PAR_ERR) {
  2304. printk(KERN_ERR PFX "%s: receive queue parity error\n",
  2305. hw->dev[0]->name);
  2306. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2307. }
  2308. if (hwstatus & IS_R2_PAR_ERR) {
  2309. printk(KERN_ERR PFX "%s: receive queue parity error\n",
  2310. hw->dev[1]->name);
  2311. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2312. }
  2313. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2314. u16 pci_status, pci_cmd;
  2315. pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
  2316. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2317. printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
  2318. pci_name(hw->pdev), pci_cmd, pci_status);
  2319. /* Write the error bits back to clear them. */
  2320. pci_status &= PCI_STATUS_ERROR_BITS;
  2321. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2322. pci_write_config_word(hw->pdev, PCI_COMMAND,
  2323. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2324. pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
  2325. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2326. /* if error still set then just ignore it */
  2327. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2328. if (hwstatus & IS_IRQ_STAT) {
  2329. printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
  2330. hw->intr_mask &= ~IS_HW_ERR;
  2331. }
  2332. }
  2333. }
  2334. /*
  2335. * Interrupt from PHY are handled in work queue
  2336. * because accessing phy registers requires spin wait which might
  2337. * cause excess interrupt latency.
  2338. */
  2339. static void skge_extirq(void *arg)
  2340. {
  2341. struct skge_hw *hw = arg;
  2342. int port;
  2343. mutex_lock(&hw->phy_mutex);
  2344. for (port = 0; port < hw->ports; port++) {
  2345. struct net_device *dev = hw->dev[port];
  2346. struct skge_port *skge = netdev_priv(dev);
  2347. if (netif_running(dev)) {
  2348. if (hw->chip_id != CHIP_ID_GENESIS)
  2349. yukon_phy_intr(skge);
  2350. else
  2351. bcom_phy_intr(skge);
  2352. }
  2353. }
  2354. mutex_unlock(&hw->phy_mutex);
  2355. spin_lock_irq(&hw->hw_lock);
  2356. hw->intr_mask |= IS_EXT_REG;
  2357. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2358. skge_read32(hw, B0_IMSK);
  2359. spin_unlock_irq(&hw->hw_lock);
  2360. }
  2361. static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
  2362. {
  2363. struct skge_hw *hw = dev_id;
  2364. u32 status;
  2365. int handled = 0;
  2366. spin_lock(&hw->hw_lock);
  2367. /* Reading this register masks IRQ */
  2368. status = skge_read32(hw, B0_SP_ISRC);
  2369. if (status == 0 || status == ~0)
  2370. goto out;
  2371. handled = 1;
  2372. status &= hw->intr_mask;
  2373. if (status & IS_EXT_REG) {
  2374. hw->intr_mask &= ~IS_EXT_REG;
  2375. schedule_work(&hw->phy_work);
  2376. }
  2377. if (status & (IS_XA1_F|IS_R1_F)) {
  2378. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2379. netif_rx_schedule(hw->dev[0]);
  2380. }
  2381. if (status & IS_PA_TO_TX1)
  2382. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2383. if (status & IS_PA_TO_RX1) {
  2384. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2385. ++skge->net_stats.rx_over_errors;
  2386. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2387. }
  2388. if (status & IS_MAC1)
  2389. skge_mac_intr(hw, 0);
  2390. if (hw->dev[1]) {
  2391. if (status & (IS_XA2_F|IS_R2_F)) {
  2392. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2393. netif_rx_schedule(hw->dev[1]);
  2394. }
  2395. if (status & IS_PA_TO_RX2) {
  2396. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2397. ++skge->net_stats.rx_over_errors;
  2398. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2399. }
  2400. if (status & IS_PA_TO_TX2)
  2401. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2402. if (status & IS_MAC2)
  2403. skge_mac_intr(hw, 1);
  2404. }
  2405. if (status & IS_HW_ERR)
  2406. skge_error_irq(hw);
  2407. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2408. skge_read32(hw, B0_IMSK);
  2409. out:
  2410. spin_unlock(&hw->hw_lock);
  2411. return IRQ_RETVAL(handled);
  2412. }
  2413. #ifdef CONFIG_NET_POLL_CONTROLLER
  2414. static void skge_netpoll(struct net_device *dev)
  2415. {
  2416. struct skge_port *skge = netdev_priv(dev);
  2417. disable_irq(dev->irq);
  2418. skge_intr(dev->irq, skge->hw, NULL);
  2419. enable_irq(dev->irq);
  2420. }
  2421. #endif
  2422. static int skge_set_mac_address(struct net_device *dev, void *p)
  2423. {
  2424. struct skge_port *skge = netdev_priv(dev);
  2425. struct skge_hw *hw = skge->hw;
  2426. unsigned port = skge->port;
  2427. const struct sockaddr *addr = p;
  2428. if (!is_valid_ether_addr(addr->sa_data))
  2429. return -EADDRNOTAVAIL;
  2430. mutex_lock(&hw->phy_mutex);
  2431. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2432. memcpy_toio(hw->regs + B2_MAC_1 + port*8,
  2433. dev->dev_addr, ETH_ALEN);
  2434. memcpy_toio(hw->regs + B2_MAC_2 + port*8,
  2435. dev->dev_addr, ETH_ALEN);
  2436. if (hw->chip_id == CHIP_ID_GENESIS)
  2437. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2438. else {
  2439. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2440. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2441. }
  2442. mutex_unlock(&hw->phy_mutex);
  2443. return 0;
  2444. }
  2445. static const struct {
  2446. u8 id;
  2447. const char *name;
  2448. } skge_chips[] = {
  2449. { CHIP_ID_GENESIS, "Genesis" },
  2450. { CHIP_ID_YUKON, "Yukon" },
  2451. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2452. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2453. };
  2454. static const char *skge_board_name(const struct skge_hw *hw)
  2455. {
  2456. int i;
  2457. static char buf[16];
  2458. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2459. if (skge_chips[i].id == hw->chip_id)
  2460. return skge_chips[i].name;
  2461. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2462. return buf;
  2463. }
  2464. /*
  2465. * Setup the board data structure, but don't bring up
  2466. * the port(s)
  2467. */
  2468. static int skge_reset(struct skge_hw *hw)
  2469. {
  2470. u32 reg;
  2471. u16 ctst, pci_status;
  2472. u8 t8, mac_cfg, pmd_type, phy_type;
  2473. int i;
  2474. ctst = skge_read16(hw, B0_CTST);
  2475. /* do a SW reset */
  2476. skge_write8(hw, B0_CTST, CS_RST_SET);
  2477. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2478. /* clear PCI errors, if any */
  2479. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2480. skge_write8(hw, B2_TST_CTRL2, 0);
  2481. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2482. pci_write_config_word(hw->pdev, PCI_STATUS,
  2483. pci_status | PCI_STATUS_ERROR_BITS);
  2484. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2485. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2486. /* restore CLK_RUN bits (for Yukon-Lite) */
  2487. skge_write16(hw, B0_CTST,
  2488. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2489. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2490. phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2491. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2492. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2493. switch (hw->chip_id) {
  2494. case CHIP_ID_GENESIS:
  2495. switch (phy_type) {
  2496. case SK_PHY_BCOM:
  2497. hw->phy_addr = PHY_ADDR_BCOM;
  2498. break;
  2499. default:
  2500. printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
  2501. pci_name(hw->pdev), phy_type);
  2502. return -EOPNOTSUPP;
  2503. }
  2504. break;
  2505. case CHIP_ID_YUKON:
  2506. case CHIP_ID_YUKON_LITE:
  2507. case CHIP_ID_YUKON_LP:
  2508. if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2509. hw->copper = 1;
  2510. hw->phy_addr = PHY_ADDR_MARV;
  2511. break;
  2512. default:
  2513. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  2514. pci_name(hw->pdev), hw->chip_id);
  2515. return -EOPNOTSUPP;
  2516. }
  2517. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2518. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2519. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2520. /* read the adapters RAM size */
  2521. t8 = skge_read8(hw, B2_E_0);
  2522. if (hw->chip_id == CHIP_ID_GENESIS) {
  2523. if (t8 == 3) {
  2524. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2525. hw->ram_size = 0x100000;
  2526. hw->ram_offset = 0x80000;
  2527. } else
  2528. hw->ram_size = t8 * 512;
  2529. }
  2530. else if (t8 == 0)
  2531. hw->ram_size = 0x20000;
  2532. else
  2533. hw->ram_size = t8 * 4096;
  2534. hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
  2535. if (hw->ports > 1)
  2536. hw->intr_mask |= IS_PORT_2;
  2537. if (hw->chip_id == CHIP_ID_GENESIS)
  2538. genesis_init(hw);
  2539. else {
  2540. /* switch power to VCC (WA for VAUX problem) */
  2541. skge_write8(hw, B0_POWER_CTRL,
  2542. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2543. /* avoid boards with stuck Hardware error bits */
  2544. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2545. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2546. printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
  2547. hw->intr_mask &= ~IS_HW_ERR;
  2548. }
  2549. /* Clear PHY COMA */
  2550. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2551. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2552. reg &= ~PCI_PHY_COMA;
  2553. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2554. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2555. for (i = 0; i < hw->ports; i++) {
  2556. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2557. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2558. }
  2559. }
  2560. /* turn off hardware timer (unused) */
  2561. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2562. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2563. skge_write8(hw, B0_LED, LED_STAT_ON);
  2564. /* enable the Tx Arbiters */
  2565. for (i = 0; i < hw->ports; i++)
  2566. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2567. /* Initialize ram interface */
  2568. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2569. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2570. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2571. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2572. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2573. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2574. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2575. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2576. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2577. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2578. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2579. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2580. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2581. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2582. /* Set interrupt moderation for Transmit only
  2583. * Receive interrupts avoided by NAPI
  2584. */
  2585. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2586. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2587. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2588. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2589. mutex_lock(&hw->phy_mutex);
  2590. for (i = 0; i < hw->ports; i++) {
  2591. if (hw->chip_id == CHIP_ID_GENESIS)
  2592. genesis_reset(hw, i);
  2593. else
  2594. yukon_reset(hw, i);
  2595. }
  2596. mutex_unlock(&hw->phy_mutex);
  2597. return 0;
  2598. }
  2599. /* Initialize network device */
  2600. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2601. int highmem)
  2602. {
  2603. struct skge_port *skge;
  2604. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2605. if (!dev) {
  2606. printk(KERN_ERR "skge etherdev alloc failed");
  2607. return NULL;
  2608. }
  2609. SET_MODULE_OWNER(dev);
  2610. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2611. dev->open = skge_up;
  2612. dev->stop = skge_down;
  2613. dev->do_ioctl = skge_ioctl;
  2614. dev->hard_start_xmit = skge_xmit_frame;
  2615. dev->get_stats = skge_get_stats;
  2616. if (hw->chip_id == CHIP_ID_GENESIS)
  2617. dev->set_multicast_list = genesis_set_multicast;
  2618. else
  2619. dev->set_multicast_list = yukon_set_multicast;
  2620. dev->set_mac_address = skge_set_mac_address;
  2621. dev->change_mtu = skge_change_mtu;
  2622. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2623. dev->tx_timeout = skge_tx_timeout;
  2624. dev->watchdog_timeo = TX_WATCHDOG;
  2625. dev->poll = skge_poll;
  2626. dev->weight = NAPI_WEIGHT;
  2627. #ifdef CONFIG_NET_POLL_CONTROLLER
  2628. dev->poll_controller = skge_netpoll;
  2629. #endif
  2630. dev->irq = hw->pdev->irq;
  2631. if (highmem)
  2632. dev->features |= NETIF_F_HIGHDMA;
  2633. skge = netdev_priv(dev);
  2634. skge->netdev = dev;
  2635. skge->hw = hw;
  2636. skge->msg_enable = netif_msg_init(debug, default_msg);
  2637. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2638. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2639. /* Auto speed and flow control */
  2640. skge->autoneg = AUTONEG_ENABLE;
  2641. skge->flow_control = FLOW_MODE_SYMMETRIC;
  2642. skge->duplex = -1;
  2643. skge->speed = -1;
  2644. skge->advertising = skge_supported_modes(hw);
  2645. hw->dev[port] = dev;
  2646. skge->port = port;
  2647. if (hw->chip_id != CHIP_ID_GENESIS) {
  2648. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2649. skge->rx_csum = 1;
  2650. }
  2651. /* read the mac address */
  2652. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2653. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2654. /* device is off until link detection */
  2655. netif_carrier_off(dev);
  2656. netif_stop_queue(dev);
  2657. return dev;
  2658. }
  2659. static void __devinit skge_show_addr(struct net_device *dev)
  2660. {
  2661. const struct skge_port *skge = netdev_priv(dev);
  2662. if (netif_msg_probe(skge))
  2663. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2664. dev->name,
  2665. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2666. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2667. }
  2668. static int __devinit skge_probe(struct pci_dev *pdev,
  2669. const struct pci_device_id *ent)
  2670. {
  2671. struct net_device *dev, *dev1;
  2672. struct skge_hw *hw;
  2673. int err, using_dac = 0;
  2674. err = pci_enable_device(pdev);
  2675. if (err) {
  2676. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2677. pci_name(pdev));
  2678. goto err_out;
  2679. }
  2680. err = pci_request_regions(pdev, DRV_NAME);
  2681. if (err) {
  2682. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2683. pci_name(pdev));
  2684. goto err_out_disable_pdev;
  2685. }
  2686. pci_set_master(pdev);
  2687. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2688. using_dac = 1;
  2689. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2690. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2691. using_dac = 0;
  2692. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2693. }
  2694. if (err) {
  2695. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2696. pci_name(pdev));
  2697. goto err_out_free_regions;
  2698. }
  2699. #ifdef __BIG_ENDIAN
  2700. /* byte swap descriptors in hardware */
  2701. {
  2702. u32 reg;
  2703. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2704. reg |= PCI_REV_DESC;
  2705. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2706. }
  2707. #endif
  2708. err = -ENOMEM;
  2709. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2710. if (!hw) {
  2711. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2712. pci_name(pdev));
  2713. goto err_out_free_regions;
  2714. }
  2715. hw->pdev = pdev;
  2716. mutex_init(&hw->phy_mutex);
  2717. INIT_WORK(&hw->phy_work, skge_extirq, hw);
  2718. spin_lock_init(&hw->hw_lock);
  2719. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2720. if (!hw->regs) {
  2721. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2722. pci_name(pdev));
  2723. goto err_out_free_hw;
  2724. }
  2725. err = skge_reset(hw);
  2726. if (err)
  2727. goto err_out_iounmap;
  2728. printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
  2729. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  2730. skge_board_name(hw), hw->chip_rev);
  2731. dev = skge_devinit(hw, 0, using_dac);
  2732. if (!dev)
  2733. goto err_out_led_off;
  2734. if (!is_valid_ether_addr(dev->dev_addr)) {
  2735. printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n",
  2736. pci_name(pdev));
  2737. err = -EIO;
  2738. goto err_out_free_netdev;
  2739. }
  2740. err = register_netdev(dev);
  2741. if (err) {
  2742. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2743. pci_name(pdev));
  2744. goto err_out_free_netdev;
  2745. }
  2746. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
  2747. if (err) {
  2748. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2749. dev->name, pdev->irq);
  2750. goto err_out_unregister;
  2751. }
  2752. skge_show_addr(dev);
  2753. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  2754. if (register_netdev(dev1) == 0)
  2755. skge_show_addr(dev1);
  2756. else {
  2757. /* Failure to register second port need not be fatal */
  2758. printk(KERN_WARNING PFX "register of second port failed\n");
  2759. hw->dev[1] = NULL;
  2760. free_netdev(dev1);
  2761. }
  2762. }
  2763. pci_set_drvdata(pdev, hw);
  2764. return 0;
  2765. err_out_unregister:
  2766. unregister_netdev(dev);
  2767. err_out_free_netdev:
  2768. free_netdev(dev);
  2769. err_out_led_off:
  2770. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2771. err_out_iounmap:
  2772. iounmap(hw->regs);
  2773. err_out_free_hw:
  2774. kfree(hw);
  2775. err_out_free_regions:
  2776. pci_release_regions(pdev);
  2777. err_out_disable_pdev:
  2778. pci_disable_device(pdev);
  2779. pci_set_drvdata(pdev, NULL);
  2780. err_out:
  2781. return err;
  2782. }
  2783. static void __devexit skge_remove(struct pci_dev *pdev)
  2784. {
  2785. struct skge_hw *hw = pci_get_drvdata(pdev);
  2786. struct net_device *dev0, *dev1;
  2787. if (!hw)
  2788. return;
  2789. if ((dev1 = hw->dev[1]))
  2790. unregister_netdev(dev1);
  2791. dev0 = hw->dev[0];
  2792. unregister_netdev(dev0);
  2793. spin_lock_irq(&hw->hw_lock);
  2794. hw->intr_mask = 0;
  2795. skge_write32(hw, B0_IMSK, 0);
  2796. skge_read32(hw, B0_IMSK);
  2797. spin_unlock_irq(&hw->hw_lock);
  2798. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2799. skge_write8(hw, B0_CTST, CS_RST_SET);
  2800. flush_scheduled_work();
  2801. free_irq(pdev->irq, hw);
  2802. pci_release_regions(pdev);
  2803. pci_disable_device(pdev);
  2804. if (dev1)
  2805. free_netdev(dev1);
  2806. free_netdev(dev0);
  2807. iounmap(hw->regs);
  2808. kfree(hw);
  2809. pci_set_drvdata(pdev, NULL);
  2810. }
  2811. #ifdef CONFIG_PM
  2812. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  2813. {
  2814. struct skge_hw *hw = pci_get_drvdata(pdev);
  2815. int i, wol = 0;
  2816. pci_save_state(pdev);
  2817. for (i = 0; i < hw->ports; i++) {
  2818. struct net_device *dev = hw->dev[i];
  2819. if (netif_running(dev)) {
  2820. struct skge_port *skge = netdev_priv(dev);
  2821. netif_carrier_off(dev);
  2822. if (skge->wol)
  2823. netif_stop_queue(dev);
  2824. else
  2825. skge_down(dev);
  2826. wol |= skge->wol;
  2827. }
  2828. netif_device_detach(dev);
  2829. }
  2830. skge_write32(hw, B0_IMSK, 0);
  2831. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  2832. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2833. return 0;
  2834. }
  2835. static int skge_resume(struct pci_dev *pdev)
  2836. {
  2837. struct skge_hw *hw = pci_get_drvdata(pdev);
  2838. int i, err;
  2839. pci_set_power_state(pdev, PCI_D0);
  2840. pci_restore_state(pdev);
  2841. pci_enable_wake(pdev, PCI_D0, 0);
  2842. err = skge_reset(hw);
  2843. if (err)
  2844. goto out;
  2845. for (i = 0; i < hw->ports; i++) {
  2846. struct net_device *dev = hw->dev[i];
  2847. netif_device_attach(dev);
  2848. if (netif_running(dev)) {
  2849. err = skge_up(dev);
  2850. if (err) {
  2851. printk(KERN_ERR PFX "%s: could not up: %d\n",
  2852. dev->name, err);
  2853. dev_close(dev);
  2854. goto out;
  2855. }
  2856. }
  2857. }
  2858. out:
  2859. return err;
  2860. }
  2861. #endif
  2862. static struct pci_driver skge_driver = {
  2863. .name = DRV_NAME,
  2864. .id_table = skge_id_table,
  2865. .probe = skge_probe,
  2866. .remove = __devexit_p(skge_remove),
  2867. #ifdef CONFIG_PM
  2868. .suspend = skge_suspend,
  2869. .resume = skge_resume,
  2870. #endif
  2871. };
  2872. static int __init skge_init_module(void)
  2873. {
  2874. return pci_register_driver(&skge_driver);
  2875. }
  2876. static void __exit skge_cleanup_module(void)
  2877. {
  2878. pci_unregister_driver(&skge_driver);
  2879. }
  2880. module_init(skge_init_module);
  2881. module_exit(skge_cleanup_module);