setup.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238
  1. /*
  2. * linux/arch/x86-64/kernel/setup.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. *
  6. * Nov 2001 Dave Jones <davej@suse.de>
  7. * Forked from i386 setup code.
  8. */
  9. /*
  10. * This file handles the architecture-dependent parts of initialization
  11. */
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/ptrace.h>
  19. #include <linux/slab.h>
  20. #include <linux/user.h>
  21. #include <linux/a.out.h>
  22. #include <linux/screen_info.h>
  23. #include <linux/ioport.h>
  24. #include <linux/delay.h>
  25. #include <linux/init.h>
  26. #include <linux/initrd.h>
  27. #include <linux/highmem.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/module.h>
  30. #include <asm/processor.h>
  31. #include <linux/console.h>
  32. #include <linux/seq_file.h>
  33. #include <linux/crash_dump.h>
  34. #include <linux/root_dev.h>
  35. #include <linux/pci.h>
  36. #include <linux/acpi.h>
  37. #include <linux/kallsyms.h>
  38. #include <linux/edd.h>
  39. #include <linux/mmzone.h>
  40. #include <linux/kexec.h>
  41. #include <linux/cpufreq.h>
  42. #include <linux/dmi.h>
  43. #include <linux/dma-mapping.h>
  44. #include <linux/ctype.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/system.h>
  48. #include <asm/io.h>
  49. #include <asm/smp.h>
  50. #include <asm/msr.h>
  51. #include <asm/desc.h>
  52. #include <video/edid.h>
  53. #include <asm/e820.h>
  54. #include <asm/dma.h>
  55. #include <asm/mpspec.h>
  56. #include <asm/mmu_context.h>
  57. #include <asm/bootsetup.h>
  58. #include <asm/proto.h>
  59. #include <asm/setup.h>
  60. #include <asm/mach_apic.h>
  61. #include <asm/numa.h>
  62. #include <asm/sections.h>
  63. #include <asm/dmi.h>
  64. /*
  65. * Machine setup..
  66. */
  67. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  68. EXPORT_SYMBOL(boot_cpu_data);
  69. unsigned long mmu_cr4_features;
  70. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  71. int bootloader_type;
  72. unsigned long saved_video_mode;
  73. /*
  74. * Early DMI memory
  75. */
  76. int dmi_alloc_index;
  77. char dmi_alloc_data[DMI_MAX_DATA];
  78. /*
  79. * Setup options
  80. */
  81. struct screen_info screen_info;
  82. EXPORT_SYMBOL(screen_info);
  83. struct sys_desc_table_struct {
  84. unsigned short length;
  85. unsigned char table[0];
  86. };
  87. struct edid_info edid_info;
  88. EXPORT_SYMBOL_GPL(edid_info);
  89. extern int root_mountflags;
  90. char command_line[COMMAND_LINE_SIZE];
  91. struct resource standard_io_resources[] = {
  92. { .name = "dma1", .start = 0x00, .end = 0x1f,
  93. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  94. { .name = "pic1", .start = 0x20, .end = 0x21,
  95. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  96. { .name = "timer0", .start = 0x40, .end = 0x43,
  97. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  98. { .name = "timer1", .start = 0x50, .end = 0x53,
  99. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  100. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  101. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  102. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  103. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  104. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  105. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  106. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  107. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  108. { .name = "fpu", .start = 0xf0, .end = 0xff,
  109. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  110. };
  111. #define STANDARD_IO_RESOURCES \
  112. (sizeof standard_io_resources / sizeof standard_io_resources[0])
  113. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  114. struct resource data_resource = {
  115. .name = "Kernel data",
  116. .start = 0,
  117. .end = 0,
  118. .flags = IORESOURCE_RAM,
  119. };
  120. struct resource code_resource = {
  121. .name = "Kernel code",
  122. .start = 0,
  123. .end = 0,
  124. .flags = IORESOURCE_RAM,
  125. };
  126. #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
  127. static struct resource system_rom_resource = {
  128. .name = "System ROM",
  129. .start = 0xf0000,
  130. .end = 0xfffff,
  131. .flags = IORESOURCE_ROM,
  132. };
  133. static struct resource extension_rom_resource = {
  134. .name = "Extension ROM",
  135. .start = 0xe0000,
  136. .end = 0xeffff,
  137. .flags = IORESOURCE_ROM,
  138. };
  139. static struct resource adapter_rom_resources[] = {
  140. { .name = "Adapter ROM", .start = 0xc8000, .end = 0,
  141. .flags = IORESOURCE_ROM },
  142. { .name = "Adapter ROM", .start = 0, .end = 0,
  143. .flags = IORESOURCE_ROM },
  144. { .name = "Adapter ROM", .start = 0, .end = 0,
  145. .flags = IORESOURCE_ROM },
  146. { .name = "Adapter ROM", .start = 0, .end = 0,
  147. .flags = IORESOURCE_ROM },
  148. { .name = "Adapter ROM", .start = 0, .end = 0,
  149. .flags = IORESOURCE_ROM },
  150. { .name = "Adapter ROM", .start = 0, .end = 0,
  151. .flags = IORESOURCE_ROM }
  152. };
  153. #define ADAPTER_ROM_RESOURCES \
  154. (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
  155. static struct resource video_rom_resource = {
  156. .name = "Video ROM",
  157. .start = 0xc0000,
  158. .end = 0xc7fff,
  159. .flags = IORESOURCE_ROM,
  160. };
  161. static struct resource video_ram_resource = {
  162. .name = "Video RAM area",
  163. .start = 0xa0000,
  164. .end = 0xbffff,
  165. .flags = IORESOURCE_RAM,
  166. };
  167. #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
  168. static int __init romchecksum(unsigned char *rom, unsigned long length)
  169. {
  170. unsigned char *p, sum = 0;
  171. for (p = rom; p < rom + length; p++)
  172. sum += *p;
  173. return sum == 0;
  174. }
  175. static void __init probe_roms(void)
  176. {
  177. unsigned long start, length, upper;
  178. unsigned char *rom;
  179. int i;
  180. /* video rom */
  181. upper = adapter_rom_resources[0].start;
  182. for (start = video_rom_resource.start; start < upper; start += 2048) {
  183. rom = isa_bus_to_virt(start);
  184. if (!romsignature(rom))
  185. continue;
  186. video_rom_resource.start = start;
  187. /* 0 < length <= 0x7f * 512, historically */
  188. length = rom[2] * 512;
  189. /* if checksum okay, trust length byte */
  190. if (length && romchecksum(rom, length))
  191. video_rom_resource.end = start + length - 1;
  192. request_resource(&iomem_resource, &video_rom_resource);
  193. break;
  194. }
  195. start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
  196. if (start < upper)
  197. start = upper;
  198. /* system rom */
  199. request_resource(&iomem_resource, &system_rom_resource);
  200. upper = system_rom_resource.start;
  201. /* check for extension rom (ignore length byte!) */
  202. rom = isa_bus_to_virt(extension_rom_resource.start);
  203. if (romsignature(rom)) {
  204. length = extension_rom_resource.end - extension_rom_resource.start + 1;
  205. if (romchecksum(rom, length)) {
  206. request_resource(&iomem_resource, &extension_rom_resource);
  207. upper = extension_rom_resource.start;
  208. }
  209. }
  210. /* check for adapter roms on 2k boundaries */
  211. for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
  212. rom = isa_bus_to_virt(start);
  213. if (!romsignature(rom))
  214. continue;
  215. /* 0 < length <= 0x7f * 512, historically */
  216. length = rom[2] * 512;
  217. /* but accept any length that fits if checksum okay */
  218. if (!length || start + length > upper || !romchecksum(rom, length))
  219. continue;
  220. adapter_rom_resources[i].start = start;
  221. adapter_rom_resources[i].end = start + length - 1;
  222. request_resource(&iomem_resource, &adapter_rom_resources[i]);
  223. start = adapter_rom_resources[i++].end & ~2047UL;
  224. }
  225. }
  226. #ifdef CONFIG_PROC_VMCORE
  227. /* elfcorehdr= specifies the location of elf core header
  228. * stored by the crashed kernel. This option will be passed
  229. * by kexec loader to the capture kernel.
  230. */
  231. static int __init setup_elfcorehdr(char *arg)
  232. {
  233. char *end;
  234. if (!arg)
  235. return -EINVAL;
  236. elfcorehdr_addr = memparse(arg, &end);
  237. return end > arg ? 0 : -EINVAL;
  238. }
  239. early_param("elfcorehdr", setup_elfcorehdr);
  240. #endif
  241. #ifndef CONFIG_NUMA
  242. static void __init
  243. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  244. {
  245. unsigned long bootmap_size, bootmap;
  246. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  247. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  248. if (bootmap == -1L)
  249. panic("Cannot find bootmem map of size %ld\n",bootmap_size);
  250. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  251. e820_register_active_regions(0, start_pfn, end_pfn);
  252. free_bootmem_with_active_regions(0, end_pfn);
  253. reserve_bootmem(bootmap, bootmap_size);
  254. }
  255. #endif
  256. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  257. struct edd edd;
  258. #ifdef CONFIG_EDD_MODULE
  259. EXPORT_SYMBOL(edd);
  260. #endif
  261. /**
  262. * copy_edd() - Copy the BIOS EDD information
  263. * from boot_params into a safe place.
  264. *
  265. */
  266. static inline void copy_edd(void)
  267. {
  268. memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
  269. memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
  270. edd.mbr_signature_nr = EDD_MBR_SIG_NR;
  271. edd.edd_info_nr = EDD_NR;
  272. }
  273. #else
  274. static inline void copy_edd(void)
  275. {
  276. }
  277. #endif
  278. #define EBDA_ADDR_POINTER 0x40E
  279. unsigned __initdata ebda_addr;
  280. unsigned __initdata ebda_size;
  281. static void discover_ebda(void)
  282. {
  283. /*
  284. * there is a real-mode segmented pointer pointing to the
  285. * 4K EBDA area at 0x40E
  286. */
  287. ebda_addr = *(unsigned short *)EBDA_ADDR_POINTER;
  288. ebda_addr <<= 4;
  289. ebda_size = *(unsigned short *)(unsigned long)ebda_addr;
  290. /* Round EBDA up to pages */
  291. if (ebda_size == 0)
  292. ebda_size = 1;
  293. ebda_size <<= 10;
  294. ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
  295. if (ebda_size > 64*1024)
  296. ebda_size = 64*1024;
  297. }
  298. void __init setup_arch(char **cmdline_p)
  299. {
  300. printk(KERN_INFO "Command line: %s\n", saved_command_line);
  301. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  302. screen_info = SCREEN_INFO;
  303. edid_info = EDID_INFO;
  304. saved_video_mode = SAVED_VIDEO_MODE;
  305. bootloader_type = LOADER_TYPE;
  306. #ifdef CONFIG_BLK_DEV_RAM
  307. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  308. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  309. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  310. #endif
  311. setup_memory_region();
  312. copy_edd();
  313. if (!MOUNT_ROOT_RDONLY)
  314. root_mountflags &= ~MS_RDONLY;
  315. init_mm.start_code = (unsigned long) &_text;
  316. init_mm.end_code = (unsigned long) &_etext;
  317. init_mm.end_data = (unsigned long) &_edata;
  318. init_mm.brk = (unsigned long) &_end;
  319. code_resource.start = virt_to_phys(&_text);
  320. code_resource.end = virt_to_phys(&_etext)-1;
  321. data_resource.start = virt_to_phys(&_etext);
  322. data_resource.end = virt_to_phys(&_edata)-1;
  323. early_identify_cpu(&boot_cpu_data);
  324. strlcpy(command_line, saved_command_line, COMMAND_LINE_SIZE);
  325. *cmdline_p = command_line;
  326. parse_early_param();
  327. finish_e820_parsing();
  328. e820_register_active_regions(0, 0, -1UL);
  329. /*
  330. * partially used pages are not usable - thus
  331. * we are rounding upwards:
  332. */
  333. end_pfn = e820_end_of_ram();
  334. num_physpages = end_pfn;
  335. check_efer();
  336. discover_ebda();
  337. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  338. dmi_scan_machine();
  339. zap_low_mappings(0);
  340. #ifdef CONFIG_ACPI
  341. /*
  342. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  343. * Call this early for SRAT node setup.
  344. */
  345. acpi_boot_table_init();
  346. #endif
  347. /* How many end-of-memory variables you have, grandma! */
  348. max_low_pfn = end_pfn;
  349. max_pfn = end_pfn;
  350. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  351. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  352. remove_all_active_ranges();
  353. #ifdef CONFIG_ACPI_NUMA
  354. /*
  355. * Parse SRAT to discover nodes.
  356. */
  357. acpi_numa_init();
  358. #endif
  359. #ifdef CONFIG_NUMA
  360. numa_initmem_init(0, end_pfn);
  361. #else
  362. contig_initmem_init(0, end_pfn);
  363. #endif
  364. /* Reserve direct mapping */
  365. reserve_bootmem_generic(table_start << PAGE_SHIFT,
  366. (table_end - table_start) << PAGE_SHIFT);
  367. /* reserve kernel */
  368. reserve_bootmem_generic(__pa_symbol(&_text),
  369. __pa_symbol(&_end) - __pa_symbol(&_text));
  370. /*
  371. * reserve physical page 0 - it's a special BIOS page on many boxes,
  372. * enabling clean reboots, SMP operation, laptop functions.
  373. */
  374. reserve_bootmem_generic(0, PAGE_SIZE);
  375. /* reserve ebda region */
  376. if (ebda_addr)
  377. reserve_bootmem_generic(ebda_addr, ebda_size);
  378. #ifdef CONFIG_SMP
  379. /*
  380. * But first pinch a few for the stack/trampoline stuff
  381. * FIXME: Don't need the extra page at 4K, but need to fix
  382. * trampoline before removing it. (see the GDT stuff)
  383. */
  384. reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
  385. /* Reserve SMP trampoline */
  386. reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
  387. #endif
  388. #ifdef CONFIG_ACPI_SLEEP
  389. /*
  390. * Reserve low memory region for sleep support.
  391. */
  392. acpi_reserve_bootmem();
  393. #endif
  394. /*
  395. * Find and reserve possible boot-time SMP configuration:
  396. */
  397. find_smp_config();
  398. #ifdef CONFIG_BLK_DEV_INITRD
  399. if (LOADER_TYPE && INITRD_START) {
  400. if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
  401. reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
  402. initrd_start =
  403. INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
  404. initrd_end = initrd_start+INITRD_SIZE;
  405. }
  406. else {
  407. printk(KERN_ERR "initrd extends beyond end of memory "
  408. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  409. (unsigned long)(INITRD_START + INITRD_SIZE),
  410. (unsigned long)(end_pfn << PAGE_SHIFT));
  411. initrd_start = 0;
  412. }
  413. }
  414. #endif
  415. #ifdef CONFIG_KEXEC
  416. if (crashk_res.start != crashk_res.end) {
  417. reserve_bootmem_generic(crashk_res.start,
  418. crashk_res.end - crashk_res.start + 1);
  419. }
  420. #endif
  421. paging_init();
  422. #ifdef CONFIG_PCI
  423. early_quirks();
  424. #endif
  425. /*
  426. * set this early, so we dont allocate cpu0
  427. * if MADT list doesnt list BSP first
  428. * mpparse.c/MP_processor_info() allocates logical cpu numbers.
  429. */
  430. cpu_set(0, cpu_present_map);
  431. #ifdef CONFIG_ACPI
  432. /*
  433. * Read APIC and some other early information from ACPI tables.
  434. */
  435. acpi_boot_init();
  436. #endif
  437. init_cpu_to_node();
  438. /*
  439. * get boot-time SMP configuration:
  440. */
  441. if (smp_found_config)
  442. get_smp_config();
  443. init_apic_mappings();
  444. /*
  445. * Request address space for all standard RAM and ROM resources
  446. * and also for regions reported as reserved by the e820.
  447. */
  448. probe_roms();
  449. e820_reserve_resources();
  450. e820_mark_nosave_regions();
  451. request_resource(&iomem_resource, &video_ram_resource);
  452. {
  453. unsigned i;
  454. /* request I/O space for devices used on all i[345]86 PCs */
  455. for (i = 0; i < STANDARD_IO_RESOURCES; i++)
  456. request_resource(&ioport_resource, &standard_io_resources[i]);
  457. }
  458. e820_setup_gap();
  459. #ifdef CONFIG_VT
  460. #if defined(CONFIG_VGA_CONSOLE)
  461. conswitchp = &vga_con;
  462. #elif defined(CONFIG_DUMMY_CONSOLE)
  463. conswitchp = &dummy_con;
  464. #endif
  465. #endif
  466. }
  467. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  468. {
  469. unsigned int *v;
  470. if (c->extended_cpuid_level < 0x80000004)
  471. return 0;
  472. v = (unsigned int *) c->x86_model_id;
  473. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  474. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  475. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  476. c->x86_model_id[48] = 0;
  477. return 1;
  478. }
  479. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  480. {
  481. unsigned int n, dummy, eax, ebx, ecx, edx;
  482. n = c->extended_cpuid_level;
  483. if (n >= 0x80000005) {
  484. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  485. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  486. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  487. c->x86_cache_size=(ecx>>24)+(edx>>24);
  488. /* On K8 L1 TLB is inclusive, so don't count it */
  489. c->x86_tlbsize = 0;
  490. }
  491. if (n >= 0x80000006) {
  492. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  493. ecx = cpuid_ecx(0x80000006);
  494. c->x86_cache_size = ecx >> 16;
  495. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  496. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  497. c->x86_cache_size, ecx & 0xFF);
  498. }
  499. if (n >= 0x80000007)
  500. cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
  501. if (n >= 0x80000008) {
  502. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  503. c->x86_virt_bits = (eax >> 8) & 0xff;
  504. c->x86_phys_bits = eax & 0xff;
  505. }
  506. }
  507. #ifdef CONFIG_NUMA
  508. static int nearby_node(int apicid)
  509. {
  510. int i;
  511. for (i = apicid - 1; i >= 0; i--) {
  512. int node = apicid_to_node[i];
  513. if (node != NUMA_NO_NODE && node_online(node))
  514. return node;
  515. }
  516. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  517. int node = apicid_to_node[i];
  518. if (node != NUMA_NO_NODE && node_online(node))
  519. return node;
  520. }
  521. return first_node(node_online_map); /* Shouldn't happen */
  522. }
  523. #endif
  524. /*
  525. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  526. * Assumes number of cores is a power of two.
  527. */
  528. static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
  529. {
  530. #ifdef CONFIG_SMP
  531. unsigned bits;
  532. #ifdef CONFIG_NUMA
  533. int cpu = smp_processor_id();
  534. int node = 0;
  535. unsigned apicid = hard_smp_processor_id();
  536. #endif
  537. unsigned ecx = cpuid_ecx(0x80000008);
  538. c->x86_max_cores = (ecx & 0xff) + 1;
  539. /* CPU telling us the core id bits shift? */
  540. bits = (ecx >> 12) & 0xF;
  541. /* Otherwise recompute */
  542. if (bits == 0) {
  543. while ((1 << bits) < c->x86_max_cores)
  544. bits++;
  545. }
  546. /* Low order bits define the core id (index of core in socket) */
  547. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  548. /* Convert the APIC ID into the socket ID */
  549. c->phys_proc_id = phys_pkg_id(bits);
  550. #ifdef CONFIG_NUMA
  551. node = c->phys_proc_id;
  552. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  553. node = apicid_to_node[apicid];
  554. if (!node_online(node)) {
  555. /* Two possibilities here:
  556. - The CPU is missing memory and no node was created.
  557. In that case try picking one from a nearby CPU
  558. - The APIC IDs differ from the HyperTransport node IDs
  559. which the K8 northbridge parsing fills in.
  560. Assume they are all increased by a constant offset,
  561. but in the same order as the HT nodeids.
  562. If that doesn't result in a usable node fall back to the
  563. path for the previous case. */
  564. int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
  565. if (ht_nodeid >= 0 &&
  566. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  567. node = apicid_to_node[ht_nodeid];
  568. /* Pick a nearby node */
  569. if (!node_online(node))
  570. node = nearby_node(apicid);
  571. }
  572. numa_set_node(cpu, node);
  573. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  574. #endif
  575. #endif
  576. }
  577. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  578. {
  579. unsigned level;
  580. #ifdef CONFIG_SMP
  581. unsigned long value;
  582. /*
  583. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  584. * bit 6 of msr C001_0015
  585. *
  586. * Errata 63 for SH-B3 steppings
  587. * Errata 122 for all steppings (F+ have it disabled by default)
  588. */
  589. if (c->x86 == 15) {
  590. rdmsrl(MSR_K8_HWCR, value);
  591. value |= 1 << 6;
  592. wrmsrl(MSR_K8_HWCR, value);
  593. }
  594. #endif
  595. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  596. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  597. clear_bit(0*32+31, &c->x86_capability);
  598. /* On C+ stepping K8 rep microcode works well for copy/memset */
  599. level = cpuid_eax(1);
  600. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
  601. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  602. /* Enable workaround for FXSAVE leak */
  603. if (c->x86 >= 6)
  604. set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
  605. level = get_model_name(c);
  606. if (!level) {
  607. switch (c->x86) {
  608. case 15:
  609. /* Should distinguish Models here, but this is only
  610. a fallback anyways. */
  611. strcpy(c->x86_model_id, "Hammer");
  612. break;
  613. }
  614. }
  615. display_cacheinfo(c);
  616. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  617. if (c->x86_power & (1<<8))
  618. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  619. /* Multi core CPU? */
  620. if (c->extended_cpuid_level >= 0x80000008)
  621. amd_detect_cmp(c);
  622. /* Fix cpuid4 emulation for more */
  623. num_cache_leaves = 3;
  624. /* When there is only one core no need to synchronize RDTSC */
  625. if (num_possible_cpus() == 1)
  626. set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  627. else
  628. clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  629. }
  630. static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  631. {
  632. #ifdef CONFIG_SMP
  633. u32 eax, ebx, ecx, edx;
  634. int index_msb, core_bits;
  635. cpuid(1, &eax, &ebx, &ecx, &edx);
  636. if (!cpu_has(c, X86_FEATURE_HT))
  637. return;
  638. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  639. goto out;
  640. smp_num_siblings = (ebx & 0xff0000) >> 16;
  641. if (smp_num_siblings == 1) {
  642. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  643. } else if (smp_num_siblings > 1 ) {
  644. if (smp_num_siblings > NR_CPUS) {
  645. printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
  646. smp_num_siblings = 1;
  647. return;
  648. }
  649. index_msb = get_count_order(smp_num_siblings);
  650. c->phys_proc_id = phys_pkg_id(index_msb);
  651. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  652. index_msb = get_count_order(smp_num_siblings) ;
  653. core_bits = get_count_order(c->x86_max_cores);
  654. c->cpu_core_id = phys_pkg_id(index_msb) &
  655. ((1 << core_bits) - 1);
  656. }
  657. out:
  658. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  659. printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
  660. printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
  661. }
  662. #endif
  663. }
  664. /*
  665. * find out the number of processor cores on the die
  666. */
  667. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  668. {
  669. unsigned int eax, t;
  670. if (c->cpuid_level < 4)
  671. return 1;
  672. cpuid_count(4, 0, &eax, &t, &t, &t);
  673. if (eax & 0x1f)
  674. return ((eax >> 26) + 1);
  675. else
  676. return 1;
  677. }
  678. static void srat_detect_node(void)
  679. {
  680. #ifdef CONFIG_NUMA
  681. unsigned node;
  682. int cpu = smp_processor_id();
  683. int apicid = hard_smp_processor_id();
  684. /* Don't do the funky fallback heuristics the AMD version employs
  685. for now. */
  686. node = apicid_to_node[apicid];
  687. if (node == NUMA_NO_NODE)
  688. node = first_node(node_online_map);
  689. numa_set_node(cpu, node);
  690. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  691. #endif
  692. }
  693. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  694. {
  695. /* Cache sizes */
  696. unsigned n;
  697. init_intel_cacheinfo(c);
  698. if (c->cpuid_level > 9 ) {
  699. unsigned eax = cpuid_eax(10);
  700. /* Check for version and the number of counters */
  701. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  702. set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
  703. }
  704. n = c->extended_cpuid_level;
  705. if (n >= 0x80000008) {
  706. unsigned eax = cpuid_eax(0x80000008);
  707. c->x86_virt_bits = (eax >> 8) & 0xff;
  708. c->x86_phys_bits = eax & 0xff;
  709. /* CPUID workaround for Intel 0F34 CPU */
  710. if (c->x86_vendor == X86_VENDOR_INTEL &&
  711. c->x86 == 0xF && c->x86_model == 0x3 &&
  712. c->x86_mask == 0x4)
  713. c->x86_phys_bits = 36;
  714. }
  715. if (c->x86 == 15)
  716. c->x86_cache_alignment = c->x86_clflush_size * 2;
  717. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  718. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  719. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  720. if (c->x86 == 6)
  721. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  722. set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  723. c->x86_max_cores = intel_num_cpu_cores(c);
  724. srat_detect_node();
  725. }
  726. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  727. {
  728. char *v = c->x86_vendor_id;
  729. if (!strcmp(v, "AuthenticAMD"))
  730. c->x86_vendor = X86_VENDOR_AMD;
  731. else if (!strcmp(v, "GenuineIntel"))
  732. c->x86_vendor = X86_VENDOR_INTEL;
  733. else
  734. c->x86_vendor = X86_VENDOR_UNKNOWN;
  735. }
  736. struct cpu_model_info {
  737. int vendor;
  738. int family;
  739. char *model_names[16];
  740. };
  741. /* Do some early cpuid on the boot CPU to get some parameter that are
  742. needed before check_bugs. Everything advanced is in identify_cpu
  743. below. */
  744. void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  745. {
  746. u32 tfms;
  747. c->loops_per_jiffy = loops_per_jiffy;
  748. c->x86_cache_size = -1;
  749. c->x86_vendor = X86_VENDOR_UNKNOWN;
  750. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  751. c->x86_vendor_id[0] = '\0'; /* Unset */
  752. c->x86_model_id[0] = '\0'; /* Unset */
  753. c->x86_clflush_size = 64;
  754. c->x86_cache_alignment = c->x86_clflush_size;
  755. c->x86_max_cores = 1;
  756. c->extended_cpuid_level = 0;
  757. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  758. /* Get vendor name */
  759. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  760. (unsigned int *)&c->x86_vendor_id[0],
  761. (unsigned int *)&c->x86_vendor_id[8],
  762. (unsigned int *)&c->x86_vendor_id[4]);
  763. get_cpu_vendor(c);
  764. /* Initialize the standard set of capabilities */
  765. /* Note that the vendor-specific code below might override */
  766. /* Intel-defined flags: level 0x00000001 */
  767. if (c->cpuid_level >= 0x00000001) {
  768. __u32 misc;
  769. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  770. &c->x86_capability[0]);
  771. c->x86 = (tfms >> 8) & 0xf;
  772. c->x86_model = (tfms >> 4) & 0xf;
  773. c->x86_mask = tfms & 0xf;
  774. if (c->x86 == 0xf)
  775. c->x86 += (tfms >> 20) & 0xff;
  776. if (c->x86 >= 0x6)
  777. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  778. if (c->x86_capability[0] & (1<<19))
  779. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  780. } else {
  781. /* Have CPUID level 0 only - unheard of */
  782. c->x86 = 4;
  783. }
  784. #ifdef CONFIG_SMP
  785. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  786. #endif
  787. }
  788. /*
  789. * This does the hard work of actually picking apart the CPU stuff...
  790. */
  791. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  792. {
  793. int i;
  794. u32 xlvl;
  795. early_identify_cpu(c);
  796. /* AMD-defined flags: level 0x80000001 */
  797. xlvl = cpuid_eax(0x80000000);
  798. c->extended_cpuid_level = xlvl;
  799. if ((xlvl & 0xffff0000) == 0x80000000) {
  800. if (xlvl >= 0x80000001) {
  801. c->x86_capability[1] = cpuid_edx(0x80000001);
  802. c->x86_capability[6] = cpuid_ecx(0x80000001);
  803. }
  804. if (xlvl >= 0x80000004)
  805. get_model_name(c); /* Default name */
  806. }
  807. /* Transmeta-defined flags: level 0x80860001 */
  808. xlvl = cpuid_eax(0x80860000);
  809. if ((xlvl & 0xffff0000) == 0x80860000) {
  810. /* Don't set x86_cpuid_level here for now to not confuse. */
  811. if (xlvl >= 0x80860001)
  812. c->x86_capability[2] = cpuid_edx(0x80860001);
  813. }
  814. c->apicid = phys_pkg_id(0);
  815. /*
  816. * Vendor-specific initialization. In this section we
  817. * canonicalize the feature flags, meaning if there are
  818. * features a certain CPU supports which CPUID doesn't
  819. * tell us, CPUID claiming incorrect flags, or other bugs,
  820. * we handle them here.
  821. *
  822. * At the end of this section, c->x86_capability better
  823. * indicate the features this CPU genuinely supports!
  824. */
  825. switch (c->x86_vendor) {
  826. case X86_VENDOR_AMD:
  827. init_amd(c);
  828. break;
  829. case X86_VENDOR_INTEL:
  830. init_intel(c);
  831. break;
  832. case X86_VENDOR_UNKNOWN:
  833. default:
  834. display_cacheinfo(c);
  835. break;
  836. }
  837. select_idle_routine(c);
  838. detect_ht(c);
  839. /*
  840. * On SMP, boot_cpu_data holds the common feature set between
  841. * all CPUs; so make sure that we indicate which features are
  842. * common between the CPUs. The first time this routine gets
  843. * executed, c == &boot_cpu_data.
  844. */
  845. if (c != &boot_cpu_data) {
  846. /* AND the already accumulated flags with these */
  847. for (i = 0 ; i < NCAPINTS ; i++)
  848. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  849. }
  850. #ifdef CONFIG_X86_MCE
  851. mcheck_init(c);
  852. #endif
  853. if (c == &boot_cpu_data)
  854. mtrr_bp_init();
  855. else
  856. mtrr_ap_init();
  857. #ifdef CONFIG_NUMA
  858. numa_add_cpu(smp_processor_id());
  859. #endif
  860. }
  861. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  862. {
  863. if (c->x86_model_id[0])
  864. printk("%s", c->x86_model_id);
  865. if (c->x86_mask || c->cpuid_level >= 0)
  866. printk(" stepping %02x\n", c->x86_mask);
  867. else
  868. printk("\n");
  869. }
  870. /*
  871. * Get CPU information for use by the procfs.
  872. */
  873. static int show_cpuinfo(struct seq_file *m, void *v)
  874. {
  875. struct cpuinfo_x86 *c = v;
  876. /*
  877. * These flag bits must match the definitions in <asm/cpufeature.h>.
  878. * NULL means this bit is undefined or reserved; either way it doesn't
  879. * have meaning as far as Linux is concerned. Note that it's important
  880. * to realize there is a difference between this table and CPUID -- if
  881. * applications want to get the raw CPUID data, they should access
  882. * /dev/cpu/<cpu_nr>/cpuid instead.
  883. */
  884. static char *x86_cap_flags[] = {
  885. /* Intel-defined */
  886. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  887. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  888. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  889. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
  890. /* AMD-defined */
  891. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  892. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  893. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  894. NULL, "fxsr_opt", NULL, "rdtscp", NULL, "lm", "3dnowext", "3dnow",
  895. /* Transmeta-defined */
  896. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  897. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  898. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  899. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  900. /* Other (Linux-defined) */
  901. "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
  902. "constant_tsc", NULL, NULL,
  903. "up", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  904. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  905. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  906. /* Intel-defined (#2) */
  907. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  908. "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
  909. NULL, NULL, "dca", NULL, NULL, NULL, NULL, NULL,
  910. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  911. /* VIA/Cyrix/Centaur-defined */
  912. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  913. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  914. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  915. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  916. /* AMD-defined (#2) */
  917. "lahf_lm", "cmp_legacy", "svm", NULL, "cr8_legacy", NULL, NULL, NULL,
  918. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  919. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  920. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  921. };
  922. static char *x86_power_flags[] = {
  923. "ts", /* temperature sensor */
  924. "fid", /* frequency id control */
  925. "vid", /* voltage id control */
  926. "ttp", /* thermal trip */
  927. "tm",
  928. "stc",
  929. NULL,
  930. /* nothing */ /* constant_tsc - moved to flags */
  931. };
  932. #ifdef CONFIG_SMP
  933. if (!cpu_online(c-cpu_data))
  934. return 0;
  935. #endif
  936. seq_printf(m,"processor\t: %u\n"
  937. "vendor_id\t: %s\n"
  938. "cpu family\t: %d\n"
  939. "model\t\t: %d\n"
  940. "model name\t: %s\n",
  941. (unsigned)(c-cpu_data),
  942. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  943. c->x86,
  944. (int)c->x86_model,
  945. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  946. if (c->x86_mask || c->cpuid_level >= 0)
  947. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  948. else
  949. seq_printf(m, "stepping\t: unknown\n");
  950. if (cpu_has(c,X86_FEATURE_TSC)) {
  951. unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
  952. if (!freq)
  953. freq = cpu_khz;
  954. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  955. freq / 1000, (freq % 1000));
  956. }
  957. /* Cache size */
  958. if (c->x86_cache_size >= 0)
  959. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  960. #ifdef CONFIG_SMP
  961. if (smp_num_siblings * c->x86_max_cores > 1) {
  962. int cpu = c - cpu_data;
  963. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  964. seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
  965. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  966. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  967. }
  968. #endif
  969. seq_printf(m,
  970. "fpu\t\t: yes\n"
  971. "fpu_exception\t: yes\n"
  972. "cpuid level\t: %d\n"
  973. "wp\t\t: yes\n"
  974. "flags\t\t:",
  975. c->cpuid_level);
  976. {
  977. int i;
  978. for ( i = 0 ; i < 32*NCAPINTS ; i++ )
  979. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  980. seq_printf(m, " %s", x86_cap_flags[i]);
  981. }
  982. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  983. c->loops_per_jiffy/(500000/HZ),
  984. (c->loops_per_jiffy/(5000/HZ)) % 100);
  985. if (c->x86_tlbsize > 0)
  986. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  987. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  988. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  989. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  990. c->x86_phys_bits, c->x86_virt_bits);
  991. seq_printf(m, "power management:");
  992. {
  993. unsigned i;
  994. for (i = 0; i < 32; i++)
  995. if (c->x86_power & (1 << i)) {
  996. if (i < ARRAY_SIZE(x86_power_flags) &&
  997. x86_power_flags[i])
  998. seq_printf(m, "%s%s",
  999. x86_power_flags[i][0]?" ":"",
  1000. x86_power_flags[i]);
  1001. else
  1002. seq_printf(m, " [%d]", i);
  1003. }
  1004. }
  1005. seq_printf(m, "\n\n");
  1006. return 0;
  1007. }
  1008. static void *c_start(struct seq_file *m, loff_t *pos)
  1009. {
  1010. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  1011. }
  1012. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  1013. {
  1014. ++*pos;
  1015. return c_start(m, pos);
  1016. }
  1017. static void c_stop(struct seq_file *m, void *v)
  1018. {
  1019. }
  1020. struct seq_operations cpuinfo_op = {
  1021. .start =c_start,
  1022. .next = c_next,
  1023. .stop = c_stop,
  1024. .show = show_cpuinfo,
  1025. };
  1026. #if defined(CONFIG_INPUT_PCSPKR) || defined(CONFIG_INPUT_PCSPKR_MODULE)
  1027. #include <linux/platform_device.h>
  1028. static __init int add_pcspkr(void)
  1029. {
  1030. struct platform_device *pd;
  1031. int ret;
  1032. pd = platform_device_alloc("pcspkr", -1);
  1033. if (!pd)
  1034. return -ENOMEM;
  1035. ret = platform_device_add(pd);
  1036. if (ret)
  1037. platform_device_put(pd);
  1038. return ret;
  1039. }
  1040. device_initcall(add_pcspkr);
  1041. #endif