time.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466
  1. /*
  2. *
  3. * Copyright (C) 2001 MontaVista Software, ppopov@mvista.com
  4. * Copied and modified Carsten Langgaard's time.c
  5. *
  6. * Carsten Langgaard, carstenl@mips.com
  7. * Copyright (C) 1999,2000 MIPS Technologies, Inc. All rights reserved.
  8. *
  9. * ########################################################################
  10. *
  11. * This program is free software; you can distribute it and/or modify it
  12. * under the terms of the GNU General Public License (Version 2) as
  13. * published by the Free Software Foundation.
  14. *
  15. * This program is distributed in the hope it will be useful, but WITHOUT
  16. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  17. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  18. * for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License along
  21. * with this program; if not, write to the Free Software Foundation, Inc.,
  22. * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
  23. *
  24. * ########################################################################
  25. *
  26. * Setting up the clock on the MIPS boards.
  27. *
  28. * Update. Always configure the kernel with CONFIG_NEW_TIME_C. This
  29. * will use the user interface gettimeofday() functions from the
  30. * arch/mips/kernel/time.c, and we provide the clock interrupt processing
  31. * and the timer offset compute functions. If CONFIG_PM is selected,
  32. * we also ensure the 32KHz timer is available. -- Dan
  33. */
  34. #include <linux/types.h>
  35. #include <linux/init.h>
  36. #include <linux/kernel_stat.h>
  37. #include <linux/sched.h>
  38. #include <linux/spinlock.h>
  39. #include <linux/hardirq.h>
  40. #include <asm/compiler.h>
  41. #include <asm/mipsregs.h>
  42. #include <asm/ptrace.h>
  43. #include <asm/time.h>
  44. #include <asm/div64.h>
  45. #include <asm/mach-au1x00/au1000.h>
  46. #include <linux/mc146818rtc.h>
  47. #include <linux/timex.h>
  48. static unsigned long r4k_offset; /* Amount to increment compare reg each time */
  49. static unsigned long r4k_cur; /* What counter should be at next timer irq */
  50. int no_au1xxx_32khz;
  51. extern int allow_au1k_wait; /* default off for CP0 Counter */
  52. /* Cycle counter value at the previous timer interrupt.. */
  53. static unsigned int timerhi = 0, timerlo = 0;
  54. #ifdef CONFIG_PM
  55. #if HZ < 100 || HZ > 1000
  56. #error "unsupported HZ value! Must be in [100,1000]"
  57. #endif
  58. #define MATCH20_INC (328*100/HZ) /* magic number 328 is for HZ=100... */
  59. extern void startup_match20_interrupt(irqreturn_t (*handler)(int, void *, struct pt_regs *));
  60. static unsigned long last_pc0, last_match20;
  61. #endif
  62. static DEFINE_SPINLOCK(time_lock);
  63. static inline void ack_r4ktimer(unsigned long newval)
  64. {
  65. write_c0_compare(newval);
  66. }
  67. /*
  68. * There are a lot of conceptually broken versions of the MIPS timer interrupt
  69. * handler floating around. This one is rather different, but the algorithm
  70. * is provably more robust.
  71. */
  72. unsigned long wtimer;
  73. void mips_timer_interrupt(struct pt_regs *regs)
  74. {
  75. int irq = 63;
  76. unsigned long count;
  77. irq_enter();
  78. kstat_this_cpu.irqs[irq]++;
  79. if (r4k_offset == 0)
  80. goto null;
  81. do {
  82. count = read_c0_count();
  83. timerhi += (count < timerlo); /* Wrap around */
  84. timerlo = count;
  85. kstat_this_cpu.irqs[irq]++;
  86. do_timer(regs);
  87. #ifndef CONFIG_SMP
  88. update_process_times(user_mode(regs));
  89. #endif
  90. r4k_cur += r4k_offset;
  91. ack_r4ktimer(r4k_cur);
  92. } while (((unsigned long)read_c0_count()
  93. - r4k_cur) < 0x7fffffff);
  94. irq_exit();
  95. return;
  96. null:
  97. ack_r4ktimer(0);
  98. irq_exit();
  99. }
  100. #ifdef CONFIG_PM
  101. irqreturn_t counter0_irq(int irq, void *dev_id, struct pt_regs *regs)
  102. {
  103. unsigned long pc0;
  104. int time_elapsed;
  105. static int jiffie_drift = 0;
  106. if (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20) {
  107. /* should never happen! */
  108. printk(KERN_WARNING "counter 0 w status error\n");
  109. return IRQ_NONE;
  110. }
  111. pc0 = au_readl(SYS_TOYREAD);
  112. if (pc0 < last_match20) {
  113. /* counter overflowed */
  114. time_elapsed = (0xffffffff - last_match20) + pc0;
  115. }
  116. else {
  117. time_elapsed = pc0 - last_match20;
  118. }
  119. while (time_elapsed > 0) {
  120. do_timer(regs);
  121. #ifndef CONFIG_SMP
  122. update_process_times(user_mode(regs));
  123. #endif
  124. time_elapsed -= MATCH20_INC;
  125. last_match20 += MATCH20_INC;
  126. jiffie_drift++;
  127. }
  128. last_pc0 = pc0;
  129. au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2);
  130. au_sync();
  131. /* our counter ticks at 10.009765625 ms/tick, we we're running
  132. * almost 10uS too slow per tick.
  133. */
  134. if (jiffie_drift >= 999) {
  135. jiffie_drift -= 999;
  136. do_timer(regs); /* increment jiffies by one */
  137. #ifndef CONFIG_SMP
  138. update_process_times(user_mode(regs));
  139. #endif
  140. }
  141. return IRQ_HANDLED;
  142. }
  143. /* When we wakeup from sleep, we have to "catch up" on all of the
  144. * timer ticks we have missed.
  145. */
  146. void
  147. wakeup_counter0_adjust(void)
  148. {
  149. unsigned long pc0;
  150. int time_elapsed;
  151. pc0 = au_readl(SYS_TOYREAD);
  152. if (pc0 < last_match20) {
  153. /* counter overflowed */
  154. time_elapsed = (0xffffffff - last_match20) + pc0;
  155. }
  156. else {
  157. time_elapsed = pc0 - last_match20;
  158. }
  159. while (time_elapsed > 0) {
  160. time_elapsed -= MATCH20_INC;
  161. last_match20 += MATCH20_INC;
  162. }
  163. last_pc0 = pc0;
  164. au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2);
  165. au_sync();
  166. }
  167. /* This is just for debugging to set the timer for a sleep delay.
  168. */
  169. void
  170. wakeup_counter0_set(int ticks)
  171. {
  172. unsigned long pc0;
  173. pc0 = au_readl(SYS_TOYREAD);
  174. last_pc0 = pc0;
  175. au_writel(last_match20 + (MATCH20_INC * ticks), SYS_TOYMATCH2);
  176. au_sync();
  177. }
  178. #endif
  179. /* I haven't found anyone that doesn't use a 12 MHz source clock,
  180. * but just in case.....
  181. */
  182. #ifdef CONFIG_AU1000_SRC_CLK
  183. #define AU1000_SRC_CLK CONFIG_AU1000_SRC_CLK
  184. #else
  185. #define AU1000_SRC_CLK 12000000
  186. #endif
  187. /*
  188. * We read the real processor speed from the PLL. This is important
  189. * because it is more accurate than computing it from the 32KHz
  190. * counter, if it exists. If we don't have an accurate processor
  191. * speed, all of the peripherals that derive their clocks based on
  192. * this advertised speed will introduce error and sometimes not work
  193. * properly. This function is futher convoluted to still allow configurations
  194. * to do that in case they have really, really old silicon with a
  195. * write-only PLL register, that we need the 32KHz when power management
  196. * "wait" is enabled, and we need to detect if the 32KHz isn't present
  197. * but requested......got it? :-) -- Dan
  198. */
  199. unsigned long cal_r4koff(void)
  200. {
  201. unsigned long count;
  202. unsigned long cpu_speed;
  203. unsigned long flags;
  204. unsigned long counter;
  205. spin_lock_irqsave(&time_lock, flags);
  206. /* Power management cares if we don't have a 32KHz counter.
  207. */
  208. no_au1xxx_32khz = 0;
  209. counter = au_readl(SYS_COUNTER_CNTRL);
  210. if (counter & SYS_CNTRL_E0) {
  211. int trim_divide = 16;
  212. au_writel(counter | SYS_CNTRL_EN1, SYS_COUNTER_CNTRL);
  213. while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S);
  214. /* RTC now ticks at 32.768/16 kHz */
  215. au_writel(trim_divide-1, SYS_RTCTRIM);
  216. while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S);
  217. while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S);
  218. au_writel (0, SYS_TOYWRITE);
  219. while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S);
  220. #if defined(CONFIG_AU1000_USE32K)
  221. {
  222. unsigned long start, end;
  223. start = au_readl(SYS_RTCREAD);
  224. start += 2;
  225. /* wait for the beginning of a new tick
  226. */
  227. while (au_readl(SYS_RTCREAD) < start);
  228. /* Start r4k counter.
  229. */
  230. write_c0_count(0);
  231. /* Wait 0.5 seconds.
  232. */
  233. end = start + (32768 / trim_divide)/2;
  234. while (end > au_readl(SYS_RTCREAD));
  235. count = read_c0_count();
  236. cpu_speed = count * 2;
  237. }
  238. #else
  239. cpu_speed = (au_readl(SYS_CPUPLL) & 0x0000003f) *
  240. AU1000_SRC_CLK;
  241. count = cpu_speed / 2;
  242. #endif
  243. }
  244. else {
  245. /* The 32KHz oscillator isn't running, so assume there
  246. * isn't one and grab the processor speed from the PLL.
  247. * NOTE: some old silicon doesn't allow reading the PLL.
  248. */
  249. cpu_speed = (au_readl(SYS_CPUPLL) & 0x0000003f) * AU1000_SRC_CLK;
  250. count = cpu_speed / 2;
  251. no_au1xxx_32khz = 1;
  252. }
  253. mips_hpt_frequency = count;
  254. // Equation: Baudrate = CPU / (SD * 2 * CLKDIV * 16)
  255. set_au1x00_uart_baud_base(cpu_speed / (2 * ((int)(au_readl(SYS_POWERCTRL)&0x03) + 2) * 16));
  256. spin_unlock_irqrestore(&time_lock, flags);
  257. return (cpu_speed / HZ);
  258. }
  259. /* This is for machines which generate the exact clock. */
  260. #define USECS_PER_JIFFY (1000000/HZ)
  261. #define USECS_PER_JIFFY_FRAC (0x100000000LL*1000000/HZ&0xffffffff)
  262. static unsigned long
  263. div64_32(unsigned long v1, unsigned long v2, unsigned long v3)
  264. {
  265. unsigned long r0;
  266. do_div64_32(r0, v1, v2, v3);
  267. return r0;
  268. }
  269. static unsigned long do_fast_cp0_gettimeoffset(void)
  270. {
  271. u32 count;
  272. unsigned long res, tmp;
  273. unsigned long r0;
  274. /* Last jiffy when do_fast_gettimeoffset() was called. */
  275. static unsigned long last_jiffies=0;
  276. unsigned long quotient;
  277. /*
  278. * Cached "1/(clocks per usec)*2^32" value.
  279. * It has to be recalculated once each jiffy.
  280. */
  281. static unsigned long cached_quotient=0;
  282. tmp = jiffies;
  283. quotient = cached_quotient;
  284. if (tmp && last_jiffies != tmp) {
  285. last_jiffies = tmp;
  286. if (last_jiffies != 0) {
  287. r0 = div64_32(timerhi, timerlo, tmp);
  288. quotient = div64_32(USECS_PER_JIFFY, USECS_PER_JIFFY_FRAC, r0);
  289. cached_quotient = quotient;
  290. }
  291. }
  292. /* Get last timer tick in absolute kernel time */
  293. count = read_c0_count();
  294. /* .. relative to previous jiffy (32 bits is enough) */
  295. count -= timerlo;
  296. __asm__("multu\t%1,%2\n\t"
  297. "mfhi\t%0"
  298. : "=r" (res)
  299. : "r" (count), "r" (quotient)
  300. : "hi", "lo", GCC_REG_ACCUM);
  301. /*
  302. * Due to possible jiffies inconsistencies, we need to check
  303. * the result so that we'll get a timer that is monotonic.
  304. */
  305. if (res >= USECS_PER_JIFFY)
  306. res = USECS_PER_JIFFY-1;
  307. return res;
  308. }
  309. #ifdef CONFIG_PM
  310. static unsigned long do_fast_pm_gettimeoffset(void)
  311. {
  312. unsigned long pc0;
  313. unsigned long offset;
  314. pc0 = au_readl(SYS_TOYREAD);
  315. au_sync();
  316. offset = pc0 - last_pc0;
  317. if (offset > 2*MATCH20_INC) {
  318. printk("huge offset %x, last_pc0 %x last_match20 %x pc0 %x\n",
  319. (unsigned)offset, (unsigned)last_pc0,
  320. (unsigned)last_match20, (unsigned)pc0);
  321. }
  322. offset = (unsigned long)((offset * 305) / 10);
  323. return offset;
  324. }
  325. #endif
  326. void __init plat_timer_setup(struct irqaction *irq)
  327. {
  328. unsigned int est_freq;
  329. printk("calculating r4koff... ");
  330. r4k_offset = cal_r4koff();
  331. printk("%08lx(%d)\n", r4k_offset, (int) r4k_offset);
  332. //est_freq = 2*r4k_offset*HZ;
  333. est_freq = r4k_offset*HZ;
  334. est_freq += 5000; /* round */
  335. est_freq -= est_freq%10000;
  336. printk("CPU frequency %d.%02d MHz\n", est_freq/1000000,
  337. (est_freq%1000000)*100/1000000);
  338. set_au1x00_speed(est_freq);
  339. set_au1x00_lcd_clock(); // program the LCD clock
  340. r4k_cur = (read_c0_count() + r4k_offset);
  341. write_c0_compare(r4k_cur);
  342. #ifdef CONFIG_PM
  343. /*
  344. * setup counter 0, since it keeps ticking after a
  345. * 'wait' instruction has been executed. The CP0 timer and
  346. * counter 1 do NOT continue running after 'wait'
  347. *
  348. * It's too early to call request_irq() here, so we handle
  349. * counter 0 interrupt as a special irq and it doesn't show
  350. * up under /proc/interrupts.
  351. *
  352. * Check to ensure we really have a 32KHz oscillator before
  353. * we do this.
  354. */
  355. if (no_au1xxx_32khz) {
  356. unsigned int c0_status;
  357. printk("WARNING: no 32KHz clock found.\n");
  358. do_gettimeoffset = do_fast_cp0_gettimeoffset;
  359. /* Ensure we get CPO_COUNTER interrupts.
  360. */
  361. c0_status = read_c0_status();
  362. c0_status |= IE_IRQ5;
  363. write_c0_status(c0_status);
  364. }
  365. else {
  366. while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S);
  367. au_writel(0, SYS_TOYWRITE);
  368. while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S);
  369. au_writel(au_readl(SYS_WAKEMSK) | (1<<8), SYS_WAKEMSK);
  370. au_writel(~0, SYS_WAKESRC);
  371. au_sync();
  372. while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20);
  373. /* setup match20 to interrupt once every HZ */
  374. last_pc0 = last_match20 = au_readl(SYS_TOYREAD);
  375. au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2);
  376. au_sync();
  377. while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20);
  378. startup_match20_interrupt(counter0_irq);
  379. do_gettimeoffset = do_fast_pm_gettimeoffset;
  380. /* We can use the real 'wait' instruction.
  381. */
  382. allow_au1k_wait = 1;
  383. }
  384. #else
  385. /* We have to do this here instead of in timer_init because
  386. * the generic code in arch/mips/kernel/time.c will write
  387. * over our function pointer.
  388. */
  389. do_gettimeoffset = do_fast_cp0_gettimeoffset;
  390. #endif
  391. }
  392. void __init au1xxx_time_init(void)
  393. {
  394. }