time.c 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190
  1. /*
  2. * linux/arch/m68knommu/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. *
  6. * This file contains the m68k-specific time handling details.
  7. * Most of the stuff is located in the machine specific files.
  8. *
  9. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  10. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  11. */
  12. #include <linux/errno.h>
  13. #include <linux/module.h>
  14. #include <linux/sched.h>
  15. #include <linux/kernel.h>
  16. #include <linux/param.h>
  17. #include <linux/string.h>
  18. #include <linux/mm.h>
  19. #include <linux/profile.h>
  20. #include <linux/time.h>
  21. #include <linux/timex.h>
  22. #include <asm/machdep.h>
  23. #include <asm/io.h>
  24. #define TICK_SIZE (tick_nsec / 1000)
  25. extern unsigned long wall_jiffies;
  26. static inline int set_rtc_mmss(unsigned long nowtime)
  27. {
  28. if (mach_set_clock_mmss)
  29. return mach_set_clock_mmss (nowtime);
  30. return -1;
  31. }
  32. /*
  33. * timer_interrupt() needs to keep up the real-time clock,
  34. * as well as call the "do_timer()" routine every clocktick
  35. */
  36. static irqreturn_t timer_interrupt(int irq, void *dummy, struct pt_regs * regs)
  37. {
  38. /* last time the cmos clock got updated */
  39. static long last_rtc_update=0;
  40. /* may need to kick the hardware timer */
  41. if (mach_tick)
  42. mach_tick();
  43. write_seqlock(&xtime_lock);
  44. do_timer(regs);
  45. #ifndef CONFIG_SMP
  46. update_process_times(user_mode(regs));
  47. #endif
  48. if (current->pid)
  49. profile_tick(CPU_PROFILING, regs);
  50. /*
  51. * If we have an externally synchronized Linux clock, then update
  52. * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
  53. * called as close as possible to 500 ms before the new second starts.
  54. */
  55. if (ntp_synced() &&
  56. xtime.tv_sec > last_rtc_update + 660 &&
  57. (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
  58. (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
  59. if (set_rtc_mmss(xtime.tv_sec) == 0)
  60. last_rtc_update = xtime.tv_sec;
  61. else
  62. last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
  63. }
  64. #ifdef CONFIG_HEARTBEAT
  65. /* use power LED as a heartbeat instead -- much more useful
  66. for debugging -- based on the version for PReP by Cort */
  67. /* acts like an actual heart beat -- ie thump-thump-pause... */
  68. if (mach_heartbeat) {
  69. static unsigned cnt = 0, period = 0, dist = 0;
  70. if (cnt == 0 || cnt == dist)
  71. mach_heartbeat( 1 );
  72. else if (cnt == 7 || cnt == dist+7)
  73. mach_heartbeat( 0 );
  74. if (++cnt > period) {
  75. cnt = 0;
  76. /* The hyperbolic function below modifies the heartbeat period
  77. * length in dependency of the current (5min) load. It goes
  78. * through the points f(0)=126, f(1)=86, f(5)=51,
  79. * f(inf)->30. */
  80. period = ((672<<FSHIFT)/(5*avenrun[0]+(7<<FSHIFT))) + 30;
  81. dist = period / 4;
  82. }
  83. }
  84. #endif /* CONFIG_HEARTBEAT */
  85. write_sequnlock(&xtime_lock);
  86. return(IRQ_HANDLED);
  87. }
  88. void time_init(void)
  89. {
  90. unsigned int year, mon, day, hour, min, sec;
  91. extern void arch_gettod(int *year, int *mon, int *day, int *hour,
  92. int *min, int *sec);
  93. arch_gettod(&year, &mon, &day, &hour, &min, &sec);
  94. if ((year += 1900) < 1970)
  95. year += 100;
  96. xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
  97. xtime.tv_nsec = 0;
  98. wall_to_monotonic.tv_sec = -xtime.tv_sec;
  99. mach_sched_init(timer_interrupt);
  100. }
  101. /*
  102. * This version of gettimeofday has near microsecond resolution.
  103. */
  104. void do_gettimeofday(struct timeval *tv)
  105. {
  106. unsigned long flags;
  107. unsigned long lost, seq;
  108. unsigned long usec, sec;
  109. do {
  110. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  111. usec = mach_gettimeoffset ? mach_gettimeoffset() : 0;
  112. lost = jiffies - wall_jiffies;
  113. if (lost)
  114. usec += lost * (1000000 / HZ);
  115. sec = xtime.tv_sec;
  116. usec += (xtime.tv_nsec / 1000);
  117. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  118. while (usec >= 1000000) {
  119. usec -= 1000000;
  120. sec++;
  121. }
  122. tv->tv_sec = sec;
  123. tv->tv_usec = usec;
  124. }
  125. EXPORT_SYMBOL(do_gettimeofday);
  126. int do_settimeofday(struct timespec *tv)
  127. {
  128. time_t wtm_sec, sec = tv->tv_sec;
  129. long wtm_nsec, nsec = tv->tv_nsec;
  130. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  131. return -EINVAL;
  132. write_seqlock_irq(&xtime_lock);
  133. /*
  134. * This is revolting. We need to set the xtime.tv_usec
  135. * correctly. However, the value in this location is
  136. * is value at the last tick.
  137. * Discover what correction gettimeofday
  138. * would have done, and then undo it!
  139. */
  140. if (mach_gettimeoffset)
  141. nsec -= (mach_gettimeoffset() * 1000);
  142. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  143. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  144. set_normalized_timespec(&xtime, sec, nsec);
  145. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  146. ntp_clear();
  147. write_sequnlock_irq(&xtime_lock);
  148. clock_was_set();
  149. return 0;
  150. }
  151. /*
  152. * Scheduler clock - returns current time in nanosec units.
  153. */
  154. unsigned long long sched_clock(void)
  155. {
  156. return (unsigned long long)jiffies * (1000000000 / HZ);
  157. }
  158. EXPORT_SYMBOL(do_settimeofday);