rt2400pci.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2400pci
  19. Abstract: rt2400pci device specific routines.
  20. Supported chipsets: RT2460.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2400pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  46. {
  47. u32 reg;
  48. unsigned int i;
  49. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  50. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  51. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  52. break;
  53. udelay(REGISTER_BUSY_DELAY);
  54. }
  55. return reg;
  56. }
  57. static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  58. const unsigned int word, const u8 value)
  59. {
  60. u32 reg;
  61. mutex_lock(&rt2x00dev->csr_mutex);
  62. /*
  63. * Wait until the BBP becomes ready.
  64. */
  65. reg = rt2400pci_bbp_check(rt2x00dev);
  66. if (rt2x00_get_field32(reg, BBPCSR_BUSY))
  67. goto exit_fail;
  68. /*
  69. * Write the data into the BBP.
  70. */
  71. reg = 0;
  72. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  73. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  74. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  75. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  76. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  77. mutex_unlock(&rt2x00dev->csr_mutex);
  78. return;
  79. exit_fail:
  80. mutex_unlock(&rt2x00dev->csr_mutex);
  81. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  82. }
  83. static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  84. const unsigned int word, u8 *value)
  85. {
  86. u32 reg;
  87. mutex_lock(&rt2x00dev->csr_mutex);
  88. /*
  89. * Wait until the BBP becomes ready.
  90. */
  91. reg = rt2400pci_bbp_check(rt2x00dev);
  92. if (rt2x00_get_field32(reg, BBPCSR_BUSY))
  93. goto exit_fail;
  94. /*
  95. * Write the request into the BBP.
  96. */
  97. reg = 0;
  98. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  99. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  100. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  101. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  102. /*
  103. * Wait until the BBP becomes ready.
  104. */
  105. reg = rt2400pci_bbp_check(rt2x00dev);
  106. if (rt2x00_get_field32(reg, BBPCSR_BUSY))
  107. goto exit_fail;
  108. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  109. mutex_unlock(&rt2x00dev->csr_mutex);
  110. return;
  111. exit_fail:
  112. mutex_unlock(&rt2x00dev->csr_mutex);
  113. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  114. *value = 0xff;
  115. }
  116. static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
  117. const unsigned int word, const u32 value)
  118. {
  119. u32 reg;
  120. unsigned int i;
  121. if (!word)
  122. return;
  123. mutex_lock(&rt2x00dev->csr_mutex);
  124. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  125. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  126. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  127. goto rf_write;
  128. udelay(REGISTER_BUSY_DELAY);
  129. }
  130. mutex_unlock(&rt2x00dev->csr_mutex);
  131. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  132. return;
  133. rf_write:
  134. reg = 0;
  135. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  136. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  137. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  138. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  139. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  140. rt2x00_rf_write(rt2x00dev, word, value);
  141. mutex_unlock(&rt2x00dev->csr_mutex);
  142. }
  143. static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  144. {
  145. struct rt2x00_dev *rt2x00dev = eeprom->data;
  146. u32 reg;
  147. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  148. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  149. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  150. eeprom->reg_data_clock =
  151. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  152. eeprom->reg_chip_select =
  153. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  154. }
  155. static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  156. {
  157. struct rt2x00_dev *rt2x00dev = eeprom->data;
  158. u32 reg = 0;
  159. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  160. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  161. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  162. !!eeprom->reg_data_clock);
  163. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  164. !!eeprom->reg_chip_select);
  165. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  166. }
  167. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  168. static const struct rt2x00debug rt2400pci_rt2x00debug = {
  169. .owner = THIS_MODULE,
  170. .csr = {
  171. .read = rt2x00pci_register_read,
  172. .write = rt2x00pci_register_write,
  173. .flags = RT2X00DEBUGFS_OFFSET,
  174. .word_base = CSR_REG_BASE,
  175. .word_size = sizeof(u32),
  176. .word_count = CSR_REG_SIZE / sizeof(u32),
  177. },
  178. .eeprom = {
  179. .read = rt2x00_eeprom_read,
  180. .write = rt2x00_eeprom_write,
  181. .word_base = EEPROM_BASE,
  182. .word_size = sizeof(u16),
  183. .word_count = EEPROM_SIZE / sizeof(u16),
  184. },
  185. .bbp = {
  186. .read = rt2400pci_bbp_read,
  187. .write = rt2400pci_bbp_write,
  188. .word_base = BBP_BASE,
  189. .word_size = sizeof(u8),
  190. .word_count = BBP_SIZE / sizeof(u8),
  191. },
  192. .rf = {
  193. .read = rt2x00_rf_read,
  194. .write = rt2400pci_rf_write,
  195. .word_base = RF_BASE,
  196. .word_size = sizeof(u32),
  197. .word_count = RF_SIZE / sizeof(u32),
  198. },
  199. };
  200. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  201. #ifdef CONFIG_RT2X00_LIB_RFKILL
  202. static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  203. {
  204. u32 reg;
  205. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  206. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  207. }
  208. #else
  209. #define rt2400pci_rfkill_poll NULL
  210. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  211. #ifdef CONFIG_RT2X00_LIB_LEDS
  212. static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
  213. enum led_brightness brightness)
  214. {
  215. struct rt2x00_led *led =
  216. container_of(led_cdev, struct rt2x00_led, led_dev);
  217. unsigned int enabled = brightness != LED_OFF;
  218. u32 reg;
  219. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  220. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  221. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  222. else if (led->type == LED_TYPE_ACTIVITY)
  223. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  224. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  225. }
  226. static int rt2400pci_blink_set(struct led_classdev *led_cdev,
  227. unsigned long *delay_on,
  228. unsigned long *delay_off)
  229. {
  230. struct rt2x00_led *led =
  231. container_of(led_cdev, struct rt2x00_led, led_dev);
  232. u32 reg;
  233. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  234. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  235. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  236. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  237. return 0;
  238. }
  239. static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
  240. struct rt2x00_led *led,
  241. enum led_type type)
  242. {
  243. led->rt2x00dev = rt2x00dev;
  244. led->type = type;
  245. led->led_dev.brightness_set = rt2400pci_brightness_set;
  246. led->led_dev.blink_set = rt2400pci_blink_set;
  247. led->flags = LED_INITIALIZED;
  248. }
  249. #endif /* CONFIG_RT2X00_LIB_LEDS */
  250. /*
  251. * Configuration handlers.
  252. */
  253. static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
  254. const unsigned int filter_flags)
  255. {
  256. u32 reg;
  257. /*
  258. * Start configuration steps.
  259. * Note that the version error will always be dropped
  260. * since there is no filter for it at this time.
  261. */
  262. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  263. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  264. !(filter_flags & FIF_FCSFAIL));
  265. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  266. !(filter_flags & FIF_PLCPFAIL));
  267. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  268. !(filter_flags & FIF_CONTROL));
  269. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  270. !(filter_flags & FIF_PROMISC_IN_BSS));
  271. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  272. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  273. !rt2x00dev->intf_ap_count);
  274. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  275. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  276. }
  277. static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
  278. struct rt2x00_intf *intf,
  279. struct rt2x00intf_conf *conf,
  280. const unsigned int flags)
  281. {
  282. unsigned int bcn_preload;
  283. u32 reg;
  284. if (flags & CONFIG_UPDATE_TYPE) {
  285. /*
  286. * Enable beacon config
  287. */
  288. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  289. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  290. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  291. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  292. /*
  293. * Enable synchronisation.
  294. */
  295. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  296. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  297. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  298. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  299. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  300. }
  301. if (flags & CONFIG_UPDATE_MAC)
  302. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  303. conf->mac, sizeof(conf->mac));
  304. if (flags & CONFIG_UPDATE_BSSID)
  305. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  306. conf->bssid, sizeof(conf->bssid));
  307. }
  308. static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
  309. struct rt2x00lib_erp *erp)
  310. {
  311. int preamble_mask;
  312. u32 reg;
  313. /*
  314. * When short preamble is enabled, we should set bit 0x08
  315. */
  316. preamble_mask = erp->short_preamble << 3;
  317. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  318. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
  319. erp->ack_timeout);
  320. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
  321. erp->ack_consume_time);
  322. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  323. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  324. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  325. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  326. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
  327. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  328. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  329. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  330. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  331. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
  332. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  333. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  334. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  335. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  336. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
  337. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  338. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  339. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  340. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  341. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
  342. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  343. rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  344. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  345. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  346. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  347. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  348. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  349. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  350. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  351. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  352. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  353. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  354. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  355. }
  356. static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
  357. struct antenna_setup *ant)
  358. {
  359. u8 r1;
  360. u8 r4;
  361. /*
  362. * We should never come here because rt2x00lib is supposed
  363. * to catch this and send us the correct antenna explicitely.
  364. */
  365. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  366. ant->tx == ANTENNA_SW_DIVERSITY);
  367. rt2400pci_bbp_read(rt2x00dev, 4, &r4);
  368. rt2400pci_bbp_read(rt2x00dev, 1, &r1);
  369. /*
  370. * Configure the TX antenna.
  371. */
  372. switch (ant->tx) {
  373. case ANTENNA_HW_DIVERSITY:
  374. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
  375. break;
  376. case ANTENNA_A:
  377. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
  378. break;
  379. case ANTENNA_B:
  380. default:
  381. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
  382. break;
  383. }
  384. /*
  385. * Configure the RX antenna.
  386. */
  387. switch (ant->rx) {
  388. case ANTENNA_HW_DIVERSITY:
  389. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
  390. break;
  391. case ANTENNA_A:
  392. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
  393. break;
  394. case ANTENNA_B:
  395. default:
  396. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
  397. break;
  398. }
  399. rt2400pci_bbp_write(rt2x00dev, 4, r4);
  400. rt2400pci_bbp_write(rt2x00dev, 1, r1);
  401. }
  402. static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
  403. struct rf_channel *rf)
  404. {
  405. /*
  406. * Switch on tuning bits.
  407. */
  408. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  409. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  410. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  411. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  412. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  413. /*
  414. * RF2420 chipset don't need any additional actions.
  415. */
  416. if (rt2x00_rf(&rt2x00dev->chip, RF2420))
  417. return;
  418. /*
  419. * For the RT2421 chipsets we need to write an invalid
  420. * reference clock rate to activate auto_tune.
  421. * After that we set the value back to the correct channel.
  422. */
  423. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  424. rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
  425. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  426. msleep(1);
  427. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  428. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  429. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  430. msleep(1);
  431. /*
  432. * Switch off tuning bits.
  433. */
  434. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  435. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  436. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  437. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  438. /*
  439. * Clear false CRC during channel switch.
  440. */
  441. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  442. }
  443. static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
  444. {
  445. rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
  446. }
  447. static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  448. struct rt2x00lib_conf *libconf)
  449. {
  450. u32 reg;
  451. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  452. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  453. libconf->conf->long_frame_max_tx_count);
  454. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  455. libconf->conf->short_frame_max_tx_count);
  456. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  457. }
  458. static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
  459. struct rt2x00lib_conf *libconf)
  460. {
  461. u32 reg;
  462. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  463. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  464. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  465. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  466. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  467. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  468. libconf->conf->beacon_int * 16);
  469. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  470. libconf->conf->beacon_int * 16);
  471. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  472. }
  473. static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
  474. struct rt2x00lib_conf *libconf,
  475. const unsigned int flags)
  476. {
  477. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  478. rt2400pci_config_channel(rt2x00dev, &libconf->rf);
  479. if (flags & IEEE80211_CONF_CHANGE_POWER)
  480. rt2400pci_config_txpower(rt2x00dev,
  481. libconf->conf->power_level);
  482. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  483. rt2400pci_config_retry_limit(rt2x00dev, libconf);
  484. if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
  485. rt2400pci_config_duration(rt2x00dev, libconf);
  486. }
  487. static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
  488. const int cw_min, const int cw_max)
  489. {
  490. u32 reg;
  491. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  492. rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
  493. rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
  494. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  495. }
  496. /*
  497. * Link tuning
  498. */
  499. static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
  500. struct link_qual *qual)
  501. {
  502. u32 reg;
  503. u8 bbp;
  504. /*
  505. * Update FCS error count from register.
  506. */
  507. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  508. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  509. /*
  510. * Update False CCA count from register.
  511. */
  512. rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
  513. qual->false_cca = bbp;
  514. }
  515. static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  516. {
  517. rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
  518. rt2x00dev->link.vgc_level = 0x08;
  519. }
  520. static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  521. {
  522. u8 reg;
  523. /*
  524. * The link tuner should not run longer then 60 seconds,
  525. * and should run once every 2 seconds.
  526. */
  527. if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
  528. return;
  529. /*
  530. * Base r13 link tuning on the false cca count.
  531. */
  532. rt2400pci_bbp_read(rt2x00dev, 13, &reg);
  533. if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
  534. rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
  535. rt2x00dev->link.vgc_level = reg;
  536. } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
  537. rt2400pci_bbp_write(rt2x00dev, 13, --reg);
  538. rt2x00dev->link.vgc_level = reg;
  539. }
  540. }
  541. /*
  542. * Initialization functions.
  543. */
  544. static bool rt2400pci_get_entry_state(struct queue_entry *entry)
  545. {
  546. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  547. u32 word;
  548. if (entry->queue->qid == QID_RX) {
  549. rt2x00_desc_read(entry_priv->desc, 0, &word);
  550. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  551. } else {
  552. rt2x00_desc_read(entry_priv->desc, 0, &word);
  553. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  554. rt2x00_get_field32(word, TXD_W0_VALID));
  555. }
  556. }
  557. static void rt2400pci_clear_entry(struct queue_entry *entry)
  558. {
  559. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  560. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  561. u32 word;
  562. if (entry->queue->qid == QID_RX) {
  563. rt2x00_desc_read(entry_priv->desc, 2, &word);
  564. rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
  565. rt2x00_desc_write(entry_priv->desc, 2, word);
  566. rt2x00_desc_read(entry_priv->desc, 1, &word);
  567. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  568. rt2x00_desc_write(entry_priv->desc, 1, word);
  569. rt2x00_desc_read(entry_priv->desc, 0, &word);
  570. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  571. rt2x00_desc_write(entry_priv->desc, 0, word);
  572. } else {
  573. rt2x00_desc_read(entry_priv->desc, 0, &word);
  574. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  575. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  576. rt2x00_desc_write(entry_priv->desc, 0, word);
  577. }
  578. }
  579. static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
  580. {
  581. struct queue_entry_priv_pci *entry_priv;
  582. u32 reg;
  583. /*
  584. * Initialize registers.
  585. */
  586. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  587. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  588. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  589. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  590. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  591. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  592. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  593. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  594. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  595. entry_priv->desc_dma);
  596. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  597. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  598. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  599. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  600. entry_priv->desc_dma);
  601. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  602. entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
  603. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  604. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  605. entry_priv->desc_dma);
  606. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  607. entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
  608. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  609. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  610. entry_priv->desc_dma);
  611. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  612. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  613. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  614. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  615. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  616. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  617. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  618. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  619. entry_priv->desc_dma);
  620. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  621. return 0;
  622. }
  623. static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
  624. {
  625. u32 reg;
  626. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  627. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  628. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
  629. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  630. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  631. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  632. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  633. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  634. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  635. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  636. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  637. (rt2x00dev->rx->data_size / 128));
  638. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  639. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  640. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  641. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  642. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  643. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  644. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  645. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  646. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  647. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  648. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  649. rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
  650. rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
  651. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
  652. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
  653. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
  654. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
  655. rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
  656. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  657. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
  658. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  659. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
  660. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  661. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
  662. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  663. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  664. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  665. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  666. return -EBUSY;
  667. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
  668. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  669. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  670. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  671. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  672. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  673. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  674. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
  675. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  676. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
  677. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  678. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  679. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  680. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  681. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  682. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  683. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  684. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  685. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  686. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  687. /*
  688. * We must clear the FCS and FIFO error count.
  689. * These registers are cleared on read,
  690. * so we may pass a useless variable to store the value.
  691. */
  692. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  693. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  694. return 0;
  695. }
  696. static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  697. {
  698. unsigned int i;
  699. u8 value;
  700. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  701. rt2400pci_bbp_read(rt2x00dev, 0, &value);
  702. if ((value != 0xff) && (value != 0x00))
  703. return 0;
  704. udelay(REGISTER_BUSY_DELAY);
  705. }
  706. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  707. return -EACCES;
  708. }
  709. static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  710. {
  711. unsigned int i;
  712. u16 eeprom;
  713. u8 reg_id;
  714. u8 value;
  715. if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
  716. return -EACCES;
  717. rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
  718. rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
  719. rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
  720. rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
  721. rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
  722. rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
  723. rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
  724. rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
  725. rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
  726. rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
  727. rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
  728. rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
  729. rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
  730. rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
  731. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  732. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  733. if (eeprom != 0xffff && eeprom != 0x0000) {
  734. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  735. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  736. rt2400pci_bbp_write(rt2x00dev, reg_id, value);
  737. }
  738. }
  739. return 0;
  740. }
  741. /*
  742. * Device state switch handlers.
  743. */
  744. static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  745. enum dev_state state)
  746. {
  747. u32 reg;
  748. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  749. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  750. (state == STATE_RADIO_RX_OFF) ||
  751. (state == STATE_RADIO_RX_OFF_LINK));
  752. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  753. }
  754. static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  755. enum dev_state state)
  756. {
  757. int mask = (state == STATE_RADIO_IRQ_OFF);
  758. u32 reg;
  759. /*
  760. * When interrupts are being enabled, the interrupt registers
  761. * should clear the register to assure a clean state.
  762. */
  763. if (state == STATE_RADIO_IRQ_ON) {
  764. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  765. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  766. }
  767. /*
  768. * Only toggle the interrupts bits we are going to use.
  769. * Non-checked interrupt bits are disabled by default.
  770. */
  771. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  772. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  773. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  774. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  775. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  776. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  777. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  778. }
  779. static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  780. {
  781. /*
  782. * Initialize all registers.
  783. */
  784. if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
  785. rt2400pci_init_registers(rt2x00dev) ||
  786. rt2400pci_init_bbp(rt2x00dev)))
  787. return -EIO;
  788. return 0;
  789. }
  790. static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  791. {
  792. u32 reg;
  793. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  794. /*
  795. * Disable synchronisation.
  796. */
  797. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  798. /*
  799. * Cancel RX and TX.
  800. */
  801. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  802. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  803. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  804. }
  805. static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
  806. enum dev_state state)
  807. {
  808. u32 reg;
  809. unsigned int i;
  810. char put_to_sleep;
  811. char bbp_state;
  812. char rf_state;
  813. put_to_sleep = (state != STATE_AWAKE);
  814. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  815. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  816. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  817. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  818. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  819. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  820. /*
  821. * Device is not guaranteed to be in the requested state yet.
  822. * We must wait until the register indicates that the
  823. * device has entered the correct state.
  824. */
  825. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  826. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  827. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  828. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  829. if (bbp_state == state && rf_state == state)
  830. return 0;
  831. msleep(10);
  832. }
  833. return -EBUSY;
  834. }
  835. static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  836. enum dev_state state)
  837. {
  838. int retval = 0;
  839. switch (state) {
  840. case STATE_RADIO_ON:
  841. retval = rt2400pci_enable_radio(rt2x00dev);
  842. break;
  843. case STATE_RADIO_OFF:
  844. rt2400pci_disable_radio(rt2x00dev);
  845. break;
  846. case STATE_RADIO_RX_ON:
  847. case STATE_RADIO_RX_ON_LINK:
  848. case STATE_RADIO_RX_OFF:
  849. case STATE_RADIO_RX_OFF_LINK:
  850. rt2400pci_toggle_rx(rt2x00dev, state);
  851. break;
  852. case STATE_RADIO_IRQ_ON:
  853. case STATE_RADIO_IRQ_OFF:
  854. rt2400pci_toggle_irq(rt2x00dev, state);
  855. break;
  856. case STATE_DEEP_SLEEP:
  857. case STATE_SLEEP:
  858. case STATE_STANDBY:
  859. case STATE_AWAKE:
  860. retval = rt2400pci_set_state(rt2x00dev, state);
  861. break;
  862. default:
  863. retval = -ENOTSUPP;
  864. break;
  865. }
  866. if (unlikely(retval))
  867. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  868. state, retval);
  869. return retval;
  870. }
  871. /*
  872. * TX descriptor initialization
  873. */
  874. static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  875. struct sk_buff *skb,
  876. struct txentry_desc *txdesc)
  877. {
  878. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  879. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  880. __le32 *txd = skbdesc->desc;
  881. u32 word;
  882. /*
  883. * Start writing the descriptor words.
  884. */
  885. rt2x00_desc_read(entry_priv->desc, 1, &word);
  886. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  887. rt2x00_desc_write(entry_priv->desc, 1, word);
  888. rt2x00_desc_read(txd, 2, &word);
  889. rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
  890. rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
  891. rt2x00_desc_write(txd, 2, word);
  892. rt2x00_desc_read(txd, 3, &word);
  893. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  894. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
  895. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
  896. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  897. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
  898. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
  899. rt2x00_desc_write(txd, 3, word);
  900. rt2x00_desc_read(txd, 4, &word);
  901. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
  902. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
  903. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
  904. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
  905. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
  906. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
  907. rt2x00_desc_write(txd, 4, word);
  908. rt2x00_desc_read(txd, 0, &word);
  909. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  910. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  911. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  912. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  913. rt2x00_set_field32(&word, TXD_W0_ACK,
  914. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  915. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  916. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  917. rt2x00_set_field32(&word, TXD_W0_RTS,
  918. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  919. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  920. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  921. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  922. rt2x00_desc_write(txd, 0, word);
  923. }
  924. /*
  925. * TX data initialization
  926. */
  927. static void rt2400pci_write_beacon(struct queue_entry *entry)
  928. {
  929. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  930. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  931. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  932. u32 word;
  933. u32 reg;
  934. /*
  935. * Disable beaconing while we are reloading the beacon data,
  936. * otherwise we might be sending out invalid data.
  937. */
  938. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  939. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  940. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  941. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  942. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  943. /*
  944. * Replace rt2x00lib allocated descriptor with the
  945. * pointer to the _real_ hardware descriptor.
  946. * After that, map the beacon to DMA and update the
  947. * descriptor.
  948. */
  949. memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
  950. skbdesc->desc = entry_priv->desc;
  951. rt2x00queue_map_txskb(rt2x00dev, entry->skb);
  952. rt2x00_desc_read(entry_priv->desc, 1, &word);
  953. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  954. rt2x00_desc_write(entry_priv->desc, 1, word);
  955. }
  956. static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  957. const enum data_queue_qid queue)
  958. {
  959. u32 reg;
  960. if (queue == QID_BEACON) {
  961. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  962. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  963. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  964. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  965. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  966. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  967. }
  968. return;
  969. }
  970. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  971. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
  972. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
  973. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
  974. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  975. }
  976. /*
  977. * RX control handlers
  978. */
  979. static void rt2400pci_fill_rxdone(struct queue_entry *entry,
  980. struct rxdone_entry_desc *rxdesc)
  981. {
  982. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  983. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  984. u32 word0;
  985. u32 word2;
  986. u32 word3;
  987. u32 word4;
  988. u64 tsf;
  989. u32 rx_low;
  990. u32 rx_high;
  991. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  992. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  993. rt2x00_desc_read(entry_priv->desc, 3, &word3);
  994. rt2x00_desc_read(entry_priv->desc, 4, &word4);
  995. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  996. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  997. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  998. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  999. /*
  1000. * We only get the lower 32bits from the timestamp,
  1001. * to get the full 64bits we must complement it with
  1002. * the timestamp from get_tsf().
  1003. * Note that when a wraparound of the lower 32bits
  1004. * has occurred between the frame arrival and the get_tsf()
  1005. * call, we must decrease the higher 32bits with 1 to get
  1006. * to correct value.
  1007. */
  1008. tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
  1009. rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
  1010. rx_high = upper_32_bits(tsf);
  1011. if ((u32)tsf <= rx_low)
  1012. rx_high--;
  1013. /*
  1014. * Obtain the status about this packet.
  1015. * The signal is the PLCP value, and needs to be stripped
  1016. * of the preamble bit (0x08).
  1017. */
  1018. rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
  1019. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
  1020. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
  1021. entry->queue->rt2x00dev->rssi_offset;
  1022. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1023. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1024. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1025. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1026. }
  1027. /*
  1028. * Interrupt functions.
  1029. */
  1030. static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
  1031. const enum data_queue_qid queue_idx)
  1032. {
  1033. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1034. struct queue_entry_priv_pci *entry_priv;
  1035. struct queue_entry *entry;
  1036. struct txdone_entry_desc txdesc;
  1037. u32 word;
  1038. while (!rt2x00queue_empty(queue)) {
  1039. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1040. entry_priv = entry->priv_data;
  1041. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1042. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1043. !rt2x00_get_field32(word, TXD_W0_VALID))
  1044. break;
  1045. /*
  1046. * Obtain the status about this packet.
  1047. */
  1048. txdesc.flags = 0;
  1049. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1050. case 0: /* Success */
  1051. case 1: /* Success with retry */
  1052. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1053. break;
  1054. case 2: /* Failure, excessive retries */
  1055. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1056. /* Don't break, this is a failed frame! */
  1057. default: /* Failure */
  1058. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1059. }
  1060. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1061. rt2x00lib_txdone(entry, &txdesc);
  1062. }
  1063. }
  1064. static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
  1065. {
  1066. struct rt2x00_dev *rt2x00dev = dev_instance;
  1067. u32 reg;
  1068. /*
  1069. * Get the interrupt sources & saved to local variable.
  1070. * Write register value back to clear pending interrupts.
  1071. */
  1072. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1073. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1074. if (!reg)
  1075. return IRQ_NONE;
  1076. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1077. return IRQ_HANDLED;
  1078. /*
  1079. * Handle interrupts, walk through all bits
  1080. * and run the tasks, the bits are checked in order of
  1081. * priority.
  1082. */
  1083. /*
  1084. * 1 - Beacon timer expired interrupt.
  1085. */
  1086. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1087. rt2x00lib_beacondone(rt2x00dev);
  1088. /*
  1089. * 2 - Rx ring done interrupt.
  1090. */
  1091. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1092. rt2x00pci_rxdone(rt2x00dev);
  1093. /*
  1094. * 3 - Atim ring transmit done interrupt.
  1095. */
  1096. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1097. rt2400pci_txdone(rt2x00dev, QID_ATIM);
  1098. /*
  1099. * 4 - Priority ring transmit done interrupt.
  1100. */
  1101. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1102. rt2400pci_txdone(rt2x00dev, QID_AC_BE);
  1103. /*
  1104. * 5 - Tx ring transmit done interrupt.
  1105. */
  1106. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1107. rt2400pci_txdone(rt2x00dev, QID_AC_BK);
  1108. return IRQ_HANDLED;
  1109. }
  1110. /*
  1111. * Device probe functions.
  1112. */
  1113. static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1114. {
  1115. struct eeprom_93cx6 eeprom;
  1116. u32 reg;
  1117. u16 word;
  1118. u8 *mac;
  1119. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1120. eeprom.data = rt2x00dev;
  1121. eeprom.register_read = rt2400pci_eepromregister_read;
  1122. eeprom.register_write = rt2400pci_eepromregister_write;
  1123. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1124. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1125. eeprom.reg_data_in = 0;
  1126. eeprom.reg_data_out = 0;
  1127. eeprom.reg_data_clock = 0;
  1128. eeprom.reg_chip_select = 0;
  1129. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1130. EEPROM_SIZE / sizeof(u16));
  1131. /*
  1132. * Start validation of the data that has been read.
  1133. */
  1134. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1135. if (!is_valid_ether_addr(mac)) {
  1136. random_ether_addr(mac);
  1137. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1138. }
  1139. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1140. if (word == 0xffff) {
  1141. ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
  1142. return -EINVAL;
  1143. }
  1144. return 0;
  1145. }
  1146. static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1147. {
  1148. u32 reg;
  1149. u16 value;
  1150. u16 eeprom;
  1151. /*
  1152. * Read EEPROM word for configuration.
  1153. */
  1154. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1155. /*
  1156. * Identify RF chipset.
  1157. */
  1158. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1159. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1160. rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
  1161. if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
  1162. !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
  1163. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1164. return -ENODEV;
  1165. }
  1166. /*
  1167. * Identify default antenna configuration.
  1168. */
  1169. rt2x00dev->default_ant.tx =
  1170. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1171. rt2x00dev->default_ant.rx =
  1172. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1173. /*
  1174. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1175. * I am not 100% sure about this, but the legacy drivers do not
  1176. * indicate antenna swapping in software is required when
  1177. * diversity is enabled.
  1178. */
  1179. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1180. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1181. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1182. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1183. /*
  1184. * Store led mode, for correct led behaviour.
  1185. */
  1186. #ifdef CONFIG_RT2X00_LIB_LEDS
  1187. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1188. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1189. if (value == LED_MODE_TXRX_ACTIVITY)
  1190. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1191. LED_TYPE_ACTIVITY);
  1192. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1193. /*
  1194. * Detect if this device has an hardware controlled radio.
  1195. */
  1196. #ifdef CONFIG_RT2X00_LIB_RFKILL
  1197. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1198. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1199. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  1200. /*
  1201. * Check if the BBP tuning should be enabled.
  1202. */
  1203. if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
  1204. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1205. return 0;
  1206. }
  1207. /*
  1208. * RF value list for RF2420 & RF2421
  1209. * Supports: 2.4 GHz
  1210. */
  1211. static const struct rf_channel rf_vals_b[] = {
  1212. { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
  1213. { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
  1214. { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
  1215. { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
  1216. { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
  1217. { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
  1218. { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
  1219. { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
  1220. { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
  1221. { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
  1222. { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
  1223. { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
  1224. { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
  1225. { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
  1226. };
  1227. static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1228. {
  1229. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1230. struct channel_info *info;
  1231. char *tx_power;
  1232. unsigned int i;
  1233. /*
  1234. * Initialize all hw fields.
  1235. */
  1236. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1237. IEEE80211_HW_SIGNAL_DBM;
  1238. rt2x00dev->hw->extra_tx_headroom = 0;
  1239. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1240. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1241. rt2x00_eeprom_addr(rt2x00dev,
  1242. EEPROM_MAC_ADDR_0));
  1243. /*
  1244. * Initialize hw_mode information.
  1245. */
  1246. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1247. spec->supported_rates = SUPPORT_RATE_CCK;
  1248. spec->num_channels = ARRAY_SIZE(rf_vals_b);
  1249. spec->channels = rf_vals_b;
  1250. /*
  1251. * Create channel information array
  1252. */
  1253. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1254. if (!info)
  1255. return -ENOMEM;
  1256. spec->channels_info = info;
  1257. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1258. for (i = 0; i < 14; i++)
  1259. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1260. return 0;
  1261. }
  1262. static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1263. {
  1264. int retval;
  1265. /*
  1266. * Allocate eeprom data.
  1267. */
  1268. retval = rt2400pci_validate_eeprom(rt2x00dev);
  1269. if (retval)
  1270. return retval;
  1271. retval = rt2400pci_init_eeprom(rt2x00dev);
  1272. if (retval)
  1273. return retval;
  1274. /*
  1275. * Initialize hw specifications.
  1276. */
  1277. retval = rt2400pci_probe_hw_mode(rt2x00dev);
  1278. if (retval)
  1279. return retval;
  1280. /*
  1281. * This device requires the atim queue and DMA-mapped skbs.
  1282. */
  1283. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1284. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1285. /*
  1286. * Set the rssi offset.
  1287. */
  1288. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1289. return 0;
  1290. }
  1291. /*
  1292. * IEEE80211 stack callback functions.
  1293. */
  1294. static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
  1295. const struct ieee80211_tx_queue_params *params)
  1296. {
  1297. struct rt2x00_dev *rt2x00dev = hw->priv;
  1298. /*
  1299. * We don't support variating cw_min and cw_max variables
  1300. * per queue. So by default we only configure the TX queue,
  1301. * and ignore all other configurations.
  1302. */
  1303. if (queue != 0)
  1304. return -EINVAL;
  1305. if (rt2x00mac_conf_tx(hw, queue, params))
  1306. return -EINVAL;
  1307. /*
  1308. * Write configuration to register.
  1309. */
  1310. rt2400pci_config_cw(rt2x00dev,
  1311. rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
  1312. return 0;
  1313. }
  1314. static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
  1315. {
  1316. struct rt2x00_dev *rt2x00dev = hw->priv;
  1317. u64 tsf;
  1318. u32 reg;
  1319. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1320. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1321. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1322. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1323. return tsf;
  1324. }
  1325. static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
  1326. {
  1327. struct rt2x00_dev *rt2x00dev = hw->priv;
  1328. u32 reg;
  1329. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1330. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1331. }
  1332. static const struct ieee80211_ops rt2400pci_mac80211_ops = {
  1333. .tx = rt2x00mac_tx,
  1334. .start = rt2x00mac_start,
  1335. .stop = rt2x00mac_stop,
  1336. .add_interface = rt2x00mac_add_interface,
  1337. .remove_interface = rt2x00mac_remove_interface,
  1338. .config = rt2x00mac_config,
  1339. .config_interface = rt2x00mac_config_interface,
  1340. .configure_filter = rt2x00mac_configure_filter,
  1341. .get_stats = rt2x00mac_get_stats,
  1342. .bss_info_changed = rt2x00mac_bss_info_changed,
  1343. .conf_tx = rt2400pci_conf_tx,
  1344. .get_tx_stats = rt2x00mac_get_tx_stats,
  1345. .get_tsf = rt2400pci_get_tsf,
  1346. .tx_last_beacon = rt2400pci_tx_last_beacon,
  1347. };
  1348. static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
  1349. .irq_handler = rt2400pci_interrupt,
  1350. .probe_hw = rt2400pci_probe_hw,
  1351. .initialize = rt2x00pci_initialize,
  1352. .uninitialize = rt2x00pci_uninitialize,
  1353. .get_entry_state = rt2400pci_get_entry_state,
  1354. .clear_entry = rt2400pci_clear_entry,
  1355. .set_device_state = rt2400pci_set_device_state,
  1356. .rfkill_poll = rt2400pci_rfkill_poll,
  1357. .link_stats = rt2400pci_link_stats,
  1358. .reset_tuner = rt2400pci_reset_tuner,
  1359. .link_tuner = rt2400pci_link_tuner,
  1360. .write_tx_desc = rt2400pci_write_tx_desc,
  1361. .write_tx_data = rt2x00pci_write_tx_data,
  1362. .write_beacon = rt2400pci_write_beacon,
  1363. .kick_tx_queue = rt2400pci_kick_tx_queue,
  1364. .fill_rxdone = rt2400pci_fill_rxdone,
  1365. .config_filter = rt2400pci_config_filter,
  1366. .config_intf = rt2400pci_config_intf,
  1367. .config_erp = rt2400pci_config_erp,
  1368. .config_ant = rt2400pci_config_ant,
  1369. .config = rt2400pci_config,
  1370. };
  1371. static const struct data_queue_desc rt2400pci_queue_rx = {
  1372. .entry_num = RX_ENTRIES,
  1373. .data_size = DATA_FRAME_SIZE,
  1374. .desc_size = RXD_DESC_SIZE,
  1375. .priv_size = sizeof(struct queue_entry_priv_pci),
  1376. };
  1377. static const struct data_queue_desc rt2400pci_queue_tx = {
  1378. .entry_num = TX_ENTRIES,
  1379. .data_size = DATA_FRAME_SIZE,
  1380. .desc_size = TXD_DESC_SIZE,
  1381. .priv_size = sizeof(struct queue_entry_priv_pci),
  1382. };
  1383. static const struct data_queue_desc rt2400pci_queue_bcn = {
  1384. .entry_num = BEACON_ENTRIES,
  1385. .data_size = MGMT_FRAME_SIZE,
  1386. .desc_size = TXD_DESC_SIZE,
  1387. .priv_size = sizeof(struct queue_entry_priv_pci),
  1388. };
  1389. static const struct data_queue_desc rt2400pci_queue_atim = {
  1390. .entry_num = ATIM_ENTRIES,
  1391. .data_size = DATA_FRAME_SIZE,
  1392. .desc_size = TXD_DESC_SIZE,
  1393. .priv_size = sizeof(struct queue_entry_priv_pci),
  1394. };
  1395. static const struct rt2x00_ops rt2400pci_ops = {
  1396. .name = KBUILD_MODNAME,
  1397. .max_sta_intf = 1,
  1398. .max_ap_intf = 1,
  1399. .eeprom_size = EEPROM_SIZE,
  1400. .rf_size = RF_SIZE,
  1401. .tx_queues = NUM_TX_QUEUES,
  1402. .rx = &rt2400pci_queue_rx,
  1403. .tx = &rt2400pci_queue_tx,
  1404. .bcn = &rt2400pci_queue_bcn,
  1405. .atim = &rt2400pci_queue_atim,
  1406. .lib = &rt2400pci_rt2x00_ops,
  1407. .hw = &rt2400pci_mac80211_ops,
  1408. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1409. .debugfs = &rt2400pci_rt2x00debug,
  1410. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1411. };
  1412. /*
  1413. * RT2400pci module information.
  1414. */
  1415. static struct pci_device_id rt2400pci_device_table[] = {
  1416. { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
  1417. { 0, }
  1418. };
  1419. MODULE_AUTHOR(DRV_PROJECT);
  1420. MODULE_VERSION(DRV_VERSION);
  1421. MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
  1422. MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
  1423. MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
  1424. MODULE_LICENSE("GPL");
  1425. static struct pci_driver rt2400pci_driver = {
  1426. .name = KBUILD_MODNAME,
  1427. .id_table = rt2400pci_device_table,
  1428. .probe = rt2x00pci_probe,
  1429. .remove = __devexit_p(rt2x00pci_remove),
  1430. .suspend = rt2x00pci_suspend,
  1431. .resume = rt2x00pci_resume,
  1432. };
  1433. static int __init rt2400pci_init(void)
  1434. {
  1435. return pci_register_driver(&rt2400pci_driver);
  1436. }
  1437. static void __exit rt2400pci_exit(void)
  1438. {
  1439. pci_unregister_driver(&rt2400pci_driver);
  1440. }
  1441. module_init(rt2400pci_init);
  1442. module_exit(rt2400pci_exit);