task_nommu.c 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250
  1. #include <linux/mm.h>
  2. #include <linux/file.h>
  3. #include <linux/fdtable.h>
  4. #include <linux/fs_struct.h>
  5. #include <linux/mount.h>
  6. #include <linux/ptrace.h>
  7. #include <linux/seq_file.h>
  8. #include "internal.h"
  9. /*
  10. * Logic: we've got two memory sums for each process, "shared", and
  11. * "non-shared". Shared memory may get counted more than once, for
  12. * each process that owns it. Non-shared memory is counted
  13. * accurately.
  14. */
  15. void task_mem(struct seq_file *m, struct mm_struct *mm)
  16. {
  17. struct vm_area_struct *vma;
  18. struct vm_region *region;
  19. struct rb_node *p;
  20. unsigned long bytes = 0, sbytes = 0, slack = 0, size;
  21. down_read(&mm->mmap_sem);
  22. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p)) {
  23. vma = rb_entry(p, struct vm_area_struct, vm_rb);
  24. bytes += kobjsize(vma);
  25. region = vma->vm_region;
  26. if (region) {
  27. size = kobjsize(region);
  28. size += region->vm_end - region->vm_start;
  29. } else {
  30. size = vma->vm_end - vma->vm_start;
  31. }
  32. if (atomic_read(&mm->mm_count) > 1 ||
  33. vma->vm_flags & VM_MAYSHARE) {
  34. sbytes += size;
  35. } else {
  36. bytes += size;
  37. if (region)
  38. slack = region->vm_end - vma->vm_end;
  39. }
  40. }
  41. if (atomic_read(&mm->mm_count) > 1)
  42. sbytes += kobjsize(mm);
  43. else
  44. bytes += kobjsize(mm);
  45. if (current->fs && current->fs->users > 1)
  46. sbytes += kobjsize(current->fs);
  47. else
  48. bytes += kobjsize(current->fs);
  49. if (current->files && atomic_read(&current->files->count) > 1)
  50. sbytes += kobjsize(current->files);
  51. else
  52. bytes += kobjsize(current->files);
  53. if (current->sighand && atomic_read(&current->sighand->count) > 1)
  54. sbytes += kobjsize(current->sighand);
  55. else
  56. bytes += kobjsize(current->sighand);
  57. bytes += kobjsize(current); /* includes kernel stack */
  58. seq_printf(m,
  59. "Mem:\t%8lu bytes\n"
  60. "Slack:\t%8lu bytes\n"
  61. "Shared:\t%8lu bytes\n",
  62. bytes, slack, sbytes);
  63. up_read(&mm->mmap_sem);
  64. }
  65. unsigned long task_vsize(struct mm_struct *mm)
  66. {
  67. struct vm_area_struct *vma;
  68. struct rb_node *p;
  69. unsigned long vsize = 0;
  70. down_read(&mm->mmap_sem);
  71. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p)) {
  72. vma = rb_entry(p, struct vm_area_struct, vm_rb);
  73. vsize += vma->vm_end - vma->vm_start;
  74. }
  75. up_read(&mm->mmap_sem);
  76. return vsize;
  77. }
  78. int task_statm(struct mm_struct *mm, int *shared, int *text,
  79. int *data, int *resident)
  80. {
  81. struct vm_area_struct *vma;
  82. struct vm_region *region;
  83. struct rb_node *p;
  84. int size = kobjsize(mm);
  85. down_read(&mm->mmap_sem);
  86. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p)) {
  87. vma = rb_entry(p, struct vm_area_struct, vm_rb);
  88. size += kobjsize(vma);
  89. region = vma->vm_region;
  90. if (region) {
  91. size += kobjsize(region);
  92. size += region->vm_end - region->vm_start;
  93. }
  94. }
  95. size += (*text = mm->end_code - mm->start_code);
  96. size += (*data = mm->start_stack - mm->start_data);
  97. up_read(&mm->mmap_sem);
  98. *resident = size;
  99. return size;
  100. }
  101. /*
  102. * display a single VMA to a sequenced file
  103. */
  104. static int nommu_vma_show(struct seq_file *m, struct vm_area_struct *vma)
  105. {
  106. unsigned long ino = 0;
  107. struct file *file;
  108. dev_t dev = 0;
  109. int flags, len;
  110. flags = vma->vm_flags;
  111. file = vma->vm_file;
  112. if (file) {
  113. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  114. dev = inode->i_sb->s_dev;
  115. ino = inode->i_ino;
  116. }
  117. seq_printf(m,
  118. "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
  119. vma->vm_start,
  120. vma->vm_end,
  121. flags & VM_READ ? 'r' : '-',
  122. flags & VM_WRITE ? 'w' : '-',
  123. flags & VM_EXEC ? 'x' : '-',
  124. flags & VM_MAYSHARE ? flags & VM_SHARED ? 'S' : 's' : 'p',
  125. (unsigned long long) vma->vm_pgoff << PAGE_SHIFT,
  126. MAJOR(dev), MINOR(dev), ino, &len);
  127. if (file) {
  128. len = 25 + sizeof(void *) * 6 - len;
  129. if (len < 1)
  130. len = 1;
  131. seq_printf(m, "%*c", len, ' ');
  132. seq_path(m, &file->f_path, "");
  133. }
  134. seq_putc(m, '\n');
  135. return 0;
  136. }
  137. /*
  138. * display mapping lines for a particular process's /proc/pid/maps
  139. */
  140. static int show_map(struct seq_file *m, void *_p)
  141. {
  142. struct rb_node *p = _p;
  143. return nommu_vma_show(m, rb_entry(p, struct vm_area_struct, vm_rb));
  144. }
  145. static void *m_start(struct seq_file *m, loff_t *pos)
  146. {
  147. struct proc_maps_private *priv = m->private;
  148. struct mm_struct *mm;
  149. struct rb_node *p;
  150. loff_t n = *pos;
  151. /* pin the task and mm whilst we play with them */
  152. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  153. if (!priv->task)
  154. return NULL;
  155. mm = mm_for_maps(priv->task);
  156. if (!mm) {
  157. put_task_struct(priv->task);
  158. priv->task = NULL;
  159. return NULL;
  160. }
  161. /* start from the Nth VMA */
  162. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p))
  163. if (n-- == 0)
  164. return p;
  165. return NULL;
  166. }
  167. static void m_stop(struct seq_file *m, void *_vml)
  168. {
  169. struct proc_maps_private *priv = m->private;
  170. if (priv->task) {
  171. struct mm_struct *mm = priv->task->mm;
  172. up_read(&mm->mmap_sem);
  173. mmput(mm);
  174. put_task_struct(priv->task);
  175. }
  176. }
  177. static void *m_next(struct seq_file *m, void *_p, loff_t *pos)
  178. {
  179. struct rb_node *p = _p;
  180. (*pos)++;
  181. return p ? rb_next(p) : NULL;
  182. }
  183. static const struct seq_operations proc_pid_maps_ops = {
  184. .start = m_start,
  185. .next = m_next,
  186. .stop = m_stop,
  187. .show = show_map
  188. };
  189. static int maps_open(struct inode *inode, struct file *file)
  190. {
  191. struct proc_maps_private *priv;
  192. int ret = -ENOMEM;
  193. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  194. if (priv) {
  195. priv->pid = proc_pid(inode);
  196. ret = seq_open(file, &proc_pid_maps_ops);
  197. if (!ret) {
  198. struct seq_file *m = file->private_data;
  199. m->private = priv;
  200. } else {
  201. kfree(priv);
  202. }
  203. }
  204. return ret;
  205. }
  206. const struct file_operations proc_maps_operations = {
  207. .open = maps_open,
  208. .read = seq_read,
  209. .llseek = seq_lseek,
  210. .release = seq_release_private,
  211. };