vmem.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387
  1. /*
  2. * Copyright IBM Corp. 2006
  3. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  4. */
  5. #include <linux/bootmem.h>
  6. #include <linux/pfn.h>
  7. #include <linux/mm.h>
  8. #include <linux/module.h>
  9. #include <linux/list.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/slab.h>
  12. #include <asm/pgalloc.h>
  13. #include <asm/pgtable.h>
  14. #include <asm/setup.h>
  15. #include <asm/tlbflush.h>
  16. #include <asm/sections.h>
  17. static DEFINE_MUTEX(vmem_mutex);
  18. struct memory_segment {
  19. struct list_head list;
  20. unsigned long start;
  21. unsigned long size;
  22. };
  23. static LIST_HEAD(mem_segs);
  24. static void __ref *vmem_alloc_pages(unsigned int order)
  25. {
  26. if (slab_is_available())
  27. return (void *)__get_free_pages(GFP_KERNEL, order);
  28. return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
  29. }
  30. static inline pud_t *vmem_pud_alloc(void)
  31. {
  32. pud_t *pud = NULL;
  33. #ifdef CONFIG_64BIT
  34. pud = vmem_alloc_pages(2);
  35. if (!pud)
  36. return NULL;
  37. clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
  38. #endif
  39. return pud;
  40. }
  41. static inline pmd_t *vmem_pmd_alloc(void)
  42. {
  43. pmd_t *pmd = NULL;
  44. #ifdef CONFIG_64BIT
  45. pmd = vmem_alloc_pages(2);
  46. if (!pmd)
  47. return NULL;
  48. clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
  49. #endif
  50. return pmd;
  51. }
  52. static pte_t __ref *vmem_pte_alloc(unsigned long address)
  53. {
  54. pte_t *pte;
  55. if (slab_is_available())
  56. pte = (pte_t *) page_table_alloc(&init_mm, address);
  57. else
  58. pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
  59. if (!pte)
  60. return NULL;
  61. clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
  62. PTRS_PER_PTE * sizeof(pte_t));
  63. return pte;
  64. }
  65. /*
  66. * Add a physical memory range to the 1:1 mapping.
  67. */
  68. static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
  69. {
  70. unsigned long end = start + size;
  71. unsigned long address = start;
  72. pgd_t *pg_dir;
  73. pud_t *pu_dir;
  74. pmd_t *pm_dir;
  75. pte_t *pt_dir;
  76. pte_t pte;
  77. int ret = -ENOMEM;
  78. while (address < end) {
  79. pg_dir = pgd_offset_k(address);
  80. if (pgd_none(*pg_dir)) {
  81. pu_dir = vmem_pud_alloc();
  82. if (!pu_dir)
  83. goto out;
  84. pgd_populate(&init_mm, pg_dir, pu_dir);
  85. }
  86. pu_dir = pud_offset(pg_dir, address);
  87. if (pud_none(*pu_dir)) {
  88. pm_dir = vmem_pmd_alloc();
  89. if (!pm_dir)
  90. goto out;
  91. pud_populate(&init_mm, pu_dir, pm_dir);
  92. }
  93. pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
  94. pm_dir = pmd_offset(pu_dir, address);
  95. #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
  96. if (MACHINE_HAS_EDAT1 && address && !(address & ~PMD_MASK) &&
  97. (address + PMD_SIZE <= end)) {
  98. pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
  99. pmd_val(*pm_dir) = pte_val(pte);
  100. address += PMD_SIZE;
  101. continue;
  102. }
  103. #endif
  104. if (pmd_none(*pm_dir)) {
  105. pt_dir = vmem_pte_alloc(address);
  106. if (!pt_dir)
  107. goto out;
  108. pmd_populate(&init_mm, pm_dir, pt_dir);
  109. }
  110. pt_dir = pte_offset_kernel(pm_dir, address);
  111. *pt_dir = pte;
  112. address += PAGE_SIZE;
  113. }
  114. ret = 0;
  115. out:
  116. flush_tlb_kernel_range(start, end);
  117. return ret;
  118. }
  119. /*
  120. * Remove a physical memory range from the 1:1 mapping.
  121. * Currently only invalidates page table entries.
  122. */
  123. static void vmem_remove_range(unsigned long start, unsigned long size)
  124. {
  125. unsigned long end = start + size;
  126. unsigned long address = start;
  127. pgd_t *pg_dir;
  128. pud_t *pu_dir;
  129. pmd_t *pm_dir;
  130. pte_t *pt_dir;
  131. pte_t pte;
  132. pte_val(pte) = _PAGE_TYPE_EMPTY;
  133. while (address < end) {
  134. pg_dir = pgd_offset_k(address);
  135. pu_dir = pud_offset(pg_dir, address);
  136. if (pud_none(*pu_dir))
  137. continue;
  138. pm_dir = pmd_offset(pu_dir, address);
  139. if (pmd_none(*pm_dir))
  140. continue;
  141. if (pmd_large(*pm_dir)) {
  142. pmd_clear(pm_dir);
  143. address += PMD_SIZE;
  144. continue;
  145. }
  146. pt_dir = pte_offset_kernel(pm_dir, address);
  147. *pt_dir = pte;
  148. address += PAGE_SIZE;
  149. }
  150. flush_tlb_kernel_range(start, end);
  151. }
  152. /*
  153. * Add a backed mem_map array to the virtual mem_map array.
  154. */
  155. int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
  156. {
  157. unsigned long address, start_addr, end_addr;
  158. pgd_t *pg_dir;
  159. pud_t *pu_dir;
  160. pmd_t *pm_dir;
  161. pte_t *pt_dir;
  162. pte_t pte;
  163. int ret = -ENOMEM;
  164. start_addr = (unsigned long) start;
  165. end_addr = (unsigned long) (start + nr);
  166. for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
  167. pg_dir = pgd_offset_k(address);
  168. if (pgd_none(*pg_dir)) {
  169. pu_dir = vmem_pud_alloc();
  170. if (!pu_dir)
  171. goto out;
  172. pgd_populate(&init_mm, pg_dir, pu_dir);
  173. }
  174. pu_dir = pud_offset(pg_dir, address);
  175. if (pud_none(*pu_dir)) {
  176. pm_dir = vmem_pmd_alloc();
  177. if (!pm_dir)
  178. goto out;
  179. pud_populate(&init_mm, pu_dir, pm_dir);
  180. }
  181. pm_dir = pmd_offset(pu_dir, address);
  182. if (pmd_none(*pm_dir)) {
  183. pt_dir = vmem_pte_alloc(address);
  184. if (!pt_dir)
  185. goto out;
  186. pmd_populate(&init_mm, pm_dir, pt_dir);
  187. }
  188. pt_dir = pte_offset_kernel(pm_dir, address);
  189. if (pte_none(*pt_dir)) {
  190. unsigned long new_page;
  191. new_page =__pa(vmem_alloc_pages(0));
  192. if (!new_page)
  193. goto out;
  194. pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
  195. *pt_dir = pte;
  196. }
  197. }
  198. memset(start, 0, nr * sizeof(struct page));
  199. ret = 0;
  200. out:
  201. flush_tlb_kernel_range(start_addr, end_addr);
  202. return ret;
  203. }
  204. /*
  205. * Add memory segment to the segment list if it doesn't overlap with
  206. * an already present segment.
  207. */
  208. static int insert_memory_segment(struct memory_segment *seg)
  209. {
  210. struct memory_segment *tmp;
  211. if (seg->start + seg->size > VMEM_MAX_PHYS ||
  212. seg->start + seg->size < seg->start)
  213. return -ERANGE;
  214. list_for_each_entry(tmp, &mem_segs, list) {
  215. if (seg->start >= tmp->start + tmp->size)
  216. continue;
  217. if (seg->start + seg->size <= tmp->start)
  218. continue;
  219. return -ENOSPC;
  220. }
  221. list_add(&seg->list, &mem_segs);
  222. return 0;
  223. }
  224. /*
  225. * Remove memory segment from the segment list.
  226. */
  227. static void remove_memory_segment(struct memory_segment *seg)
  228. {
  229. list_del(&seg->list);
  230. }
  231. static void __remove_shared_memory(struct memory_segment *seg)
  232. {
  233. remove_memory_segment(seg);
  234. vmem_remove_range(seg->start, seg->size);
  235. }
  236. int vmem_remove_mapping(unsigned long start, unsigned long size)
  237. {
  238. struct memory_segment *seg;
  239. int ret;
  240. mutex_lock(&vmem_mutex);
  241. ret = -ENOENT;
  242. list_for_each_entry(seg, &mem_segs, list) {
  243. if (seg->start == start && seg->size == size)
  244. break;
  245. }
  246. if (seg->start != start || seg->size != size)
  247. goto out;
  248. ret = 0;
  249. __remove_shared_memory(seg);
  250. kfree(seg);
  251. out:
  252. mutex_unlock(&vmem_mutex);
  253. return ret;
  254. }
  255. int vmem_add_mapping(unsigned long start, unsigned long size)
  256. {
  257. struct memory_segment *seg;
  258. int ret;
  259. mutex_lock(&vmem_mutex);
  260. ret = -ENOMEM;
  261. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  262. if (!seg)
  263. goto out;
  264. seg->start = start;
  265. seg->size = size;
  266. ret = insert_memory_segment(seg);
  267. if (ret)
  268. goto out_free;
  269. ret = vmem_add_mem(start, size, 0);
  270. if (ret)
  271. goto out_remove;
  272. goto out;
  273. out_remove:
  274. __remove_shared_memory(seg);
  275. out_free:
  276. kfree(seg);
  277. out:
  278. mutex_unlock(&vmem_mutex);
  279. return ret;
  280. }
  281. /*
  282. * map whole physical memory to virtual memory (identity mapping)
  283. * we reserve enough space in the vmalloc area for vmemmap to hotplug
  284. * additional memory segments.
  285. */
  286. void __init vmem_map_init(void)
  287. {
  288. unsigned long ro_start, ro_end;
  289. unsigned long start, end;
  290. int i;
  291. ro_start = PFN_ALIGN((unsigned long)&_stext);
  292. ro_end = (unsigned long)&_eshared & PAGE_MASK;
  293. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  294. if (memory_chunk[i].type == CHUNK_CRASHK ||
  295. memory_chunk[i].type == CHUNK_OLDMEM)
  296. continue;
  297. start = memory_chunk[i].addr;
  298. end = memory_chunk[i].addr + memory_chunk[i].size;
  299. if (start >= ro_end || end <= ro_start)
  300. vmem_add_mem(start, end - start, 0);
  301. else if (start >= ro_start && end <= ro_end)
  302. vmem_add_mem(start, end - start, 1);
  303. else if (start >= ro_start) {
  304. vmem_add_mem(start, ro_end - start, 1);
  305. vmem_add_mem(ro_end, end - ro_end, 0);
  306. } else if (end < ro_end) {
  307. vmem_add_mem(start, ro_start - start, 0);
  308. vmem_add_mem(ro_start, end - ro_start, 1);
  309. } else {
  310. vmem_add_mem(start, ro_start - start, 0);
  311. vmem_add_mem(ro_start, ro_end - ro_start, 1);
  312. vmem_add_mem(ro_end, end - ro_end, 0);
  313. }
  314. }
  315. }
  316. /*
  317. * Convert memory chunk array to a memory segment list so there is a single
  318. * list that contains both r/w memory and shared memory segments.
  319. */
  320. static int __init vmem_convert_memory_chunk(void)
  321. {
  322. struct memory_segment *seg;
  323. int i;
  324. mutex_lock(&vmem_mutex);
  325. for (i = 0; i < MEMORY_CHUNKS; i++) {
  326. if (!memory_chunk[i].size)
  327. continue;
  328. if (memory_chunk[i].type == CHUNK_CRASHK ||
  329. memory_chunk[i].type == CHUNK_OLDMEM)
  330. continue;
  331. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  332. if (!seg)
  333. panic("Out of memory...\n");
  334. seg->start = memory_chunk[i].addr;
  335. seg->size = memory_chunk[i].size;
  336. insert_memory_segment(seg);
  337. }
  338. mutex_unlock(&vmem_mutex);
  339. return 0;
  340. }
  341. core_initcall(vmem_convert_memory_chunk);