setup_64.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. */
  4. /*
  5. * This file handles the architecture-dependent parts of initialization
  6. */
  7. #include <linux/errno.h>
  8. #include <linux/sched.h>
  9. #include <linux/kernel.h>
  10. #include <linux/mm.h>
  11. #include <linux/stddef.h>
  12. #include <linux/unistd.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/slab.h>
  15. #include <linux/user.h>
  16. #include <linux/screen_info.h>
  17. #include <linux/ioport.h>
  18. #include <linux/delay.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/highmem.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/module.h>
  24. #include <asm/processor.h>
  25. #include <linux/console.h>
  26. #include <linux/seq_file.h>
  27. #include <linux/crash_dump.h>
  28. #include <linux/root_dev.h>
  29. #include <linux/pci.h>
  30. #include <linux/efi.h>
  31. #include <linux/acpi.h>
  32. #include <linux/kallsyms.h>
  33. #include <linux/edd.h>
  34. #include <linux/mmzone.h>
  35. #include <linux/kexec.h>
  36. #include <linux/cpufreq.h>
  37. #include <linux/dmi.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/ctype.h>
  40. #include <linux/uaccess.h>
  41. #include <linux/init_ohci1394_dma.h>
  42. #include <asm/mtrr.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/system.h>
  45. #include <asm/vsyscall.h>
  46. #include <asm/io.h>
  47. #include <asm/smp.h>
  48. #include <asm/msr.h>
  49. #include <asm/desc.h>
  50. #include <video/edid.h>
  51. #include <asm/e820.h>
  52. #include <asm/dma.h>
  53. #include <asm/gart.h>
  54. #include <asm/mpspec.h>
  55. #include <asm/mmu_context.h>
  56. #include <asm/proto.h>
  57. #include <asm/setup.h>
  58. #include <asm/mach_apic.h>
  59. #include <asm/numa.h>
  60. #include <asm/sections.h>
  61. #include <asm/dmi.h>
  62. #include <asm/cacheflush.h>
  63. #include <asm/mce.h>
  64. #include <asm/ds.h>
  65. #include <asm/topology.h>
  66. #ifdef CONFIG_PARAVIRT
  67. #include <asm/paravirt.h>
  68. #else
  69. #define ARCH_SETUP
  70. #endif
  71. /*
  72. * Machine setup..
  73. */
  74. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  75. EXPORT_SYMBOL(boot_cpu_data);
  76. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  77. unsigned long mmu_cr4_features;
  78. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  79. int bootloader_type;
  80. unsigned long saved_video_mode;
  81. int force_mwait __cpuinitdata;
  82. /*
  83. * Early DMI memory
  84. */
  85. int dmi_alloc_index;
  86. char dmi_alloc_data[DMI_MAX_DATA];
  87. /*
  88. * Setup options
  89. */
  90. struct screen_info screen_info;
  91. EXPORT_SYMBOL(screen_info);
  92. struct sys_desc_table_struct {
  93. unsigned short length;
  94. unsigned char table[0];
  95. };
  96. struct edid_info edid_info;
  97. EXPORT_SYMBOL_GPL(edid_info);
  98. extern int root_mountflags;
  99. char __initdata command_line[COMMAND_LINE_SIZE];
  100. struct resource standard_io_resources[] = {
  101. { .name = "dma1", .start = 0x00, .end = 0x1f,
  102. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  103. { .name = "pic1", .start = 0x20, .end = 0x21,
  104. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  105. { .name = "timer0", .start = 0x40, .end = 0x43,
  106. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  107. { .name = "timer1", .start = 0x50, .end = 0x53,
  108. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  109. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  110. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  111. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  112. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  113. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  114. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  115. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  116. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  117. { .name = "fpu", .start = 0xf0, .end = 0xff,
  118. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  119. };
  120. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  121. static struct resource data_resource = {
  122. .name = "Kernel data",
  123. .start = 0,
  124. .end = 0,
  125. .flags = IORESOURCE_RAM,
  126. };
  127. static struct resource code_resource = {
  128. .name = "Kernel code",
  129. .start = 0,
  130. .end = 0,
  131. .flags = IORESOURCE_RAM,
  132. };
  133. static struct resource bss_resource = {
  134. .name = "Kernel bss",
  135. .start = 0,
  136. .end = 0,
  137. .flags = IORESOURCE_RAM,
  138. };
  139. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
  140. #ifdef CONFIG_PROC_VMCORE
  141. /* elfcorehdr= specifies the location of elf core header
  142. * stored by the crashed kernel. This option will be passed
  143. * by kexec loader to the capture kernel.
  144. */
  145. static int __init setup_elfcorehdr(char *arg)
  146. {
  147. char *end;
  148. if (!arg)
  149. return -EINVAL;
  150. elfcorehdr_addr = memparse(arg, &end);
  151. return end > arg ? 0 : -EINVAL;
  152. }
  153. early_param("elfcorehdr", setup_elfcorehdr);
  154. #endif
  155. #ifndef CONFIG_NUMA
  156. static void __init
  157. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  158. {
  159. unsigned long bootmap_size, bootmap;
  160. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  161. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  162. PAGE_SIZE);
  163. if (bootmap == -1L)
  164. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  165. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  166. e820_register_active_regions(0, start_pfn, end_pfn);
  167. free_bootmem_with_active_regions(0, end_pfn);
  168. reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
  169. }
  170. #endif
  171. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  172. struct edd edd;
  173. #ifdef CONFIG_EDD_MODULE
  174. EXPORT_SYMBOL(edd);
  175. #endif
  176. /**
  177. * copy_edd() - Copy the BIOS EDD information
  178. * from boot_params into a safe place.
  179. *
  180. */
  181. static inline void copy_edd(void)
  182. {
  183. memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
  184. sizeof(edd.mbr_signature));
  185. memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
  186. edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
  187. edd.edd_info_nr = boot_params.eddbuf_entries;
  188. }
  189. #else
  190. static inline void copy_edd(void)
  191. {
  192. }
  193. #endif
  194. #ifdef CONFIG_KEXEC
  195. static void __init reserve_crashkernel(void)
  196. {
  197. unsigned long long total_mem;
  198. unsigned long long crash_size, crash_base;
  199. int ret;
  200. total_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  201. ret = parse_crashkernel(boot_command_line, total_mem,
  202. &crash_size, &crash_base);
  203. if (ret == 0 && crash_size) {
  204. if (crash_base <= 0) {
  205. printk(KERN_INFO "crashkernel reservation failed - "
  206. "you have to specify a base address\n");
  207. return;
  208. }
  209. if (reserve_bootmem(crash_base, crash_size,
  210. BOOTMEM_EXCLUSIVE) < 0) {
  211. printk(KERN_INFO "crashkernel reservation failed - "
  212. "memory is in use\n");
  213. return;
  214. }
  215. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  216. "for crashkernel (System RAM: %ldMB)\n",
  217. (unsigned long)(crash_size >> 20),
  218. (unsigned long)(crash_base >> 20),
  219. (unsigned long)(total_mem >> 20));
  220. crashk_res.start = crash_base;
  221. crashk_res.end = crash_base + crash_size - 1;
  222. }
  223. }
  224. #else
  225. static inline void __init reserve_crashkernel(void)
  226. {}
  227. #endif
  228. /* Overridden in paravirt.c if CONFIG_PARAVIRT */
  229. void __attribute__((weak)) __init memory_setup(void)
  230. {
  231. machine_specific_memory_setup();
  232. }
  233. /*
  234. * setup_arch - architecture-specific boot-time initializations
  235. *
  236. * Note: On x86_64, fixmaps are ready for use even before this is called.
  237. */
  238. void __init setup_arch(char **cmdline_p)
  239. {
  240. unsigned i;
  241. printk(KERN_INFO "Command line: %s\n", boot_command_line);
  242. ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
  243. screen_info = boot_params.screen_info;
  244. edid_info = boot_params.edid_info;
  245. saved_video_mode = boot_params.hdr.vid_mode;
  246. bootloader_type = boot_params.hdr.type_of_loader;
  247. #ifdef CONFIG_BLK_DEV_RAM
  248. rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
  249. rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
  250. rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
  251. #endif
  252. #ifdef CONFIG_EFI
  253. if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
  254. "EL64", 4))
  255. efi_enabled = 1;
  256. #endif
  257. ARCH_SETUP
  258. memory_setup();
  259. copy_edd();
  260. if (!boot_params.hdr.root_flags)
  261. root_mountflags &= ~MS_RDONLY;
  262. init_mm.start_code = (unsigned long) &_text;
  263. init_mm.end_code = (unsigned long) &_etext;
  264. init_mm.end_data = (unsigned long) &_edata;
  265. init_mm.brk = (unsigned long) &_end;
  266. code_resource.start = virt_to_phys(&_text);
  267. code_resource.end = virt_to_phys(&_etext)-1;
  268. data_resource.start = virt_to_phys(&_etext);
  269. data_resource.end = virt_to_phys(&_edata)-1;
  270. bss_resource.start = virt_to_phys(&__bss_start);
  271. bss_resource.end = virt_to_phys(&__bss_stop)-1;
  272. early_identify_cpu(&boot_cpu_data);
  273. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  274. *cmdline_p = command_line;
  275. parse_early_param();
  276. #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
  277. if (init_ohci1394_dma_early)
  278. init_ohci1394_dma_on_all_controllers();
  279. #endif
  280. finish_e820_parsing();
  281. early_gart_iommu_check();
  282. e820_register_active_regions(0, 0, -1UL);
  283. /*
  284. * partially used pages are not usable - thus
  285. * we are rounding upwards:
  286. */
  287. end_pfn = e820_end_of_ram();
  288. /* update e820 for memory not covered by WB MTRRs */
  289. mtrr_bp_init();
  290. if (mtrr_trim_uncached_memory(end_pfn)) {
  291. e820_register_active_regions(0, 0, -1UL);
  292. end_pfn = e820_end_of_ram();
  293. }
  294. num_physpages = end_pfn;
  295. check_efer();
  296. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  297. if (efi_enabled)
  298. efi_init();
  299. #ifdef CONFIG_PARAVIRT
  300. vsmp_init();
  301. #endif
  302. dmi_scan_machine();
  303. io_delay_init();
  304. #ifdef CONFIG_SMP
  305. /* setup to use the early static init tables during kernel startup */
  306. x86_cpu_to_apicid_early_ptr = (void *)x86_cpu_to_apicid_init;
  307. x86_bios_cpu_apicid_early_ptr = (void *)x86_bios_cpu_apicid_init;
  308. #ifdef CONFIG_NUMA
  309. x86_cpu_to_node_map_early_ptr = (void *)x86_cpu_to_node_map_init;
  310. #endif
  311. #endif
  312. #ifdef CONFIG_ACPI
  313. /*
  314. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  315. * Call this early for SRAT node setup.
  316. */
  317. acpi_boot_table_init();
  318. #endif
  319. /* How many end-of-memory variables you have, grandma! */
  320. max_low_pfn = end_pfn;
  321. max_pfn = end_pfn;
  322. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  323. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  324. remove_all_active_ranges();
  325. #ifdef CONFIG_ACPI_NUMA
  326. /*
  327. * Parse SRAT to discover nodes.
  328. */
  329. acpi_numa_init();
  330. #endif
  331. #ifdef CONFIG_NUMA
  332. numa_initmem_init(0, end_pfn);
  333. #else
  334. contig_initmem_init(0, end_pfn);
  335. #endif
  336. early_res_to_bootmem();
  337. #ifdef CONFIG_ACPI_SLEEP
  338. /*
  339. * Reserve low memory region for sleep support.
  340. */
  341. acpi_reserve_bootmem();
  342. #endif
  343. if (efi_enabled)
  344. efi_reserve_bootmem();
  345. /*
  346. * Find and reserve possible boot-time SMP configuration:
  347. */
  348. find_smp_config();
  349. #ifdef CONFIG_BLK_DEV_INITRD
  350. if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
  351. unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
  352. unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
  353. unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
  354. unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
  355. if (ramdisk_end <= end_of_mem) {
  356. reserve_bootmem_generic(ramdisk_image, ramdisk_size);
  357. initrd_start = ramdisk_image + PAGE_OFFSET;
  358. initrd_end = initrd_start+ramdisk_size;
  359. } else {
  360. /* Assumes everything on node 0 */
  361. free_bootmem(ramdisk_image, ramdisk_size);
  362. printk(KERN_ERR "initrd extends beyond end of memory "
  363. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  364. ramdisk_end, end_of_mem);
  365. initrd_start = 0;
  366. }
  367. }
  368. #endif
  369. reserve_crashkernel();
  370. paging_init();
  371. map_vsyscall();
  372. early_quirks();
  373. #ifdef CONFIG_ACPI
  374. /*
  375. * Read APIC and some other early information from ACPI tables.
  376. */
  377. acpi_boot_init();
  378. #endif
  379. init_cpu_to_node();
  380. /*
  381. * get boot-time SMP configuration:
  382. */
  383. if (smp_found_config)
  384. get_smp_config();
  385. init_apic_mappings();
  386. ioapic_init_mappings();
  387. /*
  388. * We trust e820 completely. No explicit ROM probing in memory.
  389. */
  390. e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
  391. e820_mark_nosave_regions();
  392. /* request I/O space for devices used on all i[345]86 PCs */
  393. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  394. request_resource(&ioport_resource, &standard_io_resources[i]);
  395. e820_setup_gap();
  396. #ifdef CONFIG_VT
  397. #if defined(CONFIG_VGA_CONSOLE)
  398. if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
  399. conswitchp = &vga_con;
  400. #elif defined(CONFIG_DUMMY_CONSOLE)
  401. conswitchp = &dummy_con;
  402. #endif
  403. #endif
  404. }
  405. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  406. {
  407. unsigned int *v;
  408. if (c->extended_cpuid_level < 0x80000004)
  409. return 0;
  410. v = (unsigned int *) c->x86_model_id;
  411. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  412. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  413. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  414. c->x86_model_id[48] = 0;
  415. return 1;
  416. }
  417. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  418. {
  419. unsigned int n, dummy, eax, ebx, ecx, edx;
  420. n = c->extended_cpuid_level;
  421. if (n >= 0x80000005) {
  422. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  423. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
  424. "D cache %dK (%d bytes/line)\n",
  425. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  426. c->x86_cache_size = (ecx>>24) + (edx>>24);
  427. /* On K8 L1 TLB is inclusive, so don't count it */
  428. c->x86_tlbsize = 0;
  429. }
  430. if (n >= 0x80000006) {
  431. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  432. ecx = cpuid_ecx(0x80000006);
  433. c->x86_cache_size = ecx >> 16;
  434. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  435. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  436. c->x86_cache_size, ecx & 0xFF);
  437. }
  438. if (n >= 0x80000008) {
  439. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  440. c->x86_virt_bits = (eax >> 8) & 0xff;
  441. c->x86_phys_bits = eax & 0xff;
  442. }
  443. }
  444. #ifdef CONFIG_NUMA
  445. static int __cpuinit nearby_node(int apicid)
  446. {
  447. int i, node;
  448. for (i = apicid - 1; i >= 0; i--) {
  449. node = apicid_to_node[i];
  450. if (node != NUMA_NO_NODE && node_online(node))
  451. return node;
  452. }
  453. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  454. node = apicid_to_node[i];
  455. if (node != NUMA_NO_NODE && node_online(node))
  456. return node;
  457. }
  458. return first_node(node_online_map); /* Shouldn't happen */
  459. }
  460. #endif
  461. /*
  462. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  463. * Assumes number of cores is a power of two.
  464. */
  465. static void __cpuinit amd_detect_cmp(struct cpuinfo_x86 *c)
  466. {
  467. #ifdef CONFIG_SMP
  468. unsigned bits;
  469. #ifdef CONFIG_NUMA
  470. int cpu = smp_processor_id();
  471. int node = 0;
  472. unsigned apicid = hard_smp_processor_id();
  473. #endif
  474. bits = c->x86_coreid_bits;
  475. /* Low order bits define the core id (index of core in socket) */
  476. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  477. /* Convert the APIC ID into the socket ID */
  478. c->phys_proc_id = phys_pkg_id(bits);
  479. #ifdef CONFIG_NUMA
  480. node = c->phys_proc_id;
  481. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  482. node = apicid_to_node[apicid];
  483. if (!node_online(node)) {
  484. /* Two possibilities here:
  485. - The CPU is missing memory and no node was created.
  486. In that case try picking one from a nearby CPU
  487. - The APIC IDs differ from the HyperTransport node IDs
  488. which the K8 northbridge parsing fills in.
  489. Assume they are all increased by a constant offset,
  490. but in the same order as the HT nodeids.
  491. If that doesn't result in a usable node fall back to the
  492. path for the previous case. */
  493. int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
  494. if (ht_nodeid >= 0 &&
  495. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  496. node = apicid_to_node[ht_nodeid];
  497. /* Pick a nearby node */
  498. if (!node_online(node))
  499. node = nearby_node(apicid);
  500. }
  501. numa_set_node(cpu, node);
  502. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  503. #endif
  504. #endif
  505. }
  506. static void __cpuinit early_init_amd_mc(struct cpuinfo_x86 *c)
  507. {
  508. #ifdef CONFIG_SMP
  509. unsigned bits, ecx;
  510. /* Multi core CPU? */
  511. if (c->extended_cpuid_level < 0x80000008)
  512. return;
  513. ecx = cpuid_ecx(0x80000008);
  514. c->x86_max_cores = (ecx & 0xff) + 1;
  515. /* CPU telling us the core id bits shift? */
  516. bits = (ecx >> 12) & 0xF;
  517. /* Otherwise recompute */
  518. if (bits == 0) {
  519. while ((1 << bits) < c->x86_max_cores)
  520. bits++;
  521. }
  522. c->x86_coreid_bits = bits;
  523. #endif
  524. }
  525. #define ENABLE_C1E_MASK 0x18000000
  526. #define CPUID_PROCESSOR_SIGNATURE 1
  527. #define CPUID_XFAM 0x0ff00000
  528. #define CPUID_XFAM_K8 0x00000000
  529. #define CPUID_XFAM_10H 0x00100000
  530. #define CPUID_XFAM_11H 0x00200000
  531. #define CPUID_XMOD 0x000f0000
  532. #define CPUID_XMOD_REV_F 0x00040000
  533. /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
  534. static __cpuinit int amd_apic_timer_broken(void)
  535. {
  536. u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  537. switch (eax & CPUID_XFAM) {
  538. case CPUID_XFAM_K8:
  539. if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
  540. break;
  541. case CPUID_XFAM_10H:
  542. case CPUID_XFAM_11H:
  543. rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
  544. if (lo & ENABLE_C1E_MASK)
  545. return 1;
  546. break;
  547. default:
  548. /* err on the side of caution */
  549. return 1;
  550. }
  551. return 0;
  552. }
  553. static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
  554. {
  555. early_init_amd_mc(c);
  556. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  557. if (c->x86_power & (1<<8))
  558. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  559. }
  560. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  561. {
  562. unsigned level;
  563. #ifdef CONFIG_SMP
  564. unsigned long value;
  565. /*
  566. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  567. * bit 6 of msr C001_0015
  568. *
  569. * Errata 63 for SH-B3 steppings
  570. * Errata 122 for all steppings (F+ have it disabled by default)
  571. */
  572. if (c->x86 == 15) {
  573. rdmsrl(MSR_K8_HWCR, value);
  574. value |= 1 << 6;
  575. wrmsrl(MSR_K8_HWCR, value);
  576. }
  577. #endif
  578. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  579. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  580. clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
  581. /* On C+ stepping K8 rep microcode works well for copy/memset */
  582. level = cpuid_eax(1);
  583. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
  584. level >= 0x0f58))
  585. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  586. if (c->x86 == 0x10 || c->x86 == 0x11)
  587. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  588. /* Enable workaround for FXSAVE leak */
  589. if (c->x86 >= 6)
  590. set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
  591. level = get_model_name(c);
  592. if (!level) {
  593. switch (c->x86) {
  594. case 15:
  595. /* Should distinguish Models here, but this is only
  596. a fallback anyways. */
  597. strcpy(c->x86_model_id, "Hammer");
  598. break;
  599. }
  600. }
  601. display_cacheinfo(c);
  602. /* Multi core CPU? */
  603. if (c->extended_cpuid_level >= 0x80000008)
  604. amd_detect_cmp(c);
  605. if (c->extended_cpuid_level >= 0x80000006 &&
  606. (cpuid_edx(0x80000006) & 0xf000))
  607. num_cache_leaves = 4;
  608. else
  609. num_cache_leaves = 3;
  610. if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
  611. set_cpu_cap(c, X86_FEATURE_K8);
  612. /* MFENCE stops RDTSC speculation */
  613. set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
  614. if (amd_apic_timer_broken())
  615. disable_apic_timer = 1;
  616. }
  617. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  618. {
  619. #ifdef CONFIG_SMP
  620. u32 eax, ebx, ecx, edx;
  621. int index_msb, core_bits;
  622. cpuid(1, &eax, &ebx, &ecx, &edx);
  623. if (!cpu_has(c, X86_FEATURE_HT))
  624. return;
  625. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  626. goto out;
  627. smp_num_siblings = (ebx & 0xff0000) >> 16;
  628. if (smp_num_siblings == 1) {
  629. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  630. } else if (smp_num_siblings > 1) {
  631. if (smp_num_siblings > NR_CPUS) {
  632. printk(KERN_WARNING "CPU: Unsupported number of "
  633. "siblings %d", smp_num_siblings);
  634. smp_num_siblings = 1;
  635. return;
  636. }
  637. index_msb = get_count_order(smp_num_siblings);
  638. c->phys_proc_id = phys_pkg_id(index_msb);
  639. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  640. index_msb = get_count_order(smp_num_siblings);
  641. core_bits = get_count_order(c->x86_max_cores);
  642. c->cpu_core_id = phys_pkg_id(index_msb) &
  643. ((1 << core_bits) - 1);
  644. }
  645. out:
  646. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  647. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  648. c->phys_proc_id);
  649. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  650. c->cpu_core_id);
  651. }
  652. #endif
  653. }
  654. /*
  655. * find out the number of processor cores on the die
  656. */
  657. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  658. {
  659. unsigned int eax, t;
  660. if (c->cpuid_level < 4)
  661. return 1;
  662. cpuid_count(4, 0, &eax, &t, &t, &t);
  663. if (eax & 0x1f)
  664. return ((eax >> 26) + 1);
  665. else
  666. return 1;
  667. }
  668. static void __cpuinit srat_detect_node(void)
  669. {
  670. #ifdef CONFIG_NUMA
  671. unsigned node;
  672. int cpu = smp_processor_id();
  673. int apicid = hard_smp_processor_id();
  674. /* Don't do the funky fallback heuristics the AMD version employs
  675. for now. */
  676. node = apicid_to_node[apicid];
  677. if (node == NUMA_NO_NODE || !node_online(node))
  678. node = first_node(node_online_map);
  679. numa_set_node(cpu, node);
  680. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  681. #endif
  682. }
  683. static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
  684. {
  685. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  686. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  687. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  688. }
  689. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  690. {
  691. /* Cache sizes */
  692. unsigned n;
  693. init_intel_cacheinfo(c);
  694. if (c->cpuid_level > 9) {
  695. unsigned eax = cpuid_eax(10);
  696. /* Check for version and the number of counters */
  697. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  698. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  699. }
  700. if (cpu_has_ds) {
  701. unsigned int l1, l2;
  702. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  703. if (!(l1 & (1<<11)))
  704. set_cpu_cap(c, X86_FEATURE_BTS);
  705. if (!(l1 & (1<<12)))
  706. set_cpu_cap(c, X86_FEATURE_PEBS);
  707. }
  708. if (cpu_has_bts)
  709. ds_init_intel(c);
  710. n = c->extended_cpuid_level;
  711. if (n >= 0x80000008) {
  712. unsigned eax = cpuid_eax(0x80000008);
  713. c->x86_virt_bits = (eax >> 8) & 0xff;
  714. c->x86_phys_bits = eax & 0xff;
  715. /* CPUID workaround for Intel 0F34 CPU */
  716. if (c->x86_vendor == X86_VENDOR_INTEL &&
  717. c->x86 == 0xF && c->x86_model == 0x3 &&
  718. c->x86_mask == 0x4)
  719. c->x86_phys_bits = 36;
  720. }
  721. if (c->x86 == 15)
  722. c->x86_cache_alignment = c->x86_clflush_size * 2;
  723. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  724. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  725. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  726. if (c->x86 == 6)
  727. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  728. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  729. c->x86_max_cores = intel_num_cpu_cores(c);
  730. srat_detect_node();
  731. }
  732. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  733. {
  734. char *v = c->x86_vendor_id;
  735. if (!strcmp(v, "AuthenticAMD"))
  736. c->x86_vendor = X86_VENDOR_AMD;
  737. else if (!strcmp(v, "GenuineIntel"))
  738. c->x86_vendor = X86_VENDOR_INTEL;
  739. else
  740. c->x86_vendor = X86_VENDOR_UNKNOWN;
  741. }
  742. /* Do some early cpuid on the boot CPU to get some parameter that are
  743. needed before check_bugs. Everything advanced is in identify_cpu
  744. below. */
  745. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  746. {
  747. u32 tfms, xlvl;
  748. c->loops_per_jiffy = loops_per_jiffy;
  749. c->x86_cache_size = -1;
  750. c->x86_vendor = X86_VENDOR_UNKNOWN;
  751. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  752. c->x86_vendor_id[0] = '\0'; /* Unset */
  753. c->x86_model_id[0] = '\0'; /* Unset */
  754. c->x86_clflush_size = 64;
  755. c->x86_cache_alignment = c->x86_clflush_size;
  756. c->x86_max_cores = 1;
  757. c->x86_coreid_bits = 0;
  758. c->extended_cpuid_level = 0;
  759. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  760. /* Get vendor name */
  761. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  762. (unsigned int *)&c->x86_vendor_id[0],
  763. (unsigned int *)&c->x86_vendor_id[8],
  764. (unsigned int *)&c->x86_vendor_id[4]);
  765. get_cpu_vendor(c);
  766. /* Initialize the standard set of capabilities */
  767. /* Note that the vendor-specific code below might override */
  768. /* Intel-defined flags: level 0x00000001 */
  769. if (c->cpuid_level >= 0x00000001) {
  770. __u32 misc;
  771. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  772. &c->x86_capability[0]);
  773. c->x86 = (tfms >> 8) & 0xf;
  774. c->x86_model = (tfms >> 4) & 0xf;
  775. c->x86_mask = tfms & 0xf;
  776. if (c->x86 == 0xf)
  777. c->x86 += (tfms >> 20) & 0xff;
  778. if (c->x86 >= 0x6)
  779. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  780. if (c->x86_capability[0] & (1<<19))
  781. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  782. } else {
  783. /* Have CPUID level 0 only - unheard of */
  784. c->x86 = 4;
  785. }
  786. #ifdef CONFIG_SMP
  787. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  788. #endif
  789. /* AMD-defined flags: level 0x80000001 */
  790. xlvl = cpuid_eax(0x80000000);
  791. c->extended_cpuid_level = xlvl;
  792. if ((xlvl & 0xffff0000) == 0x80000000) {
  793. if (xlvl >= 0x80000001) {
  794. c->x86_capability[1] = cpuid_edx(0x80000001);
  795. c->x86_capability[6] = cpuid_ecx(0x80000001);
  796. }
  797. if (xlvl >= 0x80000004)
  798. get_model_name(c); /* Default name */
  799. }
  800. /* Transmeta-defined flags: level 0x80860001 */
  801. xlvl = cpuid_eax(0x80860000);
  802. if ((xlvl & 0xffff0000) == 0x80860000) {
  803. /* Don't set x86_cpuid_level here for now to not confuse. */
  804. if (xlvl >= 0x80860001)
  805. c->x86_capability[2] = cpuid_edx(0x80860001);
  806. }
  807. c->extended_cpuid_level = cpuid_eax(0x80000000);
  808. if (c->extended_cpuid_level >= 0x80000007)
  809. c->x86_power = cpuid_edx(0x80000007);
  810. switch (c->x86_vendor) {
  811. case X86_VENDOR_AMD:
  812. early_init_amd(c);
  813. break;
  814. case X86_VENDOR_INTEL:
  815. early_init_intel(c);
  816. break;
  817. }
  818. }
  819. /*
  820. * This does the hard work of actually picking apart the CPU stuff...
  821. */
  822. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  823. {
  824. int i;
  825. early_identify_cpu(c);
  826. init_scattered_cpuid_features(c);
  827. c->apicid = phys_pkg_id(0);
  828. /*
  829. * Vendor-specific initialization. In this section we
  830. * canonicalize the feature flags, meaning if there are
  831. * features a certain CPU supports which CPUID doesn't
  832. * tell us, CPUID claiming incorrect flags, or other bugs,
  833. * we handle them here.
  834. *
  835. * At the end of this section, c->x86_capability better
  836. * indicate the features this CPU genuinely supports!
  837. */
  838. switch (c->x86_vendor) {
  839. case X86_VENDOR_AMD:
  840. init_amd(c);
  841. break;
  842. case X86_VENDOR_INTEL:
  843. init_intel(c);
  844. break;
  845. case X86_VENDOR_UNKNOWN:
  846. default:
  847. display_cacheinfo(c);
  848. break;
  849. }
  850. detect_ht(c);
  851. /*
  852. * On SMP, boot_cpu_data holds the common feature set between
  853. * all CPUs; so make sure that we indicate which features are
  854. * common between the CPUs. The first time this routine gets
  855. * executed, c == &boot_cpu_data.
  856. */
  857. if (c != &boot_cpu_data) {
  858. /* AND the already accumulated flags with these */
  859. for (i = 0; i < NCAPINTS; i++)
  860. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  861. }
  862. /* Clear all flags overriden by options */
  863. for (i = 0; i < NCAPINTS; i++)
  864. c->x86_capability[i] &= ~cleared_cpu_caps[i];
  865. #ifdef CONFIG_X86_MCE
  866. mcheck_init(c);
  867. #endif
  868. select_idle_routine(c);
  869. if (c != &boot_cpu_data)
  870. mtrr_ap_init();
  871. #ifdef CONFIG_NUMA
  872. numa_add_cpu(smp_processor_id());
  873. #endif
  874. }
  875. static __init int setup_noclflush(char *arg)
  876. {
  877. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  878. return 1;
  879. }
  880. __setup("noclflush", setup_noclflush);
  881. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  882. {
  883. if (c->x86_model_id[0])
  884. printk(KERN_CONT "%s", c->x86_model_id);
  885. if (c->x86_mask || c->cpuid_level >= 0)
  886. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  887. else
  888. printk(KERN_CONT "\n");
  889. }
  890. static __init int setup_disablecpuid(char *arg)
  891. {
  892. int bit;
  893. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  894. setup_clear_cpu_cap(bit);
  895. else
  896. return 0;
  897. return 1;
  898. }
  899. __setup("clearcpuid=", setup_disablecpuid);