sched_fair.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. static const struct sched_class fair_sched_class;
  68. /**************************************************************
  69. * CFS operations on generic schedulable entities:
  70. */
  71. #ifdef CONFIG_FAIR_GROUP_SCHED
  72. /* cpu runqueue to which this cfs_rq is attached */
  73. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  74. {
  75. return cfs_rq->rq;
  76. }
  77. /* An entity is a task if it doesn't "own" a runqueue */
  78. #define entity_is_task(se) (!se->my_q)
  79. static inline struct task_struct *task_of(struct sched_entity *se)
  80. {
  81. #ifdef CONFIG_SCHED_DEBUG
  82. WARN_ON_ONCE(!entity_is_task(se));
  83. #endif
  84. return container_of(se, struct task_struct, se);
  85. }
  86. /* Walk up scheduling entities hierarchy */
  87. #define for_each_sched_entity(se) \
  88. for (; se; se = se->parent)
  89. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  90. {
  91. return p->se.cfs_rq;
  92. }
  93. /* runqueue on which this entity is (to be) queued */
  94. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  95. {
  96. return se->cfs_rq;
  97. }
  98. /* runqueue "owned" by this group */
  99. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  100. {
  101. return grp->my_q;
  102. }
  103. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  104. * another cpu ('this_cpu')
  105. */
  106. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  107. {
  108. return cfs_rq->tg->cfs_rq[this_cpu];
  109. }
  110. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  111. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  112. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  113. /* Do the two (enqueued) entities belong to the same group ? */
  114. static inline int
  115. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  116. {
  117. if (se->cfs_rq == pse->cfs_rq)
  118. return 1;
  119. return 0;
  120. }
  121. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  122. {
  123. return se->parent;
  124. }
  125. /* return depth at which a sched entity is present in the hierarchy */
  126. static inline int depth_se(struct sched_entity *se)
  127. {
  128. int depth = 0;
  129. for_each_sched_entity(se)
  130. depth++;
  131. return depth;
  132. }
  133. static void
  134. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  135. {
  136. int se_depth, pse_depth;
  137. /*
  138. * preemption test can be made between sibling entities who are in the
  139. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  140. * both tasks until we find their ancestors who are siblings of common
  141. * parent.
  142. */
  143. /* First walk up until both entities are at same depth */
  144. se_depth = depth_se(*se);
  145. pse_depth = depth_se(*pse);
  146. while (se_depth > pse_depth) {
  147. se_depth--;
  148. *se = parent_entity(*se);
  149. }
  150. while (pse_depth > se_depth) {
  151. pse_depth--;
  152. *pse = parent_entity(*pse);
  153. }
  154. while (!is_same_group(*se, *pse)) {
  155. *se = parent_entity(*se);
  156. *pse = parent_entity(*pse);
  157. }
  158. }
  159. #else /* !CONFIG_FAIR_GROUP_SCHED */
  160. static inline struct task_struct *task_of(struct sched_entity *se)
  161. {
  162. return container_of(se, struct task_struct, se);
  163. }
  164. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  165. {
  166. return container_of(cfs_rq, struct rq, cfs);
  167. }
  168. #define entity_is_task(se) 1
  169. #define for_each_sched_entity(se) \
  170. for (; se; se = NULL)
  171. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  172. {
  173. return &task_rq(p)->cfs;
  174. }
  175. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  176. {
  177. struct task_struct *p = task_of(se);
  178. struct rq *rq = task_rq(p);
  179. return &rq->cfs;
  180. }
  181. /* runqueue "owned" by this group */
  182. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  183. {
  184. return NULL;
  185. }
  186. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  187. {
  188. return &cpu_rq(this_cpu)->cfs;
  189. }
  190. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  191. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  192. static inline int
  193. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  194. {
  195. return 1;
  196. }
  197. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  198. {
  199. return NULL;
  200. }
  201. static inline void
  202. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  203. {
  204. }
  205. #endif /* CONFIG_FAIR_GROUP_SCHED */
  206. /**************************************************************
  207. * Scheduling class tree data structure manipulation methods:
  208. */
  209. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  210. {
  211. s64 delta = (s64)(vruntime - min_vruntime);
  212. if (delta > 0)
  213. min_vruntime = vruntime;
  214. return min_vruntime;
  215. }
  216. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  217. {
  218. s64 delta = (s64)(vruntime - min_vruntime);
  219. if (delta < 0)
  220. min_vruntime = vruntime;
  221. return min_vruntime;
  222. }
  223. static inline int entity_before(struct sched_entity *a,
  224. struct sched_entity *b)
  225. {
  226. return (s64)(a->vruntime - b->vruntime) < 0;
  227. }
  228. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  229. {
  230. return se->vruntime - cfs_rq->min_vruntime;
  231. }
  232. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  233. {
  234. u64 vruntime = cfs_rq->min_vruntime;
  235. if (cfs_rq->curr)
  236. vruntime = cfs_rq->curr->vruntime;
  237. if (cfs_rq->rb_leftmost) {
  238. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  239. struct sched_entity,
  240. run_node);
  241. if (!cfs_rq->curr)
  242. vruntime = se->vruntime;
  243. else
  244. vruntime = min_vruntime(vruntime, se->vruntime);
  245. }
  246. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  247. }
  248. /*
  249. * Enqueue an entity into the rb-tree:
  250. */
  251. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  252. {
  253. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  254. struct rb_node *parent = NULL;
  255. struct sched_entity *entry;
  256. s64 key = entity_key(cfs_rq, se);
  257. int leftmost = 1;
  258. /*
  259. * Find the right place in the rbtree:
  260. */
  261. while (*link) {
  262. parent = *link;
  263. entry = rb_entry(parent, struct sched_entity, run_node);
  264. /*
  265. * We dont care about collisions. Nodes with
  266. * the same key stay together.
  267. */
  268. if (key < entity_key(cfs_rq, entry)) {
  269. link = &parent->rb_left;
  270. } else {
  271. link = &parent->rb_right;
  272. leftmost = 0;
  273. }
  274. }
  275. /*
  276. * Maintain a cache of leftmost tree entries (it is frequently
  277. * used):
  278. */
  279. if (leftmost)
  280. cfs_rq->rb_leftmost = &se->run_node;
  281. rb_link_node(&se->run_node, parent, link);
  282. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  283. }
  284. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  285. {
  286. if (cfs_rq->rb_leftmost == &se->run_node) {
  287. struct rb_node *next_node;
  288. next_node = rb_next(&se->run_node);
  289. cfs_rq->rb_leftmost = next_node;
  290. }
  291. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  292. }
  293. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  294. {
  295. struct rb_node *left = cfs_rq->rb_leftmost;
  296. if (!left)
  297. return NULL;
  298. return rb_entry(left, struct sched_entity, run_node);
  299. }
  300. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  301. {
  302. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  303. if (!last)
  304. return NULL;
  305. return rb_entry(last, struct sched_entity, run_node);
  306. }
  307. /**************************************************************
  308. * Scheduling class statistics methods:
  309. */
  310. #ifdef CONFIG_SCHED_DEBUG
  311. int sched_nr_latency_handler(struct ctl_table *table, int write,
  312. struct file *filp, void __user *buffer, size_t *lenp,
  313. loff_t *ppos)
  314. {
  315. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  316. if (ret || !write)
  317. return ret;
  318. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  319. sysctl_sched_min_granularity);
  320. return 0;
  321. }
  322. #endif
  323. /*
  324. * delta /= w
  325. */
  326. static inline unsigned long
  327. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  328. {
  329. if (unlikely(se->load.weight != NICE_0_LOAD))
  330. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  331. return delta;
  332. }
  333. /*
  334. * The idea is to set a period in which each task runs once.
  335. *
  336. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  337. * this period because otherwise the slices get too small.
  338. *
  339. * p = (nr <= nl) ? l : l*nr/nl
  340. */
  341. static u64 __sched_period(unsigned long nr_running)
  342. {
  343. u64 period = sysctl_sched_latency;
  344. unsigned long nr_latency = sched_nr_latency;
  345. if (unlikely(nr_running > nr_latency)) {
  346. period = sysctl_sched_min_granularity;
  347. period *= nr_running;
  348. }
  349. return period;
  350. }
  351. /*
  352. * We calculate the wall-time slice from the period by taking a part
  353. * proportional to the weight.
  354. *
  355. * s = p*P[w/rw]
  356. */
  357. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  358. {
  359. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  360. for_each_sched_entity(se) {
  361. struct load_weight *load;
  362. struct load_weight lw;
  363. cfs_rq = cfs_rq_of(se);
  364. load = &cfs_rq->load;
  365. if (unlikely(!se->on_rq)) {
  366. lw = cfs_rq->load;
  367. update_load_add(&lw, se->load.weight);
  368. load = &lw;
  369. }
  370. slice = calc_delta_mine(slice, se->load.weight, load);
  371. }
  372. return slice;
  373. }
  374. /*
  375. * We calculate the vruntime slice of a to be inserted task
  376. *
  377. * vs = s/w
  378. */
  379. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  380. {
  381. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  382. }
  383. /*
  384. * Update the current task's runtime statistics. Skip current tasks that
  385. * are not in our scheduling class.
  386. */
  387. static inline void
  388. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  389. unsigned long delta_exec)
  390. {
  391. unsigned long delta_exec_weighted;
  392. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  393. curr->sum_exec_runtime += delta_exec;
  394. schedstat_add(cfs_rq, exec_clock, delta_exec);
  395. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  396. curr->vruntime += delta_exec_weighted;
  397. update_min_vruntime(cfs_rq);
  398. }
  399. static void update_curr(struct cfs_rq *cfs_rq)
  400. {
  401. struct sched_entity *curr = cfs_rq->curr;
  402. u64 now = rq_of(cfs_rq)->clock;
  403. unsigned long delta_exec;
  404. if (unlikely(!curr))
  405. return;
  406. /*
  407. * Get the amount of time the current task was running
  408. * since the last time we changed load (this cannot
  409. * overflow on 32 bits):
  410. */
  411. delta_exec = (unsigned long)(now - curr->exec_start);
  412. if (!delta_exec)
  413. return;
  414. __update_curr(cfs_rq, curr, delta_exec);
  415. curr->exec_start = now;
  416. if (entity_is_task(curr)) {
  417. struct task_struct *curtask = task_of(curr);
  418. cpuacct_charge(curtask, delta_exec);
  419. account_group_exec_runtime(curtask, delta_exec);
  420. }
  421. }
  422. static inline void
  423. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  424. {
  425. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  426. }
  427. /*
  428. * Task is being enqueued - update stats:
  429. */
  430. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  431. {
  432. /*
  433. * Are we enqueueing a waiting task? (for current tasks
  434. * a dequeue/enqueue event is a NOP)
  435. */
  436. if (se != cfs_rq->curr)
  437. update_stats_wait_start(cfs_rq, se);
  438. }
  439. static void
  440. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  441. {
  442. schedstat_set(se->wait_max, max(se->wait_max,
  443. rq_of(cfs_rq)->clock - se->wait_start));
  444. schedstat_set(se->wait_count, se->wait_count + 1);
  445. schedstat_set(se->wait_sum, se->wait_sum +
  446. rq_of(cfs_rq)->clock - se->wait_start);
  447. schedstat_set(se->wait_start, 0);
  448. }
  449. static inline void
  450. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  451. {
  452. /*
  453. * Mark the end of the wait period if dequeueing a
  454. * waiting task:
  455. */
  456. if (se != cfs_rq->curr)
  457. update_stats_wait_end(cfs_rq, se);
  458. }
  459. /*
  460. * We are picking a new current task - update its stats:
  461. */
  462. static inline void
  463. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  464. {
  465. /*
  466. * We are starting a new run period:
  467. */
  468. se->exec_start = rq_of(cfs_rq)->clock;
  469. }
  470. /**************************************************
  471. * Scheduling class queueing methods:
  472. */
  473. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  474. static void
  475. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  476. {
  477. cfs_rq->task_weight += weight;
  478. }
  479. #else
  480. static inline void
  481. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  482. {
  483. }
  484. #endif
  485. static void
  486. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  487. {
  488. update_load_add(&cfs_rq->load, se->load.weight);
  489. if (!parent_entity(se))
  490. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  491. if (entity_is_task(se)) {
  492. add_cfs_task_weight(cfs_rq, se->load.weight);
  493. list_add(&se->group_node, &cfs_rq->tasks);
  494. }
  495. cfs_rq->nr_running++;
  496. se->on_rq = 1;
  497. }
  498. static void
  499. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  500. {
  501. update_load_sub(&cfs_rq->load, se->load.weight);
  502. if (!parent_entity(se))
  503. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  504. if (entity_is_task(se)) {
  505. add_cfs_task_weight(cfs_rq, -se->load.weight);
  506. list_del_init(&se->group_node);
  507. }
  508. cfs_rq->nr_running--;
  509. se->on_rq = 0;
  510. }
  511. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  512. {
  513. #ifdef CONFIG_SCHEDSTATS
  514. struct task_struct *tsk = NULL;
  515. if (entity_is_task(se))
  516. tsk = task_of(se);
  517. if (se->sleep_start) {
  518. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  519. if ((s64)delta < 0)
  520. delta = 0;
  521. if (unlikely(delta > se->sleep_max))
  522. se->sleep_max = delta;
  523. se->sleep_start = 0;
  524. se->sum_sleep_runtime += delta;
  525. if (tsk)
  526. account_scheduler_latency(tsk, delta >> 10, 1);
  527. }
  528. if (se->block_start) {
  529. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  530. if ((s64)delta < 0)
  531. delta = 0;
  532. if (unlikely(delta > se->block_max))
  533. se->block_max = delta;
  534. se->block_start = 0;
  535. se->sum_sleep_runtime += delta;
  536. if (tsk) {
  537. /*
  538. * Blocking time is in units of nanosecs, so shift by
  539. * 20 to get a milliseconds-range estimation of the
  540. * amount of time that the task spent sleeping:
  541. */
  542. if (unlikely(prof_on == SLEEP_PROFILING)) {
  543. profile_hits(SLEEP_PROFILING,
  544. (void *)get_wchan(tsk),
  545. delta >> 20);
  546. }
  547. account_scheduler_latency(tsk, delta >> 10, 0);
  548. }
  549. }
  550. #endif
  551. }
  552. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  553. {
  554. #ifdef CONFIG_SCHED_DEBUG
  555. s64 d = se->vruntime - cfs_rq->min_vruntime;
  556. if (d < 0)
  557. d = -d;
  558. if (d > 3*sysctl_sched_latency)
  559. schedstat_inc(cfs_rq, nr_spread_over);
  560. #endif
  561. }
  562. static void
  563. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  564. {
  565. u64 vruntime = cfs_rq->min_vruntime;
  566. /*
  567. * The 'current' period is already promised to the current tasks,
  568. * however the extra weight of the new task will slow them down a
  569. * little, place the new task so that it fits in the slot that
  570. * stays open at the end.
  571. */
  572. if (initial && sched_feat(START_DEBIT))
  573. vruntime += sched_vslice(cfs_rq, se);
  574. if (!initial) {
  575. /* sleeps upto a single latency don't count. */
  576. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  577. unsigned long thresh = sysctl_sched_latency;
  578. /*
  579. * Convert the sleeper threshold into virtual time.
  580. * SCHED_IDLE is a special sub-class. We care about
  581. * fairness only relative to other SCHED_IDLE tasks,
  582. * all of which have the same weight.
  583. */
  584. if (sched_feat(NORMALIZED_SLEEPER) &&
  585. (!entity_is_task(se) ||
  586. task_of(se)->policy != SCHED_IDLE))
  587. thresh = calc_delta_fair(thresh, se);
  588. vruntime -= thresh;
  589. }
  590. /* ensure we never gain time by being placed backwards. */
  591. vruntime = max_vruntime(se->vruntime, vruntime);
  592. }
  593. se->vruntime = vruntime;
  594. }
  595. static void
  596. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  597. {
  598. /*
  599. * Update run-time statistics of the 'current'.
  600. */
  601. update_curr(cfs_rq);
  602. account_entity_enqueue(cfs_rq, se);
  603. if (wakeup) {
  604. place_entity(cfs_rq, se, 0);
  605. enqueue_sleeper(cfs_rq, se);
  606. }
  607. update_stats_enqueue(cfs_rq, se);
  608. check_spread(cfs_rq, se);
  609. if (se != cfs_rq->curr)
  610. __enqueue_entity(cfs_rq, se);
  611. }
  612. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  613. {
  614. if (cfs_rq->last == se)
  615. cfs_rq->last = NULL;
  616. if (cfs_rq->next == se)
  617. cfs_rq->next = NULL;
  618. }
  619. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  620. {
  621. for_each_sched_entity(se)
  622. __clear_buddies(cfs_rq_of(se), se);
  623. }
  624. static void
  625. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  626. {
  627. /*
  628. * Update run-time statistics of the 'current'.
  629. */
  630. update_curr(cfs_rq);
  631. update_stats_dequeue(cfs_rq, se);
  632. if (sleep) {
  633. #ifdef CONFIG_SCHEDSTATS
  634. if (entity_is_task(se)) {
  635. struct task_struct *tsk = task_of(se);
  636. if (tsk->state & TASK_INTERRUPTIBLE)
  637. se->sleep_start = rq_of(cfs_rq)->clock;
  638. if (tsk->state & TASK_UNINTERRUPTIBLE)
  639. se->block_start = rq_of(cfs_rq)->clock;
  640. }
  641. #endif
  642. }
  643. clear_buddies(cfs_rq, se);
  644. if (se != cfs_rq->curr)
  645. __dequeue_entity(cfs_rq, se);
  646. account_entity_dequeue(cfs_rq, se);
  647. update_min_vruntime(cfs_rq);
  648. }
  649. /*
  650. * Preempt the current task with a newly woken task if needed:
  651. */
  652. static void
  653. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  654. {
  655. unsigned long ideal_runtime, delta_exec;
  656. ideal_runtime = sched_slice(cfs_rq, curr);
  657. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  658. if (delta_exec > ideal_runtime) {
  659. resched_task(rq_of(cfs_rq)->curr);
  660. /*
  661. * The current task ran long enough, ensure it doesn't get
  662. * re-elected due to buddy favours.
  663. */
  664. clear_buddies(cfs_rq, curr);
  665. }
  666. }
  667. static void
  668. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  669. {
  670. /* 'current' is not kept within the tree. */
  671. if (se->on_rq) {
  672. /*
  673. * Any task has to be enqueued before it get to execute on
  674. * a CPU. So account for the time it spent waiting on the
  675. * runqueue.
  676. */
  677. update_stats_wait_end(cfs_rq, se);
  678. __dequeue_entity(cfs_rq, se);
  679. }
  680. update_stats_curr_start(cfs_rq, se);
  681. cfs_rq->curr = se;
  682. #ifdef CONFIG_SCHEDSTATS
  683. /*
  684. * Track our maximum slice length, if the CPU's load is at
  685. * least twice that of our own weight (i.e. dont track it
  686. * when there are only lesser-weight tasks around):
  687. */
  688. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  689. se->slice_max = max(se->slice_max,
  690. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  691. }
  692. #endif
  693. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  694. }
  695. static int
  696. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  697. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  698. {
  699. struct sched_entity *se = __pick_next_entity(cfs_rq);
  700. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
  701. return cfs_rq->next;
  702. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
  703. return cfs_rq->last;
  704. return se;
  705. }
  706. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  707. {
  708. /*
  709. * If still on the runqueue then deactivate_task()
  710. * was not called and update_curr() has to be done:
  711. */
  712. if (prev->on_rq)
  713. update_curr(cfs_rq);
  714. check_spread(cfs_rq, prev);
  715. if (prev->on_rq) {
  716. update_stats_wait_start(cfs_rq, prev);
  717. /* Put 'current' back into the tree. */
  718. __enqueue_entity(cfs_rq, prev);
  719. }
  720. cfs_rq->curr = NULL;
  721. }
  722. static void
  723. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  724. {
  725. /*
  726. * Update run-time statistics of the 'current'.
  727. */
  728. update_curr(cfs_rq);
  729. #ifdef CONFIG_SCHED_HRTICK
  730. /*
  731. * queued ticks are scheduled to match the slice, so don't bother
  732. * validating it and just reschedule.
  733. */
  734. if (queued) {
  735. resched_task(rq_of(cfs_rq)->curr);
  736. return;
  737. }
  738. /*
  739. * don't let the period tick interfere with the hrtick preemption
  740. */
  741. if (!sched_feat(DOUBLE_TICK) &&
  742. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  743. return;
  744. #endif
  745. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  746. check_preempt_tick(cfs_rq, curr);
  747. }
  748. /**************************************************
  749. * CFS operations on tasks:
  750. */
  751. #ifdef CONFIG_SCHED_HRTICK
  752. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  753. {
  754. struct sched_entity *se = &p->se;
  755. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  756. WARN_ON(task_rq(p) != rq);
  757. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  758. u64 slice = sched_slice(cfs_rq, se);
  759. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  760. s64 delta = slice - ran;
  761. if (delta < 0) {
  762. if (rq->curr == p)
  763. resched_task(p);
  764. return;
  765. }
  766. /*
  767. * Don't schedule slices shorter than 10000ns, that just
  768. * doesn't make sense. Rely on vruntime for fairness.
  769. */
  770. if (rq->curr != p)
  771. delta = max_t(s64, 10000LL, delta);
  772. hrtick_start(rq, delta);
  773. }
  774. }
  775. /*
  776. * called from enqueue/dequeue and updates the hrtick when the
  777. * current task is from our class and nr_running is low enough
  778. * to matter.
  779. */
  780. static void hrtick_update(struct rq *rq)
  781. {
  782. struct task_struct *curr = rq->curr;
  783. if (curr->sched_class != &fair_sched_class)
  784. return;
  785. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  786. hrtick_start_fair(rq, curr);
  787. }
  788. #else /* !CONFIG_SCHED_HRTICK */
  789. static inline void
  790. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  791. {
  792. }
  793. static inline void hrtick_update(struct rq *rq)
  794. {
  795. }
  796. #endif
  797. /*
  798. * The enqueue_task method is called before nr_running is
  799. * increased. Here we update the fair scheduling stats and
  800. * then put the task into the rbtree:
  801. */
  802. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  803. {
  804. struct cfs_rq *cfs_rq;
  805. struct sched_entity *se = &p->se;
  806. for_each_sched_entity(se) {
  807. if (se->on_rq)
  808. break;
  809. cfs_rq = cfs_rq_of(se);
  810. enqueue_entity(cfs_rq, se, wakeup);
  811. wakeup = 1;
  812. }
  813. hrtick_update(rq);
  814. }
  815. /*
  816. * The dequeue_task method is called before nr_running is
  817. * decreased. We remove the task from the rbtree and
  818. * update the fair scheduling stats:
  819. */
  820. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  821. {
  822. struct cfs_rq *cfs_rq;
  823. struct sched_entity *se = &p->se;
  824. for_each_sched_entity(se) {
  825. cfs_rq = cfs_rq_of(se);
  826. dequeue_entity(cfs_rq, se, sleep);
  827. /* Don't dequeue parent if it has other entities besides us */
  828. if (cfs_rq->load.weight)
  829. break;
  830. sleep = 1;
  831. }
  832. hrtick_update(rq);
  833. }
  834. /*
  835. * sched_yield() support is very simple - we dequeue and enqueue.
  836. *
  837. * If compat_yield is turned on then we requeue to the end of the tree.
  838. */
  839. static void yield_task_fair(struct rq *rq)
  840. {
  841. struct task_struct *curr = rq->curr;
  842. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  843. struct sched_entity *rightmost, *se = &curr->se;
  844. /*
  845. * Are we the only task in the tree?
  846. */
  847. if (unlikely(cfs_rq->nr_running == 1))
  848. return;
  849. clear_buddies(cfs_rq, se);
  850. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  851. update_rq_clock(rq);
  852. /*
  853. * Update run-time statistics of the 'current'.
  854. */
  855. update_curr(cfs_rq);
  856. return;
  857. }
  858. /*
  859. * Find the rightmost entry in the rbtree:
  860. */
  861. rightmost = __pick_last_entity(cfs_rq);
  862. /*
  863. * Already in the rightmost position?
  864. */
  865. if (unlikely(!rightmost || entity_before(rightmost, se)))
  866. return;
  867. /*
  868. * Minimally necessary key value to be last in the tree:
  869. * Upon rescheduling, sched_class::put_prev_task() will place
  870. * 'current' within the tree based on its new key value.
  871. */
  872. se->vruntime = rightmost->vruntime + 1;
  873. }
  874. /*
  875. * wake_idle() will wake a task on an idle cpu if task->cpu is
  876. * not idle and an idle cpu is available. The span of cpus to
  877. * search starts with cpus closest then further out as needed,
  878. * so we always favor a closer, idle cpu.
  879. * Domains may include CPUs that are not usable for migration,
  880. * hence we need to mask them out (rq->rd->online)
  881. *
  882. * Returns the CPU we should wake onto.
  883. */
  884. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  885. #define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online)
  886. static int wake_idle(int cpu, struct task_struct *p)
  887. {
  888. struct sched_domain *sd;
  889. int i;
  890. unsigned int chosen_wakeup_cpu;
  891. int this_cpu;
  892. struct rq *task_rq = task_rq(p);
  893. /*
  894. * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
  895. * are idle and this is not a kernel thread and this task's affinity
  896. * allows it to be moved to preferred cpu, then just move!
  897. */
  898. this_cpu = smp_processor_id();
  899. chosen_wakeup_cpu =
  900. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
  901. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
  902. idle_cpu(cpu) && idle_cpu(this_cpu) &&
  903. p->mm && !(p->flags & PF_KTHREAD) &&
  904. cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
  905. return chosen_wakeup_cpu;
  906. /*
  907. * If it is idle, then it is the best cpu to run this task.
  908. *
  909. * This cpu is also the best, if it has more than one task already.
  910. * Siblings must be also busy(in most cases) as they didn't already
  911. * pickup the extra load from this cpu and hence we need not check
  912. * sibling runqueue info. This will avoid the checks and cache miss
  913. * penalities associated with that.
  914. */
  915. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  916. return cpu;
  917. for_each_domain(cpu, sd) {
  918. if ((sd->flags & SD_WAKE_IDLE)
  919. || ((sd->flags & SD_WAKE_IDLE_FAR)
  920. && !task_hot(p, task_rq->clock, sd))) {
  921. for_each_cpu_and(i, sched_domain_span(sd),
  922. &p->cpus_allowed) {
  923. if (cpu_rd_active(i, task_rq) && idle_cpu(i)) {
  924. if (i != task_cpu(p)) {
  925. schedstat_inc(p,
  926. se.nr_wakeups_idle);
  927. }
  928. return i;
  929. }
  930. }
  931. } else {
  932. break;
  933. }
  934. }
  935. return cpu;
  936. }
  937. #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
  938. static inline int wake_idle(int cpu, struct task_struct *p)
  939. {
  940. return cpu;
  941. }
  942. #endif
  943. #ifdef CONFIG_SMP
  944. #ifdef CONFIG_FAIR_GROUP_SCHED
  945. /*
  946. * effective_load() calculates the load change as seen from the root_task_group
  947. *
  948. * Adding load to a group doesn't make a group heavier, but can cause movement
  949. * of group shares between cpus. Assuming the shares were perfectly aligned one
  950. * can calculate the shift in shares.
  951. *
  952. * The problem is that perfectly aligning the shares is rather expensive, hence
  953. * we try to avoid doing that too often - see update_shares(), which ratelimits
  954. * this change.
  955. *
  956. * We compensate this by not only taking the current delta into account, but
  957. * also considering the delta between when the shares were last adjusted and
  958. * now.
  959. *
  960. * We still saw a performance dip, some tracing learned us that between
  961. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  962. * significantly. Therefore try to bias the error in direction of failing
  963. * the affine wakeup.
  964. *
  965. */
  966. static long effective_load(struct task_group *tg, int cpu,
  967. long wl, long wg)
  968. {
  969. struct sched_entity *se = tg->se[cpu];
  970. if (!tg->parent)
  971. return wl;
  972. /*
  973. * By not taking the decrease of shares on the other cpu into
  974. * account our error leans towards reducing the affine wakeups.
  975. */
  976. if (!wl && sched_feat(ASYM_EFF_LOAD))
  977. return wl;
  978. for_each_sched_entity(se) {
  979. long S, rw, s, a, b;
  980. long more_w;
  981. /*
  982. * Instead of using this increment, also add the difference
  983. * between when the shares were last updated and now.
  984. */
  985. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  986. wl += more_w;
  987. wg += more_w;
  988. S = se->my_q->tg->shares;
  989. s = se->my_q->shares;
  990. rw = se->my_q->rq_weight;
  991. a = S*(rw + wl);
  992. b = S*rw + s*wg;
  993. wl = s*(a-b);
  994. if (likely(b))
  995. wl /= b;
  996. /*
  997. * Assume the group is already running and will
  998. * thus already be accounted for in the weight.
  999. *
  1000. * That is, moving shares between CPUs, does not
  1001. * alter the group weight.
  1002. */
  1003. wg = 0;
  1004. }
  1005. return wl;
  1006. }
  1007. #else
  1008. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1009. unsigned long wl, unsigned long wg)
  1010. {
  1011. return wl;
  1012. }
  1013. #endif
  1014. static int
  1015. wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
  1016. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  1017. int idx, unsigned long load, unsigned long this_load,
  1018. unsigned int imbalance)
  1019. {
  1020. struct task_struct *curr = this_rq->curr;
  1021. struct task_group *tg;
  1022. unsigned long tl = this_load;
  1023. unsigned long tl_per_task;
  1024. unsigned long weight;
  1025. int balanced;
  1026. if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
  1027. return 0;
  1028. if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
  1029. p->se.avg_overlap > sysctl_sched_migration_cost))
  1030. sync = 0;
  1031. /*
  1032. * If sync wakeup then subtract the (maximum possible)
  1033. * effect of the currently running task from the load
  1034. * of the current CPU:
  1035. */
  1036. if (sync) {
  1037. tg = task_group(current);
  1038. weight = current->se.load.weight;
  1039. tl += effective_load(tg, this_cpu, -weight, -weight);
  1040. load += effective_load(tg, prev_cpu, 0, -weight);
  1041. }
  1042. tg = task_group(p);
  1043. weight = p->se.load.weight;
  1044. balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
  1045. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  1046. /*
  1047. * If the currently running task will sleep within
  1048. * a reasonable amount of time then attract this newly
  1049. * woken task:
  1050. */
  1051. if (sync && balanced)
  1052. return 1;
  1053. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1054. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1055. if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
  1056. tl_per_task)) {
  1057. /*
  1058. * This domain has SD_WAKE_AFFINE and
  1059. * p is cache cold in this domain, and
  1060. * there is no bad imbalance.
  1061. */
  1062. schedstat_inc(this_sd, ttwu_move_affine);
  1063. schedstat_inc(p, se.nr_wakeups_affine);
  1064. return 1;
  1065. }
  1066. return 0;
  1067. }
  1068. static int select_task_rq_fair(struct task_struct *p, int sync)
  1069. {
  1070. struct sched_domain *sd, *this_sd = NULL;
  1071. int prev_cpu, this_cpu, new_cpu;
  1072. unsigned long load, this_load;
  1073. struct rq *this_rq;
  1074. unsigned int imbalance;
  1075. int idx;
  1076. prev_cpu = task_cpu(p);
  1077. this_cpu = smp_processor_id();
  1078. this_rq = cpu_rq(this_cpu);
  1079. new_cpu = prev_cpu;
  1080. if (prev_cpu == this_cpu)
  1081. goto out;
  1082. /*
  1083. * 'this_sd' is the first domain that both
  1084. * this_cpu and prev_cpu are present in:
  1085. */
  1086. for_each_domain(this_cpu, sd) {
  1087. if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
  1088. this_sd = sd;
  1089. break;
  1090. }
  1091. }
  1092. if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
  1093. goto out;
  1094. /*
  1095. * Check for affine wakeup and passive balancing possibilities.
  1096. */
  1097. if (!this_sd)
  1098. goto out;
  1099. idx = this_sd->wake_idx;
  1100. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1101. load = source_load(prev_cpu, idx);
  1102. this_load = target_load(this_cpu, idx);
  1103. if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  1104. load, this_load, imbalance))
  1105. return this_cpu;
  1106. /*
  1107. * Start passive balancing when half the imbalance_pct
  1108. * limit is reached.
  1109. */
  1110. if (this_sd->flags & SD_WAKE_BALANCE) {
  1111. if (imbalance*this_load <= 100*load) {
  1112. schedstat_inc(this_sd, ttwu_move_balance);
  1113. schedstat_inc(p, se.nr_wakeups_passive);
  1114. return this_cpu;
  1115. }
  1116. }
  1117. out:
  1118. return wake_idle(new_cpu, p);
  1119. }
  1120. #endif /* CONFIG_SMP */
  1121. /*
  1122. * Adaptive granularity
  1123. *
  1124. * se->avg_wakeup gives the average time a task runs until it does a wakeup,
  1125. * with the limit of wakeup_gran -- when it never does a wakeup.
  1126. *
  1127. * So the smaller avg_wakeup is the faster we want this task to preempt,
  1128. * but we don't want to treat the preemptee unfairly and therefore allow it
  1129. * to run for at least the amount of time we'd like to run.
  1130. *
  1131. * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
  1132. *
  1133. * NOTE: we use *nr_running to scale with load, this nicely matches the
  1134. * degrading latency on load.
  1135. */
  1136. static unsigned long
  1137. adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
  1138. {
  1139. u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1140. u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
  1141. u64 gran = 0;
  1142. if (this_run < expected_wakeup)
  1143. gran = expected_wakeup - this_run;
  1144. return min_t(s64, gran, sysctl_sched_wakeup_granularity);
  1145. }
  1146. static unsigned long
  1147. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1148. {
  1149. unsigned long gran = sysctl_sched_wakeup_granularity;
  1150. if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
  1151. gran = adaptive_gran(curr, se);
  1152. /*
  1153. * Since its curr running now, convert the gran from real-time
  1154. * to virtual-time in his units.
  1155. */
  1156. if (sched_feat(ASYM_GRAN)) {
  1157. /*
  1158. * By using 'se' instead of 'curr' we penalize light tasks, so
  1159. * they get preempted easier. That is, if 'se' < 'curr' then
  1160. * the resulting gran will be larger, therefore penalizing the
  1161. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1162. * be smaller, again penalizing the lighter task.
  1163. *
  1164. * This is especially important for buddies when the leftmost
  1165. * task is higher priority than the buddy.
  1166. */
  1167. if (unlikely(se->load.weight != NICE_0_LOAD))
  1168. gran = calc_delta_fair(gran, se);
  1169. } else {
  1170. if (unlikely(curr->load.weight != NICE_0_LOAD))
  1171. gran = calc_delta_fair(gran, curr);
  1172. }
  1173. return gran;
  1174. }
  1175. /*
  1176. * Should 'se' preempt 'curr'.
  1177. *
  1178. * |s1
  1179. * |s2
  1180. * |s3
  1181. * g
  1182. * |<--->|c
  1183. *
  1184. * w(c, s1) = -1
  1185. * w(c, s2) = 0
  1186. * w(c, s3) = 1
  1187. *
  1188. */
  1189. static int
  1190. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1191. {
  1192. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1193. if (vdiff <= 0)
  1194. return -1;
  1195. gran = wakeup_gran(curr, se);
  1196. if (vdiff > gran)
  1197. return 1;
  1198. return 0;
  1199. }
  1200. static void set_last_buddy(struct sched_entity *se)
  1201. {
  1202. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1203. for_each_sched_entity(se)
  1204. cfs_rq_of(se)->last = se;
  1205. }
  1206. }
  1207. static void set_next_buddy(struct sched_entity *se)
  1208. {
  1209. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1210. for_each_sched_entity(se)
  1211. cfs_rq_of(se)->next = se;
  1212. }
  1213. }
  1214. /*
  1215. * Preempt the current task with a newly woken task if needed:
  1216. */
  1217. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
  1218. {
  1219. struct task_struct *curr = rq->curr;
  1220. struct sched_entity *se = &curr->se, *pse = &p->se;
  1221. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1222. update_curr(cfs_rq);
  1223. if (unlikely(rt_prio(p->prio))) {
  1224. resched_task(curr);
  1225. return;
  1226. }
  1227. if (unlikely(p->sched_class != &fair_sched_class))
  1228. return;
  1229. if (unlikely(se == pse))
  1230. return;
  1231. /*
  1232. * Only set the backward buddy when the current task is still on the
  1233. * rq. This can happen when a wakeup gets interleaved with schedule on
  1234. * the ->pre_schedule() or idle_balance() point, either of which can
  1235. * drop the rq lock.
  1236. *
  1237. * Also, during early boot the idle thread is in the fair class, for
  1238. * obvious reasons its a bad idea to schedule back to the idle thread.
  1239. */
  1240. if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
  1241. set_last_buddy(se);
  1242. set_next_buddy(pse);
  1243. /*
  1244. * We can come here with TIF_NEED_RESCHED already set from new task
  1245. * wake up path.
  1246. */
  1247. if (test_tsk_need_resched(curr))
  1248. return;
  1249. /*
  1250. * Batch and idle tasks do not preempt (their preemption is driven by
  1251. * the tick):
  1252. */
  1253. if (unlikely(p->policy != SCHED_NORMAL))
  1254. return;
  1255. /* Idle tasks are by definition preempted by everybody. */
  1256. if (unlikely(curr->policy == SCHED_IDLE)) {
  1257. resched_task(curr);
  1258. return;
  1259. }
  1260. if (!sched_feat(WAKEUP_PREEMPT))
  1261. return;
  1262. if (sched_feat(WAKEUP_OVERLAP) && (sync ||
  1263. (se->avg_overlap < sysctl_sched_migration_cost &&
  1264. pse->avg_overlap < sysctl_sched_migration_cost))) {
  1265. resched_task(curr);
  1266. return;
  1267. }
  1268. find_matching_se(&se, &pse);
  1269. BUG_ON(!pse);
  1270. if (wakeup_preempt_entity(se, pse) == 1)
  1271. resched_task(curr);
  1272. }
  1273. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1274. {
  1275. struct task_struct *p;
  1276. struct cfs_rq *cfs_rq = &rq->cfs;
  1277. struct sched_entity *se;
  1278. if (unlikely(!cfs_rq->nr_running))
  1279. return NULL;
  1280. do {
  1281. se = pick_next_entity(cfs_rq);
  1282. /*
  1283. * If se was a buddy, clear it so that it will have to earn
  1284. * the favour again.
  1285. */
  1286. __clear_buddies(cfs_rq, se);
  1287. set_next_entity(cfs_rq, se);
  1288. cfs_rq = group_cfs_rq(se);
  1289. } while (cfs_rq);
  1290. p = task_of(se);
  1291. hrtick_start_fair(rq, p);
  1292. return p;
  1293. }
  1294. /*
  1295. * Account for a descheduled task:
  1296. */
  1297. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1298. {
  1299. struct sched_entity *se = &prev->se;
  1300. struct cfs_rq *cfs_rq;
  1301. for_each_sched_entity(se) {
  1302. cfs_rq = cfs_rq_of(se);
  1303. put_prev_entity(cfs_rq, se);
  1304. }
  1305. }
  1306. #ifdef CONFIG_SMP
  1307. /**************************************************
  1308. * Fair scheduling class load-balancing methods:
  1309. */
  1310. /*
  1311. * Load-balancing iterator. Note: while the runqueue stays locked
  1312. * during the whole iteration, the current task might be
  1313. * dequeued so the iterator has to be dequeue-safe. Here we
  1314. * achieve that by always pre-iterating before returning
  1315. * the current task:
  1316. */
  1317. static struct task_struct *
  1318. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1319. {
  1320. struct task_struct *p = NULL;
  1321. struct sched_entity *se;
  1322. if (next == &cfs_rq->tasks)
  1323. return NULL;
  1324. se = list_entry(next, struct sched_entity, group_node);
  1325. p = task_of(se);
  1326. cfs_rq->balance_iterator = next->next;
  1327. return p;
  1328. }
  1329. static struct task_struct *load_balance_start_fair(void *arg)
  1330. {
  1331. struct cfs_rq *cfs_rq = arg;
  1332. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1333. }
  1334. static struct task_struct *load_balance_next_fair(void *arg)
  1335. {
  1336. struct cfs_rq *cfs_rq = arg;
  1337. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1338. }
  1339. static unsigned long
  1340. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1341. unsigned long max_load_move, struct sched_domain *sd,
  1342. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1343. struct cfs_rq *cfs_rq)
  1344. {
  1345. struct rq_iterator cfs_rq_iterator;
  1346. cfs_rq_iterator.start = load_balance_start_fair;
  1347. cfs_rq_iterator.next = load_balance_next_fair;
  1348. cfs_rq_iterator.arg = cfs_rq;
  1349. return balance_tasks(this_rq, this_cpu, busiest,
  1350. max_load_move, sd, idle, all_pinned,
  1351. this_best_prio, &cfs_rq_iterator);
  1352. }
  1353. #ifdef CONFIG_FAIR_GROUP_SCHED
  1354. static unsigned long
  1355. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1356. unsigned long max_load_move,
  1357. struct sched_domain *sd, enum cpu_idle_type idle,
  1358. int *all_pinned, int *this_best_prio)
  1359. {
  1360. long rem_load_move = max_load_move;
  1361. int busiest_cpu = cpu_of(busiest);
  1362. struct task_group *tg;
  1363. rcu_read_lock();
  1364. update_h_load(busiest_cpu);
  1365. list_for_each_entry_rcu(tg, &task_groups, list) {
  1366. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1367. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1368. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1369. u64 rem_load, moved_load;
  1370. /*
  1371. * empty group
  1372. */
  1373. if (!busiest_cfs_rq->task_weight)
  1374. continue;
  1375. rem_load = (u64)rem_load_move * busiest_weight;
  1376. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1377. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1378. rem_load, sd, idle, all_pinned, this_best_prio,
  1379. tg->cfs_rq[busiest_cpu]);
  1380. if (!moved_load)
  1381. continue;
  1382. moved_load *= busiest_h_load;
  1383. moved_load = div_u64(moved_load, busiest_weight + 1);
  1384. rem_load_move -= moved_load;
  1385. if (rem_load_move < 0)
  1386. break;
  1387. }
  1388. rcu_read_unlock();
  1389. return max_load_move - rem_load_move;
  1390. }
  1391. #else
  1392. static unsigned long
  1393. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1394. unsigned long max_load_move,
  1395. struct sched_domain *sd, enum cpu_idle_type idle,
  1396. int *all_pinned, int *this_best_prio)
  1397. {
  1398. return __load_balance_fair(this_rq, this_cpu, busiest,
  1399. max_load_move, sd, idle, all_pinned,
  1400. this_best_prio, &busiest->cfs);
  1401. }
  1402. #endif
  1403. static int
  1404. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1405. struct sched_domain *sd, enum cpu_idle_type idle)
  1406. {
  1407. struct cfs_rq *busy_cfs_rq;
  1408. struct rq_iterator cfs_rq_iterator;
  1409. cfs_rq_iterator.start = load_balance_start_fair;
  1410. cfs_rq_iterator.next = load_balance_next_fair;
  1411. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1412. /*
  1413. * pass busy_cfs_rq argument into
  1414. * load_balance_[start|next]_fair iterators
  1415. */
  1416. cfs_rq_iterator.arg = busy_cfs_rq;
  1417. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1418. &cfs_rq_iterator))
  1419. return 1;
  1420. }
  1421. return 0;
  1422. }
  1423. #endif /* CONFIG_SMP */
  1424. /*
  1425. * scheduler tick hitting a task of our scheduling class:
  1426. */
  1427. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1428. {
  1429. struct cfs_rq *cfs_rq;
  1430. struct sched_entity *se = &curr->se;
  1431. for_each_sched_entity(se) {
  1432. cfs_rq = cfs_rq_of(se);
  1433. entity_tick(cfs_rq, se, queued);
  1434. }
  1435. }
  1436. /*
  1437. * Share the fairness runtime between parent and child, thus the
  1438. * total amount of pressure for CPU stays equal - new tasks
  1439. * get a chance to run but frequent forkers are not allowed to
  1440. * monopolize the CPU. Note: the parent runqueue is locked,
  1441. * the child is not running yet.
  1442. */
  1443. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1444. {
  1445. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1446. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1447. int this_cpu = smp_processor_id();
  1448. sched_info_queued(p);
  1449. update_curr(cfs_rq);
  1450. place_entity(cfs_rq, se, 1);
  1451. /* 'curr' will be NULL if the child belongs to a different group */
  1452. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1453. curr && entity_before(curr, se)) {
  1454. /*
  1455. * Upon rescheduling, sched_class::put_prev_task() will place
  1456. * 'current' within the tree based on its new key value.
  1457. */
  1458. swap(curr->vruntime, se->vruntime);
  1459. resched_task(rq->curr);
  1460. }
  1461. enqueue_task_fair(rq, p, 0);
  1462. }
  1463. /*
  1464. * Priority of the task has changed. Check to see if we preempt
  1465. * the current task.
  1466. */
  1467. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1468. int oldprio, int running)
  1469. {
  1470. /*
  1471. * Reschedule if we are currently running on this runqueue and
  1472. * our priority decreased, or if we are not currently running on
  1473. * this runqueue and our priority is higher than the current's
  1474. */
  1475. if (running) {
  1476. if (p->prio > oldprio)
  1477. resched_task(rq->curr);
  1478. } else
  1479. check_preempt_curr(rq, p, 0);
  1480. }
  1481. /*
  1482. * We switched to the sched_fair class.
  1483. */
  1484. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1485. int running)
  1486. {
  1487. /*
  1488. * We were most likely switched from sched_rt, so
  1489. * kick off the schedule if running, otherwise just see
  1490. * if we can still preempt the current task.
  1491. */
  1492. if (running)
  1493. resched_task(rq->curr);
  1494. else
  1495. check_preempt_curr(rq, p, 0);
  1496. }
  1497. /* Account for a task changing its policy or group.
  1498. *
  1499. * This routine is mostly called to set cfs_rq->curr field when a task
  1500. * migrates between groups/classes.
  1501. */
  1502. static void set_curr_task_fair(struct rq *rq)
  1503. {
  1504. struct sched_entity *se = &rq->curr->se;
  1505. for_each_sched_entity(se)
  1506. set_next_entity(cfs_rq_of(se), se);
  1507. }
  1508. #ifdef CONFIG_FAIR_GROUP_SCHED
  1509. static void moved_group_fair(struct task_struct *p)
  1510. {
  1511. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1512. update_curr(cfs_rq);
  1513. place_entity(cfs_rq, &p->se, 1);
  1514. }
  1515. #endif
  1516. /*
  1517. * All the scheduling class methods:
  1518. */
  1519. static const struct sched_class fair_sched_class = {
  1520. .next = &idle_sched_class,
  1521. .enqueue_task = enqueue_task_fair,
  1522. .dequeue_task = dequeue_task_fair,
  1523. .yield_task = yield_task_fair,
  1524. .check_preempt_curr = check_preempt_wakeup,
  1525. .pick_next_task = pick_next_task_fair,
  1526. .put_prev_task = put_prev_task_fair,
  1527. #ifdef CONFIG_SMP
  1528. .select_task_rq = select_task_rq_fair,
  1529. .load_balance = load_balance_fair,
  1530. .move_one_task = move_one_task_fair,
  1531. #endif
  1532. .set_curr_task = set_curr_task_fair,
  1533. .task_tick = task_tick_fair,
  1534. .task_new = task_new_fair,
  1535. .prio_changed = prio_changed_fair,
  1536. .switched_to = switched_to_fair,
  1537. #ifdef CONFIG_FAIR_GROUP_SCHED
  1538. .moved_group = moved_group_fair,
  1539. #endif
  1540. };
  1541. #ifdef CONFIG_SCHED_DEBUG
  1542. static void print_cfs_stats(struct seq_file *m, int cpu)
  1543. {
  1544. struct cfs_rq *cfs_rq;
  1545. rcu_read_lock();
  1546. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1547. print_cfs_rq(m, cpu, cfs_rq);
  1548. rcu_read_unlock();
  1549. }
  1550. #endif