rx.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485
  1. /*
  2. * Copyright 2002-2005, Instant802 Networks, Inc.
  3. * Copyright 2005-2006, Devicescape Software, Inc.
  4. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  5. * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/skbuff.h>
  13. #include <linux/netdevice.h>
  14. #include <linux/etherdevice.h>
  15. #include <net/mac80211.h>
  16. #include <net/ieee80211_radiotap.h>
  17. #include "ieee80211_i.h"
  18. #include "ieee80211_led.h"
  19. #include "ieee80211_common.h"
  20. #include "wep.h"
  21. #include "wpa.h"
  22. #include "tkip.h"
  23. #include "wme.h"
  24. /* pre-rx handlers
  25. *
  26. * these don't have dev/sdata fields in the rx data
  27. * The sta value should also not be used because it may
  28. * be NULL even though a STA (in IBSS mode) will be added.
  29. */
  30. static ieee80211_txrx_result
  31. ieee80211_rx_h_parse_qos(struct ieee80211_txrx_data *rx)
  32. {
  33. u8 *data = rx->skb->data;
  34. int tid;
  35. /* does the frame have a qos control field? */
  36. if (WLAN_FC_IS_QOS_DATA(rx->fc)) {
  37. u8 *qc = data + ieee80211_get_hdrlen(rx->fc) - QOS_CONTROL_LEN;
  38. /* frame has qos control */
  39. tid = qc[0] & QOS_CONTROL_TID_MASK;
  40. } else {
  41. if (unlikely((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)) {
  42. /* Separate TID for management frames */
  43. tid = NUM_RX_DATA_QUEUES - 1;
  44. } else {
  45. /* no qos control present */
  46. tid = 0; /* 802.1d - Best Effort */
  47. }
  48. }
  49. I802_DEBUG_INC(rx->local->wme_rx_queue[tid]);
  50. /* only a debug counter, sta might not be assigned properly yet */
  51. if (rx->sta)
  52. I802_DEBUG_INC(rx->sta->wme_rx_queue[tid]);
  53. rx->u.rx.queue = tid;
  54. /* Set skb->priority to 1d tag if highest order bit of TID is not set.
  55. * For now, set skb->priority to 0 for other cases. */
  56. rx->skb->priority = (tid > 7) ? 0 : tid;
  57. return TXRX_CONTINUE;
  58. }
  59. static ieee80211_txrx_result
  60. ieee80211_rx_h_load_stats(struct ieee80211_txrx_data *rx)
  61. {
  62. struct ieee80211_local *local = rx->local;
  63. struct sk_buff *skb = rx->skb;
  64. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  65. u32 load = 0, hdrtime;
  66. struct ieee80211_rate *rate;
  67. struct ieee80211_hw_mode *mode = local->hw.conf.mode;
  68. int i;
  69. /* Estimate total channel use caused by this frame */
  70. if (unlikely(mode->num_rates < 0))
  71. return TXRX_CONTINUE;
  72. rate = &mode->rates[0];
  73. for (i = 0; i < mode->num_rates; i++) {
  74. if (mode->rates[i].val == rx->u.rx.status->rate) {
  75. rate = &mode->rates[i];
  76. break;
  77. }
  78. }
  79. /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
  80. * 1 usec = 1/8 * (1080 / 10) = 13.5 */
  81. if (mode->mode == MODE_IEEE80211A ||
  82. mode->mode == MODE_ATHEROS_TURBO ||
  83. mode->mode == MODE_ATHEROS_TURBOG ||
  84. (mode->mode == MODE_IEEE80211G &&
  85. rate->flags & IEEE80211_RATE_ERP))
  86. hdrtime = CHAN_UTIL_HDR_SHORT;
  87. else
  88. hdrtime = CHAN_UTIL_HDR_LONG;
  89. load = hdrtime;
  90. if (!is_multicast_ether_addr(hdr->addr1))
  91. load += hdrtime;
  92. load += skb->len * rate->rate_inv;
  93. /* Divide channel_use by 8 to avoid wrapping around the counter */
  94. load >>= CHAN_UTIL_SHIFT;
  95. local->channel_use_raw += load;
  96. rx->u.rx.load = load;
  97. return TXRX_CONTINUE;
  98. }
  99. ieee80211_rx_handler ieee80211_rx_pre_handlers[] =
  100. {
  101. ieee80211_rx_h_parse_qos,
  102. ieee80211_rx_h_load_stats,
  103. NULL
  104. };
  105. /* rx handlers */
  106. static ieee80211_txrx_result
  107. ieee80211_rx_h_if_stats(struct ieee80211_txrx_data *rx)
  108. {
  109. if (rx->sta)
  110. rx->sta->channel_use_raw += rx->u.rx.load;
  111. rx->sdata->channel_use_raw += rx->u.rx.load;
  112. return TXRX_CONTINUE;
  113. }
  114. static void
  115. ieee80211_rx_monitor(struct net_device *dev, struct sk_buff *skb,
  116. struct ieee80211_rx_status *status)
  117. {
  118. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  119. struct ieee80211_sub_if_data *sdata;
  120. struct ieee80211_rate *rate;
  121. struct ieee80211_rtap_hdr {
  122. struct ieee80211_radiotap_header hdr;
  123. u8 flags;
  124. u8 rate;
  125. __le16 chan_freq;
  126. __le16 chan_flags;
  127. u8 antsignal;
  128. } __attribute__ ((packed)) *rthdr;
  129. skb->dev = dev;
  130. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  131. if (status->flag & RX_FLAG_RADIOTAP)
  132. goto out;
  133. if (skb_headroom(skb) < sizeof(*rthdr)) {
  134. I802_DEBUG_INC(local->rx_expand_skb_head);
  135. if (pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) {
  136. dev_kfree_skb(skb);
  137. return;
  138. }
  139. }
  140. rthdr = (struct ieee80211_rtap_hdr *) skb_push(skb, sizeof(*rthdr));
  141. memset(rthdr, 0, sizeof(*rthdr));
  142. rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
  143. rthdr->hdr.it_present =
  144. cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
  145. (1 << IEEE80211_RADIOTAP_RATE) |
  146. (1 << IEEE80211_RADIOTAP_CHANNEL) |
  147. (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL));
  148. rthdr->flags = local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS ?
  149. IEEE80211_RADIOTAP_F_FCS : 0;
  150. rate = ieee80211_get_rate(local, status->phymode, status->rate);
  151. if (rate)
  152. rthdr->rate = rate->rate / 5;
  153. rthdr->chan_freq = cpu_to_le16(status->freq);
  154. rthdr->chan_flags =
  155. status->phymode == MODE_IEEE80211A ?
  156. cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ) :
  157. cpu_to_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ);
  158. rthdr->antsignal = status->ssi;
  159. out:
  160. sdata->stats.rx_packets++;
  161. sdata->stats.rx_bytes += skb->len;
  162. skb_set_mac_header(skb, 0);
  163. skb->ip_summed = CHECKSUM_UNNECESSARY;
  164. skb->pkt_type = PACKET_OTHERHOST;
  165. skb->protocol = htons(ETH_P_802_2);
  166. memset(skb->cb, 0, sizeof(skb->cb));
  167. netif_rx(skb);
  168. }
  169. static ieee80211_txrx_result
  170. ieee80211_rx_h_monitor(struct ieee80211_txrx_data *rx)
  171. {
  172. if (rx->sdata->type == IEEE80211_IF_TYPE_MNTR) {
  173. ieee80211_rx_monitor(rx->dev, rx->skb, rx->u.rx.status);
  174. return TXRX_QUEUED;
  175. }
  176. if (rx->u.rx.status->flag & RX_FLAG_RADIOTAP)
  177. skb_pull(rx->skb, ieee80211_get_radiotap_len(rx->skb->data));
  178. return TXRX_CONTINUE;
  179. }
  180. static ieee80211_txrx_result
  181. ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx)
  182. {
  183. struct ieee80211_local *local = rx->local;
  184. struct sk_buff *skb = rx->skb;
  185. if (unlikely(local->sta_scanning != 0)) {
  186. ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status);
  187. return TXRX_QUEUED;
  188. }
  189. if (unlikely(rx->flags & IEEE80211_TXRXD_RXIN_SCAN)) {
  190. /* scanning finished during invoking of handlers */
  191. I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
  192. return TXRX_DROP;
  193. }
  194. return TXRX_CONTINUE;
  195. }
  196. static ieee80211_txrx_result
  197. ieee80211_rx_h_check(struct ieee80211_txrx_data *rx)
  198. {
  199. struct ieee80211_hdr *hdr;
  200. hdr = (struct ieee80211_hdr *) rx->skb->data;
  201. /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
  202. if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
  203. if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
  204. rx->sta->last_seq_ctrl[rx->u.rx.queue] ==
  205. hdr->seq_ctrl)) {
  206. if (rx->flags & IEEE80211_TXRXD_RXRA_MATCH) {
  207. rx->local->dot11FrameDuplicateCount++;
  208. rx->sta->num_duplicates++;
  209. }
  210. return TXRX_DROP;
  211. } else
  212. rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl;
  213. }
  214. if ((rx->local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) &&
  215. rx->skb->len > FCS_LEN)
  216. skb_trim(rx->skb, rx->skb->len - FCS_LEN);
  217. if (unlikely(rx->skb->len < 16)) {
  218. I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
  219. return TXRX_DROP;
  220. }
  221. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  222. rx->skb->pkt_type = PACKET_OTHERHOST;
  223. else if (compare_ether_addr(rx->dev->dev_addr, hdr->addr1) == 0)
  224. rx->skb->pkt_type = PACKET_HOST;
  225. else if (is_multicast_ether_addr(hdr->addr1)) {
  226. if (is_broadcast_ether_addr(hdr->addr1))
  227. rx->skb->pkt_type = PACKET_BROADCAST;
  228. else
  229. rx->skb->pkt_type = PACKET_MULTICAST;
  230. } else
  231. rx->skb->pkt_type = PACKET_OTHERHOST;
  232. /* Drop disallowed frame classes based on STA auth/assoc state;
  233. * IEEE 802.11, Chap 5.5.
  234. *
  235. * 80211.o does filtering only based on association state, i.e., it
  236. * drops Class 3 frames from not associated stations. hostapd sends
  237. * deauth/disassoc frames when needed. In addition, hostapd is
  238. * responsible for filtering on both auth and assoc states.
  239. */
  240. if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
  241. ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
  242. (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
  243. rx->sdata->type != IEEE80211_IF_TYPE_IBSS &&
  244. (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
  245. if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
  246. !(rx->fc & IEEE80211_FCTL_TODS) &&
  247. (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
  248. || !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
  249. /* Drop IBSS frames and frames for other hosts
  250. * silently. */
  251. return TXRX_DROP;
  252. }
  253. if (!rx->local->apdev)
  254. return TXRX_DROP;
  255. ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
  256. ieee80211_msg_sta_not_assoc);
  257. return TXRX_QUEUED;
  258. }
  259. return TXRX_CONTINUE;
  260. }
  261. static ieee80211_txrx_result
  262. ieee80211_rx_h_load_key(struct ieee80211_txrx_data *rx)
  263. {
  264. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  265. int keyidx;
  266. int hdrlen;
  267. /*
  268. * Key selection 101
  269. *
  270. * There are three types of keys:
  271. * - GTK (group keys)
  272. * - PTK (pairwise keys)
  273. * - STK (station-to-station pairwise keys)
  274. *
  275. * When selecting a key, we have to distinguish between multicast
  276. * (including broadcast) and unicast frames, the latter can only
  277. * use PTKs and STKs while the former always use GTKs. Unless, of
  278. * course, actual WEP keys ("pre-RSNA") are used, then unicast
  279. * frames can also use key indizes like GTKs. Hence, if we don't
  280. * have a PTK/STK we check the key index for a WEP key.
  281. *
  282. * There is also a slight problem in IBSS mode: GTKs are negotiated
  283. * with each station, that is something we don't currently handle.
  284. */
  285. if (!(rx->fc & IEEE80211_FCTL_PROTECTED))
  286. return TXRX_CONTINUE;
  287. /*
  288. * No point in finding a key if the frame is neither
  289. * addressed to us nor a multicast frame.
  290. */
  291. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  292. return TXRX_CONTINUE;
  293. if (!is_multicast_ether_addr(hdr->addr1) && rx->sta && rx->sta->key) {
  294. rx->key = rx->sta->key;
  295. } else {
  296. /*
  297. * The device doesn't give us the IV so we won't be
  298. * able to look up the key. That's ok though, we
  299. * don't need to decrypt the frame, we just won't
  300. * be able to keep statistics accurate.
  301. * Except for key threshold notifications, should
  302. * we somehow allow the driver to tell us which key
  303. * the hardware used if this flag is set?
  304. */
  305. if (!(rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV))
  306. return TXRX_CONTINUE;
  307. hdrlen = ieee80211_get_hdrlen(rx->fc);
  308. if (rx->skb->len < 8 + hdrlen)
  309. return TXRX_DROP; /* TODO: count this? */
  310. /*
  311. * no need to call ieee80211_wep_get_keyidx,
  312. * it verifies a bunch of things we've done already
  313. */
  314. keyidx = rx->skb->data[hdrlen + 3] >> 6;
  315. rx->key = rx->sdata->keys[keyidx];
  316. /*
  317. * RSNA-protected unicast frames should always be sent with
  318. * pairwise or station-to-station keys, but for WEP we allow
  319. * using a key index as well.
  320. */
  321. if (rx->key && rx->key->conf.alg != ALG_WEP &&
  322. !is_multicast_ether_addr(hdr->addr1))
  323. rx->key = NULL;
  324. }
  325. if (rx->key) {
  326. rx->key->tx_rx_count++;
  327. if (unlikely(rx->local->key_tx_rx_threshold &&
  328. rx->key->tx_rx_count >
  329. rx->local->key_tx_rx_threshold)) {
  330. ieee80211_key_threshold_notify(rx->dev, rx->key,
  331. rx->sta);
  332. }
  333. }
  334. return TXRX_CONTINUE;
  335. }
  336. static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
  337. {
  338. struct ieee80211_sub_if_data *sdata;
  339. sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
  340. if (sdata->bss)
  341. atomic_inc(&sdata->bss->num_sta_ps);
  342. sta->flags |= WLAN_STA_PS;
  343. sta->pspoll = 0;
  344. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  345. printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d enters power "
  346. "save mode\n", dev->name, MAC_ARG(sta->addr), sta->aid);
  347. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  348. }
  349. static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
  350. {
  351. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  352. struct sk_buff *skb;
  353. int sent = 0;
  354. struct ieee80211_sub_if_data *sdata;
  355. struct ieee80211_tx_packet_data *pkt_data;
  356. sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
  357. if (sdata->bss)
  358. atomic_dec(&sdata->bss->num_sta_ps);
  359. sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM);
  360. sta->pspoll = 0;
  361. if (!skb_queue_empty(&sta->ps_tx_buf)) {
  362. if (local->ops->set_tim)
  363. local->ops->set_tim(local_to_hw(local), sta->aid, 0);
  364. if (sdata->bss)
  365. bss_tim_clear(local, sdata->bss, sta->aid);
  366. }
  367. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  368. printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d exits power "
  369. "save mode\n", dev->name, MAC_ARG(sta->addr), sta->aid);
  370. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  371. /* Send all buffered frames to the station */
  372. while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
  373. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  374. sent++;
  375. pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
  376. dev_queue_xmit(skb);
  377. }
  378. while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
  379. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  380. local->total_ps_buffered--;
  381. sent++;
  382. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  383. printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d send PS frame "
  384. "since STA not sleeping anymore\n", dev->name,
  385. MAC_ARG(sta->addr), sta->aid);
  386. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  387. pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
  388. dev_queue_xmit(skb);
  389. }
  390. return sent;
  391. }
  392. static ieee80211_txrx_result
  393. ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx)
  394. {
  395. struct sta_info *sta = rx->sta;
  396. struct net_device *dev = rx->dev;
  397. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  398. if (!sta)
  399. return TXRX_CONTINUE;
  400. /* Update last_rx only for IBSS packets which are for the current
  401. * BSSID to avoid keeping the current IBSS network alive in cases where
  402. * other STAs are using different BSSID. */
  403. if (rx->sdata->type == IEEE80211_IF_TYPE_IBSS) {
  404. u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len);
  405. if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
  406. sta->last_rx = jiffies;
  407. } else
  408. if (!is_multicast_ether_addr(hdr->addr1) ||
  409. rx->sdata->type == IEEE80211_IF_TYPE_STA) {
  410. /* Update last_rx only for unicast frames in order to prevent
  411. * the Probe Request frames (the only broadcast frames from a
  412. * STA in infrastructure mode) from keeping a connection alive.
  413. */
  414. sta->last_rx = jiffies;
  415. }
  416. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  417. return TXRX_CONTINUE;
  418. sta->rx_fragments++;
  419. sta->rx_bytes += rx->skb->len;
  420. sta->last_rssi = (sta->last_rssi * 15 +
  421. rx->u.rx.status->ssi) / 16;
  422. sta->last_signal = (sta->last_signal * 15 +
  423. rx->u.rx.status->signal) / 16;
  424. sta->last_noise = (sta->last_noise * 15 +
  425. rx->u.rx.status->noise) / 16;
  426. if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
  427. /* Change STA power saving mode only in the end of a frame
  428. * exchange sequence */
  429. if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM))
  430. rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta);
  431. else if (!(sta->flags & WLAN_STA_PS) &&
  432. (rx->fc & IEEE80211_FCTL_PM))
  433. ap_sta_ps_start(dev, sta);
  434. }
  435. /* Drop data::nullfunc frames silently, since they are used only to
  436. * control station power saving mode. */
  437. if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
  438. (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
  439. I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
  440. /* Update counter and free packet here to avoid counting this
  441. * as a dropped packed. */
  442. sta->rx_packets++;
  443. dev_kfree_skb(rx->skb);
  444. return TXRX_QUEUED;
  445. }
  446. return TXRX_CONTINUE;
  447. } /* ieee80211_rx_h_sta_process */
  448. static ieee80211_txrx_result
  449. ieee80211_rx_h_wep_weak_iv_detection(struct ieee80211_txrx_data *rx)
  450. {
  451. if (!rx->sta || !(rx->fc & IEEE80211_FCTL_PROTECTED) ||
  452. (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA ||
  453. !rx->key || rx->key->conf.alg != ALG_WEP ||
  454. !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  455. return TXRX_CONTINUE;
  456. /* Check for weak IVs, if hwaccel did not remove IV from the frame */
  457. if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) ||
  458. (rx->key->conf.flags & IEEE80211_KEY_FORCE_SW_ENCRYPT))
  459. if (ieee80211_wep_is_weak_iv(rx->skb, rx->key))
  460. rx->sta->wep_weak_iv_count++;
  461. return TXRX_CONTINUE;
  462. }
  463. static ieee80211_txrx_result
  464. ieee80211_rx_h_wep_decrypt(struct ieee80211_txrx_data *rx)
  465. {
  466. if ((rx->key && rx->key->conf.alg != ALG_WEP) ||
  467. !(rx->fc & IEEE80211_FCTL_PROTECTED) ||
  468. ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
  469. ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
  470. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)))
  471. return TXRX_CONTINUE;
  472. if (!rx->key) {
  473. if (net_ratelimit())
  474. printk(KERN_DEBUG "%s: RX WEP frame, but no key set\n",
  475. rx->dev->name);
  476. return TXRX_DROP;
  477. }
  478. if (!(rx->u.rx.status->flag & RX_FLAG_DECRYPTED) ||
  479. (rx->key->conf.flags & IEEE80211_KEY_FORCE_SW_ENCRYPT)) {
  480. if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) {
  481. if (net_ratelimit())
  482. printk(KERN_DEBUG "%s: RX WEP frame, decrypt "
  483. "failed\n", rx->dev->name);
  484. return TXRX_DROP;
  485. }
  486. } else if (rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) {
  487. ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key);
  488. /* remove ICV */
  489. skb_trim(rx->skb, rx->skb->len - 4);
  490. }
  491. return TXRX_CONTINUE;
  492. }
  493. static inline struct ieee80211_fragment_entry *
  494. ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
  495. unsigned int frag, unsigned int seq, int rx_queue,
  496. struct sk_buff **skb)
  497. {
  498. struct ieee80211_fragment_entry *entry;
  499. int idx;
  500. idx = sdata->fragment_next;
  501. entry = &sdata->fragments[sdata->fragment_next++];
  502. if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
  503. sdata->fragment_next = 0;
  504. if (!skb_queue_empty(&entry->skb_list)) {
  505. #ifdef CONFIG_MAC80211_DEBUG
  506. struct ieee80211_hdr *hdr =
  507. (struct ieee80211_hdr *) entry->skb_list.next->data;
  508. printk(KERN_DEBUG "%s: RX reassembly removed oldest "
  509. "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
  510. "addr1=" MAC_FMT " addr2=" MAC_FMT "\n",
  511. sdata->dev->name, idx,
  512. jiffies - entry->first_frag_time, entry->seq,
  513. entry->last_frag, MAC_ARG(hdr->addr1),
  514. MAC_ARG(hdr->addr2));
  515. #endif /* CONFIG_MAC80211_DEBUG */
  516. __skb_queue_purge(&entry->skb_list);
  517. }
  518. __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
  519. *skb = NULL;
  520. entry->first_frag_time = jiffies;
  521. entry->seq = seq;
  522. entry->rx_queue = rx_queue;
  523. entry->last_frag = frag;
  524. entry->ccmp = 0;
  525. entry->extra_len = 0;
  526. return entry;
  527. }
  528. static inline struct ieee80211_fragment_entry *
  529. ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
  530. u16 fc, unsigned int frag, unsigned int seq,
  531. int rx_queue, struct ieee80211_hdr *hdr)
  532. {
  533. struct ieee80211_fragment_entry *entry;
  534. int i, idx;
  535. idx = sdata->fragment_next;
  536. for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
  537. struct ieee80211_hdr *f_hdr;
  538. u16 f_fc;
  539. idx--;
  540. if (idx < 0)
  541. idx = IEEE80211_FRAGMENT_MAX - 1;
  542. entry = &sdata->fragments[idx];
  543. if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
  544. entry->rx_queue != rx_queue ||
  545. entry->last_frag + 1 != frag)
  546. continue;
  547. f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
  548. f_fc = le16_to_cpu(f_hdr->frame_control);
  549. if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
  550. compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
  551. compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
  552. continue;
  553. if (entry->first_frag_time + 2 * HZ < jiffies) {
  554. __skb_queue_purge(&entry->skb_list);
  555. continue;
  556. }
  557. return entry;
  558. }
  559. return NULL;
  560. }
  561. static ieee80211_txrx_result
  562. ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx)
  563. {
  564. struct ieee80211_hdr *hdr;
  565. u16 sc;
  566. unsigned int frag, seq;
  567. struct ieee80211_fragment_entry *entry;
  568. struct sk_buff *skb;
  569. hdr = (struct ieee80211_hdr *) rx->skb->data;
  570. sc = le16_to_cpu(hdr->seq_ctrl);
  571. frag = sc & IEEE80211_SCTL_FRAG;
  572. if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
  573. (rx->skb)->len < 24 ||
  574. is_multicast_ether_addr(hdr->addr1))) {
  575. /* not fragmented */
  576. goto out;
  577. }
  578. I802_DEBUG_INC(rx->local->rx_handlers_fragments);
  579. seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
  580. if (frag == 0) {
  581. /* This is the first fragment of a new frame. */
  582. entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
  583. rx->u.rx.queue, &(rx->skb));
  584. if (rx->key && rx->key->conf.alg == ALG_CCMP &&
  585. (rx->fc & IEEE80211_FCTL_PROTECTED)) {
  586. /* Store CCMP PN so that we can verify that the next
  587. * fragment has a sequential PN value. */
  588. entry->ccmp = 1;
  589. memcpy(entry->last_pn,
  590. rx->key->u.ccmp.rx_pn[rx->u.rx.queue],
  591. CCMP_PN_LEN);
  592. }
  593. return TXRX_QUEUED;
  594. }
  595. /* This is a fragment for a frame that should already be pending in
  596. * fragment cache. Add this fragment to the end of the pending entry.
  597. */
  598. entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
  599. rx->u.rx.queue, hdr);
  600. if (!entry) {
  601. I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
  602. return TXRX_DROP;
  603. }
  604. /* Verify that MPDUs within one MSDU have sequential PN values.
  605. * (IEEE 802.11i, 8.3.3.4.5) */
  606. if (entry->ccmp) {
  607. int i;
  608. u8 pn[CCMP_PN_LEN], *rpn;
  609. if (!rx->key || rx->key->conf.alg != ALG_CCMP)
  610. return TXRX_DROP;
  611. memcpy(pn, entry->last_pn, CCMP_PN_LEN);
  612. for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
  613. pn[i]++;
  614. if (pn[i])
  615. break;
  616. }
  617. rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue];
  618. if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
  619. if (net_ratelimit())
  620. printk(KERN_DEBUG "%s: defrag: CCMP PN not "
  621. "sequential A2=" MAC_FMT
  622. " PN=%02x%02x%02x%02x%02x%02x "
  623. "(expected %02x%02x%02x%02x%02x%02x)\n",
  624. rx->dev->name, MAC_ARG(hdr->addr2),
  625. rpn[0], rpn[1], rpn[2], rpn[3], rpn[4],
  626. rpn[5], pn[0], pn[1], pn[2], pn[3],
  627. pn[4], pn[5]);
  628. return TXRX_DROP;
  629. }
  630. memcpy(entry->last_pn, pn, CCMP_PN_LEN);
  631. }
  632. skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
  633. __skb_queue_tail(&entry->skb_list, rx->skb);
  634. entry->last_frag = frag;
  635. entry->extra_len += rx->skb->len;
  636. if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
  637. rx->skb = NULL;
  638. return TXRX_QUEUED;
  639. }
  640. rx->skb = __skb_dequeue(&entry->skb_list);
  641. if (skb_tailroom(rx->skb) < entry->extra_len) {
  642. I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
  643. if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
  644. GFP_ATOMIC))) {
  645. I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
  646. __skb_queue_purge(&entry->skb_list);
  647. return TXRX_DROP;
  648. }
  649. }
  650. while ((skb = __skb_dequeue(&entry->skb_list))) {
  651. memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
  652. dev_kfree_skb(skb);
  653. }
  654. /* Complete frame has been reassembled - process it now */
  655. rx->flags |= IEEE80211_TXRXD_FRAGMENTED;
  656. out:
  657. if (rx->sta)
  658. rx->sta->rx_packets++;
  659. if (is_multicast_ether_addr(hdr->addr1))
  660. rx->local->dot11MulticastReceivedFrameCount++;
  661. else
  662. ieee80211_led_rx(rx->local);
  663. return TXRX_CONTINUE;
  664. }
  665. static ieee80211_txrx_result
  666. ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx)
  667. {
  668. struct sk_buff *skb;
  669. int no_pending_pkts;
  670. if (likely(!rx->sta ||
  671. (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
  672. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
  673. !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)))
  674. return TXRX_CONTINUE;
  675. skb = skb_dequeue(&rx->sta->tx_filtered);
  676. if (!skb) {
  677. skb = skb_dequeue(&rx->sta->ps_tx_buf);
  678. if (skb)
  679. rx->local->total_ps_buffered--;
  680. }
  681. no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
  682. skb_queue_empty(&rx->sta->ps_tx_buf);
  683. if (skb) {
  684. struct ieee80211_hdr *hdr =
  685. (struct ieee80211_hdr *) skb->data;
  686. /* tell TX path to send one frame even though the STA may
  687. * still remain is PS mode after this frame exchange */
  688. rx->sta->pspoll = 1;
  689. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  690. printk(KERN_DEBUG "STA " MAC_FMT " aid %d: PS Poll (entries "
  691. "after %d)\n",
  692. MAC_ARG(rx->sta->addr), rx->sta->aid,
  693. skb_queue_len(&rx->sta->ps_tx_buf));
  694. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  695. /* Use MoreData flag to indicate whether there are more
  696. * buffered frames for this STA */
  697. if (no_pending_pkts) {
  698. hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
  699. rx->sta->flags &= ~WLAN_STA_TIM;
  700. } else
  701. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
  702. dev_queue_xmit(skb);
  703. if (no_pending_pkts) {
  704. if (rx->local->ops->set_tim)
  705. rx->local->ops->set_tim(local_to_hw(rx->local),
  706. rx->sta->aid, 0);
  707. if (rx->sdata->bss)
  708. bss_tim_clear(rx->local, rx->sdata->bss, rx->sta->aid);
  709. }
  710. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  711. } else if (!rx->u.rx.sent_ps_buffered) {
  712. printk(KERN_DEBUG "%s: STA " MAC_FMT " sent PS Poll even "
  713. "though there is no buffered frames for it\n",
  714. rx->dev->name, MAC_ARG(rx->sta->addr));
  715. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  716. }
  717. /* Free PS Poll skb here instead of returning TXRX_DROP that would
  718. * count as an dropped frame. */
  719. dev_kfree_skb(rx->skb);
  720. return TXRX_QUEUED;
  721. }
  722. static ieee80211_txrx_result
  723. ieee80211_rx_h_remove_qos_control(struct ieee80211_txrx_data *rx)
  724. {
  725. u16 fc = rx->fc;
  726. u8 *data = rx->skb->data;
  727. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) data;
  728. if (!WLAN_FC_IS_QOS_DATA(fc))
  729. return TXRX_CONTINUE;
  730. /* remove the qos control field, update frame type and meta-data */
  731. memmove(data + 2, data, ieee80211_get_hdrlen(fc) - 2);
  732. hdr = (struct ieee80211_hdr *) skb_pull(rx->skb, 2);
  733. /* change frame type to non QOS */
  734. rx->fc = fc &= ~IEEE80211_STYPE_QOS_DATA;
  735. hdr->frame_control = cpu_to_le16(fc);
  736. return TXRX_CONTINUE;
  737. }
  738. static ieee80211_txrx_result
  739. ieee80211_rx_h_802_1x_pae(struct ieee80211_txrx_data *rx)
  740. {
  741. if (rx->sdata->eapol && ieee80211_is_eapol(rx->skb) &&
  742. rx->sdata->type != IEEE80211_IF_TYPE_STA &&
  743. (rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
  744. /* Pass both encrypted and unencrypted EAPOL frames to user
  745. * space for processing. */
  746. if (!rx->local->apdev)
  747. return TXRX_DROP;
  748. ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
  749. ieee80211_msg_normal);
  750. return TXRX_QUEUED;
  751. }
  752. if (unlikely(rx->sdata->ieee802_1x &&
  753. (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
  754. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
  755. (!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED)) &&
  756. !ieee80211_is_eapol(rx->skb))) {
  757. #ifdef CONFIG_MAC80211_DEBUG
  758. struct ieee80211_hdr *hdr =
  759. (struct ieee80211_hdr *) rx->skb->data;
  760. printk(KERN_DEBUG "%s: dropped frame from " MAC_FMT
  761. " (unauthorized port)\n", rx->dev->name,
  762. MAC_ARG(hdr->addr2));
  763. #endif /* CONFIG_MAC80211_DEBUG */
  764. return TXRX_DROP;
  765. }
  766. return TXRX_CONTINUE;
  767. }
  768. static ieee80211_txrx_result
  769. ieee80211_rx_h_drop_unencrypted(struct ieee80211_txrx_data *rx)
  770. {
  771. /*
  772. * Pass through unencrypted frames if the hardware might have
  773. * decrypted them already without telling us, but that can only
  774. * be true if we either didn't find a key or the found key is
  775. * uploaded to the hardware.
  776. */
  777. if ((rx->local->hw.flags & IEEE80211_HW_DEVICE_HIDES_WEP) &&
  778. (!rx->key ||
  779. !(rx->key->conf.flags & IEEE80211_KEY_FORCE_SW_ENCRYPT)))
  780. return TXRX_CONTINUE;
  781. /* Drop unencrypted frames if key is set. */
  782. if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
  783. (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
  784. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
  785. (rx->key || rx->sdata->drop_unencrypted) &&
  786. (rx->sdata->eapol == 0 ||
  787. !ieee80211_is_eapol(rx->skb)))) {
  788. if (net_ratelimit())
  789. printk(KERN_DEBUG "%s: RX non-WEP frame, but expected "
  790. "encryption\n", rx->dev->name);
  791. return TXRX_DROP;
  792. }
  793. return TXRX_CONTINUE;
  794. }
  795. static ieee80211_txrx_result
  796. ieee80211_rx_h_data(struct ieee80211_txrx_data *rx)
  797. {
  798. struct net_device *dev = rx->dev;
  799. struct ieee80211_local *local = rx->local;
  800. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  801. u16 fc, hdrlen, ethertype;
  802. u8 *payload;
  803. u8 dst[ETH_ALEN];
  804. u8 src[ETH_ALEN];
  805. struct sk_buff *skb = rx->skb, *skb2;
  806. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  807. fc = rx->fc;
  808. if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
  809. return TXRX_CONTINUE;
  810. if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
  811. return TXRX_DROP;
  812. hdrlen = ieee80211_get_hdrlen(fc);
  813. /* convert IEEE 802.11 header + possible LLC headers into Ethernet
  814. * header
  815. * IEEE 802.11 address fields:
  816. * ToDS FromDS Addr1 Addr2 Addr3 Addr4
  817. * 0 0 DA SA BSSID n/a
  818. * 0 1 DA BSSID SA n/a
  819. * 1 0 BSSID SA DA n/a
  820. * 1 1 RA TA DA SA
  821. */
  822. switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
  823. case IEEE80211_FCTL_TODS:
  824. /* BSSID SA DA */
  825. memcpy(dst, hdr->addr3, ETH_ALEN);
  826. memcpy(src, hdr->addr2, ETH_ALEN);
  827. if (unlikely(sdata->type != IEEE80211_IF_TYPE_AP &&
  828. sdata->type != IEEE80211_IF_TYPE_VLAN)) {
  829. if (net_ratelimit())
  830. printk(KERN_DEBUG "%s: dropped ToDS frame "
  831. "(BSSID=" MAC_FMT
  832. " SA=" MAC_FMT
  833. " DA=" MAC_FMT ")\n",
  834. dev->name,
  835. MAC_ARG(hdr->addr1),
  836. MAC_ARG(hdr->addr2),
  837. MAC_ARG(hdr->addr3));
  838. return TXRX_DROP;
  839. }
  840. break;
  841. case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
  842. /* RA TA DA SA */
  843. memcpy(dst, hdr->addr3, ETH_ALEN);
  844. memcpy(src, hdr->addr4, ETH_ALEN);
  845. if (unlikely(sdata->type != IEEE80211_IF_TYPE_WDS)) {
  846. if (net_ratelimit())
  847. printk(KERN_DEBUG "%s: dropped FromDS&ToDS "
  848. "frame (RA=" MAC_FMT
  849. " TA=" MAC_FMT " DA=" MAC_FMT
  850. " SA=" MAC_FMT ")\n",
  851. rx->dev->name,
  852. MAC_ARG(hdr->addr1),
  853. MAC_ARG(hdr->addr2),
  854. MAC_ARG(hdr->addr3),
  855. MAC_ARG(hdr->addr4));
  856. return TXRX_DROP;
  857. }
  858. break;
  859. case IEEE80211_FCTL_FROMDS:
  860. /* DA BSSID SA */
  861. memcpy(dst, hdr->addr1, ETH_ALEN);
  862. memcpy(src, hdr->addr3, ETH_ALEN);
  863. if (sdata->type != IEEE80211_IF_TYPE_STA) {
  864. return TXRX_DROP;
  865. }
  866. break;
  867. case 0:
  868. /* DA SA BSSID */
  869. memcpy(dst, hdr->addr1, ETH_ALEN);
  870. memcpy(src, hdr->addr2, ETH_ALEN);
  871. if (sdata->type != IEEE80211_IF_TYPE_IBSS) {
  872. if (net_ratelimit()) {
  873. printk(KERN_DEBUG "%s: dropped IBSS frame (DA="
  874. MAC_FMT " SA=" MAC_FMT " BSSID=" MAC_FMT
  875. ")\n",
  876. dev->name, MAC_ARG(hdr->addr1),
  877. MAC_ARG(hdr->addr2),
  878. MAC_ARG(hdr->addr3));
  879. }
  880. return TXRX_DROP;
  881. }
  882. break;
  883. }
  884. payload = skb->data + hdrlen;
  885. if (unlikely(skb->len - hdrlen < 8)) {
  886. if (net_ratelimit()) {
  887. printk(KERN_DEBUG "%s: RX too short data frame "
  888. "payload\n", dev->name);
  889. }
  890. return TXRX_DROP;
  891. }
  892. ethertype = (payload[6] << 8) | payload[7];
  893. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  894. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  895. compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
  896. /* remove RFC1042 or Bridge-Tunnel encapsulation and
  897. * replace EtherType */
  898. skb_pull(skb, hdrlen + 6);
  899. memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
  900. memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
  901. } else {
  902. struct ethhdr *ehdr;
  903. __be16 len;
  904. skb_pull(skb, hdrlen);
  905. len = htons(skb->len);
  906. ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
  907. memcpy(ehdr->h_dest, dst, ETH_ALEN);
  908. memcpy(ehdr->h_source, src, ETH_ALEN);
  909. ehdr->h_proto = len;
  910. }
  911. skb->dev = dev;
  912. skb2 = NULL;
  913. sdata->stats.rx_packets++;
  914. sdata->stats.rx_bytes += skb->len;
  915. if (local->bridge_packets && (sdata->type == IEEE80211_IF_TYPE_AP
  916. || sdata->type == IEEE80211_IF_TYPE_VLAN) &&
  917. (rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
  918. if (is_multicast_ether_addr(skb->data)) {
  919. /* send multicast frames both to higher layers in
  920. * local net stack and back to the wireless media */
  921. skb2 = skb_copy(skb, GFP_ATOMIC);
  922. if (!skb2 && net_ratelimit())
  923. printk(KERN_DEBUG "%s: failed to clone "
  924. "multicast frame\n", dev->name);
  925. } else {
  926. struct sta_info *dsta;
  927. dsta = sta_info_get(local, skb->data);
  928. if (dsta && !dsta->dev) {
  929. if (net_ratelimit())
  930. printk(KERN_DEBUG "Station with null "
  931. "dev structure!\n");
  932. } else if (dsta && dsta->dev == dev) {
  933. /* Destination station is associated to this
  934. * AP, so send the frame directly to it and
  935. * do not pass the frame to local net stack.
  936. */
  937. skb2 = skb;
  938. skb = NULL;
  939. }
  940. if (dsta)
  941. sta_info_put(dsta);
  942. }
  943. }
  944. if (skb) {
  945. /* deliver to local stack */
  946. skb->protocol = eth_type_trans(skb, dev);
  947. memset(skb->cb, 0, sizeof(skb->cb));
  948. netif_rx(skb);
  949. }
  950. if (skb2) {
  951. /* send to wireless media */
  952. skb2->protocol = __constant_htons(ETH_P_802_3);
  953. skb_set_network_header(skb2, 0);
  954. skb_set_mac_header(skb2, 0);
  955. dev_queue_xmit(skb2);
  956. }
  957. return TXRX_QUEUED;
  958. }
  959. static ieee80211_txrx_result
  960. ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx)
  961. {
  962. struct ieee80211_sub_if_data *sdata;
  963. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  964. return TXRX_DROP;
  965. sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
  966. if ((sdata->type == IEEE80211_IF_TYPE_STA ||
  967. sdata->type == IEEE80211_IF_TYPE_IBSS) &&
  968. !rx->local->user_space_mlme) {
  969. ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status);
  970. } else {
  971. /* Management frames are sent to hostapd for processing */
  972. if (!rx->local->apdev)
  973. return TXRX_DROP;
  974. ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
  975. ieee80211_msg_normal);
  976. }
  977. return TXRX_QUEUED;
  978. }
  979. static inline ieee80211_txrx_result __ieee80211_invoke_rx_handlers(
  980. struct ieee80211_local *local,
  981. ieee80211_rx_handler *handlers,
  982. struct ieee80211_txrx_data *rx,
  983. struct sta_info *sta)
  984. {
  985. ieee80211_rx_handler *handler;
  986. ieee80211_txrx_result res = TXRX_DROP;
  987. for (handler = handlers; *handler != NULL; handler++) {
  988. res = (*handler)(rx);
  989. switch (res) {
  990. case TXRX_CONTINUE:
  991. continue;
  992. case TXRX_DROP:
  993. I802_DEBUG_INC(local->rx_handlers_drop);
  994. if (sta)
  995. sta->rx_dropped++;
  996. break;
  997. case TXRX_QUEUED:
  998. I802_DEBUG_INC(local->rx_handlers_queued);
  999. break;
  1000. }
  1001. break;
  1002. }
  1003. if (res == TXRX_DROP)
  1004. dev_kfree_skb(rx->skb);
  1005. return res;
  1006. }
  1007. static inline void ieee80211_invoke_rx_handlers(struct ieee80211_local *local,
  1008. ieee80211_rx_handler *handlers,
  1009. struct ieee80211_txrx_data *rx,
  1010. struct sta_info *sta)
  1011. {
  1012. if (__ieee80211_invoke_rx_handlers(local, handlers, rx, sta) ==
  1013. TXRX_CONTINUE)
  1014. dev_kfree_skb(rx->skb);
  1015. }
  1016. static void ieee80211_rx_michael_mic_report(struct net_device *dev,
  1017. struct ieee80211_hdr *hdr,
  1018. struct sta_info *sta,
  1019. struct ieee80211_txrx_data *rx)
  1020. {
  1021. int keyidx, hdrlen;
  1022. hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
  1023. if (rx->skb->len >= hdrlen + 4)
  1024. keyidx = rx->skb->data[hdrlen + 3] >> 6;
  1025. else
  1026. keyidx = -1;
  1027. /* TODO: verify that this is not triggered by fragmented
  1028. * frames (hw does not verify MIC for them). */
  1029. if (net_ratelimit())
  1030. printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
  1031. "failure from " MAC_FMT " to " MAC_FMT " keyidx=%d\n",
  1032. dev->name, MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr1),
  1033. keyidx);
  1034. if (!sta) {
  1035. /* Some hardware versions seem to generate incorrect
  1036. * Michael MIC reports; ignore them to avoid triggering
  1037. * countermeasures. */
  1038. if (net_ratelimit())
  1039. printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
  1040. "error for unknown address " MAC_FMT "\n",
  1041. dev->name, MAC_ARG(hdr->addr2));
  1042. goto ignore;
  1043. }
  1044. if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) {
  1045. if (net_ratelimit())
  1046. printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
  1047. "error for a frame with no ISWEP flag (src "
  1048. MAC_FMT ")\n", dev->name, MAC_ARG(hdr->addr2));
  1049. goto ignore;
  1050. }
  1051. if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) &&
  1052. rx->sdata->type == IEEE80211_IF_TYPE_AP && keyidx) {
  1053. /* AP with Pairwise keys support should never receive Michael
  1054. * MIC errors for non-zero keyidx because these are reserved
  1055. * for group keys and only the AP is sending real multicast
  1056. * frames in BSS. */
  1057. if (net_ratelimit())
  1058. printk(KERN_DEBUG "%s: ignored Michael MIC error for "
  1059. "a frame with non-zero keyidx (%d)"
  1060. " (src " MAC_FMT ")\n", dev->name, keyidx,
  1061. MAC_ARG(hdr->addr2));
  1062. goto ignore;
  1063. }
  1064. if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
  1065. ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
  1066. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) {
  1067. if (net_ratelimit())
  1068. printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
  1069. "error for a frame that cannot be encrypted "
  1070. "(fc=0x%04x) (src " MAC_FMT ")\n",
  1071. dev->name, rx->fc, MAC_ARG(hdr->addr2));
  1072. goto ignore;
  1073. }
  1074. /* TODO: consider verifying the MIC error report with software
  1075. * implementation if we get too many spurious reports from the
  1076. * hardware. */
  1077. mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
  1078. ignore:
  1079. dev_kfree_skb(rx->skb);
  1080. rx->skb = NULL;
  1081. }
  1082. ieee80211_rx_handler ieee80211_rx_handlers[] =
  1083. {
  1084. ieee80211_rx_h_if_stats,
  1085. ieee80211_rx_h_monitor,
  1086. ieee80211_rx_h_passive_scan,
  1087. ieee80211_rx_h_check,
  1088. ieee80211_rx_h_load_key,
  1089. ieee80211_rx_h_sta_process,
  1090. ieee80211_rx_h_ccmp_decrypt,
  1091. ieee80211_rx_h_tkip_decrypt,
  1092. ieee80211_rx_h_wep_weak_iv_detection,
  1093. ieee80211_rx_h_wep_decrypt,
  1094. ieee80211_rx_h_defragment,
  1095. ieee80211_rx_h_ps_poll,
  1096. ieee80211_rx_h_michael_mic_verify,
  1097. /* this must be after decryption - so header is counted in MPDU mic
  1098. * must be before pae and data, so QOS_DATA format frames
  1099. * are not passed to user space by these functions
  1100. */
  1101. ieee80211_rx_h_remove_qos_control,
  1102. ieee80211_rx_h_802_1x_pae,
  1103. ieee80211_rx_h_drop_unencrypted,
  1104. ieee80211_rx_h_data,
  1105. ieee80211_rx_h_mgmt,
  1106. NULL
  1107. };
  1108. /* main receive path */
  1109. static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
  1110. u8 *bssid, struct ieee80211_txrx_data *rx,
  1111. struct ieee80211_hdr *hdr)
  1112. {
  1113. int multicast = is_multicast_ether_addr(hdr->addr1);
  1114. switch (sdata->type) {
  1115. case IEEE80211_IF_TYPE_STA:
  1116. if (!bssid)
  1117. return 0;
  1118. if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
  1119. if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1120. return 0;
  1121. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1122. } else if (!multicast &&
  1123. compare_ether_addr(sdata->dev->dev_addr,
  1124. hdr->addr1) != 0) {
  1125. if (!(sdata->flags & IEEE80211_SDATA_PROMISC))
  1126. return 0;
  1127. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1128. }
  1129. break;
  1130. case IEEE80211_IF_TYPE_IBSS:
  1131. if (!bssid)
  1132. return 0;
  1133. if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
  1134. if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1135. return 0;
  1136. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1137. } else if (!multicast &&
  1138. compare_ether_addr(sdata->dev->dev_addr,
  1139. hdr->addr1) != 0) {
  1140. if (!(sdata->flags & IEEE80211_SDATA_PROMISC))
  1141. return 0;
  1142. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1143. } else if (!rx->sta)
  1144. rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
  1145. bssid, hdr->addr2);
  1146. break;
  1147. case IEEE80211_IF_TYPE_AP:
  1148. if (!bssid) {
  1149. if (compare_ether_addr(sdata->dev->dev_addr,
  1150. hdr->addr1))
  1151. return 0;
  1152. } else if (!ieee80211_bssid_match(bssid,
  1153. sdata->dev->dev_addr)) {
  1154. if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1155. return 0;
  1156. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1157. }
  1158. if (sdata->dev == sdata->local->mdev &&
  1159. !(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1160. /* do not receive anything via
  1161. * master device when not scanning */
  1162. return 0;
  1163. break;
  1164. case IEEE80211_IF_TYPE_WDS:
  1165. if (bssid ||
  1166. (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
  1167. return 0;
  1168. if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
  1169. return 0;
  1170. break;
  1171. }
  1172. return 1;
  1173. }
  1174. /*
  1175. * This is the receive path handler. It is called by a low level driver when an
  1176. * 802.11 MPDU is received from the hardware.
  1177. */
  1178. void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
  1179. struct ieee80211_rx_status *status)
  1180. {
  1181. struct ieee80211_local *local = hw_to_local(hw);
  1182. struct ieee80211_sub_if_data *sdata;
  1183. struct sta_info *sta;
  1184. struct ieee80211_hdr *hdr;
  1185. struct ieee80211_txrx_data rx;
  1186. u16 type;
  1187. int radiotap_len = 0, prepres;
  1188. struct ieee80211_sub_if_data *prev = NULL;
  1189. struct sk_buff *skb_new;
  1190. u8 *bssid;
  1191. if (status->flag & RX_FLAG_RADIOTAP) {
  1192. radiotap_len = ieee80211_get_radiotap_len(skb->data);
  1193. skb_pull(skb, radiotap_len);
  1194. }
  1195. hdr = (struct ieee80211_hdr *) skb->data;
  1196. memset(&rx, 0, sizeof(rx));
  1197. rx.skb = skb;
  1198. rx.local = local;
  1199. rx.u.rx.status = status;
  1200. rx.fc = skb->len >= 2 ? le16_to_cpu(hdr->frame_control) : 0;
  1201. type = rx.fc & IEEE80211_FCTL_FTYPE;
  1202. if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
  1203. local->dot11ReceivedFragmentCount++;
  1204. if (skb->len >= 16) {
  1205. sta = rx.sta = sta_info_get(local, hdr->addr2);
  1206. if (sta) {
  1207. rx.dev = rx.sta->dev;
  1208. rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev);
  1209. }
  1210. } else
  1211. sta = rx.sta = NULL;
  1212. if ((status->flag & RX_FLAG_MMIC_ERROR)) {
  1213. ieee80211_rx_michael_mic_report(local->mdev, hdr, sta, &rx);
  1214. goto end;
  1215. }
  1216. if (unlikely(local->sta_scanning))
  1217. rx.flags |= IEEE80211_TXRXD_RXIN_SCAN;
  1218. if (__ieee80211_invoke_rx_handlers(local, local->rx_pre_handlers, &rx,
  1219. sta) != TXRX_CONTINUE)
  1220. goto end;
  1221. skb = rx.skb;
  1222. skb_push(skb, radiotap_len);
  1223. if (sta && !sta->assoc_ap && !(sta->flags & WLAN_STA_WDS) &&
  1224. !local->iff_promiscs && !is_multicast_ether_addr(hdr->addr1)) {
  1225. rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
  1226. ieee80211_invoke_rx_handlers(local, local->rx_handlers, &rx,
  1227. rx.sta);
  1228. sta_info_put(sta);
  1229. return;
  1230. }
  1231. bssid = ieee80211_get_bssid(hdr, skb->len - radiotap_len);
  1232. read_lock(&local->sub_if_lock);
  1233. list_for_each_entry(sdata, &local->sub_if_list, list) {
  1234. rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
  1235. if (!netif_running(sdata->dev))
  1236. continue;
  1237. prepres = prepare_for_handlers(sdata, bssid, &rx, hdr);
  1238. /* prepare_for_handlers can change sta */
  1239. sta = rx.sta;
  1240. if (!prepres)
  1241. continue;
  1242. /*
  1243. * frame is destined for this interface, but if it's not
  1244. * also for the previous one we handle that after the
  1245. * loop to avoid copying the SKB once too much
  1246. */
  1247. if (!prev) {
  1248. prev = sdata;
  1249. continue;
  1250. }
  1251. /*
  1252. * frame was destined for the previous interface
  1253. * so invoke RX handlers for it
  1254. */
  1255. skb_new = skb_copy(skb, GFP_ATOMIC);
  1256. if (!skb_new) {
  1257. if (net_ratelimit())
  1258. printk(KERN_DEBUG "%s: failed to copy "
  1259. "multicast frame for %s",
  1260. local->mdev->name, prev->dev->name);
  1261. continue;
  1262. }
  1263. rx.skb = skb_new;
  1264. rx.dev = prev->dev;
  1265. rx.sdata = prev;
  1266. ieee80211_invoke_rx_handlers(local, local->rx_handlers,
  1267. &rx, sta);
  1268. prev = sdata;
  1269. }
  1270. if (prev) {
  1271. rx.skb = skb;
  1272. rx.dev = prev->dev;
  1273. rx.sdata = prev;
  1274. ieee80211_invoke_rx_handlers(local, local->rx_handlers,
  1275. &rx, sta);
  1276. } else
  1277. dev_kfree_skb(skb);
  1278. read_unlock(&local->sub_if_lock);
  1279. end:
  1280. if (sta)
  1281. sta_info_put(sta);
  1282. }
  1283. EXPORT_SYMBOL(__ieee80211_rx);
  1284. /* This is a version of the rx handler that can be called from hard irq
  1285. * context. Post the skb on the queue and schedule the tasklet */
  1286. void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
  1287. struct ieee80211_rx_status *status)
  1288. {
  1289. struct ieee80211_local *local = hw_to_local(hw);
  1290. BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
  1291. skb->dev = local->mdev;
  1292. /* copy status into skb->cb for use by tasklet */
  1293. memcpy(skb->cb, status, sizeof(*status));
  1294. skb->pkt_type = IEEE80211_RX_MSG;
  1295. skb_queue_tail(&local->skb_queue, skb);
  1296. tasklet_schedule(&local->tasklet);
  1297. }
  1298. EXPORT_SYMBOL(ieee80211_rx_irqsafe);