intel_ringbuffer.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "i915_drv.h"
  32. #include "i915_drm.h"
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /*
  36. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  37. * over cache flushing.
  38. */
  39. struct pipe_control {
  40. struct drm_i915_gem_object *obj;
  41. volatile u32 *cpu_page;
  42. u32 gtt_offset;
  43. };
  44. static inline int ring_space(struct intel_ring_buffer *ring)
  45. {
  46. int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
  47. if (space < 0)
  48. space += ring->size;
  49. return space;
  50. }
  51. static u32 i915_gem_get_seqno(struct drm_device *dev)
  52. {
  53. drm_i915_private_t *dev_priv = dev->dev_private;
  54. u32 seqno;
  55. seqno = dev_priv->next_seqno;
  56. /* reserve 0 for non-seqno */
  57. if (++dev_priv->next_seqno == 0)
  58. dev_priv->next_seqno = 1;
  59. return seqno;
  60. }
  61. static int
  62. render_ring_flush(struct intel_ring_buffer *ring,
  63. u32 invalidate_domains,
  64. u32 flush_domains)
  65. {
  66. struct drm_device *dev = ring->dev;
  67. u32 cmd;
  68. int ret;
  69. /*
  70. * read/write caches:
  71. *
  72. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  73. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  74. * also flushed at 2d versus 3d pipeline switches.
  75. *
  76. * read-only caches:
  77. *
  78. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  79. * MI_READ_FLUSH is set, and is always flushed on 965.
  80. *
  81. * I915_GEM_DOMAIN_COMMAND may not exist?
  82. *
  83. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  84. * invalidated when MI_EXE_FLUSH is set.
  85. *
  86. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  87. * invalidated with every MI_FLUSH.
  88. *
  89. * TLBs:
  90. *
  91. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  92. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  93. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  94. * are flushed at any MI_FLUSH.
  95. */
  96. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  97. if ((invalidate_domains|flush_domains) &
  98. I915_GEM_DOMAIN_RENDER)
  99. cmd &= ~MI_NO_WRITE_FLUSH;
  100. if (INTEL_INFO(dev)->gen < 4) {
  101. /*
  102. * On the 965, the sampler cache always gets flushed
  103. * and this bit is reserved.
  104. */
  105. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  106. cmd |= MI_READ_FLUSH;
  107. }
  108. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  109. cmd |= MI_EXE_FLUSH;
  110. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  111. (IS_G4X(dev) || IS_GEN5(dev)))
  112. cmd |= MI_INVALIDATE_ISP;
  113. ret = intel_ring_begin(ring, 2);
  114. if (ret)
  115. return ret;
  116. intel_ring_emit(ring, cmd);
  117. intel_ring_emit(ring, MI_NOOP);
  118. intel_ring_advance(ring);
  119. return 0;
  120. }
  121. /**
  122. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  123. * implementing two workarounds on gen6. From section 1.4.7.1
  124. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  125. *
  126. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  127. * produced by non-pipelined state commands), software needs to first
  128. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  129. * 0.
  130. *
  131. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  132. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  133. *
  134. * And the workaround for these two requires this workaround first:
  135. *
  136. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  137. * BEFORE the pipe-control with a post-sync op and no write-cache
  138. * flushes.
  139. *
  140. * And this last workaround is tricky because of the requirements on
  141. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  142. * volume 2 part 1:
  143. *
  144. * "1 of the following must also be set:
  145. * - Render Target Cache Flush Enable ([12] of DW1)
  146. * - Depth Cache Flush Enable ([0] of DW1)
  147. * - Stall at Pixel Scoreboard ([1] of DW1)
  148. * - Depth Stall ([13] of DW1)
  149. * - Post-Sync Operation ([13] of DW1)
  150. * - Notify Enable ([8] of DW1)"
  151. *
  152. * The cache flushes require the workaround flush that triggered this
  153. * one, so we can't use it. Depth stall would trigger the same.
  154. * Post-sync nonzero is what triggered this second workaround, so we
  155. * can't use that one either. Notify enable is IRQs, which aren't
  156. * really our business. That leaves only stall at scoreboard.
  157. */
  158. static int
  159. intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
  160. {
  161. struct pipe_control *pc = ring->private;
  162. u32 scratch_addr = pc->gtt_offset + 128;
  163. int ret;
  164. ret = intel_ring_begin(ring, 6);
  165. if (ret)
  166. return ret;
  167. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  168. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  169. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  170. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  171. intel_ring_emit(ring, 0); /* low dword */
  172. intel_ring_emit(ring, 0); /* high dword */
  173. intel_ring_emit(ring, MI_NOOP);
  174. intel_ring_advance(ring);
  175. ret = intel_ring_begin(ring, 6);
  176. if (ret)
  177. return ret;
  178. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  179. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  180. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  181. intel_ring_emit(ring, 0);
  182. intel_ring_emit(ring, 0);
  183. intel_ring_emit(ring, MI_NOOP);
  184. intel_ring_advance(ring);
  185. return 0;
  186. }
  187. static int
  188. gen6_render_ring_flush(struct intel_ring_buffer *ring,
  189. u32 invalidate_domains, u32 flush_domains)
  190. {
  191. u32 flags = 0;
  192. struct pipe_control *pc = ring->private;
  193. u32 scratch_addr = pc->gtt_offset + 128;
  194. int ret;
  195. /* Force SNB workarounds for PIPE_CONTROL flushes */
  196. intel_emit_post_sync_nonzero_flush(ring);
  197. /* Just flush everything. Experiments have shown that reducing the
  198. * number of bits based on the write domains has little performance
  199. * impact.
  200. */
  201. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  202. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  203. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  204. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  205. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  206. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  207. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  208. ret = intel_ring_begin(ring, 6);
  209. if (ret)
  210. return ret;
  211. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  212. intel_ring_emit(ring, flags);
  213. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  214. intel_ring_emit(ring, 0); /* lower dword */
  215. intel_ring_emit(ring, 0); /* uppwer dword */
  216. intel_ring_emit(ring, MI_NOOP);
  217. intel_ring_advance(ring);
  218. return 0;
  219. }
  220. static void ring_write_tail(struct intel_ring_buffer *ring,
  221. u32 value)
  222. {
  223. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  224. I915_WRITE_TAIL(ring, value);
  225. }
  226. u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
  227. {
  228. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  229. u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
  230. RING_ACTHD(ring->mmio_base) : ACTHD;
  231. return I915_READ(acthd_reg);
  232. }
  233. static int init_ring_common(struct intel_ring_buffer *ring)
  234. {
  235. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  236. struct drm_i915_gem_object *obj = ring->obj;
  237. u32 head;
  238. /* Stop the ring if it's running. */
  239. I915_WRITE_CTL(ring, 0);
  240. I915_WRITE_HEAD(ring, 0);
  241. ring->write_tail(ring, 0);
  242. /* Initialize the ring. */
  243. I915_WRITE_START(ring, obj->gtt_offset);
  244. head = I915_READ_HEAD(ring) & HEAD_ADDR;
  245. /* G45 ring initialization fails to reset head to zero */
  246. if (head != 0) {
  247. DRM_DEBUG_KMS("%s head not reset to zero "
  248. "ctl %08x head %08x tail %08x start %08x\n",
  249. ring->name,
  250. I915_READ_CTL(ring),
  251. I915_READ_HEAD(ring),
  252. I915_READ_TAIL(ring),
  253. I915_READ_START(ring));
  254. I915_WRITE_HEAD(ring, 0);
  255. if (I915_READ_HEAD(ring) & HEAD_ADDR) {
  256. DRM_ERROR("failed to set %s head to zero "
  257. "ctl %08x head %08x tail %08x start %08x\n",
  258. ring->name,
  259. I915_READ_CTL(ring),
  260. I915_READ_HEAD(ring),
  261. I915_READ_TAIL(ring),
  262. I915_READ_START(ring));
  263. }
  264. }
  265. I915_WRITE_CTL(ring,
  266. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  267. | RING_REPORT_64K | RING_VALID);
  268. /* If the head is still not zero, the ring is dead */
  269. if ((I915_READ_CTL(ring) & RING_VALID) == 0 ||
  270. I915_READ_START(ring) != obj->gtt_offset ||
  271. (I915_READ_HEAD(ring) & HEAD_ADDR) != 0) {
  272. DRM_ERROR("%s initialization failed "
  273. "ctl %08x head %08x tail %08x start %08x\n",
  274. ring->name,
  275. I915_READ_CTL(ring),
  276. I915_READ_HEAD(ring),
  277. I915_READ_TAIL(ring),
  278. I915_READ_START(ring));
  279. return -EIO;
  280. }
  281. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  282. i915_kernel_lost_context(ring->dev);
  283. else {
  284. ring->head = I915_READ_HEAD(ring);
  285. ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  286. ring->space = ring_space(ring);
  287. }
  288. return 0;
  289. }
  290. static int
  291. init_pipe_control(struct intel_ring_buffer *ring)
  292. {
  293. struct pipe_control *pc;
  294. struct drm_i915_gem_object *obj;
  295. int ret;
  296. if (ring->private)
  297. return 0;
  298. pc = kmalloc(sizeof(*pc), GFP_KERNEL);
  299. if (!pc)
  300. return -ENOMEM;
  301. obj = i915_gem_alloc_object(ring->dev, 4096);
  302. if (obj == NULL) {
  303. DRM_ERROR("Failed to allocate seqno page\n");
  304. ret = -ENOMEM;
  305. goto err;
  306. }
  307. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  308. ret = i915_gem_object_pin(obj, 4096, true);
  309. if (ret)
  310. goto err_unref;
  311. pc->gtt_offset = obj->gtt_offset;
  312. pc->cpu_page = kmap(obj->pages[0]);
  313. if (pc->cpu_page == NULL)
  314. goto err_unpin;
  315. pc->obj = obj;
  316. ring->private = pc;
  317. return 0;
  318. err_unpin:
  319. i915_gem_object_unpin(obj);
  320. err_unref:
  321. drm_gem_object_unreference(&obj->base);
  322. err:
  323. kfree(pc);
  324. return ret;
  325. }
  326. static void
  327. cleanup_pipe_control(struct intel_ring_buffer *ring)
  328. {
  329. struct pipe_control *pc = ring->private;
  330. struct drm_i915_gem_object *obj;
  331. if (!ring->private)
  332. return;
  333. obj = pc->obj;
  334. kunmap(obj->pages[0]);
  335. i915_gem_object_unpin(obj);
  336. drm_gem_object_unreference(&obj->base);
  337. kfree(pc);
  338. ring->private = NULL;
  339. }
  340. static int init_render_ring(struct intel_ring_buffer *ring)
  341. {
  342. struct drm_device *dev = ring->dev;
  343. struct drm_i915_private *dev_priv = dev->dev_private;
  344. int ret = init_ring_common(ring);
  345. if (INTEL_INFO(dev)->gen > 3) {
  346. int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
  347. if (IS_GEN6(dev) || IS_GEN7(dev))
  348. mode |= MI_FLUSH_ENABLE << 16 | MI_FLUSH_ENABLE;
  349. I915_WRITE(MI_MODE, mode);
  350. if (IS_GEN7(dev))
  351. I915_WRITE(GFX_MODE_GEN7,
  352. GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
  353. GFX_MODE_ENABLE(GFX_REPLAY_MODE));
  354. }
  355. if (INTEL_INFO(dev)->gen >= 5) {
  356. ret = init_pipe_control(ring);
  357. if (ret)
  358. return ret;
  359. }
  360. if (INTEL_INFO(dev)->gen >= 6) {
  361. I915_WRITE(INSTPM,
  362. INSTPM_FORCE_ORDERING << 16 | INSTPM_FORCE_ORDERING);
  363. }
  364. return ret;
  365. }
  366. static void render_ring_cleanup(struct intel_ring_buffer *ring)
  367. {
  368. if (!ring->private)
  369. return;
  370. cleanup_pipe_control(ring);
  371. }
  372. static void
  373. update_mboxes(struct intel_ring_buffer *ring,
  374. u32 seqno,
  375. u32 mmio_offset)
  376. {
  377. intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
  378. MI_SEMAPHORE_GLOBAL_GTT |
  379. MI_SEMAPHORE_REGISTER |
  380. MI_SEMAPHORE_UPDATE);
  381. intel_ring_emit(ring, seqno);
  382. intel_ring_emit(ring, mmio_offset);
  383. }
  384. /**
  385. * gen6_add_request - Update the semaphore mailbox registers
  386. *
  387. * @ring - ring that is adding a request
  388. * @seqno - return seqno stuck into the ring
  389. *
  390. * Update the mailbox registers in the *other* rings with the current seqno.
  391. * This acts like a signal in the canonical semaphore.
  392. */
  393. static int
  394. gen6_add_request(struct intel_ring_buffer *ring,
  395. u32 *seqno)
  396. {
  397. u32 mbox1_reg;
  398. u32 mbox2_reg;
  399. int ret;
  400. ret = intel_ring_begin(ring, 10);
  401. if (ret)
  402. return ret;
  403. mbox1_reg = ring->signal_mbox[0];
  404. mbox2_reg = ring->signal_mbox[1];
  405. *seqno = i915_gem_get_seqno(ring->dev);
  406. update_mboxes(ring, *seqno, mbox1_reg);
  407. update_mboxes(ring, *seqno, mbox2_reg);
  408. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  409. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  410. intel_ring_emit(ring, *seqno);
  411. intel_ring_emit(ring, MI_USER_INTERRUPT);
  412. intel_ring_advance(ring);
  413. return 0;
  414. }
  415. /**
  416. * intel_ring_sync - sync the waiter to the signaller on seqno
  417. *
  418. * @waiter - ring that is waiting
  419. * @signaller - ring which has, or will signal
  420. * @seqno - seqno which the waiter will block on
  421. */
  422. static int
  423. intel_ring_sync(struct intel_ring_buffer *waiter,
  424. struct intel_ring_buffer *signaller,
  425. int ring,
  426. u32 seqno)
  427. {
  428. int ret;
  429. u32 dw1 = MI_SEMAPHORE_MBOX |
  430. MI_SEMAPHORE_COMPARE |
  431. MI_SEMAPHORE_REGISTER;
  432. ret = intel_ring_begin(waiter, 4);
  433. if (ret)
  434. return ret;
  435. intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
  436. intel_ring_emit(waiter, seqno);
  437. intel_ring_emit(waiter, 0);
  438. intel_ring_emit(waiter, MI_NOOP);
  439. intel_ring_advance(waiter);
  440. return 0;
  441. }
  442. /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
  443. int
  444. render_ring_sync_to(struct intel_ring_buffer *waiter,
  445. struct intel_ring_buffer *signaller,
  446. u32 seqno)
  447. {
  448. WARN_ON(signaller->semaphore_register[RCS] == MI_SEMAPHORE_SYNC_INVALID);
  449. return intel_ring_sync(waiter,
  450. signaller,
  451. RCS,
  452. seqno);
  453. }
  454. /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
  455. int
  456. gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
  457. struct intel_ring_buffer *signaller,
  458. u32 seqno)
  459. {
  460. WARN_ON(signaller->semaphore_register[VCS] == MI_SEMAPHORE_SYNC_INVALID);
  461. return intel_ring_sync(waiter,
  462. signaller,
  463. VCS,
  464. seqno);
  465. }
  466. /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
  467. int
  468. gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
  469. struct intel_ring_buffer *signaller,
  470. u32 seqno)
  471. {
  472. WARN_ON(signaller->semaphore_register[BCS] == MI_SEMAPHORE_SYNC_INVALID);
  473. return intel_ring_sync(waiter,
  474. signaller,
  475. BCS,
  476. seqno);
  477. }
  478. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  479. do { \
  480. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  481. PIPE_CONTROL_DEPTH_STALL); \
  482. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  483. intel_ring_emit(ring__, 0); \
  484. intel_ring_emit(ring__, 0); \
  485. } while (0)
  486. static int
  487. pc_render_add_request(struct intel_ring_buffer *ring,
  488. u32 *result)
  489. {
  490. struct drm_device *dev = ring->dev;
  491. u32 seqno = i915_gem_get_seqno(dev);
  492. struct pipe_control *pc = ring->private;
  493. u32 scratch_addr = pc->gtt_offset + 128;
  494. int ret;
  495. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  496. * incoherent with writes to memory, i.e. completely fubar,
  497. * so we need to use PIPE_NOTIFY instead.
  498. *
  499. * However, we also need to workaround the qword write
  500. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  501. * memory before requesting an interrupt.
  502. */
  503. ret = intel_ring_begin(ring, 32);
  504. if (ret)
  505. return ret;
  506. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  507. PIPE_CONTROL_WRITE_FLUSH |
  508. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  509. intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  510. intel_ring_emit(ring, seqno);
  511. intel_ring_emit(ring, 0);
  512. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  513. scratch_addr += 128; /* write to separate cachelines */
  514. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  515. scratch_addr += 128;
  516. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  517. scratch_addr += 128;
  518. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  519. scratch_addr += 128;
  520. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  521. scratch_addr += 128;
  522. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  523. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  524. PIPE_CONTROL_WRITE_FLUSH |
  525. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  526. PIPE_CONTROL_NOTIFY);
  527. intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  528. intel_ring_emit(ring, seqno);
  529. intel_ring_emit(ring, 0);
  530. intel_ring_advance(ring);
  531. *result = seqno;
  532. return 0;
  533. }
  534. static int
  535. render_ring_add_request(struct intel_ring_buffer *ring,
  536. u32 *result)
  537. {
  538. struct drm_device *dev = ring->dev;
  539. u32 seqno = i915_gem_get_seqno(dev);
  540. int ret;
  541. ret = intel_ring_begin(ring, 4);
  542. if (ret)
  543. return ret;
  544. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  545. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  546. intel_ring_emit(ring, seqno);
  547. intel_ring_emit(ring, MI_USER_INTERRUPT);
  548. intel_ring_advance(ring);
  549. *result = seqno;
  550. return 0;
  551. }
  552. static u32
  553. gen6_ring_get_seqno(struct intel_ring_buffer *ring)
  554. {
  555. struct drm_device *dev = ring->dev;
  556. /* Workaround to force correct ordering between irq and seqno writes on
  557. * ivb (and maybe also on snb) by reading from a CS register (like
  558. * ACTHD) before reading the status page. */
  559. if (IS_GEN7(dev))
  560. intel_ring_get_active_head(ring);
  561. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  562. }
  563. static u32
  564. ring_get_seqno(struct intel_ring_buffer *ring)
  565. {
  566. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  567. }
  568. static u32
  569. pc_render_get_seqno(struct intel_ring_buffer *ring)
  570. {
  571. struct pipe_control *pc = ring->private;
  572. return pc->cpu_page[0];
  573. }
  574. static void
  575. ironlake_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
  576. {
  577. dev_priv->gt_irq_mask &= ~mask;
  578. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  579. POSTING_READ(GTIMR);
  580. }
  581. static void
  582. ironlake_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
  583. {
  584. dev_priv->gt_irq_mask |= mask;
  585. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  586. POSTING_READ(GTIMR);
  587. }
  588. static void
  589. i915_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
  590. {
  591. dev_priv->irq_mask &= ~mask;
  592. I915_WRITE(IMR, dev_priv->irq_mask);
  593. POSTING_READ(IMR);
  594. }
  595. static void
  596. i915_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
  597. {
  598. dev_priv->irq_mask |= mask;
  599. I915_WRITE(IMR, dev_priv->irq_mask);
  600. POSTING_READ(IMR);
  601. }
  602. static bool
  603. render_ring_get_irq(struct intel_ring_buffer *ring)
  604. {
  605. struct drm_device *dev = ring->dev;
  606. drm_i915_private_t *dev_priv = dev->dev_private;
  607. if (!dev->irq_enabled)
  608. return false;
  609. spin_lock(&ring->irq_lock);
  610. if (ring->irq_refcount++ == 0) {
  611. if (HAS_PCH_SPLIT(dev))
  612. ironlake_enable_irq(dev_priv,
  613. GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
  614. else
  615. i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
  616. }
  617. spin_unlock(&ring->irq_lock);
  618. return true;
  619. }
  620. static void
  621. render_ring_put_irq(struct intel_ring_buffer *ring)
  622. {
  623. struct drm_device *dev = ring->dev;
  624. drm_i915_private_t *dev_priv = dev->dev_private;
  625. spin_lock(&ring->irq_lock);
  626. if (--ring->irq_refcount == 0) {
  627. if (HAS_PCH_SPLIT(dev))
  628. ironlake_disable_irq(dev_priv,
  629. GT_USER_INTERRUPT |
  630. GT_PIPE_NOTIFY);
  631. else
  632. i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
  633. }
  634. spin_unlock(&ring->irq_lock);
  635. }
  636. void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
  637. {
  638. struct drm_device *dev = ring->dev;
  639. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  640. u32 mmio = 0;
  641. /* The ring status page addresses are no longer next to the rest of
  642. * the ring registers as of gen7.
  643. */
  644. if (IS_GEN7(dev)) {
  645. switch (ring->id) {
  646. case RING_RENDER:
  647. mmio = RENDER_HWS_PGA_GEN7;
  648. break;
  649. case RING_BLT:
  650. mmio = BLT_HWS_PGA_GEN7;
  651. break;
  652. case RING_BSD:
  653. mmio = BSD_HWS_PGA_GEN7;
  654. break;
  655. }
  656. } else if (IS_GEN6(ring->dev)) {
  657. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  658. } else {
  659. mmio = RING_HWS_PGA(ring->mmio_base);
  660. }
  661. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  662. POSTING_READ(mmio);
  663. }
  664. static int
  665. bsd_ring_flush(struct intel_ring_buffer *ring,
  666. u32 invalidate_domains,
  667. u32 flush_domains)
  668. {
  669. int ret;
  670. ret = intel_ring_begin(ring, 2);
  671. if (ret)
  672. return ret;
  673. intel_ring_emit(ring, MI_FLUSH);
  674. intel_ring_emit(ring, MI_NOOP);
  675. intel_ring_advance(ring);
  676. return 0;
  677. }
  678. static int
  679. ring_add_request(struct intel_ring_buffer *ring,
  680. u32 *result)
  681. {
  682. u32 seqno;
  683. int ret;
  684. ret = intel_ring_begin(ring, 4);
  685. if (ret)
  686. return ret;
  687. seqno = i915_gem_get_seqno(ring->dev);
  688. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  689. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  690. intel_ring_emit(ring, seqno);
  691. intel_ring_emit(ring, MI_USER_INTERRUPT);
  692. intel_ring_advance(ring);
  693. *result = seqno;
  694. return 0;
  695. }
  696. static bool
  697. gen6_ring_get_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
  698. {
  699. struct drm_device *dev = ring->dev;
  700. drm_i915_private_t *dev_priv = dev->dev_private;
  701. if (!dev->irq_enabled)
  702. return false;
  703. /* It looks like we need to prevent the gt from suspending while waiting
  704. * for an notifiy irq, otherwise irqs seem to get lost on at least the
  705. * blt/bsd rings on ivb. */
  706. if (IS_GEN7(dev))
  707. gen6_gt_force_wake_get(dev_priv);
  708. spin_lock(&ring->irq_lock);
  709. if (ring->irq_refcount++ == 0) {
  710. ring->irq_mask &= ~rflag;
  711. I915_WRITE_IMR(ring, ring->irq_mask);
  712. ironlake_enable_irq(dev_priv, gflag);
  713. }
  714. spin_unlock(&ring->irq_lock);
  715. return true;
  716. }
  717. static void
  718. gen6_ring_put_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
  719. {
  720. struct drm_device *dev = ring->dev;
  721. drm_i915_private_t *dev_priv = dev->dev_private;
  722. spin_lock(&ring->irq_lock);
  723. if (--ring->irq_refcount == 0) {
  724. ring->irq_mask |= rflag;
  725. I915_WRITE_IMR(ring, ring->irq_mask);
  726. ironlake_disable_irq(dev_priv, gflag);
  727. }
  728. spin_unlock(&ring->irq_lock);
  729. if (IS_GEN7(dev))
  730. gen6_gt_force_wake_put(dev_priv);
  731. }
  732. static bool
  733. bsd_ring_get_irq(struct intel_ring_buffer *ring)
  734. {
  735. struct drm_device *dev = ring->dev;
  736. drm_i915_private_t *dev_priv = dev->dev_private;
  737. if (!dev->irq_enabled)
  738. return false;
  739. spin_lock(&ring->irq_lock);
  740. if (ring->irq_refcount++ == 0) {
  741. if (IS_G4X(dev))
  742. i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
  743. else
  744. ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
  745. }
  746. spin_unlock(&ring->irq_lock);
  747. return true;
  748. }
  749. static void
  750. bsd_ring_put_irq(struct intel_ring_buffer *ring)
  751. {
  752. struct drm_device *dev = ring->dev;
  753. drm_i915_private_t *dev_priv = dev->dev_private;
  754. spin_lock(&ring->irq_lock);
  755. if (--ring->irq_refcount == 0) {
  756. if (IS_G4X(dev))
  757. i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
  758. else
  759. ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
  760. }
  761. spin_unlock(&ring->irq_lock);
  762. }
  763. static int
  764. ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length)
  765. {
  766. int ret;
  767. ret = intel_ring_begin(ring, 2);
  768. if (ret)
  769. return ret;
  770. intel_ring_emit(ring,
  771. MI_BATCH_BUFFER_START | (2 << 6) |
  772. MI_BATCH_NON_SECURE_I965);
  773. intel_ring_emit(ring, offset);
  774. intel_ring_advance(ring);
  775. return 0;
  776. }
  777. static int
  778. render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  779. u32 offset, u32 len)
  780. {
  781. struct drm_device *dev = ring->dev;
  782. int ret;
  783. if (IS_I830(dev) || IS_845G(dev)) {
  784. ret = intel_ring_begin(ring, 4);
  785. if (ret)
  786. return ret;
  787. intel_ring_emit(ring, MI_BATCH_BUFFER);
  788. intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
  789. intel_ring_emit(ring, offset + len - 8);
  790. intel_ring_emit(ring, 0);
  791. } else {
  792. ret = intel_ring_begin(ring, 2);
  793. if (ret)
  794. return ret;
  795. if (INTEL_INFO(dev)->gen >= 4) {
  796. intel_ring_emit(ring,
  797. MI_BATCH_BUFFER_START | (2 << 6) |
  798. MI_BATCH_NON_SECURE_I965);
  799. intel_ring_emit(ring, offset);
  800. } else {
  801. intel_ring_emit(ring,
  802. MI_BATCH_BUFFER_START | (2 << 6));
  803. intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
  804. }
  805. }
  806. intel_ring_advance(ring);
  807. return 0;
  808. }
  809. static void cleanup_status_page(struct intel_ring_buffer *ring)
  810. {
  811. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  812. struct drm_i915_gem_object *obj;
  813. obj = ring->status_page.obj;
  814. if (obj == NULL)
  815. return;
  816. kunmap(obj->pages[0]);
  817. i915_gem_object_unpin(obj);
  818. drm_gem_object_unreference(&obj->base);
  819. ring->status_page.obj = NULL;
  820. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  821. }
  822. static int init_status_page(struct intel_ring_buffer *ring)
  823. {
  824. struct drm_device *dev = ring->dev;
  825. drm_i915_private_t *dev_priv = dev->dev_private;
  826. struct drm_i915_gem_object *obj;
  827. int ret;
  828. obj = i915_gem_alloc_object(dev, 4096);
  829. if (obj == NULL) {
  830. DRM_ERROR("Failed to allocate status page\n");
  831. ret = -ENOMEM;
  832. goto err;
  833. }
  834. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  835. ret = i915_gem_object_pin(obj, 4096, true);
  836. if (ret != 0) {
  837. goto err_unref;
  838. }
  839. ring->status_page.gfx_addr = obj->gtt_offset;
  840. ring->status_page.page_addr = kmap(obj->pages[0]);
  841. if (ring->status_page.page_addr == NULL) {
  842. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  843. goto err_unpin;
  844. }
  845. ring->status_page.obj = obj;
  846. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  847. intel_ring_setup_status_page(ring);
  848. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  849. ring->name, ring->status_page.gfx_addr);
  850. return 0;
  851. err_unpin:
  852. i915_gem_object_unpin(obj);
  853. err_unref:
  854. drm_gem_object_unreference(&obj->base);
  855. err:
  856. return ret;
  857. }
  858. int intel_init_ring_buffer(struct drm_device *dev,
  859. struct intel_ring_buffer *ring)
  860. {
  861. struct drm_i915_gem_object *obj;
  862. int ret;
  863. ring->dev = dev;
  864. INIT_LIST_HEAD(&ring->active_list);
  865. INIT_LIST_HEAD(&ring->request_list);
  866. INIT_LIST_HEAD(&ring->gpu_write_list);
  867. init_waitqueue_head(&ring->irq_queue);
  868. spin_lock_init(&ring->irq_lock);
  869. ring->irq_mask = ~0;
  870. if (I915_NEED_GFX_HWS(dev)) {
  871. ret = init_status_page(ring);
  872. if (ret)
  873. return ret;
  874. }
  875. obj = i915_gem_alloc_object(dev, ring->size);
  876. if (obj == NULL) {
  877. DRM_ERROR("Failed to allocate ringbuffer\n");
  878. ret = -ENOMEM;
  879. goto err_hws;
  880. }
  881. ring->obj = obj;
  882. ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
  883. if (ret)
  884. goto err_unref;
  885. ring->map.size = ring->size;
  886. ring->map.offset = dev->agp->base + obj->gtt_offset;
  887. ring->map.type = 0;
  888. ring->map.flags = 0;
  889. ring->map.mtrr = 0;
  890. drm_core_ioremap_wc(&ring->map, dev);
  891. if (ring->map.handle == NULL) {
  892. DRM_ERROR("Failed to map ringbuffer.\n");
  893. ret = -EINVAL;
  894. goto err_unpin;
  895. }
  896. ring->virtual_start = ring->map.handle;
  897. ret = ring->init(ring);
  898. if (ret)
  899. goto err_unmap;
  900. /* Workaround an erratum on the i830 which causes a hang if
  901. * the TAIL pointer points to within the last 2 cachelines
  902. * of the buffer.
  903. */
  904. ring->effective_size = ring->size;
  905. if (IS_I830(ring->dev))
  906. ring->effective_size -= 128;
  907. return 0;
  908. err_unmap:
  909. drm_core_ioremapfree(&ring->map, dev);
  910. err_unpin:
  911. i915_gem_object_unpin(obj);
  912. err_unref:
  913. drm_gem_object_unreference(&obj->base);
  914. ring->obj = NULL;
  915. err_hws:
  916. cleanup_status_page(ring);
  917. return ret;
  918. }
  919. void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
  920. {
  921. struct drm_i915_private *dev_priv;
  922. int ret;
  923. if (ring->obj == NULL)
  924. return;
  925. /* Disable the ring buffer. The ring must be idle at this point */
  926. dev_priv = ring->dev->dev_private;
  927. ret = intel_wait_ring_idle(ring);
  928. if (ret)
  929. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  930. ring->name, ret);
  931. I915_WRITE_CTL(ring, 0);
  932. drm_core_ioremapfree(&ring->map, ring->dev);
  933. i915_gem_object_unpin(ring->obj);
  934. drm_gem_object_unreference(&ring->obj->base);
  935. ring->obj = NULL;
  936. if (ring->cleanup)
  937. ring->cleanup(ring);
  938. cleanup_status_page(ring);
  939. }
  940. static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
  941. {
  942. unsigned int *virt;
  943. int rem = ring->size - ring->tail;
  944. if (ring->space < rem) {
  945. int ret = intel_wait_ring_buffer(ring, rem);
  946. if (ret)
  947. return ret;
  948. }
  949. virt = (unsigned int *)(ring->virtual_start + ring->tail);
  950. rem /= 8;
  951. while (rem--) {
  952. *virt++ = MI_NOOP;
  953. *virt++ = MI_NOOP;
  954. }
  955. ring->tail = 0;
  956. ring->space = ring_space(ring);
  957. return 0;
  958. }
  959. int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
  960. {
  961. struct drm_device *dev = ring->dev;
  962. struct drm_i915_private *dev_priv = dev->dev_private;
  963. unsigned long end;
  964. u32 head;
  965. /* If the reported head position has wrapped or hasn't advanced,
  966. * fallback to the slow and accurate path.
  967. */
  968. head = intel_read_status_page(ring, 4);
  969. if (head > ring->head) {
  970. ring->head = head;
  971. ring->space = ring_space(ring);
  972. if (ring->space >= n)
  973. return 0;
  974. }
  975. trace_i915_ring_wait_begin(ring);
  976. if (drm_core_check_feature(dev, DRIVER_GEM))
  977. /* With GEM the hangcheck timer should kick us out of the loop,
  978. * leaving it early runs the risk of corrupting GEM state (due
  979. * to running on almost untested codepaths). But on resume
  980. * timers don't work yet, so prevent a complete hang in that
  981. * case by choosing an insanely large timeout. */
  982. end = jiffies + 60 * HZ;
  983. else
  984. end = jiffies + 3 * HZ;
  985. do {
  986. ring->head = I915_READ_HEAD(ring);
  987. ring->space = ring_space(ring);
  988. if (ring->space >= n) {
  989. trace_i915_ring_wait_end(ring);
  990. return 0;
  991. }
  992. if (dev->primary->master) {
  993. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  994. if (master_priv->sarea_priv)
  995. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  996. }
  997. msleep(1);
  998. if (atomic_read(&dev_priv->mm.wedged))
  999. return -EAGAIN;
  1000. } while (!time_after(jiffies, end));
  1001. trace_i915_ring_wait_end(ring);
  1002. return -EBUSY;
  1003. }
  1004. int intel_ring_begin(struct intel_ring_buffer *ring,
  1005. int num_dwords)
  1006. {
  1007. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1008. int n = 4*num_dwords;
  1009. int ret;
  1010. if (unlikely(atomic_read(&dev_priv->mm.wedged)))
  1011. return -EIO;
  1012. if (unlikely(ring->tail + n > ring->effective_size)) {
  1013. ret = intel_wrap_ring_buffer(ring);
  1014. if (unlikely(ret))
  1015. return ret;
  1016. }
  1017. if (unlikely(ring->space < n)) {
  1018. ret = intel_wait_ring_buffer(ring, n);
  1019. if (unlikely(ret))
  1020. return ret;
  1021. }
  1022. ring->space -= n;
  1023. return 0;
  1024. }
  1025. void intel_ring_advance(struct intel_ring_buffer *ring)
  1026. {
  1027. ring->tail &= ring->size - 1;
  1028. ring->write_tail(ring, ring->tail);
  1029. }
  1030. static const struct intel_ring_buffer render_ring = {
  1031. .name = "render ring",
  1032. .id = RING_RENDER,
  1033. .mmio_base = RENDER_RING_BASE,
  1034. .size = 32 * PAGE_SIZE,
  1035. .init = init_render_ring,
  1036. .write_tail = ring_write_tail,
  1037. .flush = render_ring_flush,
  1038. .add_request = render_ring_add_request,
  1039. .get_seqno = ring_get_seqno,
  1040. .irq_get = render_ring_get_irq,
  1041. .irq_put = render_ring_put_irq,
  1042. .dispatch_execbuffer = render_ring_dispatch_execbuffer,
  1043. .cleanup = render_ring_cleanup,
  1044. .sync_to = render_ring_sync_to,
  1045. .semaphore_register = {MI_SEMAPHORE_SYNC_INVALID,
  1046. MI_SEMAPHORE_SYNC_RV,
  1047. MI_SEMAPHORE_SYNC_RB},
  1048. .signal_mbox = {GEN6_VRSYNC, GEN6_BRSYNC},
  1049. };
  1050. /* ring buffer for bit-stream decoder */
  1051. static const struct intel_ring_buffer bsd_ring = {
  1052. .name = "bsd ring",
  1053. .id = RING_BSD,
  1054. .mmio_base = BSD_RING_BASE,
  1055. .size = 32 * PAGE_SIZE,
  1056. .init = init_ring_common,
  1057. .write_tail = ring_write_tail,
  1058. .flush = bsd_ring_flush,
  1059. .add_request = ring_add_request,
  1060. .get_seqno = ring_get_seqno,
  1061. .irq_get = bsd_ring_get_irq,
  1062. .irq_put = bsd_ring_put_irq,
  1063. .dispatch_execbuffer = ring_dispatch_execbuffer,
  1064. };
  1065. static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
  1066. u32 value)
  1067. {
  1068. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1069. /* Every tail move must follow the sequence below */
  1070. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1071. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
  1072. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
  1073. I915_WRITE(GEN6_BSD_RNCID, 0x0);
  1074. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1075. GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0,
  1076. 50))
  1077. DRM_ERROR("timed out waiting for IDLE Indicator\n");
  1078. I915_WRITE_TAIL(ring, value);
  1079. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1080. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
  1081. GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
  1082. }
  1083. static int gen6_ring_flush(struct intel_ring_buffer *ring,
  1084. u32 invalidate, u32 flush)
  1085. {
  1086. uint32_t cmd;
  1087. int ret;
  1088. ret = intel_ring_begin(ring, 4);
  1089. if (ret)
  1090. return ret;
  1091. cmd = MI_FLUSH_DW;
  1092. if (invalidate & I915_GEM_GPU_DOMAINS)
  1093. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  1094. intel_ring_emit(ring, cmd);
  1095. intel_ring_emit(ring, 0);
  1096. intel_ring_emit(ring, 0);
  1097. intel_ring_emit(ring, MI_NOOP);
  1098. intel_ring_advance(ring);
  1099. return 0;
  1100. }
  1101. static int
  1102. gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1103. u32 offset, u32 len)
  1104. {
  1105. int ret;
  1106. ret = intel_ring_begin(ring, 2);
  1107. if (ret)
  1108. return ret;
  1109. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
  1110. /* bit0-7 is the length on GEN6+ */
  1111. intel_ring_emit(ring, offset);
  1112. intel_ring_advance(ring);
  1113. return 0;
  1114. }
  1115. static bool
  1116. gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
  1117. {
  1118. return gen6_ring_get_irq(ring,
  1119. GT_USER_INTERRUPT,
  1120. GEN6_RENDER_USER_INTERRUPT);
  1121. }
  1122. static void
  1123. gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
  1124. {
  1125. return gen6_ring_put_irq(ring,
  1126. GT_USER_INTERRUPT,
  1127. GEN6_RENDER_USER_INTERRUPT);
  1128. }
  1129. static bool
  1130. gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
  1131. {
  1132. return gen6_ring_get_irq(ring,
  1133. GT_GEN6_BSD_USER_INTERRUPT,
  1134. GEN6_BSD_USER_INTERRUPT);
  1135. }
  1136. static void
  1137. gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
  1138. {
  1139. return gen6_ring_put_irq(ring,
  1140. GT_GEN6_BSD_USER_INTERRUPT,
  1141. GEN6_BSD_USER_INTERRUPT);
  1142. }
  1143. /* ring buffer for Video Codec for Gen6+ */
  1144. static const struct intel_ring_buffer gen6_bsd_ring = {
  1145. .name = "gen6 bsd ring",
  1146. .id = RING_BSD,
  1147. .mmio_base = GEN6_BSD_RING_BASE,
  1148. .size = 32 * PAGE_SIZE,
  1149. .init = init_ring_common,
  1150. .write_tail = gen6_bsd_ring_write_tail,
  1151. .flush = gen6_ring_flush,
  1152. .add_request = gen6_add_request,
  1153. .get_seqno = gen6_ring_get_seqno,
  1154. .irq_get = gen6_bsd_ring_get_irq,
  1155. .irq_put = gen6_bsd_ring_put_irq,
  1156. .dispatch_execbuffer = gen6_ring_dispatch_execbuffer,
  1157. .sync_to = gen6_bsd_ring_sync_to,
  1158. .semaphore_register = {MI_SEMAPHORE_SYNC_VR,
  1159. MI_SEMAPHORE_SYNC_INVALID,
  1160. MI_SEMAPHORE_SYNC_VB},
  1161. .signal_mbox = {GEN6_RVSYNC, GEN6_BVSYNC},
  1162. };
  1163. /* Blitter support (SandyBridge+) */
  1164. static bool
  1165. blt_ring_get_irq(struct intel_ring_buffer *ring)
  1166. {
  1167. return gen6_ring_get_irq(ring,
  1168. GT_BLT_USER_INTERRUPT,
  1169. GEN6_BLITTER_USER_INTERRUPT);
  1170. }
  1171. static void
  1172. blt_ring_put_irq(struct intel_ring_buffer *ring)
  1173. {
  1174. gen6_ring_put_irq(ring,
  1175. GT_BLT_USER_INTERRUPT,
  1176. GEN6_BLITTER_USER_INTERRUPT);
  1177. }
  1178. /* Workaround for some stepping of SNB,
  1179. * each time when BLT engine ring tail moved,
  1180. * the first command in the ring to be parsed
  1181. * should be MI_BATCH_BUFFER_START
  1182. */
  1183. #define NEED_BLT_WORKAROUND(dev) \
  1184. (IS_GEN6(dev) && (dev->pdev->revision < 8))
  1185. static inline struct drm_i915_gem_object *
  1186. to_blt_workaround(struct intel_ring_buffer *ring)
  1187. {
  1188. return ring->private;
  1189. }
  1190. static int blt_ring_init(struct intel_ring_buffer *ring)
  1191. {
  1192. if (NEED_BLT_WORKAROUND(ring->dev)) {
  1193. struct drm_i915_gem_object *obj;
  1194. u32 *ptr;
  1195. int ret;
  1196. obj = i915_gem_alloc_object(ring->dev, 4096);
  1197. if (obj == NULL)
  1198. return -ENOMEM;
  1199. ret = i915_gem_object_pin(obj, 4096, true);
  1200. if (ret) {
  1201. drm_gem_object_unreference(&obj->base);
  1202. return ret;
  1203. }
  1204. ptr = kmap(obj->pages[0]);
  1205. *ptr++ = MI_BATCH_BUFFER_END;
  1206. *ptr++ = MI_NOOP;
  1207. kunmap(obj->pages[0]);
  1208. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  1209. if (ret) {
  1210. i915_gem_object_unpin(obj);
  1211. drm_gem_object_unreference(&obj->base);
  1212. return ret;
  1213. }
  1214. ring->private = obj;
  1215. }
  1216. return init_ring_common(ring);
  1217. }
  1218. static int blt_ring_begin(struct intel_ring_buffer *ring,
  1219. int num_dwords)
  1220. {
  1221. if (ring->private) {
  1222. int ret = intel_ring_begin(ring, num_dwords+2);
  1223. if (ret)
  1224. return ret;
  1225. intel_ring_emit(ring, MI_BATCH_BUFFER_START);
  1226. intel_ring_emit(ring, to_blt_workaround(ring)->gtt_offset);
  1227. return 0;
  1228. } else
  1229. return intel_ring_begin(ring, 4);
  1230. }
  1231. static int blt_ring_flush(struct intel_ring_buffer *ring,
  1232. u32 invalidate, u32 flush)
  1233. {
  1234. uint32_t cmd;
  1235. int ret;
  1236. ret = blt_ring_begin(ring, 4);
  1237. if (ret)
  1238. return ret;
  1239. cmd = MI_FLUSH_DW;
  1240. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1241. cmd |= MI_INVALIDATE_TLB;
  1242. intel_ring_emit(ring, cmd);
  1243. intel_ring_emit(ring, 0);
  1244. intel_ring_emit(ring, 0);
  1245. intel_ring_emit(ring, MI_NOOP);
  1246. intel_ring_advance(ring);
  1247. return 0;
  1248. }
  1249. static void blt_ring_cleanup(struct intel_ring_buffer *ring)
  1250. {
  1251. if (!ring->private)
  1252. return;
  1253. i915_gem_object_unpin(ring->private);
  1254. drm_gem_object_unreference(ring->private);
  1255. ring->private = NULL;
  1256. }
  1257. static const struct intel_ring_buffer gen6_blt_ring = {
  1258. .name = "blt ring",
  1259. .id = RING_BLT,
  1260. .mmio_base = BLT_RING_BASE,
  1261. .size = 32 * PAGE_SIZE,
  1262. .init = blt_ring_init,
  1263. .write_tail = ring_write_tail,
  1264. .flush = blt_ring_flush,
  1265. .add_request = gen6_add_request,
  1266. .get_seqno = gen6_ring_get_seqno,
  1267. .irq_get = blt_ring_get_irq,
  1268. .irq_put = blt_ring_put_irq,
  1269. .dispatch_execbuffer = gen6_ring_dispatch_execbuffer,
  1270. .cleanup = blt_ring_cleanup,
  1271. .sync_to = gen6_blt_ring_sync_to,
  1272. .semaphore_register = {MI_SEMAPHORE_SYNC_BR,
  1273. MI_SEMAPHORE_SYNC_BV,
  1274. MI_SEMAPHORE_SYNC_INVALID},
  1275. .signal_mbox = {GEN6_RBSYNC, GEN6_VBSYNC},
  1276. };
  1277. int intel_init_render_ring_buffer(struct drm_device *dev)
  1278. {
  1279. drm_i915_private_t *dev_priv = dev->dev_private;
  1280. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1281. *ring = render_ring;
  1282. if (INTEL_INFO(dev)->gen >= 6) {
  1283. ring->add_request = gen6_add_request;
  1284. ring->flush = gen6_render_ring_flush;
  1285. ring->irq_get = gen6_render_ring_get_irq;
  1286. ring->irq_put = gen6_render_ring_put_irq;
  1287. ring->get_seqno = gen6_ring_get_seqno;
  1288. } else if (IS_GEN5(dev)) {
  1289. ring->add_request = pc_render_add_request;
  1290. ring->get_seqno = pc_render_get_seqno;
  1291. }
  1292. if (!I915_NEED_GFX_HWS(dev)) {
  1293. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1294. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1295. }
  1296. return intel_init_ring_buffer(dev, ring);
  1297. }
  1298. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1299. {
  1300. drm_i915_private_t *dev_priv = dev->dev_private;
  1301. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1302. *ring = render_ring;
  1303. if (INTEL_INFO(dev)->gen >= 6) {
  1304. ring->add_request = gen6_add_request;
  1305. ring->irq_get = gen6_render_ring_get_irq;
  1306. ring->irq_put = gen6_render_ring_put_irq;
  1307. } else if (IS_GEN5(dev)) {
  1308. ring->add_request = pc_render_add_request;
  1309. ring->get_seqno = pc_render_get_seqno;
  1310. }
  1311. if (!I915_NEED_GFX_HWS(dev))
  1312. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1313. ring->dev = dev;
  1314. INIT_LIST_HEAD(&ring->active_list);
  1315. INIT_LIST_HEAD(&ring->request_list);
  1316. INIT_LIST_HEAD(&ring->gpu_write_list);
  1317. ring->size = size;
  1318. ring->effective_size = ring->size;
  1319. if (IS_I830(ring->dev))
  1320. ring->effective_size -= 128;
  1321. ring->map.offset = start;
  1322. ring->map.size = size;
  1323. ring->map.type = 0;
  1324. ring->map.flags = 0;
  1325. ring->map.mtrr = 0;
  1326. drm_core_ioremap_wc(&ring->map, dev);
  1327. if (ring->map.handle == NULL) {
  1328. DRM_ERROR("can not ioremap virtual address for"
  1329. " ring buffer\n");
  1330. return -ENOMEM;
  1331. }
  1332. ring->virtual_start = (void __force __iomem *)ring->map.handle;
  1333. return 0;
  1334. }
  1335. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1336. {
  1337. drm_i915_private_t *dev_priv = dev->dev_private;
  1338. struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
  1339. if (IS_GEN6(dev) || IS_GEN7(dev))
  1340. *ring = gen6_bsd_ring;
  1341. else
  1342. *ring = bsd_ring;
  1343. return intel_init_ring_buffer(dev, ring);
  1344. }
  1345. int intel_init_blt_ring_buffer(struct drm_device *dev)
  1346. {
  1347. drm_i915_private_t *dev_priv = dev->dev_private;
  1348. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  1349. *ring = gen6_blt_ring;
  1350. return intel_init_ring_buffer(dev, ring);
  1351. }