sched_fair.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. static const struct sched_class fair_sched_class;
  68. /**************************************************************
  69. * CFS operations on generic schedulable entities:
  70. */
  71. #ifdef CONFIG_FAIR_GROUP_SCHED
  72. /* cpu runqueue to which this cfs_rq is attached */
  73. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  74. {
  75. return cfs_rq->rq;
  76. }
  77. /* An entity is a task if it doesn't "own" a runqueue */
  78. #define entity_is_task(se) (!se->my_q)
  79. static inline struct task_struct *task_of(struct sched_entity *se)
  80. {
  81. #ifdef CONFIG_SCHED_DEBUG
  82. WARN_ON_ONCE(!entity_is_task(se));
  83. #endif
  84. return container_of(se, struct task_struct, se);
  85. }
  86. /* Walk up scheduling entities hierarchy */
  87. #define for_each_sched_entity(se) \
  88. for (; se; se = se->parent)
  89. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  90. {
  91. return p->se.cfs_rq;
  92. }
  93. /* runqueue on which this entity is (to be) queued */
  94. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  95. {
  96. return se->cfs_rq;
  97. }
  98. /* runqueue "owned" by this group */
  99. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  100. {
  101. return grp->my_q;
  102. }
  103. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  104. * another cpu ('this_cpu')
  105. */
  106. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  107. {
  108. return cfs_rq->tg->cfs_rq[this_cpu];
  109. }
  110. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  111. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  112. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  113. /* Do the two (enqueued) entities belong to the same group ? */
  114. static inline int
  115. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  116. {
  117. if (se->cfs_rq == pse->cfs_rq)
  118. return 1;
  119. return 0;
  120. }
  121. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  122. {
  123. return se->parent;
  124. }
  125. /* return depth at which a sched entity is present in the hierarchy */
  126. static inline int depth_se(struct sched_entity *se)
  127. {
  128. int depth = 0;
  129. for_each_sched_entity(se)
  130. depth++;
  131. return depth;
  132. }
  133. static void
  134. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  135. {
  136. int se_depth, pse_depth;
  137. /*
  138. * preemption test can be made between sibling entities who are in the
  139. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  140. * both tasks until we find their ancestors who are siblings of common
  141. * parent.
  142. */
  143. /* First walk up until both entities are at same depth */
  144. se_depth = depth_se(*se);
  145. pse_depth = depth_se(*pse);
  146. while (se_depth > pse_depth) {
  147. se_depth--;
  148. *se = parent_entity(*se);
  149. }
  150. while (pse_depth > se_depth) {
  151. pse_depth--;
  152. *pse = parent_entity(*pse);
  153. }
  154. while (!is_same_group(*se, *pse)) {
  155. *se = parent_entity(*se);
  156. *pse = parent_entity(*pse);
  157. }
  158. }
  159. #else /* !CONFIG_FAIR_GROUP_SCHED */
  160. static inline struct task_struct *task_of(struct sched_entity *se)
  161. {
  162. return container_of(se, struct task_struct, se);
  163. }
  164. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  165. {
  166. return container_of(cfs_rq, struct rq, cfs);
  167. }
  168. #define entity_is_task(se) 1
  169. #define for_each_sched_entity(se) \
  170. for (; se; se = NULL)
  171. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  172. {
  173. return &task_rq(p)->cfs;
  174. }
  175. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  176. {
  177. struct task_struct *p = task_of(se);
  178. struct rq *rq = task_rq(p);
  179. return &rq->cfs;
  180. }
  181. /* runqueue "owned" by this group */
  182. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  183. {
  184. return NULL;
  185. }
  186. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  187. {
  188. return &cpu_rq(this_cpu)->cfs;
  189. }
  190. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  191. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  192. static inline int
  193. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  194. {
  195. return 1;
  196. }
  197. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  198. {
  199. return NULL;
  200. }
  201. static inline void
  202. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  203. {
  204. }
  205. #endif /* CONFIG_FAIR_GROUP_SCHED */
  206. /**************************************************************
  207. * Scheduling class tree data structure manipulation methods:
  208. */
  209. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  210. {
  211. s64 delta = (s64)(vruntime - min_vruntime);
  212. if (delta > 0)
  213. min_vruntime = vruntime;
  214. return min_vruntime;
  215. }
  216. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  217. {
  218. s64 delta = (s64)(vruntime - min_vruntime);
  219. if (delta < 0)
  220. min_vruntime = vruntime;
  221. return min_vruntime;
  222. }
  223. static inline int entity_before(struct sched_entity *a,
  224. struct sched_entity *b)
  225. {
  226. return (s64)(a->vruntime - b->vruntime) < 0;
  227. }
  228. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  229. {
  230. return se->vruntime - cfs_rq->min_vruntime;
  231. }
  232. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  233. {
  234. u64 vruntime = cfs_rq->min_vruntime;
  235. if (cfs_rq->curr)
  236. vruntime = cfs_rq->curr->vruntime;
  237. if (cfs_rq->rb_leftmost) {
  238. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  239. struct sched_entity,
  240. run_node);
  241. if (!cfs_rq->curr)
  242. vruntime = se->vruntime;
  243. else
  244. vruntime = min_vruntime(vruntime, se->vruntime);
  245. }
  246. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  247. }
  248. /*
  249. * Enqueue an entity into the rb-tree:
  250. */
  251. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  252. {
  253. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  254. struct rb_node *parent = NULL;
  255. struct sched_entity *entry;
  256. s64 key = entity_key(cfs_rq, se);
  257. int leftmost = 1;
  258. /*
  259. * Find the right place in the rbtree:
  260. */
  261. while (*link) {
  262. parent = *link;
  263. entry = rb_entry(parent, struct sched_entity, run_node);
  264. /*
  265. * We dont care about collisions. Nodes with
  266. * the same key stay together.
  267. */
  268. if (key < entity_key(cfs_rq, entry)) {
  269. link = &parent->rb_left;
  270. } else {
  271. link = &parent->rb_right;
  272. leftmost = 0;
  273. }
  274. }
  275. /*
  276. * Maintain a cache of leftmost tree entries (it is frequently
  277. * used):
  278. */
  279. if (leftmost)
  280. cfs_rq->rb_leftmost = &se->run_node;
  281. rb_link_node(&se->run_node, parent, link);
  282. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  283. }
  284. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  285. {
  286. if (cfs_rq->rb_leftmost == &se->run_node) {
  287. struct rb_node *next_node;
  288. next_node = rb_next(&se->run_node);
  289. cfs_rq->rb_leftmost = next_node;
  290. }
  291. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  292. }
  293. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  294. {
  295. struct rb_node *left = cfs_rq->rb_leftmost;
  296. if (!left)
  297. return NULL;
  298. return rb_entry(left, struct sched_entity, run_node);
  299. }
  300. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  301. {
  302. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  303. if (!last)
  304. return NULL;
  305. return rb_entry(last, struct sched_entity, run_node);
  306. }
  307. /**************************************************************
  308. * Scheduling class statistics methods:
  309. */
  310. #ifdef CONFIG_SCHED_DEBUG
  311. int sched_nr_latency_handler(struct ctl_table *table, int write,
  312. struct file *filp, void __user *buffer, size_t *lenp,
  313. loff_t *ppos)
  314. {
  315. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  316. if (ret || !write)
  317. return ret;
  318. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  319. sysctl_sched_min_granularity);
  320. return 0;
  321. }
  322. #endif
  323. /*
  324. * delta /= w
  325. */
  326. static inline unsigned long
  327. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  328. {
  329. if (unlikely(se->load.weight != NICE_0_LOAD))
  330. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  331. return delta;
  332. }
  333. /*
  334. * The idea is to set a period in which each task runs once.
  335. *
  336. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  337. * this period because otherwise the slices get too small.
  338. *
  339. * p = (nr <= nl) ? l : l*nr/nl
  340. */
  341. static u64 __sched_period(unsigned long nr_running)
  342. {
  343. u64 period = sysctl_sched_latency;
  344. unsigned long nr_latency = sched_nr_latency;
  345. if (unlikely(nr_running > nr_latency)) {
  346. period = sysctl_sched_min_granularity;
  347. period *= nr_running;
  348. }
  349. return period;
  350. }
  351. /*
  352. * We calculate the wall-time slice from the period by taking a part
  353. * proportional to the weight.
  354. *
  355. * s = p*P[w/rw]
  356. */
  357. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  358. {
  359. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  360. for_each_sched_entity(se) {
  361. struct load_weight *load;
  362. struct load_weight lw;
  363. cfs_rq = cfs_rq_of(se);
  364. load = &cfs_rq->load;
  365. if (unlikely(!se->on_rq)) {
  366. lw = cfs_rq->load;
  367. update_load_add(&lw, se->load.weight);
  368. load = &lw;
  369. }
  370. slice = calc_delta_mine(slice, se->load.weight, load);
  371. }
  372. return slice;
  373. }
  374. /*
  375. * We calculate the vruntime slice of a to be inserted task
  376. *
  377. * vs = s/w
  378. */
  379. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  380. {
  381. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  382. }
  383. /*
  384. * Update the current task's runtime statistics. Skip current tasks that
  385. * are not in our scheduling class.
  386. */
  387. static inline void
  388. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  389. unsigned long delta_exec)
  390. {
  391. unsigned long delta_exec_weighted;
  392. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  393. curr->sum_exec_runtime += delta_exec;
  394. schedstat_add(cfs_rq, exec_clock, delta_exec);
  395. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  396. curr->vruntime += delta_exec_weighted;
  397. update_min_vruntime(cfs_rq);
  398. }
  399. static void update_curr(struct cfs_rq *cfs_rq)
  400. {
  401. struct sched_entity *curr = cfs_rq->curr;
  402. u64 now = rq_of(cfs_rq)->clock;
  403. unsigned long delta_exec;
  404. if (unlikely(!curr))
  405. return;
  406. /*
  407. * Get the amount of time the current task was running
  408. * since the last time we changed load (this cannot
  409. * overflow on 32 bits):
  410. */
  411. delta_exec = (unsigned long)(now - curr->exec_start);
  412. if (!delta_exec)
  413. return;
  414. __update_curr(cfs_rq, curr, delta_exec);
  415. curr->exec_start = now;
  416. if (entity_is_task(curr)) {
  417. struct task_struct *curtask = task_of(curr);
  418. cpuacct_charge(curtask, delta_exec);
  419. account_group_exec_runtime(curtask, delta_exec);
  420. }
  421. }
  422. static inline void
  423. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  424. {
  425. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  426. }
  427. /*
  428. * Task is being enqueued - update stats:
  429. */
  430. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  431. {
  432. /*
  433. * Are we enqueueing a waiting task? (for current tasks
  434. * a dequeue/enqueue event is a NOP)
  435. */
  436. if (se != cfs_rq->curr)
  437. update_stats_wait_start(cfs_rq, se);
  438. }
  439. static void
  440. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  441. {
  442. schedstat_set(se->wait_max, max(se->wait_max,
  443. rq_of(cfs_rq)->clock - se->wait_start));
  444. schedstat_set(se->wait_count, se->wait_count + 1);
  445. schedstat_set(se->wait_sum, se->wait_sum +
  446. rq_of(cfs_rq)->clock - se->wait_start);
  447. schedstat_set(se->wait_start, 0);
  448. }
  449. static inline void
  450. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  451. {
  452. /*
  453. * Mark the end of the wait period if dequeueing a
  454. * waiting task:
  455. */
  456. if (se != cfs_rq->curr)
  457. update_stats_wait_end(cfs_rq, se);
  458. }
  459. /*
  460. * We are picking a new current task - update its stats:
  461. */
  462. static inline void
  463. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  464. {
  465. /*
  466. * We are starting a new run period:
  467. */
  468. se->exec_start = rq_of(cfs_rq)->clock;
  469. }
  470. /**************************************************
  471. * Scheduling class queueing methods:
  472. */
  473. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  474. static void
  475. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  476. {
  477. cfs_rq->task_weight += weight;
  478. }
  479. #else
  480. static inline void
  481. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  482. {
  483. }
  484. #endif
  485. static void
  486. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  487. {
  488. update_load_add(&cfs_rq->load, se->load.weight);
  489. if (!parent_entity(se))
  490. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  491. if (entity_is_task(se)) {
  492. add_cfs_task_weight(cfs_rq, se->load.weight);
  493. list_add(&se->group_node, &cfs_rq->tasks);
  494. }
  495. cfs_rq->nr_running++;
  496. se->on_rq = 1;
  497. }
  498. static void
  499. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  500. {
  501. update_load_sub(&cfs_rq->load, se->load.weight);
  502. if (!parent_entity(se))
  503. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  504. if (entity_is_task(se)) {
  505. add_cfs_task_weight(cfs_rq, -se->load.weight);
  506. list_del_init(&se->group_node);
  507. }
  508. cfs_rq->nr_running--;
  509. se->on_rq = 0;
  510. }
  511. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  512. {
  513. #ifdef CONFIG_SCHEDSTATS
  514. struct task_struct *tsk = NULL;
  515. if (entity_is_task(se))
  516. tsk = task_of(se);
  517. if (se->sleep_start) {
  518. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  519. if ((s64)delta < 0)
  520. delta = 0;
  521. if (unlikely(delta > se->sleep_max))
  522. se->sleep_max = delta;
  523. se->sleep_start = 0;
  524. se->sum_sleep_runtime += delta;
  525. if (tsk)
  526. account_scheduler_latency(tsk, delta >> 10, 1);
  527. }
  528. if (se->block_start) {
  529. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  530. if ((s64)delta < 0)
  531. delta = 0;
  532. if (unlikely(delta > se->block_max))
  533. se->block_max = delta;
  534. se->block_start = 0;
  535. se->sum_sleep_runtime += delta;
  536. if (tsk) {
  537. if (tsk->in_iowait) {
  538. se->iowait_sum += delta;
  539. se->iowait_count++;
  540. }
  541. /*
  542. * Blocking time is in units of nanosecs, so shift by
  543. * 20 to get a milliseconds-range estimation of the
  544. * amount of time that the task spent sleeping:
  545. */
  546. if (unlikely(prof_on == SLEEP_PROFILING)) {
  547. profile_hits(SLEEP_PROFILING,
  548. (void *)get_wchan(tsk),
  549. delta >> 20);
  550. }
  551. account_scheduler_latency(tsk, delta >> 10, 0);
  552. }
  553. }
  554. #endif
  555. }
  556. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  557. {
  558. #ifdef CONFIG_SCHED_DEBUG
  559. s64 d = se->vruntime - cfs_rq->min_vruntime;
  560. if (d < 0)
  561. d = -d;
  562. if (d > 3*sysctl_sched_latency)
  563. schedstat_inc(cfs_rq, nr_spread_over);
  564. #endif
  565. }
  566. static void
  567. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  568. {
  569. u64 vruntime = cfs_rq->min_vruntime;
  570. /*
  571. * The 'current' period is already promised to the current tasks,
  572. * however the extra weight of the new task will slow them down a
  573. * little, place the new task so that it fits in the slot that
  574. * stays open at the end.
  575. */
  576. if (initial && sched_feat(START_DEBIT))
  577. vruntime += sched_vslice(cfs_rq, se);
  578. if (!initial) {
  579. /* sleeps upto a single latency don't count. */
  580. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  581. unsigned long thresh = sysctl_sched_latency;
  582. /*
  583. * Convert the sleeper threshold into virtual time.
  584. * SCHED_IDLE is a special sub-class. We care about
  585. * fairness only relative to other SCHED_IDLE tasks,
  586. * all of which have the same weight.
  587. */
  588. if (sched_feat(NORMALIZED_SLEEPER) &&
  589. (!entity_is_task(se) ||
  590. task_of(se)->policy != SCHED_IDLE))
  591. thresh = calc_delta_fair(thresh, se);
  592. vruntime -= thresh;
  593. }
  594. /* ensure we never gain time by being placed backwards. */
  595. vruntime = max_vruntime(se->vruntime, vruntime);
  596. }
  597. se->vruntime = vruntime;
  598. }
  599. static void
  600. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  601. {
  602. /*
  603. * Update run-time statistics of the 'current'.
  604. */
  605. update_curr(cfs_rq);
  606. account_entity_enqueue(cfs_rq, se);
  607. if (wakeup) {
  608. place_entity(cfs_rq, se, 0);
  609. enqueue_sleeper(cfs_rq, se);
  610. }
  611. update_stats_enqueue(cfs_rq, se);
  612. check_spread(cfs_rq, se);
  613. if (se != cfs_rq->curr)
  614. __enqueue_entity(cfs_rq, se);
  615. }
  616. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  617. {
  618. if (cfs_rq->last == se)
  619. cfs_rq->last = NULL;
  620. if (cfs_rq->next == se)
  621. cfs_rq->next = NULL;
  622. }
  623. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  624. {
  625. for_each_sched_entity(se)
  626. __clear_buddies(cfs_rq_of(se), se);
  627. }
  628. static void
  629. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  630. {
  631. /*
  632. * Update run-time statistics of the 'current'.
  633. */
  634. update_curr(cfs_rq);
  635. update_stats_dequeue(cfs_rq, se);
  636. if (sleep) {
  637. #ifdef CONFIG_SCHEDSTATS
  638. if (entity_is_task(se)) {
  639. struct task_struct *tsk = task_of(se);
  640. if (tsk->state & TASK_INTERRUPTIBLE)
  641. se->sleep_start = rq_of(cfs_rq)->clock;
  642. if (tsk->state & TASK_UNINTERRUPTIBLE)
  643. se->block_start = rq_of(cfs_rq)->clock;
  644. }
  645. #endif
  646. }
  647. clear_buddies(cfs_rq, se);
  648. if (se != cfs_rq->curr)
  649. __dequeue_entity(cfs_rq, se);
  650. account_entity_dequeue(cfs_rq, se);
  651. update_min_vruntime(cfs_rq);
  652. }
  653. /*
  654. * Preempt the current task with a newly woken task if needed:
  655. */
  656. static void
  657. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  658. {
  659. unsigned long ideal_runtime, delta_exec;
  660. ideal_runtime = sched_slice(cfs_rq, curr);
  661. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  662. if (delta_exec > ideal_runtime) {
  663. resched_task(rq_of(cfs_rq)->curr);
  664. /*
  665. * The current task ran long enough, ensure it doesn't get
  666. * re-elected due to buddy favours.
  667. */
  668. clear_buddies(cfs_rq, curr);
  669. }
  670. }
  671. static void
  672. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  673. {
  674. /* 'current' is not kept within the tree. */
  675. if (se->on_rq) {
  676. /*
  677. * Any task has to be enqueued before it get to execute on
  678. * a CPU. So account for the time it spent waiting on the
  679. * runqueue.
  680. */
  681. update_stats_wait_end(cfs_rq, se);
  682. __dequeue_entity(cfs_rq, se);
  683. }
  684. update_stats_curr_start(cfs_rq, se);
  685. cfs_rq->curr = se;
  686. #ifdef CONFIG_SCHEDSTATS
  687. /*
  688. * Track our maximum slice length, if the CPU's load is at
  689. * least twice that of our own weight (i.e. dont track it
  690. * when there are only lesser-weight tasks around):
  691. */
  692. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  693. se->slice_max = max(se->slice_max,
  694. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  695. }
  696. #endif
  697. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  698. }
  699. static int
  700. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  701. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  702. {
  703. struct sched_entity *se = __pick_next_entity(cfs_rq);
  704. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
  705. return cfs_rq->next;
  706. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
  707. return cfs_rq->last;
  708. return se;
  709. }
  710. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  711. {
  712. /*
  713. * If still on the runqueue then deactivate_task()
  714. * was not called and update_curr() has to be done:
  715. */
  716. if (prev->on_rq)
  717. update_curr(cfs_rq);
  718. check_spread(cfs_rq, prev);
  719. if (prev->on_rq) {
  720. update_stats_wait_start(cfs_rq, prev);
  721. /* Put 'current' back into the tree. */
  722. __enqueue_entity(cfs_rq, prev);
  723. }
  724. cfs_rq->curr = NULL;
  725. }
  726. static void
  727. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  728. {
  729. /*
  730. * Update run-time statistics of the 'current'.
  731. */
  732. update_curr(cfs_rq);
  733. #ifdef CONFIG_SCHED_HRTICK
  734. /*
  735. * queued ticks are scheduled to match the slice, so don't bother
  736. * validating it and just reschedule.
  737. */
  738. if (queued) {
  739. resched_task(rq_of(cfs_rq)->curr);
  740. return;
  741. }
  742. /*
  743. * don't let the period tick interfere with the hrtick preemption
  744. */
  745. if (!sched_feat(DOUBLE_TICK) &&
  746. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  747. return;
  748. #endif
  749. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  750. check_preempt_tick(cfs_rq, curr);
  751. }
  752. /**************************************************
  753. * CFS operations on tasks:
  754. */
  755. #ifdef CONFIG_SCHED_HRTICK
  756. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  757. {
  758. struct sched_entity *se = &p->se;
  759. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  760. WARN_ON(task_rq(p) != rq);
  761. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  762. u64 slice = sched_slice(cfs_rq, se);
  763. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  764. s64 delta = slice - ran;
  765. if (delta < 0) {
  766. if (rq->curr == p)
  767. resched_task(p);
  768. return;
  769. }
  770. /*
  771. * Don't schedule slices shorter than 10000ns, that just
  772. * doesn't make sense. Rely on vruntime for fairness.
  773. */
  774. if (rq->curr != p)
  775. delta = max_t(s64, 10000LL, delta);
  776. hrtick_start(rq, delta);
  777. }
  778. }
  779. /*
  780. * called from enqueue/dequeue and updates the hrtick when the
  781. * current task is from our class and nr_running is low enough
  782. * to matter.
  783. */
  784. static void hrtick_update(struct rq *rq)
  785. {
  786. struct task_struct *curr = rq->curr;
  787. if (curr->sched_class != &fair_sched_class)
  788. return;
  789. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  790. hrtick_start_fair(rq, curr);
  791. }
  792. #else /* !CONFIG_SCHED_HRTICK */
  793. static inline void
  794. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  795. {
  796. }
  797. static inline void hrtick_update(struct rq *rq)
  798. {
  799. }
  800. #endif
  801. /*
  802. * The enqueue_task method is called before nr_running is
  803. * increased. Here we update the fair scheduling stats and
  804. * then put the task into the rbtree:
  805. */
  806. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  807. {
  808. struct cfs_rq *cfs_rq;
  809. struct sched_entity *se = &p->se;
  810. for_each_sched_entity(se) {
  811. if (se->on_rq)
  812. break;
  813. cfs_rq = cfs_rq_of(se);
  814. enqueue_entity(cfs_rq, se, wakeup);
  815. wakeup = 1;
  816. }
  817. hrtick_update(rq);
  818. }
  819. /*
  820. * The dequeue_task method is called before nr_running is
  821. * decreased. We remove the task from the rbtree and
  822. * update the fair scheduling stats:
  823. */
  824. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  825. {
  826. struct cfs_rq *cfs_rq;
  827. struct sched_entity *se = &p->se;
  828. for_each_sched_entity(se) {
  829. cfs_rq = cfs_rq_of(se);
  830. dequeue_entity(cfs_rq, se, sleep);
  831. /* Don't dequeue parent if it has other entities besides us */
  832. if (cfs_rq->load.weight)
  833. break;
  834. sleep = 1;
  835. }
  836. hrtick_update(rq);
  837. }
  838. /*
  839. * sched_yield() support is very simple - we dequeue and enqueue.
  840. *
  841. * If compat_yield is turned on then we requeue to the end of the tree.
  842. */
  843. static void yield_task_fair(struct rq *rq)
  844. {
  845. struct task_struct *curr = rq->curr;
  846. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  847. struct sched_entity *rightmost, *se = &curr->se;
  848. /*
  849. * Are we the only task in the tree?
  850. */
  851. if (unlikely(cfs_rq->nr_running == 1))
  852. return;
  853. clear_buddies(cfs_rq, se);
  854. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  855. update_rq_clock(rq);
  856. /*
  857. * Update run-time statistics of the 'current'.
  858. */
  859. update_curr(cfs_rq);
  860. return;
  861. }
  862. /*
  863. * Find the rightmost entry in the rbtree:
  864. */
  865. rightmost = __pick_last_entity(cfs_rq);
  866. /*
  867. * Already in the rightmost position?
  868. */
  869. if (unlikely(!rightmost || entity_before(rightmost, se)))
  870. return;
  871. /*
  872. * Minimally necessary key value to be last in the tree:
  873. * Upon rescheduling, sched_class::put_prev_task() will place
  874. * 'current' within the tree based on its new key value.
  875. */
  876. se->vruntime = rightmost->vruntime + 1;
  877. }
  878. /*
  879. * wake_idle() will wake a task on an idle cpu if task->cpu is
  880. * not idle and an idle cpu is available. The span of cpus to
  881. * search starts with cpus closest then further out as needed,
  882. * so we always favor a closer, idle cpu.
  883. * Domains may include CPUs that are not usable for migration,
  884. * hence we need to mask them out (rq->rd->online)
  885. *
  886. * Returns the CPU we should wake onto.
  887. */
  888. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  889. #define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online)
  890. static int wake_idle(int cpu, struct task_struct *p)
  891. {
  892. struct sched_domain *sd;
  893. int i;
  894. unsigned int chosen_wakeup_cpu;
  895. int this_cpu;
  896. struct rq *task_rq = task_rq(p);
  897. /*
  898. * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
  899. * are idle and this is not a kernel thread and this task's affinity
  900. * allows it to be moved to preferred cpu, then just move!
  901. */
  902. this_cpu = smp_processor_id();
  903. chosen_wakeup_cpu =
  904. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
  905. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
  906. idle_cpu(cpu) && idle_cpu(this_cpu) &&
  907. p->mm && !(p->flags & PF_KTHREAD) &&
  908. cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
  909. return chosen_wakeup_cpu;
  910. /*
  911. * If it is idle, then it is the best cpu to run this task.
  912. *
  913. * This cpu is also the best, if it has more than one task already.
  914. * Siblings must be also busy(in most cases) as they didn't already
  915. * pickup the extra load from this cpu and hence we need not check
  916. * sibling runqueue info. This will avoid the checks and cache miss
  917. * penalities associated with that.
  918. */
  919. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  920. return cpu;
  921. for_each_domain(cpu, sd) {
  922. if ((sd->flags & SD_WAKE_IDLE)
  923. || ((sd->flags & SD_WAKE_IDLE_FAR)
  924. && !task_hot(p, task_rq->clock, sd))) {
  925. for_each_cpu_and(i, sched_domain_span(sd),
  926. &p->cpus_allowed) {
  927. if (cpu_rd_active(i, task_rq) && idle_cpu(i)) {
  928. if (i != task_cpu(p)) {
  929. schedstat_inc(p,
  930. se.nr_wakeups_idle);
  931. }
  932. return i;
  933. }
  934. }
  935. } else {
  936. break;
  937. }
  938. }
  939. return cpu;
  940. }
  941. #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
  942. static inline int wake_idle(int cpu, struct task_struct *p)
  943. {
  944. return cpu;
  945. }
  946. #endif
  947. #ifdef CONFIG_SMP
  948. #ifdef CONFIG_FAIR_GROUP_SCHED
  949. /*
  950. * effective_load() calculates the load change as seen from the root_task_group
  951. *
  952. * Adding load to a group doesn't make a group heavier, but can cause movement
  953. * of group shares between cpus. Assuming the shares were perfectly aligned one
  954. * can calculate the shift in shares.
  955. *
  956. * The problem is that perfectly aligning the shares is rather expensive, hence
  957. * we try to avoid doing that too often - see update_shares(), which ratelimits
  958. * this change.
  959. *
  960. * We compensate this by not only taking the current delta into account, but
  961. * also considering the delta between when the shares were last adjusted and
  962. * now.
  963. *
  964. * We still saw a performance dip, some tracing learned us that between
  965. * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
  966. * significantly. Therefore try to bias the error in direction of failing
  967. * the affine wakeup.
  968. *
  969. */
  970. static long effective_load(struct task_group *tg, int cpu,
  971. long wl, long wg)
  972. {
  973. struct sched_entity *se = tg->se[cpu];
  974. if (!tg->parent)
  975. return wl;
  976. /*
  977. * By not taking the decrease of shares on the other cpu into
  978. * account our error leans towards reducing the affine wakeups.
  979. */
  980. if (!wl && sched_feat(ASYM_EFF_LOAD))
  981. return wl;
  982. for_each_sched_entity(se) {
  983. long S, rw, s, a, b;
  984. long more_w;
  985. /*
  986. * Instead of using this increment, also add the difference
  987. * between when the shares were last updated and now.
  988. */
  989. more_w = se->my_q->load.weight - se->my_q->rq_weight;
  990. wl += more_w;
  991. wg += more_w;
  992. S = se->my_q->tg->shares;
  993. s = se->my_q->shares;
  994. rw = se->my_q->rq_weight;
  995. a = S*(rw + wl);
  996. b = S*rw + s*wg;
  997. wl = s*(a-b);
  998. if (likely(b))
  999. wl /= b;
  1000. /*
  1001. * Assume the group is already running and will
  1002. * thus already be accounted for in the weight.
  1003. *
  1004. * That is, moving shares between CPUs, does not
  1005. * alter the group weight.
  1006. */
  1007. wg = 0;
  1008. }
  1009. return wl;
  1010. }
  1011. #else
  1012. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1013. unsigned long wl, unsigned long wg)
  1014. {
  1015. return wl;
  1016. }
  1017. #endif
  1018. static int
  1019. wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
  1020. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  1021. int idx, unsigned long load, unsigned long this_load,
  1022. unsigned int imbalance)
  1023. {
  1024. struct task_struct *curr = this_rq->curr;
  1025. struct task_group *tg;
  1026. unsigned long tl = this_load;
  1027. unsigned long tl_per_task;
  1028. unsigned long weight;
  1029. int balanced;
  1030. if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
  1031. return 0;
  1032. if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
  1033. p->se.avg_overlap > sysctl_sched_migration_cost))
  1034. sync = 0;
  1035. /*
  1036. * If sync wakeup then subtract the (maximum possible)
  1037. * effect of the currently running task from the load
  1038. * of the current CPU:
  1039. */
  1040. if (sync) {
  1041. tg = task_group(current);
  1042. weight = current->se.load.weight;
  1043. tl += effective_load(tg, this_cpu, -weight, -weight);
  1044. load += effective_load(tg, prev_cpu, 0, -weight);
  1045. }
  1046. tg = task_group(p);
  1047. weight = p->se.load.weight;
  1048. balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
  1049. imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
  1050. /*
  1051. * If the currently running task will sleep within
  1052. * a reasonable amount of time then attract this newly
  1053. * woken task:
  1054. */
  1055. if (sync && balanced)
  1056. return 1;
  1057. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1058. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1059. if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
  1060. tl_per_task)) {
  1061. /*
  1062. * This domain has SD_WAKE_AFFINE and
  1063. * p is cache cold in this domain, and
  1064. * there is no bad imbalance.
  1065. */
  1066. schedstat_inc(this_sd, ttwu_move_affine);
  1067. schedstat_inc(p, se.nr_wakeups_affine);
  1068. return 1;
  1069. }
  1070. return 0;
  1071. }
  1072. static int select_task_rq_fair(struct task_struct *p, int sync)
  1073. {
  1074. struct sched_domain *sd, *this_sd = NULL;
  1075. int prev_cpu, this_cpu, new_cpu;
  1076. unsigned long load, this_load;
  1077. struct rq *this_rq;
  1078. unsigned int imbalance;
  1079. int idx;
  1080. prev_cpu = task_cpu(p);
  1081. this_cpu = smp_processor_id();
  1082. this_rq = cpu_rq(this_cpu);
  1083. new_cpu = prev_cpu;
  1084. if (prev_cpu == this_cpu)
  1085. goto out;
  1086. /*
  1087. * 'this_sd' is the first domain that both
  1088. * this_cpu and prev_cpu are present in:
  1089. */
  1090. for_each_domain(this_cpu, sd) {
  1091. if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
  1092. this_sd = sd;
  1093. break;
  1094. }
  1095. }
  1096. if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
  1097. goto out;
  1098. /*
  1099. * Check for affine wakeup and passive balancing possibilities.
  1100. */
  1101. if (!this_sd)
  1102. goto out;
  1103. idx = this_sd->wake_idx;
  1104. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1105. load = source_load(prev_cpu, idx);
  1106. this_load = target_load(this_cpu, idx);
  1107. if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  1108. load, this_load, imbalance))
  1109. return this_cpu;
  1110. /*
  1111. * Start passive balancing when half the imbalance_pct
  1112. * limit is reached.
  1113. */
  1114. if (this_sd->flags & SD_WAKE_BALANCE) {
  1115. if (imbalance*this_load <= 100*load) {
  1116. schedstat_inc(this_sd, ttwu_move_balance);
  1117. schedstat_inc(p, se.nr_wakeups_passive);
  1118. return this_cpu;
  1119. }
  1120. }
  1121. out:
  1122. return wake_idle(new_cpu, p);
  1123. }
  1124. #endif /* CONFIG_SMP */
  1125. /*
  1126. * Adaptive granularity
  1127. *
  1128. * se->avg_wakeup gives the average time a task runs until it does a wakeup,
  1129. * with the limit of wakeup_gran -- when it never does a wakeup.
  1130. *
  1131. * So the smaller avg_wakeup is the faster we want this task to preempt,
  1132. * but we don't want to treat the preemptee unfairly and therefore allow it
  1133. * to run for at least the amount of time we'd like to run.
  1134. *
  1135. * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
  1136. *
  1137. * NOTE: we use *nr_running to scale with load, this nicely matches the
  1138. * degrading latency on load.
  1139. */
  1140. static unsigned long
  1141. adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
  1142. {
  1143. u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1144. u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
  1145. u64 gran = 0;
  1146. if (this_run < expected_wakeup)
  1147. gran = expected_wakeup - this_run;
  1148. return min_t(s64, gran, sysctl_sched_wakeup_granularity);
  1149. }
  1150. static unsigned long
  1151. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1152. {
  1153. unsigned long gran = sysctl_sched_wakeup_granularity;
  1154. if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
  1155. gran = adaptive_gran(curr, se);
  1156. /*
  1157. * Since its curr running now, convert the gran from real-time
  1158. * to virtual-time in his units.
  1159. */
  1160. if (sched_feat(ASYM_GRAN)) {
  1161. /*
  1162. * By using 'se' instead of 'curr' we penalize light tasks, so
  1163. * they get preempted easier. That is, if 'se' < 'curr' then
  1164. * the resulting gran will be larger, therefore penalizing the
  1165. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1166. * be smaller, again penalizing the lighter task.
  1167. *
  1168. * This is especially important for buddies when the leftmost
  1169. * task is higher priority than the buddy.
  1170. */
  1171. if (unlikely(se->load.weight != NICE_0_LOAD))
  1172. gran = calc_delta_fair(gran, se);
  1173. } else {
  1174. if (unlikely(curr->load.weight != NICE_0_LOAD))
  1175. gran = calc_delta_fair(gran, curr);
  1176. }
  1177. return gran;
  1178. }
  1179. /*
  1180. * Should 'se' preempt 'curr'.
  1181. *
  1182. * |s1
  1183. * |s2
  1184. * |s3
  1185. * g
  1186. * |<--->|c
  1187. *
  1188. * w(c, s1) = -1
  1189. * w(c, s2) = 0
  1190. * w(c, s3) = 1
  1191. *
  1192. */
  1193. static int
  1194. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1195. {
  1196. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1197. if (vdiff <= 0)
  1198. return -1;
  1199. gran = wakeup_gran(curr, se);
  1200. if (vdiff > gran)
  1201. return 1;
  1202. return 0;
  1203. }
  1204. static void set_last_buddy(struct sched_entity *se)
  1205. {
  1206. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1207. for_each_sched_entity(se)
  1208. cfs_rq_of(se)->last = se;
  1209. }
  1210. }
  1211. static void set_next_buddy(struct sched_entity *se)
  1212. {
  1213. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1214. for_each_sched_entity(se)
  1215. cfs_rq_of(se)->next = se;
  1216. }
  1217. }
  1218. /*
  1219. * Preempt the current task with a newly woken task if needed:
  1220. */
  1221. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
  1222. {
  1223. struct task_struct *curr = rq->curr;
  1224. struct sched_entity *se = &curr->se, *pse = &p->se;
  1225. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1226. update_curr(cfs_rq);
  1227. if (unlikely(rt_prio(p->prio))) {
  1228. resched_task(curr);
  1229. return;
  1230. }
  1231. if (unlikely(p->sched_class != &fair_sched_class))
  1232. return;
  1233. if (unlikely(se == pse))
  1234. return;
  1235. /*
  1236. * Only set the backward buddy when the current task is still on the
  1237. * rq. This can happen when a wakeup gets interleaved with schedule on
  1238. * the ->pre_schedule() or idle_balance() point, either of which can
  1239. * drop the rq lock.
  1240. *
  1241. * Also, during early boot the idle thread is in the fair class, for
  1242. * obvious reasons its a bad idea to schedule back to the idle thread.
  1243. */
  1244. if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
  1245. set_last_buddy(se);
  1246. set_next_buddy(pse);
  1247. /*
  1248. * We can come here with TIF_NEED_RESCHED already set from new task
  1249. * wake up path.
  1250. */
  1251. if (test_tsk_need_resched(curr))
  1252. return;
  1253. /*
  1254. * Batch and idle tasks do not preempt (their preemption is driven by
  1255. * the tick):
  1256. */
  1257. if (unlikely(p->policy != SCHED_NORMAL))
  1258. return;
  1259. /* Idle tasks are by definition preempted by everybody. */
  1260. if (unlikely(curr->policy == SCHED_IDLE)) {
  1261. resched_task(curr);
  1262. return;
  1263. }
  1264. if (!sched_feat(WAKEUP_PREEMPT))
  1265. return;
  1266. if (sched_feat(WAKEUP_OVERLAP) && (sync ||
  1267. (se->avg_overlap < sysctl_sched_migration_cost &&
  1268. pse->avg_overlap < sysctl_sched_migration_cost))) {
  1269. resched_task(curr);
  1270. return;
  1271. }
  1272. find_matching_se(&se, &pse);
  1273. BUG_ON(!pse);
  1274. if (wakeup_preempt_entity(se, pse) == 1)
  1275. resched_task(curr);
  1276. }
  1277. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1278. {
  1279. struct task_struct *p;
  1280. struct cfs_rq *cfs_rq = &rq->cfs;
  1281. struct sched_entity *se;
  1282. if (unlikely(!cfs_rq->nr_running))
  1283. return NULL;
  1284. do {
  1285. se = pick_next_entity(cfs_rq);
  1286. /*
  1287. * If se was a buddy, clear it so that it will have to earn
  1288. * the favour again.
  1289. */
  1290. __clear_buddies(cfs_rq, se);
  1291. set_next_entity(cfs_rq, se);
  1292. cfs_rq = group_cfs_rq(se);
  1293. } while (cfs_rq);
  1294. p = task_of(se);
  1295. hrtick_start_fair(rq, p);
  1296. return p;
  1297. }
  1298. /*
  1299. * Account for a descheduled task:
  1300. */
  1301. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1302. {
  1303. struct sched_entity *se = &prev->se;
  1304. struct cfs_rq *cfs_rq;
  1305. for_each_sched_entity(se) {
  1306. cfs_rq = cfs_rq_of(se);
  1307. put_prev_entity(cfs_rq, se);
  1308. }
  1309. }
  1310. #ifdef CONFIG_SMP
  1311. /**************************************************
  1312. * Fair scheduling class load-balancing methods:
  1313. */
  1314. /*
  1315. * Load-balancing iterator. Note: while the runqueue stays locked
  1316. * during the whole iteration, the current task might be
  1317. * dequeued so the iterator has to be dequeue-safe. Here we
  1318. * achieve that by always pre-iterating before returning
  1319. * the current task:
  1320. */
  1321. static struct task_struct *
  1322. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1323. {
  1324. struct task_struct *p = NULL;
  1325. struct sched_entity *se;
  1326. if (next == &cfs_rq->tasks)
  1327. return NULL;
  1328. se = list_entry(next, struct sched_entity, group_node);
  1329. p = task_of(se);
  1330. cfs_rq->balance_iterator = next->next;
  1331. return p;
  1332. }
  1333. static struct task_struct *load_balance_start_fair(void *arg)
  1334. {
  1335. struct cfs_rq *cfs_rq = arg;
  1336. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1337. }
  1338. static struct task_struct *load_balance_next_fair(void *arg)
  1339. {
  1340. struct cfs_rq *cfs_rq = arg;
  1341. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1342. }
  1343. static unsigned long
  1344. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1345. unsigned long max_load_move, struct sched_domain *sd,
  1346. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1347. struct cfs_rq *cfs_rq)
  1348. {
  1349. struct rq_iterator cfs_rq_iterator;
  1350. cfs_rq_iterator.start = load_balance_start_fair;
  1351. cfs_rq_iterator.next = load_balance_next_fair;
  1352. cfs_rq_iterator.arg = cfs_rq;
  1353. return balance_tasks(this_rq, this_cpu, busiest,
  1354. max_load_move, sd, idle, all_pinned,
  1355. this_best_prio, &cfs_rq_iterator);
  1356. }
  1357. #ifdef CONFIG_FAIR_GROUP_SCHED
  1358. static unsigned long
  1359. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1360. unsigned long max_load_move,
  1361. struct sched_domain *sd, enum cpu_idle_type idle,
  1362. int *all_pinned, int *this_best_prio)
  1363. {
  1364. long rem_load_move = max_load_move;
  1365. int busiest_cpu = cpu_of(busiest);
  1366. struct task_group *tg;
  1367. rcu_read_lock();
  1368. update_h_load(busiest_cpu);
  1369. list_for_each_entry_rcu(tg, &task_groups, list) {
  1370. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1371. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1372. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1373. u64 rem_load, moved_load;
  1374. /*
  1375. * empty group
  1376. */
  1377. if (!busiest_cfs_rq->task_weight)
  1378. continue;
  1379. rem_load = (u64)rem_load_move * busiest_weight;
  1380. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1381. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1382. rem_load, sd, idle, all_pinned, this_best_prio,
  1383. tg->cfs_rq[busiest_cpu]);
  1384. if (!moved_load)
  1385. continue;
  1386. moved_load *= busiest_h_load;
  1387. moved_load = div_u64(moved_load, busiest_weight + 1);
  1388. rem_load_move -= moved_load;
  1389. if (rem_load_move < 0)
  1390. break;
  1391. }
  1392. rcu_read_unlock();
  1393. return max_load_move - rem_load_move;
  1394. }
  1395. #else
  1396. static unsigned long
  1397. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1398. unsigned long max_load_move,
  1399. struct sched_domain *sd, enum cpu_idle_type idle,
  1400. int *all_pinned, int *this_best_prio)
  1401. {
  1402. return __load_balance_fair(this_rq, this_cpu, busiest,
  1403. max_load_move, sd, idle, all_pinned,
  1404. this_best_prio, &busiest->cfs);
  1405. }
  1406. #endif
  1407. static int
  1408. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1409. struct sched_domain *sd, enum cpu_idle_type idle)
  1410. {
  1411. struct cfs_rq *busy_cfs_rq;
  1412. struct rq_iterator cfs_rq_iterator;
  1413. cfs_rq_iterator.start = load_balance_start_fair;
  1414. cfs_rq_iterator.next = load_balance_next_fair;
  1415. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1416. /*
  1417. * pass busy_cfs_rq argument into
  1418. * load_balance_[start|next]_fair iterators
  1419. */
  1420. cfs_rq_iterator.arg = busy_cfs_rq;
  1421. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1422. &cfs_rq_iterator))
  1423. return 1;
  1424. }
  1425. return 0;
  1426. }
  1427. #endif /* CONFIG_SMP */
  1428. /*
  1429. * scheduler tick hitting a task of our scheduling class:
  1430. */
  1431. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1432. {
  1433. struct cfs_rq *cfs_rq;
  1434. struct sched_entity *se = &curr->se;
  1435. for_each_sched_entity(se) {
  1436. cfs_rq = cfs_rq_of(se);
  1437. entity_tick(cfs_rq, se, queued);
  1438. }
  1439. }
  1440. /*
  1441. * Share the fairness runtime between parent and child, thus the
  1442. * total amount of pressure for CPU stays equal - new tasks
  1443. * get a chance to run but frequent forkers are not allowed to
  1444. * monopolize the CPU. Note: the parent runqueue is locked,
  1445. * the child is not running yet.
  1446. */
  1447. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1448. {
  1449. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1450. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1451. int this_cpu = smp_processor_id();
  1452. sched_info_queued(p);
  1453. update_curr(cfs_rq);
  1454. place_entity(cfs_rq, se, 1);
  1455. /* 'curr' will be NULL if the child belongs to a different group */
  1456. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1457. curr && entity_before(curr, se)) {
  1458. /*
  1459. * Upon rescheduling, sched_class::put_prev_task() will place
  1460. * 'current' within the tree based on its new key value.
  1461. */
  1462. swap(curr->vruntime, se->vruntime);
  1463. resched_task(rq->curr);
  1464. }
  1465. enqueue_task_fair(rq, p, 0);
  1466. }
  1467. /*
  1468. * Priority of the task has changed. Check to see if we preempt
  1469. * the current task.
  1470. */
  1471. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1472. int oldprio, int running)
  1473. {
  1474. /*
  1475. * Reschedule if we are currently running on this runqueue and
  1476. * our priority decreased, or if we are not currently running on
  1477. * this runqueue and our priority is higher than the current's
  1478. */
  1479. if (running) {
  1480. if (p->prio > oldprio)
  1481. resched_task(rq->curr);
  1482. } else
  1483. check_preempt_curr(rq, p, 0);
  1484. }
  1485. /*
  1486. * We switched to the sched_fair class.
  1487. */
  1488. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1489. int running)
  1490. {
  1491. /*
  1492. * We were most likely switched from sched_rt, so
  1493. * kick off the schedule if running, otherwise just see
  1494. * if we can still preempt the current task.
  1495. */
  1496. if (running)
  1497. resched_task(rq->curr);
  1498. else
  1499. check_preempt_curr(rq, p, 0);
  1500. }
  1501. /* Account for a task changing its policy or group.
  1502. *
  1503. * This routine is mostly called to set cfs_rq->curr field when a task
  1504. * migrates between groups/classes.
  1505. */
  1506. static void set_curr_task_fair(struct rq *rq)
  1507. {
  1508. struct sched_entity *se = &rq->curr->se;
  1509. for_each_sched_entity(se)
  1510. set_next_entity(cfs_rq_of(se), se);
  1511. }
  1512. #ifdef CONFIG_FAIR_GROUP_SCHED
  1513. static void moved_group_fair(struct task_struct *p)
  1514. {
  1515. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1516. update_curr(cfs_rq);
  1517. place_entity(cfs_rq, &p->se, 1);
  1518. }
  1519. #endif
  1520. /*
  1521. * All the scheduling class methods:
  1522. */
  1523. static const struct sched_class fair_sched_class = {
  1524. .next = &idle_sched_class,
  1525. .enqueue_task = enqueue_task_fair,
  1526. .dequeue_task = dequeue_task_fair,
  1527. .yield_task = yield_task_fair,
  1528. .check_preempt_curr = check_preempt_wakeup,
  1529. .pick_next_task = pick_next_task_fair,
  1530. .put_prev_task = put_prev_task_fair,
  1531. #ifdef CONFIG_SMP
  1532. .select_task_rq = select_task_rq_fair,
  1533. .load_balance = load_balance_fair,
  1534. .move_one_task = move_one_task_fair,
  1535. #endif
  1536. .set_curr_task = set_curr_task_fair,
  1537. .task_tick = task_tick_fair,
  1538. .task_new = task_new_fair,
  1539. .prio_changed = prio_changed_fair,
  1540. .switched_to = switched_to_fair,
  1541. #ifdef CONFIG_FAIR_GROUP_SCHED
  1542. .moved_group = moved_group_fair,
  1543. #endif
  1544. };
  1545. #ifdef CONFIG_SCHED_DEBUG
  1546. static void print_cfs_stats(struct seq_file *m, int cpu)
  1547. {
  1548. struct cfs_rq *cfs_rq;
  1549. rcu_read_lock();
  1550. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1551. print_cfs_rq(m, cpu, cfs_rq);
  1552. rcu_read_unlock();
  1553. }
  1554. #endif