mmu.c 80 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "x86.h"
  21. #include "kvm_cache_regs.h"
  22. #include <linux/kvm_host.h>
  23. #include <linux/types.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/highmem.h>
  27. #include <linux/module.h>
  28. #include <linux/swap.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/compiler.h>
  31. #include <linux/srcu.h>
  32. #include <asm/page.h>
  33. #include <asm/cmpxchg.h>
  34. #include <asm/io.h>
  35. #include <asm/vmx.h>
  36. /*
  37. * When setting this variable to true it enables Two-Dimensional-Paging
  38. * where the hardware walks 2 page tables:
  39. * 1. the guest-virtual to guest-physical
  40. * 2. while doing 1. it walks guest-physical to host-physical
  41. * If the hardware supports that we don't need to do shadow paging.
  42. */
  43. bool tdp_enabled = false;
  44. #undef MMU_DEBUG
  45. #undef AUDIT
  46. #ifdef AUDIT
  47. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  48. #else
  49. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  50. #endif
  51. #ifdef MMU_DEBUG
  52. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  53. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  54. #else
  55. #define pgprintk(x...) do { } while (0)
  56. #define rmap_printk(x...) do { } while (0)
  57. #endif
  58. #if defined(MMU_DEBUG) || defined(AUDIT)
  59. static int dbg = 0;
  60. module_param(dbg, bool, 0644);
  61. #endif
  62. static int oos_shadow = 1;
  63. module_param(oos_shadow, bool, 0644);
  64. #ifndef MMU_DEBUG
  65. #define ASSERT(x) do { } while (0)
  66. #else
  67. #define ASSERT(x) \
  68. if (!(x)) { \
  69. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  70. __FILE__, __LINE__, #x); \
  71. }
  72. #endif
  73. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  74. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  75. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  76. #define PT64_LEVEL_BITS 9
  77. #define PT64_LEVEL_SHIFT(level) \
  78. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  79. #define PT64_LEVEL_MASK(level) \
  80. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  81. #define PT64_INDEX(address, level)\
  82. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  83. #define PT32_LEVEL_BITS 10
  84. #define PT32_LEVEL_SHIFT(level) \
  85. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  86. #define PT32_LEVEL_MASK(level) \
  87. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define PFERR_PRESENT_MASK (1U << 0)
  111. #define PFERR_WRITE_MASK (1U << 1)
  112. #define PFERR_USER_MASK (1U << 2)
  113. #define PFERR_RSVD_MASK (1U << 3)
  114. #define PFERR_FETCH_MASK (1U << 4)
  115. #define RMAP_EXT 4
  116. #define ACC_EXEC_MASK 1
  117. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  118. #define ACC_USER_MASK PT_USER_MASK
  119. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  120. #define CREATE_TRACE_POINTS
  121. #include "mmutrace.h"
  122. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  123. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  124. struct kvm_rmap_desc {
  125. u64 *sptes[RMAP_EXT];
  126. struct kvm_rmap_desc *more;
  127. };
  128. struct kvm_shadow_walk_iterator {
  129. u64 addr;
  130. hpa_t shadow_addr;
  131. int level;
  132. u64 *sptep;
  133. unsigned index;
  134. };
  135. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  136. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  137. shadow_walk_okay(&(_walker)); \
  138. shadow_walk_next(&(_walker)))
  139. struct kvm_unsync_walk {
  140. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  141. };
  142. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  143. static struct kmem_cache *pte_chain_cache;
  144. static struct kmem_cache *rmap_desc_cache;
  145. static struct kmem_cache *mmu_page_header_cache;
  146. static u64 __read_mostly shadow_trap_nonpresent_pte;
  147. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  148. static u64 __read_mostly shadow_base_present_pte;
  149. static u64 __read_mostly shadow_nx_mask;
  150. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  151. static u64 __read_mostly shadow_user_mask;
  152. static u64 __read_mostly shadow_accessed_mask;
  153. static u64 __read_mostly shadow_dirty_mask;
  154. static inline u64 rsvd_bits(int s, int e)
  155. {
  156. return ((1ULL << (e - s + 1)) - 1) << s;
  157. }
  158. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  159. {
  160. shadow_trap_nonpresent_pte = trap_pte;
  161. shadow_notrap_nonpresent_pte = notrap_pte;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  164. void kvm_mmu_set_base_ptes(u64 base_pte)
  165. {
  166. shadow_base_present_pte = base_pte;
  167. }
  168. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  169. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  170. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  171. {
  172. shadow_user_mask = user_mask;
  173. shadow_accessed_mask = accessed_mask;
  174. shadow_dirty_mask = dirty_mask;
  175. shadow_nx_mask = nx_mask;
  176. shadow_x_mask = x_mask;
  177. }
  178. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  179. static int is_write_protection(struct kvm_vcpu *vcpu)
  180. {
  181. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  182. }
  183. static int is_cpuid_PSE36(void)
  184. {
  185. return 1;
  186. }
  187. static int is_nx(struct kvm_vcpu *vcpu)
  188. {
  189. return vcpu->arch.efer & EFER_NX;
  190. }
  191. static int is_shadow_present_pte(u64 pte)
  192. {
  193. return pte != shadow_trap_nonpresent_pte
  194. && pte != shadow_notrap_nonpresent_pte;
  195. }
  196. static int is_large_pte(u64 pte)
  197. {
  198. return pte & PT_PAGE_SIZE_MASK;
  199. }
  200. static int is_writable_pte(unsigned long pte)
  201. {
  202. return pte & PT_WRITABLE_MASK;
  203. }
  204. static int is_dirty_gpte(unsigned long pte)
  205. {
  206. return pte & PT_DIRTY_MASK;
  207. }
  208. static int is_rmap_spte(u64 pte)
  209. {
  210. return is_shadow_present_pte(pte);
  211. }
  212. static int is_last_spte(u64 pte, int level)
  213. {
  214. if (level == PT_PAGE_TABLE_LEVEL)
  215. return 1;
  216. if (is_large_pte(pte))
  217. return 1;
  218. return 0;
  219. }
  220. static pfn_t spte_to_pfn(u64 pte)
  221. {
  222. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  223. }
  224. static gfn_t pse36_gfn_delta(u32 gpte)
  225. {
  226. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  227. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  228. }
  229. static void __set_spte(u64 *sptep, u64 spte)
  230. {
  231. #ifdef CONFIG_X86_64
  232. set_64bit((unsigned long *)sptep, spte);
  233. #else
  234. set_64bit((unsigned long long *)sptep, spte);
  235. #endif
  236. }
  237. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  238. struct kmem_cache *base_cache, int min)
  239. {
  240. void *obj;
  241. if (cache->nobjs >= min)
  242. return 0;
  243. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  244. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  245. if (!obj)
  246. return -ENOMEM;
  247. cache->objects[cache->nobjs++] = obj;
  248. }
  249. return 0;
  250. }
  251. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  252. {
  253. while (mc->nobjs)
  254. kfree(mc->objects[--mc->nobjs]);
  255. }
  256. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  257. int min)
  258. {
  259. struct page *page;
  260. if (cache->nobjs >= min)
  261. return 0;
  262. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  263. page = alloc_page(GFP_KERNEL);
  264. if (!page)
  265. return -ENOMEM;
  266. set_page_private(page, 0);
  267. cache->objects[cache->nobjs++] = page_address(page);
  268. }
  269. return 0;
  270. }
  271. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  272. {
  273. while (mc->nobjs)
  274. free_page((unsigned long)mc->objects[--mc->nobjs]);
  275. }
  276. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  277. {
  278. int r;
  279. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  280. pte_chain_cache, 4);
  281. if (r)
  282. goto out;
  283. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  284. rmap_desc_cache, 4);
  285. if (r)
  286. goto out;
  287. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  288. if (r)
  289. goto out;
  290. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  291. mmu_page_header_cache, 4);
  292. out:
  293. return r;
  294. }
  295. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  296. {
  297. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  298. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  299. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  300. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  301. }
  302. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  303. size_t size)
  304. {
  305. void *p;
  306. BUG_ON(!mc->nobjs);
  307. p = mc->objects[--mc->nobjs];
  308. return p;
  309. }
  310. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  311. {
  312. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  313. sizeof(struct kvm_pte_chain));
  314. }
  315. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  316. {
  317. kfree(pc);
  318. }
  319. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  320. {
  321. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  322. sizeof(struct kvm_rmap_desc));
  323. }
  324. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  325. {
  326. kfree(rd);
  327. }
  328. /*
  329. * Return the pointer to the largepage write count for a given
  330. * gfn, handling slots that are not large page aligned.
  331. */
  332. static int *slot_largepage_idx(gfn_t gfn,
  333. struct kvm_memory_slot *slot,
  334. int level)
  335. {
  336. unsigned long idx;
  337. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  338. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  339. return &slot->lpage_info[level - 2][idx].write_count;
  340. }
  341. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  342. {
  343. struct kvm_memory_slot *slot;
  344. int *write_count;
  345. int i;
  346. gfn = unalias_gfn(kvm, gfn);
  347. slot = gfn_to_memslot_unaliased(kvm, gfn);
  348. for (i = PT_DIRECTORY_LEVEL;
  349. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  350. write_count = slot_largepage_idx(gfn, slot, i);
  351. *write_count += 1;
  352. }
  353. }
  354. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  355. {
  356. struct kvm_memory_slot *slot;
  357. int *write_count;
  358. int i;
  359. gfn = unalias_gfn(kvm, gfn);
  360. for (i = PT_DIRECTORY_LEVEL;
  361. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  362. slot = gfn_to_memslot_unaliased(kvm, gfn);
  363. write_count = slot_largepage_idx(gfn, slot, i);
  364. *write_count -= 1;
  365. WARN_ON(*write_count < 0);
  366. }
  367. }
  368. static int has_wrprotected_page(struct kvm *kvm,
  369. gfn_t gfn,
  370. int level)
  371. {
  372. struct kvm_memory_slot *slot;
  373. int *largepage_idx;
  374. gfn = unalias_gfn(kvm, gfn);
  375. slot = gfn_to_memslot_unaliased(kvm, gfn);
  376. if (slot) {
  377. largepage_idx = slot_largepage_idx(gfn, slot, level);
  378. return *largepage_idx;
  379. }
  380. return 1;
  381. }
  382. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  383. {
  384. unsigned long page_size;
  385. int i, ret = 0;
  386. page_size = kvm_host_page_size(kvm, gfn);
  387. for (i = PT_PAGE_TABLE_LEVEL;
  388. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  389. if (page_size >= KVM_HPAGE_SIZE(i))
  390. ret = i;
  391. else
  392. break;
  393. }
  394. return ret;
  395. }
  396. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  397. {
  398. struct kvm_memory_slot *slot;
  399. int host_level, level, max_level;
  400. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  401. if (slot && slot->dirty_bitmap)
  402. return PT_PAGE_TABLE_LEVEL;
  403. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  404. if (host_level == PT_PAGE_TABLE_LEVEL)
  405. return host_level;
  406. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  407. kvm_x86_ops->get_lpage_level() : host_level;
  408. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  409. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  410. break;
  411. return level - 1;
  412. }
  413. /*
  414. * Take gfn and return the reverse mapping to it.
  415. * Note: gfn must be unaliased before this function get called
  416. */
  417. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  418. {
  419. struct kvm_memory_slot *slot;
  420. unsigned long idx;
  421. slot = gfn_to_memslot(kvm, gfn);
  422. if (likely(level == PT_PAGE_TABLE_LEVEL))
  423. return &slot->rmap[gfn - slot->base_gfn];
  424. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  425. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  426. return &slot->lpage_info[level - 2][idx].rmap_pde;
  427. }
  428. /*
  429. * Reverse mapping data structures:
  430. *
  431. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  432. * that points to page_address(page).
  433. *
  434. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  435. * containing more mappings.
  436. *
  437. * Returns the number of rmap entries before the spte was added or zero if
  438. * the spte was not added.
  439. *
  440. */
  441. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  442. {
  443. struct kvm_mmu_page *sp;
  444. struct kvm_rmap_desc *desc;
  445. unsigned long *rmapp;
  446. int i, count = 0;
  447. if (!is_rmap_spte(*spte))
  448. return count;
  449. gfn = unalias_gfn(vcpu->kvm, gfn);
  450. sp = page_header(__pa(spte));
  451. sp->gfns[spte - sp->spt] = gfn;
  452. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  453. if (!*rmapp) {
  454. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  455. *rmapp = (unsigned long)spte;
  456. } else if (!(*rmapp & 1)) {
  457. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  458. desc = mmu_alloc_rmap_desc(vcpu);
  459. desc->sptes[0] = (u64 *)*rmapp;
  460. desc->sptes[1] = spte;
  461. *rmapp = (unsigned long)desc | 1;
  462. } else {
  463. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  464. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  465. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  466. desc = desc->more;
  467. count += RMAP_EXT;
  468. }
  469. if (desc->sptes[RMAP_EXT-1]) {
  470. desc->more = mmu_alloc_rmap_desc(vcpu);
  471. desc = desc->more;
  472. }
  473. for (i = 0; desc->sptes[i]; ++i)
  474. ;
  475. desc->sptes[i] = spte;
  476. }
  477. return count;
  478. }
  479. static void rmap_desc_remove_entry(unsigned long *rmapp,
  480. struct kvm_rmap_desc *desc,
  481. int i,
  482. struct kvm_rmap_desc *prev_desc)
  483. {
  484. int j;
  485. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  486. ;
  487. desc->sptes[i] = desc->sptes[j];
  488. desc->sptes[j] = NULL;
  489. if (j != 0)
  490. return;
  491. if (!prev_desc && !desc->more)
  492. *rmapp = (unsigned long)desc->sptes[0];
  493. else
  494. if (prev_desc)
  495. prev_desc->more = desc->more;
  496. else
  497. *rmapp = (unsigned long)desc->more | 1;
  498. mmu_free_rmap_desc(desc);
  499. }
  500. static void rmap_remove(struct kvm *kvm, u64 *spte)
  501. {
  502. struct kvm_rmap_desc *desc;
  503. struct kvm_rmap_desc *prev_desc;
  504. struct kvm_mmu_page *sp;
  505. pfn_t pfn;
  506. unsigned long *rmapp;
  507. int i;
  508. if (!is_rmap_spte(*spte))
  509. return;
  510. sp = page_header(__pa(spte));
  511. pfn = spte_to_pfn(*spte);
  512. if (*spte & shadow_accessed_mask)
  513. kvm_set_pfn_accessed(pfn);
  514. if (is_writable_pte(*spte))
  515. kvm_set_pfn_dirty(pfn);
  516. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  517. if (!*rmapp) {
  518. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  519. BUG();
  520. } else if (!(*rmapp & 1)) {
  521. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  522. if ((u64 *)*rmapp != spte) {
  523. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  524. spte, *spte);
  525. BUG();
  526. }
  527. *rmapp = 0;
  528. } else {
  529. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  530. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  531. prev_desc = NULL;
  532. while (desc) {
  533. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  534. if (desc->sptes[i] == spte) {
  535. rmap_desc_remove_entry(rmapp,
  536. desc, i,
  537. prev_desc);
  538. return;
  539. }
  540. prev_desc = desc;
  541. desc = desc->more;
  542. }
  543. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  544. BUG();
  545. }
  546. }
  547. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  548. {
  549. struct kvm_rmap_desc *desc;
  550. struct kvm_rmap_desc *prev_desc;
  551. u64 *prev_spte;
  552. int i;
  553. if (!*rmapp)
  554. return NULL;
  555. else if (!(*rmapp & 1)) {
  556. if (!spte)
  557. return (u64 *)*rmapp;
  558. return NULL;
  559. }
  560. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  561. prev_desc = NULL;
  562. prev_spte = NULL;
  563. while (desc) {
  564. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  565. if (prev_spte == spte)
  566. return desc->sptes[i];
  567. prev_spte = desc->sptes[i];
  568. }
  569. desc = desc->more;
  570. }
  571. return NULL;
  572. }
  573. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  574. {
  575. unsigned long *rmapp;
  576. u64 *spte;
  577. int i, write_protected = 0;
  578. gfn = unalias_gfn(kvm, gfn);
  579. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  580. spte = rmap_next(kvm, rmapp, NULL);
  581. while (spte) {
  582. BUG_ON(!spte);
  583. BUG_ON(!(*spte & PT_PRESENT_MASK));
  584. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  585. if (is_writable_pte(*spte)) {
  586. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  587. write_protected = 1;
  588. }
  589. spte = rmap_next(kvm, rmapp, spte);
  590. }
  591. if (write_protected) {
  592. pfn_t pfn;
  593. spte = rmap_next(kvm, rmapp, NULL);
  594. pfn = spte_to_pfn(*spte);
  595. kvm_set_pfn_dirty(pfn);
  596. }
  597. /* check for huge page mappings */
  598. for (i = PT_DIRECTORY_LEVEL;
  599. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  600. rmapp = gfn_to_rmap(kvm, gfn, i);
  601. spte = rmap_next(kvm, rmapp, NULL);
  602. while (spte) {
  603. BUG_ON(!spte);
  604. BUG_ON(!(*spte & PT_PRESENT_MASK));
  605. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  606. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  607. if (is_writable_pte(*spte)) {
  608. rmap_remove(kvm, spte);
  609. --kvm->stat.lpages;
  610. __set_spte(spte, shadow_trap_nonpresent_pte);
  611. spte = NULL;
  612. write_protected = 1;
  613. }
  614. spte = rmap_next(kvm, rmapp, spte);
  615. }
  616. }
  617. return write_protected;
  618. }
  619. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  620. unsigned long data)
  621. {
  622. u64 *spte;
  623. int need_tlb_flush = 0;
  624. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  625. BUG_ON(!(*spte & PT_PRESENT_MASK));
  626. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  627. rmap_remove(kvm, spte);
  628. __set_spte(spte, shadow_trap_nonpresent_pte);
  629. need_tlb_flush = 1;
  630. }
  631. return need_tlb_flush;
  632. }
  633. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  634. unsigned long data)
  635. {
  636. int need_flush = 0;
  637. u64 *spte, new_spte;
  638. pte_t *ptep = (pte_t *)data;
  639. pfn_t new_pfn;
  640. WARN_ON(pte_huge(*ptep));
  641. new_pfn = pte_pfn(*ptep);
  642. spte = rmap_next(kvm, rmapp, NULL);
  643. while (spte) {
  644. BUG_ON(!is_shadow_present_pte(*spte));
  645. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  646. need_flush = 1;
  647. if (pte_write(*ptep)) {
  648. rmap_remove(kvm, spte);
  649. __set_spte(spte, shadow_trap_nonpresent_pte);
  650. spte = rmap_next(kvm, rmapp, NULL);
  651. } else {
  652. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  653. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  654. new_spte &= ~PT_WRITABLE_MASK;
  655. new_spte &= ~SPTE_HOST_WRITEABLE;
  656. if (is_writable_pte(*spte))
  657. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  658. __set_spte(spte, new_spte);
  659. spte = rmap_next(kvm, rmapp, spte);
  660. }
  661. }
  662. if (need_flush)
  663. kvm_flush_remote_tlbs(kvm);
  664. return 0;
  665. }
  666. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  667. unsigned long data,
  668. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  669. unsigned long data))
  670. {
  671. int i, j;
  672. int retval = 0;
  673. struct kvm_memslots *slots;
  674. slots = rcu_dereference(kvm->memslots);
  675. for (i = 0; i < slots->nmemslots; i++) {
  676. struct kvm_memory_slot *memslot = &slots->memslots[i];
  677. unsigned long start = memslot->userspace_addr;
  678. unsigned long end;
  679. end = start + (memslot->npages << PAGE_SHIFT);
  680. if (hva >= start && hva < end) {
  681. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  682. retval |= handler(kvm, &memslot->rmap[gfn_offset],
  683. data);
  684. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  685. int idx = gfn_offset;
  686. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  687. retval |= handler(kvm,
  688. &memslot->lpage_info[j][idx].rmap_pde,
  689. data);
  690. }
  691. }
  692. }
  693. return retval;
  694. }
  695. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  696. {
  697. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  698. }
  699. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  700. {
  701. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  702. }
  703. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  704. unsigned long data)
  705. {
  706. u64 *spte;
  707. int young = 0;
  708. /* always return old for EPT */
  709. if (!shadow_accessed_mask)
  710. return 0;
  711. spte = rmap_next(kvm, rmapp, NULL);
  712. while (spte) {
  713. int _young;
  714. u64 _spte = *spte;
  715. BUG_ON(!(_spte & PT_PRESENT_MASK));
  716. _young = _spte & PT_ACCESSED_MASK;
  717. if (_young) {
  718. young = 1;
  719. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  720. }
  721. spte = rmap_next(kvm, rmapp, spte);
  722. }
  723. return young;
  724. }
  725. #define RMAP_RECYCLE_THRESHOLD 1000
  726. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  727. {
  728. unsigned long *rmapp;
  729. struct kvm_mmu_page *sp;
  730. sp = page_header(__pa(spte));
  731. gfn = unalias_gfn(vcpu->kvm, gfn);
  732. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  733. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  734. kvm_flush_remote_tlbs(vcpu->kvm);
  735. }
  736. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  737. {
  738. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  739. }
  740. #ifdef MMU_DEBUG
  741. static int is_empty_shadow_page(u64 *spt)
  742. {
  743. u64 *pos;
  744. u64 *end;
  745. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  746. if (is_shadow_present_pte(*pos)) {
  747. printk(KERN_ERR "%s: %p %llx\n", __func__,
  748. pos, *pos);
  749. return 0;
  750. }
  751. return 1;
  752. }
  753. #endif
  754. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  755. {
  756. ASSERT(is_empty_shadow_page(sp->spt));
  757. list_del(&sp->link);
  758. __free_page(virt_to_page(sp->spt));
  759. __free_page(virt_to_page(sp->gfns));
  760. kfree(sp);
  761. ++kvm->arch.n_free_mmu_pages;
  762. }
  763. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  764. {
  765. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  766. }
  767. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  768. u64 *parent_pte)
  769. {
  770. struct kvm_mmu_page *sp;
  771. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  772. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  773. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  774. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  775. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  776. INIT_LIST_HEAD(&sp->oos_link);
  777. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  778. sp->multimapped = 0;
  779. sp->parent_pte = parent_pte;
  780. --vcpu->kvm->arch.n_free_mmu_pages;
  781. return sp;
  782. }
  783. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  784. struct kvm_mmu_page *sp, u64 *parent_pte)
  785. {
  786. struct kvm_pte_chain *pte_chain;
  787. struct hlist_node *node;
  788. int i;
  789. if (!parent_pte)
  790. return;
  791. if (!sp->multimapped) {
  792. u64 *old = sp->parent_pte;
  793. if (!old) {
  794. sp->parent_pte = parent_pte;
  795. return;
  796. }
  797. sp->multimapped = 1;
  798. pte_chain = mmu_alloc_pte_chain(vcpu);
  799. INIT_HLIST_HEAD(&sp->parent_ptes);
  800. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  801. pte_chain->parent_ptes[0] = old;
  802. }
  803. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  804. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  805. continue;
  806. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  807. if (!pte_chain->parent_ptes[i]) {
  808. pte_chain->parent_ptes[i] = parent_pte;
  809. return;
  810. }
  811. }
  812. pte_chain = mmu_alloc_pte_chain(vcpu);
  813. BUG_ON(!pte_chain);
  814. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  815. pte_chain->parent_ptes[0] = parent_pte;
  816. }
  817. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  818. u64 *parent_pte)
  819. {
  820. struct kvm_pte_chain *pte_chain;
  821. struct hlist_node *node;
  822. int i;
  823. if (!sp->multimapped) {
  824. BUG_ON(sp->parent_pte != parent_pte);
  825. sp->parent_pte = NULL;
  826. return;
  827. }
  828. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  829. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  830. if (!pte_chain->parent_ptes[i])
  831. break;
  832. if (pte_chain->parent_ptes[i] != parent_pte)
  833. continue;
  834. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  835. && pte_chain->parent_ptes[i + 1]) {
  836. pte_chain->parent_ptes[i]
  837. = pte_chain->parent_ptes[i + 1];
  838. ++i;
  839. }
  840. pte_chain->parent_ptes[i] = NULL;
  841. if (i == 0) {
  842. hlist_del(&pte_chain->link);
  843. mmu_free_pte_chain(pte_chain);
  844. if (hlist_empty(&sp->parent_ptes)) {
  845. sp->multimapped = 0;
  846. sp->parent_pte = NULL;
  847. }
  848. }
  849. return;
  850. }
  851. BUG();
  852. }
  853. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  854. mmu_parent_walk_fn fn)
  855. {
  856. struct kvm_pte_chain *pte_chain;
  857. struct hlist_node *node;
  858. struct kvm_mmu_page *parent_sp;
  859. int i;
  860. if (!sp->multimapped && sp->parent_pte) {
  861. parent_sp = page_header(__pa(sp->parent_pte));
  862. fn(vcpu, parent_sp);
  863. mmu_parent_walk(vcpu, parent_sp, fn);
  864. return;
  865. }
  866. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  867. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  868. if (!pte_chain->parent_ptes[i])
  869. break;
  870. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  871. fn(vcpu, parent_sp);
  872. mmu_parent_walk(vcpu, parent_sp, fn);
  873. }
  874. }
  875. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  876. {
  877. unsigned int index;
  878. struct kvm_mmu_page *sp = page_header(__pa(spte));
  879. index = spte - sp->spt;
  880. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  881. sp->unsync_children++;
  882. WARN_ON(!sp->unsync_children);
  883. }
  884. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  885. {
  886. struct kvm_pte_chain *pte_chain;
  887. struct hlist_node *node;
  888. int i;
  889. if (!sp->parent_pte)
  890. return;
  891. if (!sp->multimapped) {
  892. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  893. return;
  894. }
  895. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  896. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  897. if (!pte_chain->parent_ptes[i])
  898. break;
  899. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  900. }
  901. }
  902. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  903. {
  904. kvm_mmu_update_parents_unsync(sp);
  905. return 1;
  906. }
  907. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  908. struct kvm_mmu_page *sp)
  909. {
  910. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  911. kvm_mmu_update_parents_unsync(sp);
  912. }
  913. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  914. struct kvm_mmu_page *sp)
  915. {
  916. int i;
  917. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  918. sp->spt[i] = shadow_trap_nonpresent_pte;
  919. }
  920. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  921. struct kvm_mmu_page *sp)
  922. {
  923. return 1;
  924. }
  925. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  926. {
  927. }
  928. #define KVM_PAGE_ARRAY_NR 16
  929. struct kvm_mmu_pages {
  930. struct mmu_page_and_offset {
  931. struct kvm_mmu_page *sp;
  932. unsigned int idx;
  933. } page[KVM_PAGE_ARRAY_NR];
  934. unsigned int nr;
  935. };
  936. #define for_each_unsync_children(bitmap, idx) \
  937. for (idx = find_first_bit(bitmap, 512); \
  938. idx < 512; \
  939. idx = find_next_bit(bitmap, 512, idx+1))
  940. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  941. int idx)
  942. {
  943. int i;
  944. if (sp->unsync)
  945. for (i=0; i < pvec->nr; i++)
  946. if (pvec->page[i].sp == sp)
  947. return 0;
  948. pvec->page[pvec->nr].sp = sp;
  949. pvec->page[pvec->nr].idx = idx;
  950. pvec->nr++;
  951. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  952. }
  953. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  954. struct kvm_mmu_pages *pvec)
  955. {
  956. int i, ret, nr_unsync_leaf = 0;
  957. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  958. u64 ent = sp->spt[i];
  959. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  960. struct kvm_mmu_page *child;
  961. child = page_header(ent & PT64_BASE_ADDR_MASK);
  962. if (child->unsync_children) {
  963. if (mmu_pages_add(pvec, child, i))
  964. return -ENOSPC;
  965. ret = __mmu_unsync_walk(child, pvec);
  966. if (!ret)
  967. __clear_bit(i, sp->unsync_child_bitmap);
  968. else if (ret > 0)
  969. nr_unsync_leaf += ret;
  970. else
  971. return ret;
  972. }
  973. if (child->unsync) {
  974. nr_unsync_leaf++;
  975. if (mmu_pages_add(pvec, child, i))
  976. return -ENOSPC;
  977. }
  978. }
  979. }
  980. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  981. sp->unsync_children = 0;
  982. return nr_unsync_leaf;
  983. }
  984. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  985. struct kvm_mmu_pages *pvec)
  986. {
  987. if (!sp->unsync_children)
  988. return 0;
  989. mmu_pages_add(pvec, sp, 0);
  990. return __mmu_unsync_walk(sp, pvec);
  991. }
  992. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  993. {
  994. unsigned index;
  995. struct hlist_head *bucket;
  996. struct kvm_mmu_page *sp;
  997. struct hlist_node *node;
  998. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  999. index = kvm_page_table_hashfn(gfn);
  1000. bucket = &kvm->arch.mmu_page_hash[index];
  1001. hlist_for_each_entry(sp, node, bucket, hash_link)
  1002. if (sp->gfn == gfn && !sp->role.direct
  1003. && !sp->role.invalid) {
  1004. pgprintk("%s: found role %x\n",
  1005. __func__, sp->role.word);
  1006. return sp;
  1007. }
  1008. return NULL;
  1009. }
  1010. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1011. {
  1012. WARN_ON(!sp->unsync);
  1013. sp->unsync = 0;
  1014. --kvm->stat.mmu_unsync;
  1015. }
  1016. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  1017. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1018. {
  1019. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  1020. kvm_mmu_zap_page(vcpu->kvm, sp);
  1021. return 1;
  1022. }
  1023. trace_kvm_mmu_sync_page(sp);
  1024. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  1025. kvm_flush_remote_tlbs(vcpu->kvm);
  1026. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1027. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1028. kvm_mmu_zap_page(vcpu->kvm, sp);
  1029. return 1;
  1030. }
  1031. kvm_mmu_flush_tlb(vcpu);
  1032. return 0;
  1033. }
  1034. struct mmu_page_path {
  1035. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1036. unsigned int idx[PT64_ROOT_LEVEL-1];
  1037. };
  1038. #define for_each_sp(pvec, sp, parents, i) \
  1039. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1040. sp = pvec.page[i].sp; \
  1041. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1042. i = mmu_pages_next(&pvec, &parents, i))
  1043. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1044. struct mmu_page_path *parents,
  1045. int i)
  1046. {
  1047. int n;
  1048. for (n = i+1; n < pvec->nr; n++) {
  1049. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1050. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1051. parents->idx[0] = pvec->page[n].idx;
  1052. return n;
  1053. }
  1054. parents->parent[sp->role.level-2] = sp;
  1055. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1056. }
  1057. return n;
  1058. }
  1059. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1060. {
  1061. struct kvm_mmu_page *sp;
  1062. unsigned int level = 0;
  1063. do {
  1064. unsigned int idx = parents->idx[level];
  1065. sp = parents->parent[level];
  1066. if (!sp)
  1067. return;
  1068. --sp->unsync_children;
  1069. WARN_ON((int)sp->unsync_children < 0);
  1070. __clear_bit(idx, sp->unsync_child_bitmap);
  1071. level++;
  1072. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1073. }
  1074. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1075. struct mmu_page_path *parents,
  1076. struct kvm_mmu_pages *pvec)
  1077. {
  1078. parents->parent[parent->role.level-1] = NULL;
  1079. pvec->nr = 0;
  1080. }
  1081. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1082. struct kvm_mmu_page *parent)
  1083. {
  1084. int i;
  1085. struct kvm_mmu_page *sp;
  1086. struct mmu_page_path parents;
  1087. struct kvm_mmu_pages pages;
  1088. kvm_mmu_pages_init(parent, &parents, &pages);
  1089. while (mmu_unsync_walk(parent, &pages)) {
  1090. int protected = 0;
  1091. for_each_sp(pages, sp, parents, i)
  1092. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1093. if (protected)
  1094. kvm_flush_remote_tlbs(vcpu->kvm);
  1095. for_each_sp(pages, sp, parents, i) {
  1096. kvm_sync_page(vcpu, sp);
  1097. mmu_pages_clear_parents(&parents);
  1098. }
  1099. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1100. kvm_mmu_pages_init(parent, &parents, &pages);
  1101. }
  1102. }
  1103. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1104. gfn_t gfn,
  1105. gva_t gaddr,
  1106. unsigned level,
  1107. int direct,
  1108. unsigned access,
  1109. u64 *parent_pte)
  1110. {
  1111. union kvm_mmu_page_role role;
  1112. unsigned index;
  1113. unsigned quadrant;
  1114. struct hlist_head *bucket;
  1115. struct kvm_mmu_page *sp;
  1116. struct hlist_node *node, *tmp;
  1117. role = vcpu->arch.mmu.base_role;
  1118. role.level = level;
  1119. role.direct = direct;
  1120. role.access = access;
  1121. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1122. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1123. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1124. role.quadrant = quadrant;
  1125. }
  1126. index = kvm_page_table_hashfn(gfn);
  1127. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1128. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1129. if (sp->gfn == gfn) {
  1130. if (sp->unsync)
  1131. if (kvm_sync_page(vcpu, sp))
  1132. continue;
  1133. if (sp->role.word != role.word)
  1134. continue;
  1135. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1136. if (sp->unsync_children) {
  1137. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1138. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1139. }
  1140. trace_kvm_mmu_get_page(sp, false);
  1141. return sp;
  1142. }
  1143. ++vcpu->kvm->stat.mmu_cache_miss;
  1144. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1145. if (!sp)
  1146. return sp;
  1147. sp->gfn = gfn;
  1148. sp->role = role;
  1149. hlist_add_head(&sp->hash_link, bucket);
  1150. if (!direct) {
  1151. if (rmap_write_protect(vcpu->kvm, gfn))
  1152. kvm_flush_remote_tlbs(vcpu->kvm);
  1153. account_shadowed(vcpu->kvm, gfn);
  1154. }
  1155. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1156. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1157. else
  1158. nonpaging_prefetch_page(vcpu, sp);
  1159. trace_kvm_mmu_get_page(sp, true);
  1160. return sp;
  1161. }
  1162. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1163. struct kvm_vcpu *vcpu, u64 addr)
  1164. {
  1165. iterator->addr = addr;
  1166. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1167. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1168. if (iterator->level == PT32E_ROOT_LEVEL) {
  1169. iterator->shadow_addr
  1170. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1171. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1172. --iterator->level;
  1173. if (!iterator->shadow_addr)
  1174. iterator->level = 0;
  1175. }
  1176. }
  1177. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1178. {
  1179. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1180. return false;
  1181. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1182. if (is_large_pte(*iterator->sptep))
  1183. return false;
  1184. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1185. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1186. return true;
  1187. }
  1188. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1189. {
  1190. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1191. --iterator->level;
  1192. }
  1193. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1194. struct kvm_mmu_page *sp)
  1195. {
  1196. unsigned i;
  1197. u64 *pt;
  1198. u64 ent;
  1199. pt = sp->spt;
  1200. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1201. ent = pt[i];
  1202. if (is_shadow_present_pte(ent)) {
  1203. if (!is_last_spte(ent, sp->role.level)) {
  1204. ent &= PT64_BASE_ADDR_MASK;
  1205. mmu_page_remove_parent_pte(page_header(ent),
  1206. &pt[i]);
  1207. } else {
  1208. if (is_large_pte(ent))
  1209. --kvm->stat.lpages;
  1210. rmap_remove(kvm, &pt[i]);
  1211. }
  1212. }
  1213. pt[i] = shadow_trap_nonpresent_pte;
  1214. }
  1215. }
  1216. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1217. {
  1218. mmu_page_remove_parent_pte(sp, parent_pte);
  1219. }
  1220. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1221. {
  1222. int i;
  1223. struct kvm_vcpu *vcpu;
  1224. kvm_for_each_vcpu(i, vcpu, kvm)
  1225. vcpu->arch.last_pte_updated = NULL;
  1226. }
  1227. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1228. {
  1229. u64 *parent_pte;
  1230. while (sp->multimapped || sp->parent_pte) {
  1231. if (!sp->multimapped)
  1232. parent_pte = sp->parent_pte;
  1233. else {
  1234. struct kvm_pte_chain *chain;
  1235. chain = container_of(sp->parent_ptes.first,
  1236. struct kvm_pte_chain, link);
  1237. parent_pte = chain->parent_ptes[0];
  1238. }
  1239. BUG_ON(!parent_pte);
  1240. kvm_mmu_put_page(sp, parent_pte);
  1241. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1242. }
  1243. }
  1244. static int mmu_zap_unsync_children(struct kvm *kvm,
  1245. struct kvm_mmu_page *parent)
  1246. {
  1247. int i, zapped = 0;
  1248. struct mmu_page_path parents;
  1249. struct kvm_mmu_pages pages;
  1250. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1251. return 0;
  1252. kvm_mmu_pages_init(parent, &parents, &pages);
  1253. while (mmu_unsync_walk(parent, &pages)) {
  1254. struct kvm_mmu_page *sp;
  1255. for_each_sp(pages, sp, parents, i) {
  1256. kvm_mmu_zap_page(kvm, sp);
  1257. mmu_pages_clear_parents(&parents);
  1258. }
  1259. zapped += pages.nr;
  1260. kvm_mmu_pages_init(parent, &parents, &pages);
  1261. }
  1262. return zapped;
  1263. }
  1264. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1265. {
  1266. int ret;
  1267. trace_kvm_mmu_zap_page(sp);
  1268. ++kvm->stat.mmu_shadow_zapped;
  1269. ret = mmu_zap_unsync_children(kvm, sp);
  1270. kvm_mmu_page_unlink_children(kvm, sp);
  1271. kvm_mmu_unlink_parents(kvm, sp);
  1272. kvm_flush_remote_tlbs(kvm);
  1273. if (!sp->role.invalid && !sp->role.direct)
  1274. unaccount_shadowed(kvm, sp->gfn);
  1275. if (sp->unsync)
  1276. kvm_unlink_unsync_page(kvm, sp);
  1277. if (!sp->root_count) {
  1278. hlist_del(&sp->hash_link);
  1279. kvm_mmu_free_page(kvm, sp);
  1280. } else {
  1281. sp->role.invalid = 1;
  1282. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1283. kvm_reload_remote_mmus(kvm);
  1284. }
  1285. kvm_mmu_reset_last_pte_updated(kvm);
  1286. return ret;
  1287. }
  1288. /*
  1289. * Changing the number of mmu pages allocated to the vm
  1290. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1291. */
  1292. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1293. {
  1294. int used_pages;
  1295. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1296. used_pages = max(0, used_pages);
  1297. /*
  1298. * If we set the number of mmu pages to be smaller be than the
  1299. * number of actived pages , we must to free some mmu pages before we
  1300. * change the value
  1301. */
  1302. if (used_pages > kvm_nr_mmu_pages) {
  1303. while (used_pages > kvm_nr_mmu_pages) {
  1304. struct kvm_mmu_page *page;
  1305. page = container_of(kvm->arch.active_mmu_pages.prev,
  1306. struct kvm_mmu_page, link);
  1307. kvm_mmu_zap_page(kvm, page);
  1308. used_pages--;
  1309. }
  1310. kvm->arch.n_free_mmu_pages = 0;
  1311. }
  1312. else
  1313. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1314. - kvm->arch.n_alloc_mmu_pages;
  1315. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1316. }
  1317. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1318. {
  1319. unsigned index;
  1320. struct hlist_head *bucket;
  1321. struct kvm_mmu_page *sp;
  1322. struct hlist_node *node, *n;
  1323. int r;
  1324. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1325. r = 0;
  1326. index = kvm_page_table_hashfn(gfn);
  1327. bucket = &kvm->arch.mmu_page_hash[index];
  1328. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1329. if (sp->gfn == gfn && !sp->role.direct) {
  1330. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1331. sp->role.word);
  1332. r = 1;
  1333. if (kvm_mmu_zap_page(kvm, sp))
  1334. n = bucket->first;
  1335. }
  1336. return r;
  1337. }
  1338. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1339. {
  1340. unsigned index;
  1341. struct hlist_head *bucket;
  1342. struct kvm_mmu_page *sp;
  1343. struct hlist_node *node, *nn;
  1344. index = kvm_page_table_hashfn(gfn);
  1345. bucket = &kvm->arch.mmu_page_hash[index];
  1346. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1347. if (sp->gfn == gfn && !sp->role.direct
  1348. && !sp->role.invalid) {
  1349. pgprintk("%s: zap %lx %x\n",
  1350. __func__, gfn, sp->role.word);
  1351. kvm_mmu_zap_page(kvm, sp);
  1352. }
  1353. }
  1354. }
  1355. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1356. {
  1357. int slot = memslot_id(kvm, gfn);
  1358. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1359. __set_bit(slot, sp->slot_bitmap);
  1360. }
  1361. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1362. {
  1363. int i;
  1364. u64 *pt = sp->spt;
  1365. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1366. return;
  1367. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1368. if (pt[i] == shadow_notrap_nonpresent_pte)
  1369. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1370. }
  1371. }
  1372. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1373. {
  1374. struct page *page;
  1375. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1376. if (gpa == UNMAPPED_GVA)
  1377. return NULL;
  1378. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1379. return page;
  1380. }
  1381. /*
  1382. * The function is based on mtrr_type_lookup() in
  1383. * arch/x86/kernel/cpu/mtrr/generic.c
  1384. */
  1385. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1386. u64 start, u64 end)
  1387. {
  1388. int i;
  1389. u64 base, mask;
  1390. u8 prev_match, curr_match;
  1391. int num_var_ranges = KVM_NR_VAR_MTRR;
  1392. if (!mtrr_state->enabled)
  1393. return 0xFF;
  1394. /* Make end inclusive end, instead of exclusive */
  1395. end--;
  1396. /* Look in fixed ranges. Just return the type as per start */
  1397. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1398. int idx;
  1399. if (start < 0x80000) {
  1400. idx = 0;
  1401. idx += (start >> 16);
  1402. return mtrr_state->fixed_ranges[idx];
  1403. } else if (start < 0xC0000) {
  1404. idx = 1 * 8;
  1405. idx += ((start - 0x80000) >> 14);
  1406. return mtrr_state->fixed_ranges[idx];
  1407. } else if (start < 0x1000000) {
  1408. idx = 3 * 8;
  1409. idx += ((start - 0xC0000) >> 12);
  1410. return mtrr_state->fixed_ranges[idx];
  1411. }
  1412. }
  1413. /*
  1414. * Look in variable ranges
  1415. * Look of multiple ranges matching this address and pick type
  1416. * as per MTRR precedence
  1417. */
  1418. if (!(mtrr_state->enabled & 2))
  1419. return mtrr_state->def_type;
  1420. prev_match = 0xFF;
  1421. for (i = 0; i < num_var_ranges; ++i) {
  1422. unsigned short start_state, end_state;
  1423. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1424. continue;
  1425. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1426. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1427. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1428. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1429. start_state = ((start & mask) == (base & mask));
  1430. end_state = ((end & mask) == (base & mask));
  1431. if (start_state != end_state)
  1432. return 0xFE;
  1433. if ((start & mask) != (base & mask))
  1434. continue;
  1435. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1436. if (prev_match == 0xFF) {
  1437. prev_match = curr_match;
  1438. continue;
  1439. }
  1440. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1441. curr_match == MTRR_TYPE_UNCACHABLE)
  1442. return MTRR_TYPE_UNCACHABLE;
  1443. if ((prev_match == MTRR_TYPE_WRBACK &&
  1444. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1445. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1446. curr_match == MTRR_TYPE_WRBACK)) {
  1447. prev_match = MTRR_TYPE_WRTHROUGH;
  1448. curr_match = MTRR_TYPE_WRTHROUGH;
  1449. }
  1450. if (prev_match != curr_match)
  1451. return MTRR_TYPE_UNCACHABLE;
  1452. }
  1453. if (prev_match != 0xFF)
  1454. return prev_match;
  1455. return mtrr_state->def_type;
  1456. }
  1457. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1458. {
  1459. u8 mtrr;
  1460. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1461. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1462. if (mtrr == 0xfe || mtrr == 0xff)
  1463. mtrr = MTRR_TYPE_WRBACK;
  1464. return mtrr;
  1465. }
  1466. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1467. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1468. {
  1469. unsigned index;
  1470. struct hlist_head *bucket;
  1471. struct kvm_mmu_page *s;
  1472. struct hlist_node *node, *n;
  1473. trace_kvm_mmu_unsync_page(sp);
  1474. index = kvm_page_table_hashfn(sp->gfn);
  1475. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1476. /* don't unsync if pagetable is shadowed with multiple roles */
  1477. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1478. if (s->gfn != sp->gfn || s->role.direct)
  1479. continue;
  1480. if (s->role.word != sp->role.word)
  1481. return 1;
  1482. }
  1483. ++vcpu->kvm->stat.mmu_unsync;
  1484. sp->unsync = 1;
  1485. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1486. mmu_convert_notrap(sp);
  1487. return 0;
  1488. }
  1489. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1490. bool can_unsync)
  1491. {
  1492. struct kvm_mmu_page *shadow;
  1493. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1494. if (shadow) {
  1495. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1496. return 1;
  1497. if (shadow->unsync)
  1498. return 0;
  1499. if (can_unsync && oos_shadow)
  1500. return kvm_unsync_page(vcpu, shadow);
  1501. return 1;
  1502. }
  1503. return 0;
  1504. }
  1505. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1506. unsigned pte_access, int user_fault,
  1507. int write_fault, int dirty, int level,
  1508. gfn_t gfn, pfn_t pfn, bool speculative,
  1509. bool can_unsync, bool reset_host_protection)
  1510. {
  1511. u64 spte;
  1512. int ret = 0;
  1513. /*
  1514. * We don't set the accessed bit, since we sometimes want to see
  1515. * whether the guest actually used the pte (in order to detect
  1516. * demand paging).
  1517. */
  1518. spte = shadow_base_present_pte | shadow_dirty_mask;
  1519. if (!speculative)
  1520. spte |= shadow_accessed_mask;
  1521. if (!dirty)
  1522. pte_access &= ~ACC_WRITE_MASK;
  1523. if (pte_access & ACC_EXEC_MASK)
  1524. spte |= shadow_x_mask;
  1525. else
  1526. spte |= shadow_nx_mask;
  1527. if (pte_access & ACC_USER_MASK)
  1528. spte |= shadow_user_mask;
  1529. if (level > PT_PAGE_TABLE_LEVEL)
  1530. spte |= PT_PAGE_SIZE_MASK;
  1531. if (tdp_enabled)
  1532. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1533. kvm_is_mmio_pfn(pfn));
  1534. if (reset_host_protection)
  1535. spte |= SPTE_HOST_WRITEABLE;
  1536. spte |= (u64)pfn << PAGE_SHIFT;
  1537. if ((pte_access & ACC_WRITE_MASK)
  1538. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1539. if (level > PT_PAGE_TABLE_LEVEL &&
  1540. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1541. ret = 1;
  1542. spte = shadow_trap_nonpresent_pte;
  1543. goto set_pte;
  1544. }
  1545. spte |= PT_WRITABLE_MASK;
  1546. /*
  1547. * Optimization: for pte sync, if spte was writable the hash
  1548. * lookup is unnecessary (and expensive). Write protection
  1549. * is responsibility of mmu_get_page / kvm_sync_page.
  1550. * Same reasoning can be applied to dirty page accounting.
  1551. */
  1552. if (!can_unsync && is_writable_pte(*sptep))
  1553. goto set_pte;
  1554. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1555. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1556. __func__, gfn);
  1557. ret = 1;
  1558. pte_access &= ~ACC_WRITE_MASK;
  1559. if (is_writable_pte(spte))
  1560. spte &= ~PT_WRITABLE_MASK;
  1561. }
  1562. }
  1563. if (pte_access & ACC_WRITE_MASK)
  1564. mark_page_dirty(vcpu->kvm, gfn);
  1565. set_pte:
  1566. __set_spte(sptep, spte);
  1567. return ret;
  1568. }
  1569. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1570. unsigned pt_access, unsigned pte_access,
  1571. int user_fault, int write_fault, int dirty,
  1572. int *ptwrite, int level, gfn_t gfn,
  1573. pfn_t pfn, bool speculative,
  1574. bool reset_host_protection)
  1575. {
  1576. int was_rmapped = 0;
  1577. int was_writable = is_writable_pte(*sptep);
  1578. int rmap_count;
  1579. pgprintk("%s: spte %llx access %x write_fault %d"
  1580. " user_fault %d gfn %lx\n",
  1581. __func__, *sptep, pt_access,
  1582. write_fault, user_fault, gfn);
  1583. if (is_rmap_spte(*sptep)) {
  1584. /*
  1585. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1586. * the parent of the now unreachable PTE.
  1587. */
  1588. if (level > PT_PAGE_TABLE_LEVEL &&
  1589. !is_large_pte(*sptep)) {
  1590. struct kvm_mmu_page *child;
  1591. u64 pte = *sptep;
  1592. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1593. mmu_page_remove_parent_pte(child, sptep);
  1594. } else if (pfn != spte_to_pfn(*sptep)) {
  1595. pgprintk("hfn old %lx new %lx\n",
  1596. spte_to_pfn(*sptep), pfn);
  1597. rmap_remove(vcpu->kvm, sptep);
  1598. } else
  1599. was_rmapped = 1;
  1600. }
  1601. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1602. dirty, level, gfn, pfn, speculative, true,
  1603. reset_host_protection)) {
  1604. if (write_fault)
  1605. *ptwrite = 1;
  1606. kvm_x86_ops->tlb_flush(vcpu);
  1607. }
  1608. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1609. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1610. is_large_pte(*sptep)? "2MB" : "4kB",
  1611. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1612. *sptep, sptep);
  1613. if (!was_rmapped && is_large_pte(*sptep))
  1614. ++vcpu->kvm->stat.lpages;
  1615. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1616. if (!was_rmapped) {
  1617. rmap_count = rmap_add(vcpu, sptep, gfn);
  1618. kvm_release_pfn_clean(pfn);
  1619. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1620. rmap_recycle(vcpu, sptep, gfn);
  1621. } else {
  1622. if (was_writable)
  1623. kvm_release_pfn_dirty(pfn);
  1624. else
  1625. kvm_release_pfn_clean(pfn);
  1626. }
  1627. if (speculative) {
  1628. vcpu->arch.last_pte_updated = sptep;
  1629. vcpu->arch.last_pte_gfn = gfn;
  1630. }
  1631. }
  1632. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1633. {
  1634. }
  1635. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1636. int level, gfn_t gfn, pfn_t pfn)
  1637. {
  1638. struct kvm_shadow_walk_iterator iterator;
  1639. struct kvm_mmu_page *sp;
  1640. int pt_write = 0;
  1641. gfn_t pseudo_gfn;
  1642. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1643. if (iterator.level == level) {
  1644. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1645. 0, write, 1, &pt_write,
  1646. level, gfn, pfn, false, true);
  1647. ++vcpu->stat.pf_fixed;
  1648. break;
  1649. }
  1650. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1651. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1652. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1653. iterator.level - 1,
  1654. 1, ACC_ALL, iterator.sptep);
  1655. if (!sp) {
  1656. pgprintk("nonpaging_map: ENOMEM\n");
  1657. kvm_release_pfn_clean(pfn);
  1658. return -ENOMEM;
  1659. }
  1660. __set_spte(iterator.sptep,
  1661. __pa(sp->spt)
  1662. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1663. | shadow_user_mask | shadow_x_mask);
  1664. }
  1665. }
  1666. return pt_write;
  1667. }
  1668. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1669. {
  1670. int r;
  1671. int level;
  1672. pfn_t pfn;
  1673. unsigned long mmu_seq;
  1674. level = mapping_level(vcpu, gfn);
  1675. /*
  1676. * This path builds a PAE pagetable - so we can map 2mb pages at
  1677. * maximum. Therefore check if the level is larger than that.
  1678. */
  1679. if (level > PT_DIRECTORY_LEVEL)
  1680. level = PT_DIRECTORY_LEVEL;
  1681. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1682. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1683. smp_rmb();
  1684. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1685. /* mmio */
  1686. if (is_error_pfn(pfn)) {
  1687. kvm_release_pfn_clean(pfn);
  1688. return 1;
  1689. }
  1690. spin_lock(&vcpu->kvm->mmu_lock);
  1691. if (mmu_notifier_retry(vcpu, mmu_seq))
  1692. goto out_unlock;
  1693. kvm_mmu_free_some_pages(vcpu);
  1694. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1695. spin_unlock(&vcpu->kvm->mmu_lock);
  1696. return r;
  1697. out_unlock:
  1698. spin_unlock(&vcpu->kvm->mmu_lock);
  1699. kvm_release_pfn_clean(pfn);
  1700. return 0;
  1701. }
  1702. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1703. {
  1704. int i;
  1705. struct kvm_mmu_page *sp;
  1706. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1707. return;
  1708. spin_lock(&vcpu->kvm->mmu_lock);
  1709. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1710. hpa_t root = vcpu->arch.mmu.root_hpa;
  1711. sp = page_header(root);
  1712. --sp->root_count;
  1713. if (!sp->root_count && sp->role.invalid)
  1714. kvm_mmu_zap_page(vcpu->kvm, sp);
  1715. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1716. spin_unlock(&vcpu->kvm->mmu_lock);
  1717. return;
  1718. }
  1719. for (i = 0; i < 4; ++i) {
  1720. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1721. if (root) {
  1722. root &= PT64_BASE_ADDR_MASK;
  1723. sp = page_header(root);
  1724. --sp->root_count;
  1725. if (!sp->root_count && sp->role.invalid)
  1726. kvm_mmu_zap_page(vcpu->kvm, sp);
  1727. }
  1728. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1729. }
  1730. spin_unlock(&vcpu->kvm->mmu_lock);
  1731. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1732. }
  1733. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1734. {
  1735. int ret = 0;
  1736. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1737. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1738. ret = 1;
  1739. }
  1740. return ret;
  1741. }
  1742. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1743. {
  1744. int i;
  1745. gfn_t root_gfn;
  1746. struct kvm_mmu_page *sp;
  1747. int direct = 0;
  1748. u64 pdptr;
  1749. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1750. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1751. hpa_t root = vcpu->arch.mmu.root_hpa;
  1752. ASSERT(!VALID_PAGE(root));
  1753. if (tdp_enabled)
  1754. direct = 1;
  1755. if (mmu_check_root(vcpu, root_gfn))
  1756. return 1;
  1757. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1758. PT64_ROOT_LEVEL, direct,
  1759. ACC_ALL, NULL);
  1760. root = __pa(sp->spt);
  1761. ++sp->root_count;
  1762. vcpu->arch.mmu.root_hpa = root;
  1763. return 0;
  1764. }
  1765. direct = !is_paging(vcpu);
  1766. if (tdp_enabled)
  1767. direct = 1;
  1768. for (i = 0; i < 4; ++i) {
  1769. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1770. ASSERT(!VALID_PAGE(root));
  1771. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1772. pdptr = kvm_pdptr_read(vcpu, i);
  1773. if (!is_present_gpte(pdptr)) {
  1774. vcpu->arch.mmu.pae_root[i] = 0;
  1775. continue;
  1776. }
  1777. root_gfn = pdptr >> PAGE_SHIFT;
  1778. } else if (vcpu->arch.mmu.root_level == 0)
  1779. root_gfn = 0;
  1780. if (mmu_check_root(vcpu, root_gfn))
  1781. return 1;
  1782. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1783. PT32_ROOT_LEVEL, direct,
  1784. ACC_ALL, NULL);
  1785. root = __pa(sp->spt);
  1786. ++sp->root_count;
  1787. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1788. }
  1789. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1790. return 0;
  1791. }
  1792. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1793. {
  1794. int i;
  1795. struct kvm_mmu_page *sp;
  1796. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1797. return;
  1798. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1799. hpa_t root = vcpu->arch.mmu.root_hpa;
  1800. sp = page_header(root);
  1801. mmu_sync_children(vcpu, sp);
  1802. return;
  1803. }
  1804. for (i = 0; i < 4; ++i) {
  1805. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1806. if (root && VALID_PAGE(root)) {
  1807. root &= PT64_BASE_ADDR_MASK;
  1808. sp = page_header(root);
  1809. mmu_sync_children(vcpu, sp);
  1810. }
  1811. }
  1812. }
  1813. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1814. {
  1815. spin_lock(&vcpu->kvm->mmu_lock);
  1816. mmu_sync_roots(vcpu);
  1817. spin_unlock(&vcpu->kvm->mmu_lock);
  1818. }
  1819. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1820. {
  1821. return vaddr;
  1822. }
  1823. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1824. u32 error_code)
  1825. {
  1826. gfn_t gfn;
  1827. int r;
  1828. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1829. r = mmu_topup_memory_caches(vcpu);
  1830. if (r)
  1831. return r;
  1832. ASSERT(vcpu);
  1833. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1834. gfn = gva >> PAGE_SHIFT;
  1835. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1836. error_code & PFERR_WRITE_MASK, gfn);
  1837. }
  1838. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1839. u32 error_code)
  1840. {
  1841. pfn_t pfn;
  1842. int r;
  1843. int level;
  1844. gfn_t gfn = gpa >> PAGE_SHIFT;
  1845. unsigned long mmu_seq;
  1846. ASSERT(vcpu);
  1847. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1848. r = mmu_topup_memory_caches(vcpu);
  1849. if (r)
  1850. return r;
  1851. level = mapping_level(vcpu, gfn);
  1852. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1853. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1854. smp_rmb();
  1855. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1856. if (is_error_pfn(pfn)) {
  1857. kvm_release_pfn_clean(pfn);
  1858. return 1;
  1859. }
  1860. spin_lock(&vcpu->kvm->mmu_lock);
  1861. if (mmu_notifier_retry(vcpu, mmu_seq))
  1862. goto out_unlock;
  1863. kvm_mmu_free_some_pages(vcpu);
  1864. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1865. level, gfn, pfn);
  1866. spin_unlock(&vcpu->kvm->mmu_lock);
  1867. return r;
  1868. out_unlock:
  1869. spin_unlock(&vcpu->kvm->mmu_lock);
  1870. kvm_release_pfn_clean(pfn);
  1871. return 0;
  1872. }
  1873. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1874. {
  1875. mmu_free_roots(vcpu);
  1876. }
  1877. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1878. {
  1879. struct kvm_mmu *context = &vcpu->arch.mmu;
  1880. context->new_cr3 = nonpaging_new_cr3;
  1881. context->page_fault = nonpaging_page_fault;
  1882. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1883. context->free = nonpaging_free;
  1884. context->prefetch_page = nonpaging_prefetch_page;
  1885. context->sync_page = nonpaging_sync_page;
  1886. context->invlpg = nonpaging_invlpg;
  1887. context->root_level = 0;
  1888. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1889. context->root_hpa = INVALID_PAGE;
  1890. return 0;
  1891. }
  1892. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1893. {
  1894. ++vcpu->stat.tlb_flush;
  1895. kvm_x86_ops->tlb_flush(vcpu);
  1896. }
  1897. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1898. {
  1899. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1900. mmu_free_roots(vcpu);
  1901. }
  1902. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1903. u64 addr,
  1904. u32 err_code)
  1905. {
  1906. kvm_inject_page_fault(vcpu, addr, err_code);
  1907. }
  1908. static void paging_free(struct kvm_vcpu *vcpu)
  1909. {
  1910. nonpaging_free(vcpu);
  1911. }
  1912. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1913. {
  1914. int bit7;
  1915. bit7 = (gpte >> 7) & 1;
  1916. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1917. }
  1918. #define PTTYPE 64
  1919. #include "paging_tmpl.h"
  1920. #undef PTTYPE
  1921. #define PTTYPE 32
  1922. #include "paging_tmpl.h"
  1923. #undef PTTYPE
  1924. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1925. {
  1926. struct kvm_mmu *context = &vcpu->arch.mmu;
  1927. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1928. u64 exb_bit_rsvd = 0;
  1929. if (!is_nx(vcpu))
  1930. exb_bit_rsvd = rsvd_bits(63, 63);
  1931. switch (level) {
  1932. case PT32_ROOT_LEVEL:
  1933. /* no rsvd bits for 2 level 4K page table entries */
  1934. context->rsvd_bits_mask[0][1] = 0;
  1935. context->rsvd_bits_mask[0][0] = 0;
  1936. if (is_cpuid_PSE36())
  1937. /* 36bits PSE 4MB page */
  1938. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1939. else
  1940. /* 32 bits PSE 4MB page */
  1941. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1942. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1943. break;
  1944. case PT32E_ROOT_LEVEL:
  1945. context->rsvd_bits_mask[0][2] =
  1946. rsvd_bits(maxphyaddr, 63) |
  1947. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1948. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1949. rsvd_bits(maxphyaddr, 62); /* PDE */
  1950. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1951. rsvd_bits(maxphyaddr, 62); /* PTE */
  1952. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1953. rsvd_bits(maxphyaddr, 62) |
  1954. rsvd_bits(13, 20); /* large page */
  1955. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1956. break;
  1957. case PT64_ROOT_LEVEL:
  1958. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1959. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1960. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1961. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1962. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1963. rsvd_bits(maxphyaddr, 51);
  1964. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1965. rsvd_bits(maxphyaddr, 51);
  1966. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  1967. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  1968. rsvd_bits(maxphyaddr, 51) |
  1969. rsvd_bits(13, 29);
  1970. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1971. rsvd_bits(maxphyaddr, 51) |
  1972. rsvd_bits(13, 20); /* large page */
  1973. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1974. break;
  1975. }
  1976. }
  1977. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1978. {
  1979. struct kvm_mmu *context = &vcpu->arch.mmu;
  1980. ASSERT(is_pae(vcpu));
  1981. context->new_cr3 = paging_new_cr3;
  1982. context->page_fault = paging64_page_fault;
  1983. context->gva_to_gpa = paging64_gva_to_gpa;
  1984. context->prefetch_page = paging64_prefetch_page;
  1985. context->sync_page = paging64_sync_page;
  1986. context->invlpg = paging64_invlpg;
  1987. context->free = paging_free;
  1988. context->root_level = level;
  1989. context->shadow_root_level = level;
  1990. context->root_hpa = INVALID_PAGE;
  1991. return 0;
  1992. }
  1993. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1994. {
  1995. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  1996. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1997. }
  1998. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1999. {
  2000. struct kvm_mmu *context = &vcpu->arch.mmu;
  2001. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2002. context->new_cr3 = paging_new_cr3;
  2003. context->page_fault = paging32_page_fault;
  2004. context->gva_to_gpa = paging32_gva_to_gpa;
  2005. context->free = paging_free;
  2006. context->prefetch_page = paging32_prefetch_page;
  2007. context->sync_page = paging32_sync_page;
  2008. context->invlpg = paging32_invlpg;
  2009. context->root_level = PT32_ROOT_LEVEL;
  2010. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2011. context->root_hpa = INVALID_PAGE;
  2012. return 0;
  2013. }
  2014. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2015. {
  2016. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2017. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2018. }
  2019. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2020. {
  2021. struct kvm_mmu *context = &vcpu->arch.mmu;
  2022. context->new_cr3 = nonpaging_new_cr3;
  2023. context->page_fault = tdp_page_fault;
  2024. context->free = nonpaging_free;
  2025. context->prefetch_page = nonpaging_prefetch_page;
  2026. context->sync_page = nonpaging_sync_page;
  2027. context->invlpg = nonpaging_invlpg;
  2028. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2029. context->root_hpa = INVALID_PAGE;
  2030. if (!is_paging(vcpu)) {
  2031. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2032. context->root_level = 0;
  2033. } else if (is_long_mode(vcpu)) {
  2034. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2035. context->gva_to_gpa = paging64_gva_to_gpa;
  2036. context->root_level = PT64_ROOT_LEVEL;
  2037. } else if (is_pae(vcpu)) {
  2038. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2039. context->gva_to_gpa = paging64_gva_to_gpa;
  2040. context->root_level = PT32E_ROOT_LEVEL;
  2041. } else {
  2042. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2043. context->gva_to_gpa = paging32_gva_to_gpa;
  2044. context->root_level = PT32_ROOT_LEVEL;
  2045. }
  2046. return 0;
  2047. }
  2048. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2049. {
  2050. int r;
  2051. ASSERT(vcpu);
  2052. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2053. if (!is_paging(vcpu))
  2054. r = nonpaging_init_context(vcpu);
  2055. else if (is_long_mode(vcpu))
  2056. r = paging64_init_context(vcpu);
  2057. else if (is_pae(vcpu))
  2058. r = paging32E_init_context(vcpu);
  2059. else
  2060. r = paging32_init_context(vcpu);
  2061. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  2062. return r;
  2063. }
  2064. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2065. {
  2066. vcpu->arch.update_pte.pfn = bad_pfn;
  2067. if (tdp_enabled)
  2068. return init_kvm_tdp_mmu(vcpu);
  2069. else
  2070. return init_kvm_softmmu(vcpu);
  2071. }
  2072. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2073. {
  2074. ASSERT(vcpu);
  2075. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  2076. vcpu->arch.mmu.free(vcpu);
  2077. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2078. }
  2079. }
  2080. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2081. {
  2082. destroy_kvm_mmu(vcpu);
  2083. return init_kvm_mmu(vcpu);
  2084. }
  2085. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2086. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2087. {
  2088. int r;
  2089. r = mmu_topup_memory_caches(vcpu);
  2090. if (r)
  2091. goto out;
  2092. spin_lock(&vcpu->kvm->mmu_lock);
  2093. kvm_mmu_free_some_pages(vcpu);
  2094. r = mmu_alloc_roots(vcpu);
  2095. mmu_sync_roots(vcpu);
  2096. spin_unlock(&vcpu->kvm->mmu_lock);
  2097. if (r)
  2098. goto out;
  2099. /* set_cr3() should ensure TLB has been flushed */
  2100. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2101. out:
  2102. return r;
  2103. }
  2104. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2105. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2106. {
  2107. mmu_free_roots(vcpu);
  2108. }
  2109. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2110. struct kvm_mmu_page *sp,
  2111. u64 *spte)
  2112. {
  2113. u64 pte;
  2114. struct kvm_mmu_page *child;
  2115. pte = *spte;
  2116. if (is_shadow_present_pte(pte)) {
  2117. if (is_last_spte(pte, sp->role.level))
  2118. rmap_remove(vcpu->kvm, spte);
  2119. else {
  2120. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2121. mmu_page_remove_parent_pte(child, spte);
  2122. }
  2123. }
  2124. __set_spte(spte, shadow_trap_nonpresent_pte);
  2125. if (is_large_pte(pte))
  2126. --vcpu->kvm->stat.lpages;
  2127. }
  2128. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2129. struct kvm_mmu_page *sp,
  2130. u64 *spte,
  2131. const void *new)
  2132. {
  2133. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2134. ++vcpu->kvm->stat.mmu_pde_zapped;
  2135. return;
  2136. }
  2137. ++vcpu->kvm->stat.mmu_pte_updated;
  2138. if (sp->role.glevels == PT32_ROOT_LEVEL)
  2139. paging32_update_pte(vcpu, sp, spte, new);
  2140. else
  2141. paging64_update_pte(vcpu, sp, spte, new);
  2142. }
  2143. static bool need_remote_flush(u64 old, u64 new)
  2144. {
  2145. if (!is_shadow_present_pte(old))
  2146. return false;
  2147. if (!is_shadow_present_pte(new))
  2148. return true;
  2149. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2150. return true;
  2151. old ^= PT64_NX_MASK;
  2152. new ^= PT64_NX_MASK;
  2153. return (old & ~new & PT64_PERM_MASK) != 0;
  2154. }
  2155. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2156. {
  2157. if (need_remote_flush(old, new))
  2158. kvm_flush_remote_tlbs(vcpu->kvm);
  2159. else
  2160. kvm_mmu_flush_tlb(vcpu);
  2161. }
  2162. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2163. {
  2164. u64 *spte = vcpu->arch.last_pte_updated;
  2165. return !!(spte && (*spte & shadow_accessed_mask));
  2166. }
  2167. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2168. const u8 *new, int bytes)
  2169. {
  2170. gfn_t gfn;
  2171. int r;
  2172. u64 gpte = 0;
  2173. pfn_t pfn;
  2174. if (bytes != 4 && bytes != 8)
  2175. return;
  2176. /*
  2177. * Assume that the pte write on a page table of the same type
  2178. * as the current vcpu paging mode. This is nearly always true
  2179. * (might be false while changing modes). Note it is verified later
  2180. * by update_pte().
  2181. */
  2182. if (is_pae(vcpu)) {
  2183. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2184. if ((bytes == 4) && (gpa % 4 == 0)) {
  2185. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2186. if (r)
  2187. return;
  2188. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2189. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2190. memcpy((void *)&gpte, new, 8);
  2191. }
  2192. } else {
  2193. if ((bytes == 4) && (gpa % 4 == 0))
  2194. memcpy((void *)&gpte, new, 4);
  2195. }
  2196. if (!is_present_gpte(gpte))
  2197. return;
  2198. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2199. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2200. smp_rmb();
  2201. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2202. if (is_error_pfn(pfn)) {
  2203. kvm_release_pfn_clean(pfn);
  2204. return;
  2205. }
  2206. vcpu->arch.update_pte.gfn = gfn;
  2207. vcpu->arch.update_pte.pfn = pfn;
  2208. }
  2209. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2210. {
  2211. u64 *spte = vcpu->arch.last_pte_updated;
  2212. if (spte
  2213. && vcpu->arch.last_pte_gfn == gfn
  2214. && shadow_accessed_mask
  2215. && !(*spte & shadow_accessed_mask)
  2216. && is_shadow_present_pte(*spte))
  2217. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2218. }
  2219. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2220. const u8 *new, int bytes,
  2221. bool guest_initiated)
  2222. {
  2223. gfn_t gfn = gpa >> PAGE_SHIFT;
  2224. struct kvm_mmu_page *sp;
  2225. struct hlist_node *node, *n;
  2226. struct hlist_head *bucket;
  2227. unsigned index;
  2228. u64 entry, gentry;
  2229. u64 *spte;
  2230. unsigned offset = offset_in_page(gpa);
  2231. unsigned pte_size;
  2232. unsigned page_offset;
  2233. unsigned misaligned;
  2234. unsigned quadrant;
  2235. int level;
  2236. int flooded = 0;
  2237. int npte;
  2238. int r;
  2239. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2240. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2241. spin_lock(&vcpu->kvm->mmu_lock);
  2242. kvm_mmu_access_page(vcpu, gfn);
  2243. kvm_mmu_free_some_pages(vcpu);
  2244. ++vcpu->kvm->stat.mmu_pte_write;
  2245. kvm_mmu_audit(vcpu, "pre pte write");
  2246. if (guest_initiated) {
  2247. if (gfn == vcpu->arch.last_pt_write_gfn
  2248. && !last_updated_pte_accessed(vcpu)) {
  2249. ++vcpu->arch.last_pt_write_count;
  2250. if (vcpu->arch.last_pt_write_count >= 3)
  2251. flooded = 1;
  2252. } else {
  2253. vcpu->arch.last_pt_write_gfn = gfn;
  2254. vcpu->arch.last_pt_write_count = 1;
  2255. vcpu->arch.last_pte_updated = NULL;
  2256. }
  2257. }
  2258. index = kvm_page_table_hashfn(gfn);
  2259. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2260. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2261. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2262. continue;
  2263. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2264. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2265. misaligned |= bytes < 4;
  2266. if (misaligned || flooded) {
  2267. /*
  2268. * Misaligned accesses are too much trouble to fix
  2269. * up; also, they usually indicate a page is not used
  2270. * as a page table.
  2271. *
  2272. * If we're seeing too many writes to a page,
  2273. * it may no longer be a page table, or we may be
  2274. * forking, in which case it is better to unmap the
  2275. * page.
  2276. */
  2277. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2278. gpa, bytes, sp->role.word);
  2279. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2280. n = bucket->first;
  2281. ++vcpu->kvm->stat.mmu_flooded;
  2282. continue;
  2283. }
  2284. page_offset = offset;
  2285. level = sp->role.level;
  2286. npte = 1;
  2287. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2288. page_offset <<= 1; /* 32->64 */
  2289. /*
  2290. * A 32-bit pde maps 4MB while the shadow pdes map
  2291. * only 2MB. So we need to double the offset again
  2292. * and zap two pdes instead of one.
  2293. */
  2294. if (level == PT32_ROOT_LEVEL) {
  2295. page_offset &= ~7; /* kill rounding error */
  2296. page_offset <<= 1;
  2297. npte = 2;
  2298. }
  2299. quadrant = page_offset >> PAGE_SHIFT;
  2300. page_offset &= ~PAGE_MASK;
  2301. if (quadrant != sp->role.quadrant)
  2302. continue;
  2303. }
  2304. spte = &sp->spt[page_offset / sizeof(*spte)];
  2305. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2306. gentry = 0;
  2307. r = kvm_read_guest_atomic(vcpu->kvm,
  2308. gpa & ~(u64)(pte_size - 1),
  2309. &gentry, pte_size);
  2310. new = (const void *)&gentry;
  2311. if (r < 0)
  2312. new = NULL;
  2313. }
  2314. while (npte--) {
  2315. entry = *spte;
  2316. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2317. if (new)
  2318. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2319. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2320. ++spte;
  2321. }
  2322. }
  2323. kvm_mmu_audit(vcpu, "post pte write");
  2324. spin_unlock(&vcpu->kvm->mmu_lock);
  2325. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2326. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2327. vcpu->arch.update_pte.pfn = bad_pfn;
  2328. }
  2329. }
  2330. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2331. {
  2332. gpa_t gpa;
  2333. int r;
  2334. if (tdp_enabled)
  2335. return 0;
  2336. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2337. spin_lock(&vcpu->kvm->mmu_lock);
  2338. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2339. spin_unlock(&vcpu->kvm->mmu_lock);
  2340. return r;
  2341. }
  2342. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2343. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2344. {
  2345. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2346. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2347. struct kvm_mmu_page *sp;
  2348. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2349. struct kvm_mmu_page, link);
  2350. kvm_mmu_zap_page(vcpu->kvm, sp);
  2351. ++vcpu->kvm->stat.mmu_recycled;
  2352. }
  2353. }
  2354. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2355. {
  2356. int r;
  2357. enum emulation_result er;
  2358. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2359. if (r < 0)
  2360. goto out;
  2361. if (!r) {
  2362. r = 1;
  2363. goto out;
  2364. }
  2365. r = mmu_topup_memory_caches(vcpu);
  2366. if (r)
  2367. goto out;
  2368. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2369. switch (er) {
  2370. case EMULATE_DONE:
  2371. return 1;
  2372. case EMULATE_DO_MMIO:
  2373. ++vcpu->stat.mmio_exits;
  2374. return 0;
  2375. case EMULATE_FAIL:
  2376. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2377. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2378. vcpu->run->internal.ndata = 0;
  2379. return 0;
  2380. default:
  2381. BUG();
  2382. }
  2383. out:
  2384. return r;
  2385. }
  2386. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2387. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2388. {
  2389. vcpu->arch.mmu.invlpg(vcpu, gva);
  2390. kvm_mmu_flush_tlb(vcpu);
  2391. ++vcpu->stat.invlpg;
  2392. }
  2393. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2394. void kvm_enable_tdp(void)
  2395. {
  2396. tdp_enabled = true;
  2397. }
  2398. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2399. void kvm_disable_tdp(void)
  2400. {
  2401. tdp_enabled = false;
  2402. }
  2403. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2404. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2405. {
  2406. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2407. }
  2408. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2409. {
  2410. struct page *page;
  2411. int i;
  2412. ASSERT(vcpu);
  2413. /*
  2414. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2415. * Therefore we need to allocate shadow page tables in the first
  2416. * 4GB of memory, which happens to fit the DMA32 zone.
  2417. */
  2418. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2419. if (!page)
  2420. return -ENOMEM;
  2421. vcpu->arch.mmu.pae_root = page_address(page);
  2422. for (i = 0; i < 4; ++i)
  2423. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2424. return 0;
  2425. }
  2426. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2427. {
  2428. ASSERT(vcpu);
  2429. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2430. return alloc_mmu_pages(vcpu);
  2431. }
  2432. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2433. {
  2434. ASSERT(vcpu);
  2435. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2436. return init_kvm_mmu(vcpu);
  2437. }
  2438. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2439. {
  2440. ASSERT(vcpu);
  2441. destroy_kvm_mmu(vcpu);
  2442. free_mmu_pages(vcpu);
  2443. mmu_free_memory_caches(vcpu);
  2444. }
  2445. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2446. {
  2447. struct kvm_mmu_page *sp;
  2448. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2449. int i;
  2450. u64 *pt;
  2451. if (!test_bit(slot, sp->slot_bitmap))
  2452. continue;
  2453. pt = sp->spt;
  2454. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2455. /* avoid RMW */
  2456. if (pt[i] & PT_WRITABLE_MASK)
  2457. pt[i] &= ~PT_WRITABLE_MASK;
  2458. }
  2459. kvm_flush_remote_tlbs(kvm);
  2460. }
  2461. void kvm_mmu_zap_all(struct kvm *kvm)
  2462. {
  2463. struct kvm_mmu_page *sp, *node;
  2464. spin_lock(&kvm->mmu_lock);
  2465. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2466. if (kvm_mmu_zap_page(kvm, sp))
  2467. node = container_of(kvm->arch.active_mmu_pages.next,
  2468. struct kvm_mmu_page, link);
  2469. spin_unlock(&kvm->mmu_lock);
  2470. kvm_flush_remote_tlbs(kvm);
  2471. }
  2472. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2473. {
  2474. struct kvm_mmu_page *page;
  2475. page = container_of(kvm->arch.active_mmu_pages.prev,
  2476. struct kvm_mmu_page, link);
  2477. kvm_mmu_zap_page(kvm, page);
  2478. }
  2479. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2480. {
  2481. struct kvm *kvm;
  2482. struct kvm *kvm_freed = NULL;
  2483. int cache_count = 0;
  2484. spin_lock(&kvm_lock);
  2485. list_for_each_entry(kvm, &vm_list, vm_list) {
  2486. int npages, idx;
  2487. idx = srcu_read_lock(&kvm->srcu);
  2488. spin_lock(&kvm->mmu_lock);
  2489. npages = kvm->arch.n_alloc_mmu_pages -
  2490. kvm->arch.n_free_mmu_pages;
  2491. cache_count += npages;
  2492. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2493. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2494. cache_count--;
  2495. kvm_freed = kvm;
  2496. }
  2497. nr_to_scan--;
  2498. spin_unlock(&kvm->mmu_lock);
  2499. srcu_read_unlock(&kvm->srcu, idx);
  2500. }
  2501. if (kvm_freed)
  2502. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2503. spin_unlock(&kvm_lock);
  2504. return cache_count;
  2505. }
  2506. static struct shrinker mmu_shrinker = {
  2507. .shrink = mmu_shrink,
  2508. .seeks = DEFAULT_SEEKS * 10,
  2509. };
  2510. static void mmu_destroy_caches(void)
  2511. {
  2512. if (pte_chain_cache)
  2513. kmem_cache_destroy(pte_chain_cache);
  2514. if (rmap_desc_cache)
  2515. kmem_cache_destroy(rmap_desc_cache);
  2516. if (mmu_page_header_cache)
  2517. kmem_cache_destroy(mmu_page_header_cache);
  2518. }
  2519. void kvm_mmu_module_exit(void)
  2520. {
  2521. mmu_destroy_caches();
  2522. unregister_shrinker(&mmu_shrinker);
  2523. }
  2524. int kvm_mmu_module_init(void)
  2525. {
  2526. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2527. sizeof(struct kvm_pte_chain),
  2528. 0, 0, NULL);
  2529. if (!pte_chain_cache)
  2530. goto nomem;
  2531. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2532. sizeof(struct kvm_rmap_desc),
  2533. 0, 0, NULL);
  2534. if (!rmap_desc_cache)
  2535. goto nomem;
  2536. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2537. sizeof(struct kvm_mmu_page),
  2538. 0, 0, NULL);
  2539. if (!mmu_page_header_cache)
  2540. goto nomem;
  2541. register_shrinker(&mmu_shrinker);
  2542. return 0;
  2543. nomem:
  2544. mmu_destroy_caches();
  2545. return -ENOMEM;
  2546. }
  2547. /*
  2548. * Caculate mmu pages needed for kvm.
  2549. */
  2550. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2551. {
  2552. int i;
  2553. unsigned int nr_mmu_pages;
  2554. unsigned int nr_pages = 0;
  2555. struct kvm_memslots *slots;
  2556. slots = rcu_dereference(kvm->memslots);
  2557. for (i = 0; i < slots->nmemslots; i++)
  2558. nr_pages += slots->memslots[i].npages;
  2559. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2560. nr_mmu_pages = max(nr_mmu_pages,
  2561. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2562. return nr_mmu_pages;
  2563. }
  2564. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2565. unsigned len)
  2566. {
  2567. if (len > buffer->len)
  2568. return NULL;
  2569. return buffer->ptr;
  2570. }
  2571. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2572. unsigned len)
  2573. {
  2574. void *ret;
  2575. ret = pv_mmu_peek_buffer(buffer, len);
  2576. if (!ret)
  2577. return ret;
  2578. buffer->ptr += len;
  2579. buffer->len -= len;
  2580. buffer->processed += len;
  2581. return ret;
  2582. }
  2583. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2584. gpa_t addr, gpa_t value)
  2585. {
  2586. int bytes = 8;
  2587. int r;
  2588. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2589. bytes = 4;
  2590. r = mmu_topup_memory_caches(vcpu);
  2591. if (r)
  2592. return r;
  2593. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2594. return -EFAULT;
  2595. return 1;
  2596. }
  2597. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2598. {
  2599. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2600. return 1;
  2601. }
  2602. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2603. {
  2604. spin_lock(&vcpu->kvm->mmu_lock);
  2605. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2606. spin_unlock(&vcpu->kvm->mmu_lock);
  2607. return 1;
  2608. }
  2609. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2610. struct kvm_pv_mmu_op_buffer *buffer)
  2611. {
  2612. struct kvm_mmu_op_header *header;
  2613. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2614. if (!header)
  2615. return 0;
  2616. switch (header->op) {
  2617. case KVM_MMU_OP_WRITE_PTE: {
  2618. struct kvm_mmu_op_write_pte *wpte;
  2619. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2620. if (!wpte)
  2621. return 0;
  2622. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2623. wpte->pte_val);
  2624. }
  2625. case KVM_MMU_OP_FLUSH_TLB: {
  2626. struct kvm_mmu_op_flush_tlb *ftlb;
  2627. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2628. if (!ftlb)
  2629. return 0;
  2630. return kvm_pv_mmu_flush_tlb(vcpu);
  2631. }
  2632. case KVM_MMU_OP_RELEASE_PT: {
  2633. struct kvm_mmu_op_release_pt *rpt;
  2634. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2635. if (!rpt)
  2636. return 0;
  2637. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2638. }
  2639. default: return 0;
  2640. }
  2641. }
  2642. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2643. gpa_t addr, unsigned long *ret)
  2644. {
  2645. int r;
  2646. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2647. buffer->ptr = buffer->buf;
  2648. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2649. buffer->processed = 0;
  2650. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2651. if (r)
  2652. goto out;
  2653. while (buffer->len) {
  2654. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2655. if (r < 0)
  2656. goto out;
  2657. if (r == 0)
  2658. break;
  2659. }
  2660. r = 1;
  2661. out:
  2662. *ret = buffer->processed;
  2663. return r;
  2664. }
  2665. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2666. {
  2667. struct kvm_shadow_walk_iterator iterator;
  2668. int nr_sptes = 0;
  2669. spin_lock(&vcpu->kvm->mmu_lock);
  2670. for_each_shadow_entry(vcpu, addr, iterator) {
  2671. sptes[iterator.level-1] = *iterator.sptep;
  2672. nr_sptes++;
  2673. if (!is_shadow_present_pte(*iterator.sptep))
  2674. break;
  2675. }
  2676. spin_unlock(&vcpu->kvm->mmu_lock);
  2677. return nr_sptes;
  2678. }
  2679. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2680. #ifdef AUDIT
  2681. static const char *audit_msg;
  2682. static gva_t canonicalize(gva_t gva)
  2683. {
  2684. #ifdef CONFIG_X86_64
  2685. gva = (long long)(gva << 16) >> 16;
  2686. #endif
  2687. return gva;
  2688. }
  2689. typedef void (*inspect_spte_fn) (struct kvm *kvm, struct kvm_mmu_page *sp,
  2690. u64 *sptep);
  2691. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2692. inspect_spte_fn fn)
  2693. {
  2694. int i;
  2695. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2696. u64 ent = sp->spt[i];
  2697. if (is_shadow_present_pte(ent)) {
  2698. if (!is_last_spte(ent, sp->role.level)) {
  2699. struct kvm_mmu_page *child;
  2700. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2701. __mmu_spte_walk(kvm, child, fn);
  2702. } else
  2703. fn(kvm, sp, &sp->spt[i]);
  2704. }
  2705. }
  2706. }
  2707. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2708. {
  2709. int i;
  2710. struct kvm_mmu_page *sp;
  2711. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2712. return;
  2713. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2714. hpa_t root = vcpu->arch.mmu.root_hpa;
  2715. sp = page_header(root);
  2716. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2717. return;
  2718. }
  2719. for (i = 0; i < 4; ++i) {
  2720. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2721. if (root && VALID_PAGE(root)) {
  2722. root &= PT64_BASE_ADDR_MASK;
  2723. sp = page_header(root);
  2724. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2725. }
  2726. }
  2727. return;
  2728. }
  2729. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2730. gva_t va, int level)
  2731. {
  2732. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2733. int i;
  2734. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2735. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2736. u64 ent = pt[i];
  2737. if (ent == shadow_trap_nonpresent_pte)
  2738. continue;
  2739. va = canonicalize(va);
  2740. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2741. audit_mappings_page(vcpu, ent, va, level - 1);
  2742. else {
  2743. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2744. gfn_t gfn = gpa >> PAGE_SHIFT;
  2745. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2746. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2747. if (is_error_pfn(pfn)) {
  2748. kvm_release_pfn_clean(pfn);
  2749. continue;
  2750. }
  2751. if (is_shadow_present_pte(ent)
  2752. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2753. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2754. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2755. audit_msg, vcpu->arch.mmu.root_level,
  2756. va, gpa, hpa, ent,
  2757. is_shadow_present_pte(ent));
  2758. else if (ent == shadow_notrap_nonpresent_pte
  2759. && !is_error_hpa(hpa))
  2760. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2761. " valid guest gva %lx\n", audit_msg, va);
  2762. kvm_release_pfn_clean(pfn);
  2763. }
  2764. }
  2765. }
  2766. static void audit_mappings(struct kvm_vcpu *vcpu)
  2767. {
  2768. unsigned i;
  2769. if (vcpu->arch.mmu.root_level == 4)
  2770. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2771. else
  2772. for (i = 0; i < 4; ++i)
  2773. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2774. audit_mappings_page(vcpu,
  2775. vcpu->arch.mmu.pae_root[i],
  2776. i << 30,
  2777. 2);
  2778. }
  2779. static int count_rmaps(struct kvm_vcpu *vcpu)
  2780. {
  2781. int nmaps = 0;
  2782. int i, j, k, idx;
  2783. idx = srcu_read_lock(&kvm->srcu);
  2784. slots = rcu_dereference(kvm->memslots);
  2785. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2786. struct kvm_memory_slot *m = &slots->memslots[i];
  2787. struct kvm_rmap_desc *d;
  2788. for (j = 0; j < m->npages; ++j) {
  2789. unsigned long *rmapp = &m->rmap[j];
  2790. if (!*rmapp)
  2791. continue;
  2792. if (!(*rmapp & 1)) {
  2793. ++nmaps;
  2794. continue;
  2795. }
  2796. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2797. while (d) {
  2798. for (k = 0; k < RMAP_EXT; ++k)
  2799. if (d->sptes[k])
  2800. ++nmaps;
  2801. else
  2802. break;
  2803. d = d->more;
  2804. }
  2805. }
  2806. }
  2807. srcu_read_unlock(&kvm->srcu, idx);
  2808. return nmaps;
  2809. }
  2810. void inspect_spte_has_rmap(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *sptep)
  2811. {
  2812. unsigned long *rmapp;
  2813. struct kvm_mmu_page *rev_sp;
  2814. gfn_t gfn;
  2815. if (*sptep & PT_WRITABLE_MASK) {
  2816. rev_sp = page_header(__pa(sptep));
  2817. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2818. if (!gfn_to_memslot(kvm, gfn)) {
  2819. if (!printk_ratelimit())
  2820. return;
  2821. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2822. audit_msg, gfn);
  2823. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2824. audit_msg, sptep - rev_sp->spt,
  2825. rev_sp->gfn);
  2826. dump_stack();
  2827. return;
  2828. }
  2829. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2830. is_large_pte(*sptep));
  2831. if (!*rmapp) {
  2832. if (!printk_ratelimit())
  2833. return;
  2834. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2835. audit_msg, *sptep);
  2836. dump_stack();
  2837. }
  2838. }
  2839. }
  2840. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2841. {
  2842. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2843. }
  2844. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2845. {
  2846. struct kvm_mmu_page *sp;
  2847. int i;
  2848. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2849. u64 *pt = sp->spt;
  2850. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2851. continue;
  2852. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2853. u64 ent = pt[i];
  2854. if (!(ent & PT_PRESENT_MASK))
  2855. continue;
  2856. if (!(ent & PT_WRITABLE_MASK))
  2857. continue;
  2858. inspect_spte_has_rmap(vcpu->kvm, sp, &pt[i]);
  2859. }
  2860. }
  2861. return;
  2862. }
  2863. static void audit_rmap(struct kvm_vcpu *vcpu)
  2864. {
  2865. check_writable_mappings_rmap(vcpu);
  2866. count_rmaps(vcpu);
  2867. }
  2868. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2869. {
  2870. struct kvm_mmu_page *sp;
  2871. struct kvm_memory_slot *slot;
  2872. unsigned long *rmapp;
  2873. u64 *spte;
  2874. gfn_t gfn;
  2875. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2876. if (sp->role.direct)
  2877. continue;
  2878. if (sp->unsync)
  2879. continue;
  2880. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2881. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2882. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2883. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2884. while (spte) {
  2885. if (*spte & PT_WRITABLE_MASK)
  2886. printk(KERN_ERR "%s: (%s) shadow page has "
  2887. "writable mappings: gfn %lx role %x\n",
  2888. __func__, audit_msg, sp->gfn,
  2889. sp->role.word);
  2890. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2891. }
  2892. }
  2893. }
  2894. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2895. {
  2896. int olddbg = dbg;
  2897. dbg = 0;
  2898. audit_msg = msg;
  2899. audit_rmap(vcpu);
  2900. audit_write_protection(vcpu);
  2901. if (strcmp("pre pte write", audit_msg) != 0)
  2902. audit_mappings(vcpu);
  2903. audit_writable_sptes_have_rmaps(vcpu);
  2904. dbg = olddbg;
  2905. }
  2906. #endif