core.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668
  1. /*
  2. * Core driver for the pin control subsystem
  3. *
  4. * Copyright (C) 2011-2012 ST-Ericsson SA
  5. * Written on behalf of Linaro for ST-Ericsson
  6. * Based on bits of regulator core, gpio core and clk core
  7. *
  8. * Author: Linus Walleij <linus.walleij@linaro.org>
  9. *
  10. * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  11. *
  12. * License terms: GNU General Public License (GPL) version 2
  13. */
  14. #define pr_fmt(fmt) "pinctrl core: " fmt
  15. #include <linux/kernel.h>
  16. #include <linux/kref.h>
  17. #include <linux/export.h>
  18. #include <linux/init.h>
  19. #include <linux/device.h>
  20. #include <linux/slab.h>
  21. #include <linux/err.h>
  22. #include <linux/list.h>
  23. #include <linux/sysfs.h>
  24. #include <linux/debugfs.h>
  25. #include <linux/seq_file.h>
  26. #include <linux/pinctrl/consumer.h>
  27. #include <linux/pinctrl/pinctrl.h>
  28. #include <linux/pinctrl/machine.h>
  29. #include <asm-generic/gpio.h>
  30. #include "core.h"
  31. #include "devicetree.h"
  32. #include "pinmux.h"
  33. #include "pinconf.h"
  34. static bool pinctrl_dummy_state;
  35. /* Mutex taken by all entry points */
  36. DEFINE_MUTEX(pinctrl_mutex);
  37. /* Global list of pin control devices (struct pinctrl_dev) */
  38. LIST_HEAD(pinctrldev_list);
  39. /* List of pin controller handles (struct pinctrl) */
  40. static LIST_HEAD(pinctrl_list);
  41. /* List of pinctrl maps (struct pinctrl_maps) */
  42. LIST_HEAD(pinctrl_maps);
  43. /**
  44. * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  45. *
  46. * Usually this function is called by platforms without pinctrl driver support
  47. * but run with some shared drivers using pinctrl APIs.
  48. * After calling this function, the pinctrl core will return successfully
  49. * with creating a dummy state for the driver to keep going smoothly.
  50. */
  51. void pinctrl_provide_dummies(void)
  52. {
  53. pinctrl_dummy_state = true;
  54. }
  55. const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  56. {
  57. /* We're not allowed to register devices without name */
  58. return pctldev->desc->name;
  59. }
  60. EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  61. const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  62. {
  63. return dev_name(pctldev->dev);
  64. }
  65. EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  66. void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  67. {
  68. return pctldev->driver_data;
  69. }
  70. EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  71. /**
  72. * get_pinctrl_dev_from_devname() - look up pin controller device
  73. * @devname: the name of a device instance, as returned by dev_name()
  74. *
  75. * Looks up a pin control device matching a certain device name or pure device
  76. * pointer, the pure device pointer will take precedence.
  77. */
  78. struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
  79. {
  80. struct pinctrl_dev *pctldev = NULL;
  81. bool found = false;
  82. if (!devname)
  83. return NULL;
  84. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  85. if (!strcmp(dev_name(pctldev->dev), devname)) {
  86. /* Matched on device name */
  87. found = true;
  88. break;
  89. }
  90. }
  91. return found ? pctldev : NULL;
  92. }
  93. /**
  94. * pin_get_from_name() - look up a pin number from a name
  95. * @pctldev: the pin control device to lookup the pin on
  96. * @name: the name of the pin to look up
  97. */
  98. int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
  99. {
  100. unsigned i, pin;
  101. /* The pin number can be retrived from the pin controller descriptor */
  102. for (i = 0; i < pctldev->desc->npins; i++) {
  103. struct pin_desc *desc;
  104. pin = pctldev->desc->pins[i].number;
  105. desc = pin_desc_get(pctldev, pin);
  106. /* Pin space may be sparse */
  107. if (desc == NULL)
  108. continue;
  109. if (desc->name && !strcmp(name, desc->name))
  110. return pin;
  111. }
  112. return -EINVAL;
  113. }
  114. /**
  115. * pin_get_name_from_id() - look up a pin name from a pin id
  116. * @pctldev: the pin control device to lookup the pin on
  117. * @name: the name of the pin to look up
  118. */
  119. const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
  120. {
  121. const struct pin_desc *desc;
  122. desc = pin_desc_get(pctldev, pin);
  123. if (desc == NULL) {
  124. dev_err(pctldev->dev, "failed to get pin(%d) name\n",
  125. pin);
  126. return NULL;
  127. }
  128. return desc->name;
  129. }
  130. /**
  131. * pin_is_valid() - check if pin exists on controller
  132. * @pctldev: the pin control device to check the pin on
  133. * @pin: pin to check, use the local pin controller index number
  134. *
  135. * This tells us whether a certain pin exist on a certain pin controller or
  136. * not. Pin lists may be sparse, so some pins may not exist.
  137. */
  138. bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
  139. {
  140. struct pin_desc *pindesc;
  141. if (pin < 0)
  142. return false;
  143. mutex_lock(&pinctrl_mutex);
  144. pindesc = pin_desc_get(pctldev, pin);
  145. mutex_unlock(&pinctrl_mutex);
  146. return pindesc != NULL;
  147. }
  148. EXPORT_SYMBOL_GPL(pin_is_valid);
  149. /* Deletes a range of pin descriptors */
  150. static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
  151. const struct pinctrl_pin_desc *pins,
  152. unsigned num_pins)
  153. {
  154. int i;
  155. for (i = 0; i < num_pins; i++) {
  156. struct pin_desc *pindesc;
  157. pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
  158. pins[i].number);
  159. if (pindesc != NULL) {
  160. radix_tree_delete(&pctldev->pin_desc_tree,
  161. pins[i].number);
  162. if (pindesc->dynamic_name)
  163. kfree(pindesc->name);
  164. }
  165. kfree(pindesc);
  166. }
  167. }
  168. static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
  169. unsigned number, const char *name)
  170. {
  171. struct pin_desc *pindesc;
  172. pindesc = pin_desc_get(pctldev, number);
  173. if (pindesc != NULL) {
  174. pr_err("pin %d already registered on %s\n", number,
  175. pctldev->desc->name);
  176. return -EINVAL;
  177. }
  178. pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
  179. if (pindesc == NULL) {
  180. dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
  181. return -ENOMEM;
  182. }
  183. /* Set owner */
  184. pindesc->pctldev = pctldev;
  185. /* Copy basic pin info */
  186. if (name) {
  187. pindesc->name = name;
  188. } else {
  189. pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
  190. if (pindesc->name == NULL) {
  191. kfree(pindesc);
  192. return -ENOMEM;
  193. }
  194. pindesc->dynamic_name = true;
  195. }
  196. radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
  197. pr_debug("registered pin %d (%s) on %s\n",
  198. number, pindesc->name, pctldev->desc->name);
  199. return 0;
  200. }
  201. static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
  202. struct pinctrl_pin_desc const *pins,
  203. unsigned num_descs)
  204. {
  205. unsigned i;
  206. int ret = 0;
  207. for (i = 0; i < num_descs; i++) {
  208. ret = pinctrl_register_one_pin(pctldev,
  209. pins[i].number, pins[i].name);
  210. if (ret)
  211. return ret;
  212. }
  213. return 0;
  214. }
  215. /**
  216. * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
  217. * @pctldev: pin controller device to check
  218. * @gpio: gpio pin to check taken from the global GPIO pin space
  219. *
  220. * Tries to match a GPIO pin number to the ranges handled by a certain pin
  221. * controller, return the range or NULL
  222. */
  223. static struct pinctrl_gpio_range *
  224. pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
  225. {
  226. struct pinctrl_gpio_range *range = NULL;
  227. /* Loop over the ranges */
  228. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  229. /* Check if we're in the valid range */
  230. if (gpio >= range->base &&
  231. gpio < range->base + range->npins) {
  232. return range;
  233. }
  234. }
  235. return NULL;
  236. }
  237. /**
  238. * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
  239. * the same GPIO chip are in range
  240. * @gpio: gpio pin to check taken from the global GPIO pin space
  241. *
  242. * This function is complement of pinctrl_match_gpio_range(). If the return
  243. * value of pinctrl_match_gpio_range() is NULL, this function could be used
  244. * to check whether pinctrl device is ready or not. Maybe some GPIO pins
  245. * of the same GPIO chip don't have back-end pinctrl interface.
  246. * If the return value is true, it means that pinctrl device is ready & the
  247. * certain GPIO pin doesn't have back-end pinctrl device. If the return value
  248. * is false, it means that pinctrl device may not be ready.
  249. */
  250. static bool pinctrl_ready_for_gpio_range(unsigned gpio)
  251. {
  252. struct pinctrl_dev *pctldev;
  253. struct pinctrl_gpio_range *range = NULL;
  254. struct gpio_chip *chip = gpio_to_chip(gpio);
  255. /* Loop over the pin controllers */
  256. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  257. /* Loop over the ranges */
  258. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  259. /* Check if any gpio range overlapped with gpio chip */
  260. if (range->base + range->npins - 1 < chip->base ||
  261. range->base > chip->base + chip->ngpio - 1)
  262. continue;
  263. return true;
  264. }
  265. }
  266. return false;
  267. }
  268. /**
  269. * pinctrl_get_device_gpio_range() - find device for GPIO range
  270. * @gpio: the pin to locate the pin controller for
  271. * @outdev: the pin control device if found
  272. * @outrange: the GPIO range if found
  273. *
  274. * Find the pin controller handling a certain GPIO pin from the pinspace of
  275. * the GPIO subsystem, return the device and the matching GPIO range. Returns
  276. * -EPROBE_DEFER if the GPIO range could not be found in any device since it
  277. * may still have not been registered.
  278. */
  279. static int pinctrl_get_device_gpio_range(unsigned gpio,
  280. struct pinctrl_dev **outdev,
  281. struct pinctrl_gpio_range **outrange)
  282. {
  283. struct pinctrl_dev *pctldev = NULL;
  284. /* Loop over the pin controllers */
  285. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  286. struct pinctrl_gpio_range *range;
  287. range = pinctrl_match_gpio_range(pctldev, gpio);
  288. if (range != NULL) {
  289. *outdev = pctldev;
  290. *outrange = range;
  291. return 0;
  292. }
  293. }
  294. return -EPROBE_DEFER;
  295. }
  296. /**
  297. * pinctrl_add_gpio_range() - register a GPIO range for a controller
  298. * @pctldev: pin controller device to add the range to
  299. * @range: the GPIO range to add
  300. *
  301. * This adds a range of GPIOs to be handled by a certain pin controller. Call
  302. * this to register handled ranges after registering your pin controller.
  303. */
  304. void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
  305. struct pinctrl_gpio_range *range)
  306. {
  307. mutex_lock(&pinctrl_mutex);
  308. list_add_tail(&range->node, &pctldev->gpio_ranges);
  309. mutex_unlock(&pinctrl_mutex);
  310. }
  311. EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
  312. void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
  313. struct pinctrl_gpio_range *ranges,
  314. unsigned nranges)
  315. {
  316. int i;
  317. for (i = 0; i < nranges; i++)
  318. pinctrl_add_gpio_range(pctldev, &ranges[i]);
  319. }
  320. EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
  321. struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
  322. struct pinctrl_gpio_range *range)
  323. {
  324. struct pinctrl_dev *pctldev = get_pinctrl_dev_from_devname(devname);
  325. /*
  326. * If we can't find this device, let's assume that is because
  327. * it has not probed yet, so the driver trying to register this
  328. * range need to defer probing.
  329. */
  330. if (!pctldev)
  331. return ERR_PTR(-EPROBE_DEFER);
  332. pinctrl_add_gpio_range(pctldev, range);
  333. return pctldev;
  334. }
  335. EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
  336. /**
  337. * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
  338. * @pctldev: the pin controller device to look in
  339. * @pin: a controller-local number to find the range for
  340. */
  341. struct pinctrl_gpio_range *
  342. pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
  343. unsigned int pin)
  344. {
  345. struct pinctrl_gpio_range *range = NULL;
  346. /* Loop over the ranges */
  347. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  348. /* Check if we're in the valid range */
  349. if (pin >= range->pin_base &&
  350. pin < range->pin_base + range->npins) {
  351. return range;
  352. }
  353. }
  354. return NULL;
  355. }
  356. EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
  357. /**
  358. * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
  359. * @pctldev: pin controller device to remove the range from
  360. * @range: the GPIO range to remove
  361. */
  362. void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
  363. struct pinctrl_gpio_range *range)
  364. {
  365. mutex_lock(&pinctrl_mutex);
  366. list_del(&range->node);
  367. mutex_unlock(&pinctrl_mutex);
  368. }
  369. EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
  370. /**
  371. * pinctrl_get_group_selector() - returns the group selector for a group
  372. * @pctldev: the pin controller handling the group
  373. * @pin_group: the pin group to look up
  374. */
  375. int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
  376. const char *pin_group)
  377. {
  378. const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
  379. unsigned ngroups = pctlops->get_groups_count(pctldev);
  380. unsigned group_selector = 0;
  381. while (group_selector < ngroups) {
  382. const char *gname = pctlops->get_group_name(pctldev,
  383. group_selector);
  384. if (!strcmp(gname, pin_group)) {
  385. dev_dbg(pctldev->dev,
  386. "found group selector %u for %s\n",
  387. group_selector,
  388. pin_group);
  389. return group_selector;
  390. }
  391. group_selector++;
  392. }
  393. dev_err(pctldev->dev, "does not have pin group %s\n",
  394. pin_group);
  395. return -EINVAL;
  396. }
  397. /**
  398. * pinctrl_request_gpio() - request a single pin to be used in as GPIO
  399. * @gpio: the GPIO pin number from the GPIO subsystem number space
  400. *
  401. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  402. * as part of their gpio_request() semantics, platforms and individual drivers
  403. * shall *NOT* request GPIO pins to be muxed in.
  404. */
  405. int pinctrl_request_gpio(unsigned gpio)
  406. {
  407. struct pinctrl_dev *pctldev;
  408. struct pinctrl_gpio_range *range;
  409. int ret;
  410. int pin;
  411. mutex_lock(&pinctrl_mutex);
  412. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  413. if (ret) {
  414. if (pinctrl_ready_for_gpio_range(gpio))
  415. ret = 0;
  416. mutex_unlock(&pinctrl_mutex);
  417. return ret;
  418. }
  419. /* Convert to the pin controllers number space */
  420. pin = gpio - range->base + range->pin_base;
  421. ret = pinmux_request_gpio(pctldev, range, pin, gpio);
  422. mutex_unlock(&pinctrl_mutex);
  423. return ret;
  424. }
  425. EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
  426. /**
  427. * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
  428. * @gpio: the GPIO pin number from the GPIO subsystem number space
  429. *
  430. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  431. * as part of their gpio_free() semantics, platforms and individual drivers
  432. * shall *NOT* request GPIO pins to be muxed out.
  433. */
  434. void pinctrl_free_gpio(unsigned gpio)
  435. {
  436. struct pinctrl_dev *pctldev;
  437. struct pinctrl_gpio_range *range;
  438. int ret;
  439. int pin;
  440. mutex_lock(&pinctrl_mutex);
  441. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  442. if (ret) {
  443. mutex_unlock(&pinctrl_mutex);
  444. return;
  445. }
  446. /* Convert to the pin controllers number space */
  447. pin = gpio - range->base + range->pin_base;
  448. pinmux_free_gpio(pctldev, pin, range);
  449. mutex_unlock(&pinctrl_mutex);
  450. }
  451. EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
  452. static int pinctrl_gpio_direction(unsigned gpio, bool input)
  453. {
  454. struct pinctrl_dev *pctldev;
  455. struct pinctrl_gpio_range *range;
  456. int ret;
  457. int pin;
  458. ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
  459. if (ret)
  460. return ret;
  461. /* Convert to the pin controllers number space */
  462. pin = gpio - range->base + range->pin_base;
  463. return pinmux_gpio_direction(pctldev, range, pin, input);
  464. }
  465. /**
  466. * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
  467. * @gpio: the GPIO pin number from the GPIO subsystem number space
  468. *
  469. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  470. * as part of their gpio_direction_input() semantics, platforms and individual
  471. * drivers shall *NOT* touch pin control GPIO calls.
  472. */
  473. int pinctrl_gpio_direction_input(unsigned gpio)
  474. {
  475. int ret;
  476. mutex_lock(&pinctrl_mutex);
  477. ret = pinctrl_gpio_direction(gpio, true);
  478. mutex_unlock(&pinctrl_mutex);
  479. return ret;
  480. }
  481. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
  482. /**
  483. * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
  484. * @gpio: the GPIO pin number from the GPIO subsystem number space
  485. *
  486. * This function should *ONLY* be used from gpiolib-based GPIO drivers,
  487. * as part of their gpio_direction_output() semantics, platforms and individual
  488. * drivers shall *NOT* touch pin control GPIO calls.
  489. */
  490. int pinctrl_gpio_direction_output(unsigned gpio)
  491. {
  492. int ret;
  493. mutex_lock(&pinctrl_mutex);
  494. ret = pinctrl_gpio_direction(gpio, false);
  495. mutex_unlock(&pinctrl_mutex);
  496. return ret;
  497. }
  498. EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
  499. static struct pinctrl_state *find_state(struct pinctrl *p,
  500. const char *name)
  501. {
  502. struct pinctrl_state *state;
  503. list_for_each_entry(state, &p->states, node)
  504. if (!strcmp(state->name, name))
  505. return state;
  506. return NULL;
  507. }
  508. static struct pinctrl_state *create_state(struct pinctrl *p,
  509. const char *name)
  510. {
  511. struct pinctrl_state *state;
  512. state = kzalloc(sizeof(*state), GFP_KERNEL);
  513. if (state == NULL) {
  514. dev_err(p->dev,
  515. "failed to alloc struct pinctrl_state\n");
  516. return ERR_PTR(-ENOMEM);
  517. }
  518. state->name = name;
  519. INIT_LIST_HEAD(&state->settings);
  520. list_add_tail(&state->node, &p->states);
  521. return state;
  522. }
  523. static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
  524. {
  525. struct pinctrl_state *state;
  526. struct pinctrl_setting *setting;
  527. int ret;
  528. state = find_state(p, map->name);
  529. if (!state)
  530. state = create_state(p, map->name);
  531. if (IS_ERR(state))
  532. return PTR_ERR(state);
  533. if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
  534. return 0;
  535. setting = kzalloc(sizeof(*setting), GFP_KERNEL);
  536. if (setting == NULL) {
  537. dev_err(p->dev,
  538. "failed to alloc struct pinctrl_setting\n");
  539. return -ENOMEM;
  540. }
  541. setting->type = map->type;
  542. setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
  543. if (setting->pctldev == NULL) {
  544. kfree(setting);
  545. /* Do not defer probing of hogs (circular loop) */
  546. if (!strcmp(map->ctrl_dev_name, map->dev_name))
  547. return -ENODEV;
  548. /*
  549. * OK let us guess that the driver is not there yet, and
  550. * let's defer obtaining this pinctrl handle to later...
  551. */
  552. dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
  553. map->ctrl_dev_name);
  554. return -EPROBE_DEFER;
  555. }
  556. setting->dev_name = map->dev_name;
  557. switch (map->type) {
  558. case PIN_MAP_TYPE_MUX_GROUP:
  559. ret = pinmux_map_to_setting(map, setting);
  560. break;
  561. case PIN_MAP_TYPE_CONFIGS_PIN:
  562. case PIN_MAP_TYPE_CONFIGS_GROUP:
  563. ret = pinconf_map_to_setting(map, setting);
  564. break;
  565. default:
  566. ret = -EINVAL;
  567. break;
  568. }
  569. if (ret < 0) {
  570. kfree(setting);
  571. return ret;
  572. }
  573. list_add_tail(&setting->node, &state->settings);
  574. return 0;
  575. }
  576. static struct pinctrl *find_pinctrl(struct device *dev)
  577. {
  578. struct pinctrl *p;
  579. list_for_each_entry(p, &pinctrl_list, node)
  580. if (p->dev == dev)
  581. return p;
  582. return NULL;
  583. }
  584. static void pinctrl_put_locked(struct pinctrl *p, bool inlist);
  585. static struct pinctrl *create_pinctrl(struct device *dev)
  586. {
  587. struct pinctrl *p;
  588. const char *devname;
  589. struct pinctrl_maps *maps_node;
  590. int i;
  591. struct pinctrl_map const *map;
  592. int ret;
  593. /*
  594. * create the state cookie holder struct pinctrl for each
  595. * mapping, this is what consumers will get when requesting
  596. * a pin control handle with pinctrl_get()
  597. */
  598. p = kzalloc(sizeof(*p), GFP_KERNEL);
  599. if (p == NULL) {
  600. dev_err(dev, "failed to alloc struct pinctrl\n");
  601. return ERR_PTR(-ENOMEM);
  602. }
  603. p->dev = dev;
  604. INIT_LIST_HEAD(&p->states);
  605. INIT_LIST_HEAD(&p->dt_maps);
  606. ret = pinctrl_dt_to_map(p);
  607. if (ret < 0) {
  608. kfree(p);
  609. return ERR_PTR(ret);
  610. }
  611. devname = dev_name(dev);
  612. /* Iterate over the pin control maps to locate the right ones */
  613. for_each_maps(maps_node, i, map) {
  614. /* Map must be for this device */
  615. if (strcmp(map->dev_name, devname))
  616. continue;
  617. ret = add_setting(p, map);
  618. /*
  619. * At this point the adding of a setting may:
  620. *
  621. * - Defer, if the pinctrl device is not yet available
  622. * - Fail, if the pinctrl device is not yet available,
  623. * AND the setting is a hog. We cannot defer that, since
  624. * the hog will kick in immediately after the device
  625. * is registered.
  626. *
  627. * If the error returned was not -EPROBE_DEFER then we
  628. * accumulate the errors to see if we end up with
  629. * an -EPROBE_DEFER later, as that is the worst case.
  630. */
  631. if (ret == -EPROBE_DEFER) {
  632. pinctrl_put_locked(p, false);
  633. return ERR_PTR(ret);
  634. }
  635. }
  636. if (ret < 0) {
  637. /* If some other error than deferral occured, return here */
  638. pinctrl_put_locked(p, false);
  639. return ERR_PTR(ret);
  640. }
  641. kref_init(&p->users);
  642. /* Add the pinctrl handle to the global list */
  643. list_add_tail(&p->node, &pinctrl_list);
  644. return p;
  645. }
  646. static struct pinctrl *pinctrl_get_locked(struct device *dev)
  647. {
  648. struct pinctrl *p;
  649. if (WARN_ON(!dev))
  650. return ERR_PTR(-EINVAL);
  651. /*
  652. * See if somebody else (such as the device core) has already
  653. * obtained a handle to the pinctrl for this device. In that case,
  654. * return another pointer to it.
  655. */
  656. p = find_pinctrl(dev);
  657. if (p != NULL) {
  658. dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
  659. kref_get(&p->users);
  660. return p;
  661. }
  662. return create_pinctrl(dev);
  663. }
  664. /**
  665. * pinctrl_get() - retrieves the pinctrl handle for a device
  666. * @dev: the device to obtain the handle for
  667. */
  668. struct pinctrl *pinctrl_get(struct device *dev)
  669. {
  670. struct pinctrl *p;
  671. mutex_lock(&pinctrl_mutex);
  672. p = pinctrl_get_locked(dev);
  673. mutex_unlock(&pinctrl_mutex);
  674. return p;
  675. }
  676. EXPORT_SYMBOL_GPL(pinctrl_get);
  677. static void pinctrl_put_locked(struct pinctrl *p, bool inlist)
  678. {
  679. struct pinctrl_state *state, *n1;
  680. struct pinctrl_setting *setting, *n2;
  681. list_for_each_entry_safe(state, n1, &p->states, node) {
  682. list_for_each_entry_safe(setting, n2, &state->settings, node) {
  683. switch (setting->type) {
  684. case PIN_MAP_TYPE_MUX_GROUP:
  685. if (state == p->state)
  686. pinmux_disable_setting(setting);
  687. pinmux_free_setting(setting);
  688. break;
  689. case PIN_MAP_TYPE_CONFIGS_PIN:
  690. case PIN_MAP_TYPE_CONFIGS_GROUP:
  691. pinconf_free_setting(setting);
  692. break;
  693. default:
  694. break;
  695. }
  696. list_del(&setting->node);
  697. kfree(setting);
  698. }
  699. list_del(&state->node);
  700. kfree(state);
  701. }
  702. pinctrl_dt_free_maps(p);
  703. if (inlist)
  704. list_del(&p->node);
  705. kfree(p);
  706. }
  707. /**
  708. * pinctrl_release() - release the pinctrl handle
  709. * @kref: the kref in the pinctrl being released
  710. */
  711. static void pinctrl_release(struct kref *kref)
  712. {
  713. struct pinctrl *p = container_of(kref, struct pinctrl, users);
  714. pinctrl_put_locked(p, true);
  715. }
  716. /**
  717. * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
  718. * @p: the pinctrl handle to release
  719. */
  720. void pinctrl_put(struct pinctrl *p)
  721. {
  722. mutex_lock(&pinctrl_mutex);
  723. kref_put(&p->users, pinctrl_release);
  724. mutex_unlock(&pinctrl_mutex);
  725. }
  726. EXPORT_SYMBOL_GPL(pinctrl_put);
  727. static struct pinctrl_state *pinctrl_lookup_state_locked(struct pinctrl *p,
  728. const char *name)
  729. {
  730. struct pinctrl_state *state;
  731. state = find_state(p, name);
  732. if (!state) {
  733. if (pinctrl_dummy_state) {
  734. /* create dummy state */
  735. dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
  736. name);
  737. state = create_state(p, name);
  738. } else
  739. state = ERR_PTR(-ENODEV);
  740. }
  741. return state;
  742. }
  743. /**
  744. * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
  745. * @p: the pinctrl handle to retrieve the state from
  746. * @name: the state name to retrieve
  747. */
  748. struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, const char *name)
  749. {
  750. struct pinctrl_state *s;
  751. mutex_lock(&pinctrl_mutex);
  752. s = pinctrl_lookup_state_locked(p, name);
  753. mutex_unlock(&pinctrl_mutex);
  754. return s;
  755. }
  756. EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
  757. static int pinctrl_select_state_locked(struct pinctrl *p,
  758. struct pinctrl_state *state)
  759. {
  760. struct pinctrl_setting *setting, *setting2;
  761. int ret;
  762. if (p->state == state)
  763. return 0;
  764. if (p->state) {
  765. /*
  766. * The set of groups with a mux configuration in the old state
  767. * may not be identical to the set of groups with a mux setting
  768. * in the new state. While this might be unusual, it's entirely
  769. * possible for the "user"-supplied mapping table to be written
  770. * that way. For each group that was configured in the old state
  771. * but not in the new state, this code puts that group into a
  772. * safe/disabled state.
  773. */
  774. list_for_each_entry(setting, &p->state->settings, node) {
  775. bool found = false;
  776. if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
  777. continue;
  778. list_for_each_entry(setting2, &state->settings, node) {
  779. if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
  780. continue;
  781. if (setting2->data.mux.group ==
  782. setting->data.mux.group) {
  783. found = true;
  784. break;
  785. }
  786. }
  787. if (!found)
  788. pinmux_disable_setting(setting);
  789. }
  790. }
  791. p->state = state;
  792. /* Apply all the settings for the new state */
  793. list_for_each_entry(setting, &state->settings, node) {
  794. switch (setting->type) {
  795. case PIN_MAP_TYPE_MUX_GROUP:
  796. ret = pinmux_enable_setting(setting);
  797. break;
  798. case PIN_MAP_TYPE_CONFIGS_PIN:
  799. case PIN_MAP_TYPE_CONFIGS_GROUP:
  800. ret = pinconf_apply_setting(setting);
  801. break;
  802. default:
  803. ret = -EINVAL;
  804. break;
  805. }
  806. if (ret < 0) {
  807. /* FIXME: Difficult to return to prev state */
  808. return ret;
  809. }
  810. }
  811. return 0;
  812. }
  813. /**
  814. * pinctrl_select() - select/activate/program a pinctrl state to HW
  815. * @p: the pinctrl handle for the device that requests configuratio
  816. * @state: the state handle to select/activate/program
  817. */
  818. int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
  819. {
  820. int ret;
  821. mutex_lock(&pinctrl_mutex);
  822. ret = pinctrl_select_state_locked(p, state);
  823. mutex_unlock(&pinctrl_mutex);
  824. return ret;
  825. }
  826. EXPORT_SYMBOL_GPL(pinctrl_select_state);
  827. static void devm_pinctrl_release(struct device *dev, void *res)
  828. {
  829. pinctrl_put(*(struct pinctrl **)res);
  830. }
  831. /**
  832. * struct devm_pinctrl_get() - Resource managed pinctrl_get()
  833. * @dev: the device to obtain the handle for
  834. *
  835. * If there is a need to explicitly destroy the returned struct pinctrl,
  836. * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
  837. */
  838. struct pinctrl *devm_pinctrl_get(struct device *dev)
  839. {
  840. struct pinctrl **ptr, *p;
  841. ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
  842. if (!ptr)
  843. return ERR_PTR(-ENOMEM);
  844. p = pinctrl_get(dev);
  845. if (!IS_ERR(p)) {
  846. *ptr = p;
  847. devres_add(dev, ptr);
  848. } else {
  849. devres_free(ptr);
  850. }
  851. return p;
  852. }
  853. EXPORT_SYMBOL_GPL(devm_pinctrl_get);
  854. static int devm_pinctrl_match(struct device *dev, void *res, void *data)
  855. {
  856. struct pinctrl **p = res;
  857. return *p == data;
  858. }
  859. /**
  860. * devm_pinctrl_put() - Resource managed pinctrl_put()
  861. * @p: the pinctrl handle to release
  862. *
  863. * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
  864. * this function will not need to be called and the resource management
  865. * code will ensure that the resource is freed.
  866. */
  867. void devm_pinctrl_put(struct pinctrl *p)
  868. {
  869. WARN_ON(devres_release(p->dev, devm_pinctrl_release,
  870. devm_pinctrl_match, p));
  871. }
  872. EXPORT_SYMBOL_GPL(devm_pinctrl_put);
  873. int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
  874. bool dup, bool locked)
  875. {
  876. int i, ret;
  877. struct pinctrl_maps *maps_node;
  878. pr_debug("add %d pinmux maps\n", num_maps);
  879. /* First sanity check the new mapping */
  880. for (i = 0; i < num_maps; i++) {
  881. if (!maps[i].dev_name) {
  882. pr_err("failed to register map %s (%d): no device given\n",
  883. maps[i].name, i);
  884. return -EINVAL;
  885. }
  886. if (!maps[i].name) {
  887. pr_err("failed to register map %d: no map name given\n",
  888. i);
  889. return -EINVAL;
  890. }
  891. if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
  892. !maps[i].ctrl_dev_name) {
  893. pr_err("failed to register map %s (%d): no pin control device given\n",
  894. maps[i].name, i);
  895. return -EINVAL;
  896. }
  897. switch (maps[i].type) {
  898. case PIN_MAP_TYPE_DUMMY_STATE:
  899. break;
  900. case PIN_MAP_TYPE_MUX_GROUP:
  901. ret = pinmux_validate_map(&maps[i], i);
  902. if (ret < 0)
  903. return ret;
  904. break;
  905. case PIN_MAP_TYPE_CONFIGS_PIN:
  906. case PIN_MAP_TYPE_CONFIGS_GROUP:
  907. ret = pinconf_validate_map(&maps[i], i);
  908. if (ret < 0)
  909. return ret;
  910. break;
  911. default:
  912. pr_err("failed to register map %s (%d): invalid type given\n",
  913. maps[i].name, i);
  914. return -EINVAL;
  915. }
  916. }
  917. maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
  918. if (!maps_node) {
  919. pr_err("failed to alloc struct pinctrl_maps\n");
  920. return -ENOMEM;
  921. }
  922. maps_node->num_maps = num_maps;
  923. if (dup) {
  924. maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
  925. GFP_KERNEL);
  926. if (!maps_node->maps) {
  927. pr_err("failed to duplicate mapping table\n");
  928. kfree(maps_node);
  929. return -ENOMEM;
  930. }
  931. } else {
  932. maps_node->maps = maps;
  933. }
  934. if (!locked)
  935. mutex_lock(&pinctrl_mutex);
  936. list_add_tail(&maps_node->node, &pinctrl_maps);
  937. if (!locked)
  938. mutex_unlock(&pinctrl_mutex);
  939. return 0;
  940. }
  941. /**
  942. * pinctrl_register_mappings() - register a set of pin controller mappings
  943. * @maps: the pincontrol mappings table to register. This should probably be
  944. * marked with __initdata so it can be discarded after boot. This
  945. * function will perform a shallow copy for the mapping entries.
  946. * @num_maps: the number of maps in the mapping table
  947. */
  948. int pinctrl_register_mappings(struct pinctrl_map const *maps,
  949. unsigned num_maps)
  950. {
  951. return pinctrl_register_map(maps, num_maps, true, false);
  952. }
  953. void pinctrl_unregister_map(struct pinctrl_map const *map)
  954. {
  955. struct pinctrl_maps *maps_node;
  956. list_for_each_entry(maps_node, &pinctrl_maps, node) {
  957. if (maps_node->maps == map) {
  958. list_del(&maps_node->node);
  959. return;
  960. }
  961. }
  962. }
  963. /**
  964. * pinctrl_force_sleep() - turn a given controller device into sleep state
  965. * @pctldev: pin controller device
  966. */
  967. int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
  968. {
  969. if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
  970. return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
  971. return 0;
  972. }
  973. EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
  974. /**
  975. * pinctrl_force_default() - turn a given controller device into default state
  976. * @pctldev: pin controller device
  977. */
  978. int pinctrl_force_default(struct pinctrl_dev *pctldev)
  979. {
  980. if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
  981. return pinctrl_select_state(pctldev->p, pctldev->hog_default);
  982. return 0;
  983. }
  984. EXPORT_SYMBOL_GPL(pinctrl_force_default);
  985. #ifdef CONFIG_DEBUG_FS
  986. static int pinctrl_pins_show(struct seq_file *s, void *what)
  987. {
  988. struct pinctrl_dev *pctldev = s->private;
  989. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  990. unsigned i, pin;
  991. seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
  992. mutex_lock(&pinctrl_mutex);
  993. /* The pin number can be retrived from the pin controller descriptor */
  994. for (i = 0; i < pctldev->desc->npins; i++) {
  995. struct pin_desc *desc;
  996. pin = pctldev->desc->pins[i].number;
  997. desc = pin_desc_get(pctldev, pin);
  998. /* Pin space may be sparse */
  999. if (desc == NULL)
  1000. continue;
  1001. seq_printf(s, "pin %d (%s) ", pin,
  1002. desc->name ? desc->name : "unnamed");
  1003. /* Driver-specific info per pin */
  1004. if (ops->pin_dbg_show)
  1005. ops->pin_dbg_show(pctldev, s, pin);
  1006. seq_puts(s, "\n");
  1007. }
  1008. mutex_unlock(&pinctrl_mutex);
  1009. return 0;
  1010. }
  1011. static int pinctrl_groups_show(struct seq_file *s, void *what)
  1012. {
  1013. struct pinctrl_dev *pctldev = s->private;
  1014. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1015. unsigned ngroups, selector = 0;
  1016. ngroups = ops->get_groups_count(pctldev);
  1017. mutex_lock(&pinctrl_mutex);
  1018. seq_puts(s, "registered pin groups:\n");
  1019. while (selector < ngroups) {
  1020. const unsigned *pins;
  1021. unsigned num_pins;
  1022. const char *gname = ops->get_group_name(pctldev, selector);
  1023. const char *pname;
  1024. int ret;
  1025. int i;
  1026. ret = ops->get_group_pins(pctldev, selector,
  1027. &pins, &num_pins);
  1028. if (ret)
  1029. seq_printf(s, "%s [ERROR GETTING PINS]\n",
  1030. gname);
  1031. else {
  1032. seq_printf(s, "group: %s\n", gname);
  1033. for (i = 0; i < num_pins; i++) {
  1034. pname = pin_get_name(pctldev, pins[i]);
  1035. if (WARN_ON(!pname)) {
  1036. mutex_unlock(&pinctrl_mutex);
  1037. return -EINVAL;
  1038. }
  1039. seq_printf(s, "pin %d (%s)\n", pins[i], pname);
  1040. }
  1041. seq_puts(s, "\n");
  1042. }
  1043. selector++;
  1044. }
  1045. mutex_unlock(&pinctrl_mutex);
  1046. return 0;
  1047. }
  1048. static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
  1049. {
  1050. struct pinctrl_dev *pctldev = s->private;
  1051. struct pinctrl_gpio_range *range = NULL;
  1052. seq_puts(s, "GPIO ranges handled:\n");
  1053. mutex_lock(&pinctrl_mutex);
  1054. /* Loop over the ranges */
  1055. list_for_each_entry(range, &pctldev->gpio_ranges, node) {
  1056. seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
  1057. range->id, range->name,
  1058. range->base, (range->base + range->npins - 1),
  1059. range->pin_base,
  1060. (range->pin_base + range->npins - 1));
  1061. }
  1062. mutex_unlock(&pinctrl_mutex);
  1063. return 0;
  1064. }
  1065. static int pinctrl_devices_show(struct seq_file *s, void *what)
  1066. {
  1067. struct pinctrl_dev *pctldev;
  1068. seq_puts(s, "name [pinmux] [pinconf]\n");
  1069. mutex_lock(&pinctrl_mutex);
  1070. list_for_each_entry(pctldev, &pinctrldev_list, node) {
  1071. seq_printf(s, "%s ", pctldev->desc->name);
  1072. if (pctldev->desc->pmxops)
  1073. seq_puts(s, "yes ");
  1074. else
  1075. seq_puts(s, "no ");
  1076. if (pctldev->desc->confops)
  1077. seq_puts(s, "yes");
  1078. else
  1079. seq_puts(s, "no");
  1080. seq_puts(s, "\n");
  1081. }
  1082. mutex_unlock(&pinctrl_mutex);
  1083. return 0;
  1084. }
  1085. static inline const char *map_type(enum pinctrl_map_type type)
  1086. {
  1087. static const char * const names[] = {
  1088. "INVALID",
  1089. "DUMMY_STATE",
  1090. "MUX_GROUP",
  1091. "CONFIGS_PIN",
  1092. "CONFIGS_GROUP",
  1093. };
  1094. if (type >= ARRAY_SIZE(names))
  1095. return "UNKNOWN";
  1096. return names[type];
  1097. }
  1098. static int pinctrl_maps_show(struct seq_file *s, void *what)
  1099. {
  1100. struct pinctrl_maps *maps_node;
  1101. int i;
  1102. struct pinctrl_map const *map;
  1103. seq_puts(s, "Pinctrl maps:\n");
  1104. mutex_lock(&pinctrl_mutex);
  1105. for_each_maps(maps_node, i, map) {
  1106. seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
  1107. map->dev_name, map->name, map_type(map->type),
  1108. map->type);
  1109. if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
  1110. seq_printf(s, "controlling device %s\n",
  1111. map->ctrl_dev_name);
  1112. switch (map->type) {
  1113. case PIN_MAP_TYPE_MUX_GROUP:
  1114. pinmux_show_map(s, map);
  1115. break;
  1116. case PIN_MAP_TYPE_CONFIGS_PIN:
  1117. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1118. pinconf_show_map(s, map);
  1119. break;
  1120. default:
  1121. break;
  1122. }
  1123. seq_printf(s, "\n");
  1124. }
  1125. mutex_unlock(&pinctrl_mutex);
  1126. return 0;
  1127. }
  1128. static int pinctrl_show(struct seq_file *s, void *what)
  1129. {
  1130. struct pinctrl *p;
  1131. struct pinctrl_state *state;
  1132. struct pinctrl_setting *setting;
  1133. seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
  1134. mutex_lock(&pinctrl_mutex);
  1135. list_for_each_entry(p, &pinctrl_list, node) {
  1136. seq_printf(s, "device: %s current state: %s\n",
  1137. dev_name(p->dev),
  1138. p->state ? p->state->name : "none");
  1139. list_for_each_entry(state, &p->states, node) {
  1140. seq_printf(s, " state: %s\n", state->name);
  1141. list_for_each_entry(setting, &state->settings, node) {
  1142. struct pinctrl_dev *pctldev = setting->pctldev;
  1143. seq_printf(s, " type: %s controller %s ",
  1144. map_type(setting->type),
  1145. pinctrl_dev_get_name(pctldev));
  1146. switch (setting->type) {
  1147. case PIN_MAP_TYPE_MUX_GROUP:
  1148. pinmux_show_setting(s, setting);
  1149. break;
  1150. case PIN_MAP_TYPE_CONFIGS_PIN:
  1151. case PIN_MAP_TYPE_CONFIGS_GROUP:
  1152. pinconf_show_setting(s, setting);
  1153. break;
  1154. default:
  1155. break;
  1156. }
  1157. }
  1158. }
  1159. }
  1160. mutex_unlock(&pinctrl_mutex);
  1161. return 0;
  1162. }
  1163. static int pinctrl_pins_open(struct inode *inode, struct file *file)
  1164. {
  1165. return single_open(file, pinctrl_pins_show, inode->i_private);
  1166. }
  1167. static int pinctrl_groups_open(struct inode *inode, struct file *file)
  1168. {
  1169. return single_open(file, pinctrl_groups_show, inode->i_private);
  1170. }
  1171. static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
  1172. {
  1173. return single_open(file, pinctrl_gpioranges_show, inode->i_private);
  1174. }
  1175. static int pinctrl_devices_open(struct inode *inode, struct file *file)
  1176. {
  1177. return single_open(file, pinctrl_devices_show, NULL);
  1178. }
  1179. static int pinctrl_maps_open(struct inode *inode, struct file *file)
  1180. {
  1181. return single_open(file, pinctrl_maps_show, NULL);
  1182. }
  1183. static int pinctrl_open(struct inode *inode, struct file *file)
  1184. {
  1185. return single_open(file, pinctrl_show, NULL);
  1186. }
  1187. static const struct file_operations pinctrl_pins_ops = {
  1188. .open = pinctrl_pins_open,
  1189. .read = seq_read,
  1190. .llseek = seq_lseek,
  1191. .release = single_release,
  1192. };
  1193. static const struct file_operations pinctrl_groups_ops = {
  1194. .open = pinctrl_groups_open,
  1195. .read = seq_read,
  1196. .llseek = seq_lseek,
  1197. .release = single_release,
  1198. };
  1199. static const struct file_operations pinctrl_gpioranges_ops = {
  1200. .open = pinctrl_gpioranges_open,
  1201. .read = seq_read,
  1202. .llseek = seq_lseek,
  1203. .release = single_release,
  1204. };
  1205. static const struct file_operations pinctrl_devices_ops = {
  1206. .open = pinctrl_devices_open,
  1207. .read = seq_read,
  1208. .llseek = seq_lseek,
  1209. .release = single_release,
  1210. };
  1211. static const struct file_operations pinctrl_maps_ops = {
  1212. .open = pinctrl_maps_open,
  1213. .read = seq_read,
  1214. .llseek = seq_lseek,
  1215. .release = single_release,
  1216. };
  1217. static const struct file_operations pinctrl_ops = {
  1218. .open = pinctrl_open,
  1219. .read = seq_read,
  1220. .llseek = seq_lseek,
  1221. .release = single_release,
  1222. };
  1223. static struct dentry *debugfs_root;
  1224. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1225. {
  1226. struct dentry *device_root;
  1227. device_root = debugfs_create_dir(dev_name(pctldev->dev),
  1228. debugfs_root);
  1229. pctldev->device_root = device_root;
  1230. if (IS_ERR(device_root) || !device_root) {
  1231. pr_warn("failed to create debugfs directory for %s\n",
  1232. dev_name(pctldev->dev));
  1233. return;
  1234. }
  1235. debugfs_create_file("pins", S_IFREG | S_IRUGO,
  1236. device_root, pctldev, &pinctrl_pins_ops);
  1237. debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
  1238. device_root, pctldev, &pinctrl_groups_ops);
  1239. debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
  1240. device_root, pctldev, &pinctrl_gpioranges_ops);
  1241. pinmux_init_device_debugfs(device_root, pctldev);
  1242. pinconf_init_device_debugfs(device_root, pctldev);
  1243. }
  1244. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1245. {
  1246. debugfs_remove_recursive(pctldev->device_root);
  1247. }
  1248. static void pinctrl_init_debugfs(void)
  1249. {
  1250. debugfs_root = debugfs_create_dir("pinctrl", NULL);
  1251. if (IS_ERR(debugfs_root) || !debugfs_root) {
  1252. pr_warn("failed to create debugfs directory\n");
  1253. debugfs_root = NULL;
  1254. return;
  1255. }
  1256. debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
  1257. debugfs_root, NULL, &pinctrl_devices_ops);
  1258. debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
  1259. debugfs_root, NULL, &pinctrl_maps_ops);
  1260. debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
  1261. debugfs_root, NULL, &pinctrl_ops);
  1262. }
  1263. #else /* CONFIG_DEBUG_FS */
  1264. static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
  1265. {
  1266. }
  1267. static void pinctrl_init_debugfs(void)
  1268. {
  1269. }
  1270. static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
  1271. {
  1272. }
  1273. #endif
  1274. static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
  1275. {
  1276. const struct pinctrl_ops *ops = pctldev->desc->pctlops;
  1277. if (!ops ||
  1278. !ops->get_groups_count ||
  1279. !ops->get_group_name ||
  1280. !ops->get_group_pins)
  1281. return -EINVAL;
  1282. if (ops->dt_node_to_map && !ops->dt_free_map)
  1283. return -EINVAL;
  1284. return 0;
  1285. }
  1286. /**
  1287. * pinctrl_register() - register a pin controller device
  1288. * @pctldesc: descriptor for this pin controller
  1289. * @dev: parent device for this pin controller
  1290. * @driver_data: private pin controller data for this pin controller
  1291. */
  1292. struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
  1293. struct device *dev, void *driver_data)
  1294. {
  1295. struct pinctrl_dev *pctldev;
  1296. int ret;
  1297. if (!pctldesc)
  1298. return NULL;
  1299. if (!pctldesc->name)
  1300. return NULL;
  1301. pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
  1302. if (pctldev == NULL) {
  1303. dev_err(dev, "failed to alloc struct pinctrl_dev\n");
  1304. return NULL;
  1305. }
  1306. /* Initialize pin control device struct */
  1307. pctldev->owner = pctldesc->owner;
  1308. pctldev->desc = pctldesc;
  1309. pctldev->driver_data = driver_data;
  1310. INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
  1311. INIT_LIST_HEAD(&pctldev->gpio_ranges);
  1312. pctldev->dev = dev;
  1313. /* check core ops for sanity */
  1314. if (pinctrl_check_ops(pctldev)) {
  1315. dev_err(dev, "pinctrl ops lacks necessary functions\n");
  1316. goto out_err;
  1317. }
  1318. /* If we're implementing pinmuxing, check the ops for sanity */
  1319. if (pctldesc->pmxops) {
  1320. if (pinmux_check_ops(pctldev))
  1321. goto out_err;
  1322. }
  1323. /* If we're implementing pinconfig, check the ops for sanity */
  1324. if (pctldesc->confops) {
  1325. if (pinconf_check_ops(pctldev))
  1326. goto out_err;
  1327. }
  1328. /* Register all the pins */
  1329. dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
  1330. ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
  1331. if (ret) {
  1332. dev_err(dev, "error during pin registration\n");
  1333. pinctrl_free_pindescs(pctldev, pctldesc->pins,
  1334. pctldesc->npins);
  1335. goto out_err;
  1336. }
  1337. mutex_lock(&pinctrl_mutex);
  1338. list_add_tail(&pctldev->node, &pinctrldev_list);
  1339. pctldev->p = pinctrl_get_locked(pctldev->dev);
  1340. if (!IS_ERR(pctldev->p)) {
  1341. pctldev->hog_default =
  1342. pinctrl_lookup_state_locked(pctldev->p,
  1343. PINCTRL_STATE_DEFAULT);
  1344. if (IS_ERR(pctldev->hog_default)) {
  1345. dev_dbg(dev, "failed to lookup the default state\n");
  1346. } else {
  1347. if (pinctrl_select_state_locked(pctldev->p,
  1348. pctldev->hog_default))
  1349. dev_err(dev,
  1350. "failed to select default state\n");
  1351. }
  1352. pctldev->hog_sleep =
  1353. pinctrl_lookup_state_locked(pctldev->p,
  1354. PINCTRL_STATE_SLEEP);
  1355. if (IS_ERR(pctldev->hog_sleep))
  1356. dev_dbg(dev, "failed to lookup the sleep state\n");
  1357. }
  1358. mutex_unlock(&pinctrl_mutex);
  1359. pinctrl_init_device_debugfs(pctldev);
  1360. return pctldev;
  1361. out_err:
  1362. kfree(pctldev);
  1363. return NULL;
  1364. }
  1365. EXPORT_SYMBOL_GPL(pinctrl_register);
  1366. /**
  1367. * pinctrl_unregister() - unregister pinmux
  1368. * @pctldev: pin controller to unregister
  1369. *
  1370. * Called by pinmux drivers to unregister a pinmux.
  1371. */
  1372. void pinctrl_unregister(struct pinctrl_dev *pctldev)
  1373. {
  1374. struct pinctrl_gpio_range *range, *n;
  1375. if (pctldev == NULL)
  1376. return;
  1377. pinctrl_remove_device_debugfs(pctldev);
  1378. mutex_lock(&pinctrl_mutex);
  1379. if (!IS_ERR(pctldev->p))
  1380. pinctrl_put_locked(pctldev->p, true);
  1381. /* TODO: check that no pinmuxes are still active? */
  1382. list_del(&pctldev->node);
  1383. /* Destroy descriptor tree */
  1384. pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
  1385. pctldev->desc->npins);
  1386. /* remove gpio ranges map */
  1387. list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
  1388. list_del(&range->node);
  1389. kfree(pctldev);
  1390. mutex_unlock(&pinctrl_mutex);
  1391. }
  1392. EXPORT_SYMBOL_GPL(pinctrl_unregister);
  1393. static int __init pinctrl_init(void)
  1394. {
  1395. pr_info("initialized pinctrl subsystem\n");
  1396. pinctrl_init_debugfs();
  1397. return 0;
  1398. }
  1399. /* init early since many drivers really need to initialized pinmux early */
  1400. core_initcall(pinctrl_init);