amd64_edac.c 91 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222
  1. #include "amd64_edac.h"
  2. #include <asm/k8.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. /* Lookup table for all possible MC control instances */
  13. struct amd64_pvt;
  14. static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
  15. static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
  16. /*
  17. * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
  18. * for DDR2 DRAM mapping.
  19. */
  20. u32 revf_quad_ddr2_shift[] = {
  21. 0, /* 0000b NULL DIMM (128mb) */
  22. 28, /* 0001b 256mb */
  23. 29, /* 0010b 512mb */
  24. 29, /* 0011b 512mb */
  25. 29, /* 0100b 512mb */
  26. 30, /* 0101b 1gb */
  27. 30, /* 0110b 1gb */
  28. 31, /* 0111b 2gb */
  29. 31, /* 1000b 2gb */
  30. 32, /* 1001b 4gb */
  31. 32, /* 1010b 4gb */
  32. 33, /* 1011b 8gb */
  33. 0, /* 1100b future */
  34. 0, /* 1101b future */
  35. 0, /* 1110b future */
  36. 0 /* 1111b future */
  37. };
  38. /*
  39. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  40. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  41. * or higher value'.
  42. *
  43. *FIXME: Produce a better mapping/linearisation.
  44. */
  45. struct scrubrate scrubrates[] = {
  46. { 0x01, 1600000000UL},
  47. { 0x02, 800000000UL},
  48. { 0x03, 400000000UL},
  49. { 0x04, 200000000UL},
  50. { 0x05, 100000000UL},
  51. { 0x06, 50000000UL},
  52. { 0x07, 25000000UL},
  53. { 0x08, 12284069UL},
  54. { 0x09, 6274509UL},
  55. { 0x0A, 3121951UL},
  56. { 0x0B, 1560975UL},
  57. { 0x0C, 781440UL},
  58. { 0x0D, 390720UL},
  59. { 0x0E, 195300UL},
  60. { 0x0F, 97650UL},
  61. { 0x10, 48854UL},
  62. { 0x11, 24427UL},
  63. { 0x12, 12213UL},
  64. { 0x13, 6101UL},
  65. { 0x14, 3051UL},
  66. { 0x15, 1523UL},
  67. { 0x16, 761UL},
  68. { 0x00, 0UL}, /* scrubbing off */
  69. };
  70. /*
  71. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  72. * hardware and can involve L2 cache, dcache as well as the main memory. With
  73. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  74. * functionality.
  75. *
  76. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  77. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  78. * bytes/sec for the setting.
  79. *
  80. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  81. * other archs, we might not have access to the caches directly.
  82. */
  83. /*
  84. * scan the scrub rate mapping table for a close or matching bandwidth value to
  85. * issue. If requested is too big, then use last maximum value found.
  86. */
  87. static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
  88. u32 min_scrubrate)
  89. {
  90. u32 scrubval;
  91. int i;
  92. /*
  93. * map the configured rate (new_bw) to a value specific to the AMD64
  94. * memory controller and apply to register. Search for the first
  95. * bandwidth entry that is greater or equal than the setting requested
  96. * and program that. If at last entry, turn off DRAM scrubbing.
  97. */
  98. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  99. /*
  100. * skip scrub rates which aren't recommended
  101. * (see F10 BKDG, F3x58)
  102. */
  103. if (scrubrates[i].scrubval < min_scrubrate)
  104. continue;
  105. if (scrubrates[i].bandwidth <= new_bw)
  106. break;
  107. /*
  108. * if no suitable bandwidth found, turn off DRAM scrubbing
  109. * entirely by falling back to the last element in the
  110. * scrubrates array.
  111. */
  112. }
  113. scrubval = scrubrates[i].scrubval;
  114. if (scrubval)
  115. edac_printk(KERN_DEBUG, EDAC_MC,
  116. "Setting scrub rate bandwidth: %u\n",
  117. scrubrates[i].bandwidth);
  118. else
  119. edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
  120. pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
  121. return 0;
  122. }
  123. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
  124. {
  125. struct amd64_pvt *pvt = mci->pvt_info;
  126. u32 min_scrubrate = 0x0;
  127. switch (boot_cpu_data.x86) {
  128. case 0xf:
  129. min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  130. break;
  131. case 0x10:
  132. min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  133. break;
  134. case 0x11:
  135. min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
  136. break;
  137. default:
  138. amd64_printk(KERN_ERR, "Unsupported family!\n");
  139. break;
  140. }
  141. return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
  142. min_scrubrate);
  143. }
  144. static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
  145. {
  146. struct amd64_pvt *pvt = mci->pvt_info;
  147. u32 scrubval = 0;
  148. int status = -1, i, ret = 0;
  149. ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
  150. if (ret)
  151. debugf0("Reading K8_SCRCTRL failed\n");
  152. scrubval = scrubval & 0x001F;
  153. edac_printk(KERN_DEBUG, EDAC_MC,
  154. "pci-read, sdram scrub control value: %d \n", scrubval);
  155. for (i = 0; ARRAY_SIZE(scrubrates); i++) {
  156. if (scrubrates[i].scrubval == scrubval) {
  157. *bw = scrubrates[i].bandwidth;
  158. status = 0;
  159. break;
  160. }
  161. }
  162. return status;
  163. }
  164. /* Map from a CSROW entry to the mask entry that operates on it */
  165. static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
  166. {
  167. return csrow >> (pvt->num_dcsm >> 3);
  168. }
  169. /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
  170. static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
  171. {
  172. if (dct == 0)
  173. return pvt->dcsb0[csrow];
  174. else
  175. return pvt->dcsb1[csrow];
  176. }
  177. /*
  178. * Return the 'mask' address the i'th CS entry. This function is needed because
  179. * there number of DCSM registers on Rev E and prior vs Rev F and later is
  180. * different.
  181. */
  182. static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
  183. {
  184. if (dct == 0)
  185. return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
  186. else
  187. return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
  188. }
  189. /*
  190. * In *base and *limit, pass back the full 40-bit base and limit physical
  191. * addresses for the node given by node_id. This information is obtained from
  192. * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
  193. * base and limit addresses are of type SysAddr, as defined at the start of
  194. * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
  195. * in the address range they represent.
  196. */
  197. static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
  198. u64 *base, u64 *limit)
  199. {
  200. *base = pvt->dram_base[node_id];
  201. *limit = pvt->dram_limit[node_id];
  202. }
  203. /*
  204. * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
  205. * with node_id
  206. */
  207. static int amd64_base_limit_match(struct amd64_pvt *pvt,
  208. u64 sys_addr, int node_id)
  209. {
  210. u64 base, limit, addr;
  211. amd64_get_base_and_limit(pvt, node_id, &base, &limit);
  212. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  213. * all ones if the most significant implemented address bit is 1.
  214. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  215. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  216. * Application Programming.
  217. */
  218. addr = sys_addr & 0x000000ffffffffffull;
  219. return (addr >= base) && (addr <= limit);
  220. }
  221. /*
  222. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  223. * mem_ctl_info structure for the node that the SysAddr maps to.
  224. *
  225. * On failure, return NULL.
  226. */
  227. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  228. u64 sys_addr)
  229. {
  230. struct amd64_pvt *pvt;
  231. int node_id;
  232. u32 intlv_en, bits;
  233. /*
  234. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  235. * 3.4.4.2) registers to map the SysAddr to a node ID.
  236. */
  237. pvt = mci->pvt_info;
  238. /*
  239. * The value of this field should be the same for all DRAM Base
  240. * registers. Therefore we arbitrarily choose to read it from the
  241. * register for node 0.
  242. */
  243. intlv_en = pvt->dram_IntlvEn[0];
  244. if (intlv_en == 0) {
  245. for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
  246. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  247. goto found;
  248. }
  249. goto err_no_match;
  250. }
  251. if (unlikely((intlv_en != 0x01) &&
  252. (intlv_en != 0x03) &&
  253. (intlv_en != 0x07))) {
  254. amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
  255. "IntlvEn field of DRAM Base Register for node 0: "
  256. "this probably indicates a BIOS bug.\n", intlv_en);
  257. return NULL;
  258. }
  259. bits = (((u32) sys_addr) >> 12) & intlv_en;
  260. for (node_id = 0; ; ) {
  261. if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
  262. break; /* intlv_sel field matches */
  263. if (++node_id >= DRAM_REG_COUNT)
  264. goto err_no_match;
  265. }
  266. /* sanity test for sys_addr */
  267. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  268. amd64_printk(KERN_WARNING,
  269. "%s(): sys_addr 0x%llx falls outside base/limit "
  270. "address range for node %d with node interleaving "
  271. "enabled.\n",
  272. __func__, sys_addr, node_id);
  273. return NULL;
  274. }
  275. found:
  276. return edac_mc_find(node_id);
  277. err_no_match:
  278. debugf2("sys_addr 0x%lx doesn't match any node\n",
  279. (unsigned long)sys_addr);
  280. return NULL;
  281. }
  282. /*
  283. * Extract the DRAM CS base address from selected csrow register.
  284. */
  285. static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
  286. {
  287. return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
  288. pvt->dcs_shift;
  289. }
  290. /*
  291. * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
  292. */
  293. static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
  294. {
  295. u64 dcsm_bits, other_bits;
  296. u64 mask;
  297. /* Extract bits from DRAM CS Mask. */
  298. dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
  299. other_bits = pvt->dcsm_mask;
  300. other_bits = ~(other_bits << pvt->dcs_shift);
  301. /*
  302. * The extracted bits from DCSM belong in the spaces represented by
  303. * the cleared bits in other_bits.
  304. */
  305. mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
  306. return mask;
  307. }
  308. /*
  309. * @input_addr is an InputAddr associated with the node given by mci. Return the
  310. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  311. */
  312. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  313. {
  314. struct amd64_pvt *pvt;
  315. int csrow;
  316. u64 base, mask;
  317. pvt = mci->pvt_info;
  318. /*
  319. * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
  320. * base/mask register pair, test the condition shown near the start of
  321. * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
  322. */
  323. for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
  324. /* This DRAM chip select is disabled on this node */
  325. if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
  326. continue;
  327. base = base_from_dct_base(pvt, csrow);
  328. mask = ~mask_from_dct_mask(pvt, csrow);
  329. if ((input_addr & mask) == (base & mask)) {
  330. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  331. (unsigned long)input_addr, csrow,
  332. pvt->mc_node_id);
  333. return csrow;
  334. }
  335. }
  336. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  337. (unsigned long)input_addr, pvt->mc_node_id);
  338. return -1;
  339. }
  340. /*
  341. * Return the base value defined by the DRAM Base register for the node
  342. * represented by mci. This function returns the full 40-bit value despite the
  343. * fact that the register only stores bits 39-24 of the value. See section
  344. * 3.4.4.1 (BKDG #26094, K8, revA-E)
  345. */
  346. static inline u64 get_dram_base(struct mem_ctl_info *mci)
  347. {
  348. struct amd64_pvt *pvt = mci->pvt_info;
  349. return pvt->dram_base[pvt->mc_node_id];
  350. }
  351. /*
  352. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  353. * for the node represented by mci. Info is passed back in *hole_base,
  354. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  355. * info is invalid. Info may be invalid for either of the following reasons:
  356. *
  357. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  358. * Address Register does not exist.
  359. *
  360. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  361. * indicating that its contents are not valid.
  362. *
  363. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  364. * complete 32-bit values despite the fact that the bitfields in the DHAR
  365. * only represent bits 31-24 of the base and offset values.
  366. */
  367. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  368. u64 *hole_offset, u64 *hole_size)
  369. {
  370. struct amd64_pvt *pvt = mci->pvt_info;
  371. u64 base;
  372. /* only revE and later have the DRAM Hole Address Register */
  373. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
  374. debugf1(" revision %d for node %d does not support DHAR\n",
  375. pvt->ext_model, pvt->mc_node_id);
  376. return 1;
  377. }
  378. /* only valid for Fam10h */
  379. if (boot_cpu_data.x86 == 0x10 &&
  380. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
  381. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  382. return 1;
  383. }
  384. if ((pvt->dhar & DHAR_VALID) == 0) {
  385. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  386. pvt->mc_node_id);
  387. return 1;
  388. }
  389. /* This node has Memory Hoisting */
  390. /* +------------------+--------------------+--------------------+-----
  391. * | memory | DRAM hole | relocated |
  392. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  393. * | | | DRAM hole |
  394. * | | | [0x100000000, |
  395. * | | | (0x100000000+ |
  396. * | | | (0xffffffff-x))] |
  397. * +------------------+--------------------+--------------------+-----
  398. *
  399. * Above is a diagram of physical memory showing the DRAM hole and the
  400. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  401. * starts at address x (the base address) and extends through address
  402. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  403. * addresses in the hole so that they start at 0x100000000.
  404. */
  405. base = dhar_base(pvt->dhar);
  406. *hole_base = base;
  407. *hole_size = (0x1ull << 32) - base;
  408. if (boot_cpu_data.x86 > 0xf)
  409. *hole_offset = f10_dhar_offset(pvt->dhar);
  410. else
  411. *hole_offset = k8_dhar_offset(pvt->dhar);
  412. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  413. pvt->mc_node_id, (unsigned long)*hole_base,
  414. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  415. return 0;
  416. }
  417. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  418. /*
  419. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  420. * assumed that sys_addr maps to the node given by mci.
  421. *
  422. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  423. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  424. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  425. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  426. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  427. * These parts of the documentation are unclear. I interpret them as follows:
  428. *
  429. * When node n receives a SysAddr, it processes the SysAddr as follows:
  430. *
  431. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  432. * Limit registers for node n. If the SysAddr is not within the range
  433. * specified by the base and limit values, then node n ignores the Sysaddr
  434. * (since it does not map to node n). Otherwise continue to step 2 below.
  435. *
  436. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  437. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  438. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  439. * hole. If not, skip to step 3 below. Else get the value of the
  440. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  441. * offset defined by this value from the SysAddr.
  442. *
  443. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  444. * Base register for node n. To obtain the DramAddr, subtract the base
  445. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  446. */
  447. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  448. {
  449. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  450. int ret = 0;
  451. dram_base = get_dram_base(mci);
  452. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  453. &hole_size);
  454. if (!ret) {
  455. if ((sys_addr >= (1ull << 32)) &&
  456. (sys_addr < ((1ull << 32) + hole_size))) {
  457. /* use DHAR to translate SysAddr to DramAddr */
  458. dram_addr = sys_addr - hole_offset;
  459. debugf2("using DHAR to translate SysAddr 0x%lx to "
  460. "DramAddr 0x%lx\n",
  461. (unsigned long)sys_addr,
  462. (unsigned long)dram_addr);
  463. return dram_addr;
  464. }
  465. }
  466. /*
  467. * Translate the SysAddr to a DramAddr as shown near the start of
  468. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  469. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  470. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  471. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  472. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  473. * Programmer's Manual Volume 1 Application Programming.
  474. */
  475. dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
  476. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  477. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  478. (unsigned long)dram_addr);
  479. return dram_addr;
  480. }
  481. /*
  482. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  483. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  484. * for node interleaving.
  485. */
  486. static int num_node_interleave_bits(unsigned intlv_en)
  487. {
  488. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  489. int n;
  490. BUG_ON(intlv_en > 7);
  491. n = intlv_shift_table[intlv_en];
  492. return n;
  493. }
  494. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  495. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  496. {
  497. struct amd64_pvt *pvt;
  498. int intlv_shift;
  499. u64 input_addr;
  500. pvt = mci->pvt_info;
  501. /*
  502. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  503. * concerning translating a DramAddr to an InputAddr.
  504. */
  505. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  506. input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
  507. (dram_addr & 0xfff);
  508. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  509. intlv_shift, (unsigned long)dram_addr,
  510. (unsigned long)input_addr);
  511. return input_addr;
  512. }
  513. /*
  514. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  515. * assumed that @sys_addr maps to the node given by mci.
  516. */
  517. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  518. {
  519. u64 input_addr;
  520. input_addr =
  521. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  522. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  523. (unsigned long)sys_addr, (unsigned long)input_addr);
  524. return input_addr;
  525. }
  526. /*
  527. * @input_addr is an InputAddr associated with the node represented by mci.
  528. * Translate @input_addr to a DramAddr and return the result.
  529. */
  530. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  531. {
  532. struct amd64_pvt *pvt;
  533. int node_id, intlv_shift;
  534. u64 bits, dram_addr;
  535. u32 intlv_sel;
  536. /*
  537. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  538. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  539. * this procedure. When translating from a DramAddr to an InputAddr, the
  540. * bits used for node interleaving are discarded. Here we recover these
  541. * bits from the IntlvSel field of the DRAM Limit register (section
  542. * 3.4.4.2) for the node that input_addr is associated with.
  543. */
  544. pvt = mci->pvt_info;
  545. node_id = pvt->mc_node_id;
  546. BUG_ON((node_id < 0) || (node_id > 7));
  547. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  548. if (intlv_shift == 0) {
  549. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  550. "same value\n", (unsigned long)input_addr);
  551. return input_addr;
  552. }
  553. bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
  554. (input_addr & 0xfff);
  555. intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
  556. dram_addr = bits + (intlv_sel << 12);
  557. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  558. "(%d node interleave bits)\n", (unsigned long)input_addr,
  559. (unsigned long)dram_addr, intlv_shift);
  560. return dram_addr;
  561. }
  562. /*
  563. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  564. * @dram_addr to a SysAddr.
  565. */
  566. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  567. {
  568. struct amd64_pvt *pvt = mci->pvt_info;
  569. u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
  570. int ret = 0;
  571. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  572. &hole_size);
  573. if (!ret) {
  574. if ((dram_addr >= hole_base) &&
  575. (dram_addr < (hole_base + hole_size))) {
  576. sys_addr = dram_addr + hole_offset;
  577. debugf1("using DHAR to translate DramAddr 0x%lx to "
  578. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  579. (unsigned long)sys_addr);
  580. return sys_addr;
  581. }
  582. }
  583. amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
  584. sys_addr = dram_addr + base;
  585. /*
  586. * The sys_addr we have computed up to this point is a 40-bit value
  587. * because the k8 deals with 40-bit values. However, the value we are
  588. * supposed to return is a full 64-bit physical address. The AMD
  589. * x86-64 architecture specifies that the most significant implemented
  590. * address bit through bit 63 of a physical address must be either all
  591. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  592. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  593. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  594. * Programming.
  595. */
  596. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  597. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  598. pvt->mc_node_id, (unsigned long)dram_addr,
  599. (unsigned long)sys_addr);
  600. return sys_addr;
  601. }
  602. /*
  603. * @input_addr is an InputAddr associated with the node given by mci. Translate
  604. * @input_addr to a SysAddr.
  605. */
  606. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  607. u64 input_addr)
  608. {
  609. return dram_addr_to_sys_addr(mci,
  610. input_addr_to_dram_addr(mci, input_addr));
  611. }
  612. /*
  613. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  614. * Pass back these values in *input_addr_min and *input_addr_max.
  615. */
  616. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  617. u64 *input_addr_min, u64 *input_addr_max)
  618. {
  619. struct amd64_pvt *pvt;
  620. u64 base, mask;
  621. pvt = mci->pvt_info;
  622. BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
  623. base = base_from_dct_base(pvt, csrow);
  624. mask = mask_from_dct_mask(pvt, csrow);
  625. *input_addr_min = base & ~mask;
  626. *input_addr_max = base | mask | pvt->dcs_mask_notused;
  627. }
  628. /*
  629. * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
  630. * Address High (section 3.6.4.6) register values and return the result. Address
  631. * is located in the info structure (nbeah and nbeal), the encoding is device
  632. * specific.
  633. */
  634. static u64 extract_error_address(struct mem_ctl_info *mci,
  635. struct err_regs *info)
  636. {
  637. struct amd64_pvt *pvt = mci->pvt_info;
  638. return pvt->ops->get_error_address(mci, info);
  639. }
  640. /* Map the Error address to a PAGE and PAGE OFFSET. */
  641. static inline void error_address_to_page_and_offset(u64 error_address,
  642. u32 *page, u32 *offset)
  643. {
  644. *page = (u32) (error_address >> PAGE_SHIFT);
  645. *offset = ((u32) error_address) & ~PAGE_MASK;
  646. }
  647. /*
  648. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  649. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  650. * of a node that detected an ECC memory error. mci represents the node that
  651. * the error address maps to (possibly different from the node that detected
  652. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  653. * error.
  654. */
  655. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  656. {
  657. int csrow;
  658. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  659. if (csrow == -1)
  660. amd64_mc_printk(mci, KERN_ERR,
  661. "Failed to translate InputAddr to csrow for "
  662. "address 0x%lx\n", (unsigned long)sys_addr);
  663. return csrow;
  664. }
  665. static int get_channel_from_ecc_syndrome(unsigned short syndrome);
  666. static void amd64_cpu_display_info(struct amd64_pvt *pvt)
  667. {
  668. if (boot_cpu_data.x86 == 0x11)
  669. edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
  670. else if (boot_cpu_data.x86 == 0x10)
  671. edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
  672. else if (boot_cpu_data.x86 == 0xf)
  673. edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
  674. (pvt->ext_model >= OPTERON_CPU_REV_F) ?
  675. "Rev F or later" : "Rev E or earlier");
  676. else
  677. /* we'll hardly ever ever get here */
  678. edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
  679. }
  680. /*
  681. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  682. * are ECC capable.
  683. */
  684. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  685. {
  686. int bit;
  687. enum dev_type edac_cap = EDAC_FLAG_NONE;
  688. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
  689. ? 19
  690. : 17;
  691. if (pvt->dclr0 & BIT(bit))
  692. edac_cap = EDAC_FLAG_SECDED;
  693. return edac_cap;
  694. }
  695. static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
  696. int ganged);
  697. /* Display and decode various NB registers for debug purposes. */
  698. static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
  699. {
  700. int ganged;
  701. debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
  702. pvt->nbcap,
  703. (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
  704. (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
  705. (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
  706. debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
  707. (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
  708. (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
  709. debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
  710. pvt->dclr0,
  711. (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
  712. (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
  713. (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
  714. debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
  715. (pvt->dclr0 & BIT(12)) ? "Y" : "N",
  716. (pvt->dclr0 & BIT(13)) ? "Y" : "N",
  717. (pvt->dclr0 & BIT(14)) ? "Y" : "N",
  718. (pvt->dclr0 & BIT(15)) ? "Y" : "N",
  719. (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
  720. debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
  721. if (boot_cpu_data.x86 == 0xf) {
  722. debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
  723. pvt->dhar, dhar_base(pvt->dhar),
  724. k8_dhar_offset(pvt->dhar));
  725. debugf1(" DramHoleValid=%s\n",
  726. (pvt->dhar & DHAR_VALID) ? "True" : "False");
  727. debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
  728. /* everything below this point is Fam10h and above */
  729. return;
  730. } else {
  731. debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
  732. pvt->dhar, dhar_base(pvt->dhar),
  733. f10_dhar_offset(pvt->dhar));
  734. debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
  735. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
  736. "True" : "False",
  737. (pvt->dhar & DHAR_VALID) ?
  738. "True" : "False");
  739. }
  740. /* Only if NOT ganged does dcl1 have valid info */
  741. if (!dct_ganging_enabled(pvt)) {
  742. debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
  743. "Width=%s\n", pvt->dclr1,
  744. (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
  745. (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
  746. (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
  747. debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
  748. "DIMM Type=%s\n",
  749. (pvt->dclr1 & BIT(12)) ? "Y" : "N",
  750. (pvt->dclr1 & BIT(13)) ? "Y" : "N",
  751. (pvt->dclr1 & BIT(14)) ? "Y" : "N",
  752. (pvt->dclr1 & BIT(15)) ? "Y" : "N",
  753. (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
  754. }
  755. /*
  756. * Determine if ganged and then dump memory sizes for first controller,
  757. * and if NOT ganged dump info for 2nd controller.
  758. */
  759. ganged = dct_ganging_enabled(pvt);
  760. f10_debug_display_dimm_sizes(0, pvt, ganged);
  761. if (!ganged)
  762. f10_debug_display_dimm_sizes(1, pvt, ganged);
  763. }
  764. /* Read in both of DBAM registers */
  765. static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
  766. {
  767. int err = 0;
  768. unsigned int reg;
  769. reg = DBAM0;
  770. err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
  771. if (err)
  772. goto err_reg;
  773. if (boot_cpu_data.x86 >= 0x10) {
  774. reg = DBAM1;
  775. err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
  776. if (err)
  777. goto err_reg;
  778. }
  779. return;
  780. err_reg:
  781. debugf0("Error reading F2x%03x.\n", reg);
  782. }
  783. /*
  784. * NOTE: CPU Revision Dependent code: Rev E and Rev F
  785. *
  786. * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
  787. * set the shift factor for the DCSB and DCSM values.
  788. *
  789. * ->dcs_mask_notused, RevE:
  790. *
  791. * To find the max InputAddr for the csrow, start with the base address and set
  792. * all bits that are "don't care" bits in the test at the start of section
  793. * 3.5.4 (p. 84).
  794. *
  795. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  796. * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
  797. * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
  798. * gaps.
  799. *
  800. * ->dcs_mask_notused, RevF and later:
  801. *
  802. * To find the max InputAddr for the csrow, start with the base address and set
  803. * all bits that are "don't care" bits in the test at the start of NPT section
  804. * 4.5.4 (p. 87).
  805. *
  806. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  807. * between bit ranges [36:27] and [21:13].
  808. *
  809. * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
  810. * which are all bits in the above-mentioned gaps.
  811. */
  812. static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
  813. {
  814. if (pvt->ext_model >= OPTERON_CPU_REV_F) {
  815. pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
  816. pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
  817. pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
  818. pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
  819. switch (boot_cpu_data.x86) {
  820. case 0xf:
  821. pvt->num_dcsm = REV_F_DCSM_COUNT;
  822. break;
  823. case 0x10:
  824. pvt->num_dcsm = F10_DCSM_COUNT;
  825. break;
  826. case 0x11:
  827. pvt->num_dcsm = F11_DCSM_COUNT;
  828. break;
  829. default:
  830. amd64_printk(KERN_ERR, "Unsupported family!\n");
  831. break;
  832. }
  833. } else {
  834. pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
  835. pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
  836. pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
  837. pvt->dcs_shift = REV_E_DCS_SHIFT;
  838. pvt->num_dcsm = REV_E_DCSM_COUNT;
  839. }
  840. }
  841. /*
  842. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
  843. */
  844. static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
  845. {
  846. int cs, reg, err = 0;
  847. amd64_set_dct_base_and_mask(pvt);
  848. for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
  849. reg = K8_DCSB0 + (cs * 4);
  850. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  851. &pvt->dcsb0[cs]);
  852. if (unlikely(err))
  853. debugf0("Reading K8_DCSB0[%d] failed\n", cs);
  854. else
  855. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  856. cs, pvt->dcsb0[cs], reg);
  857. /* If DCT are NOT ganged, then read in DCT1's base */
  858. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  859. reg = F10_DCSB1 + (cs * 4);
  860. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  861. &pvt->dcsb1[cs]);
  862. if (unlikely(err))
  863. debugf0("Reading F10_DCSB1[%d] failed\n", cs);
  864. else
  865. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  866. cs, pvt->dcsb1[cs], reg);
  867. } else {
  868. pvt->dcsb1[cs] = 0;
  869. }
  870. }
  871. for (cs = 0; cs < pvt->num_dcsm; cs++) {
  872. reg = K8_DCSM0 + (cs * 4);
  873. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  874. &pvt->dcsm0[cs]);
  875. if (unlikely(err))
  876. debugf0("Reading K8_DCSM0 failed\n");
  877. else
  878. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  879. cs, pvt->dcsm0[cs], reg);
  880. /* If DCT are NOT ganged, then read in DCT1's mask */
  881. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  882. reg = F10_DCSM1 + (cs * 4);
  883. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  884. &pvt->dcsm1[cs]);
  885. if (unlikely(err))
  886. debugf0("Reading F10_DCSM1[%d] failed\n", cs);
  887. else
  888. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  889. cs, pvt->dcsm1[cs], reg);
  890. } else
  891. pvt->dcsm1[cs] = 0;
  892. }
  893. }
  894. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
  895. {
  896. enum mem_type type;
  897. if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
  898. /* Rev F and later */
  899. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  900. } else {
  901. /* Rev E and earlier */
  902. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  903. }
  904. debugf1(" Memory type is: %s\n",
  905. (type == MEM_DDR2) ? "MEM_DDR2" :
  906. (type == MEM_RDDR2) ? "MEM_RDDR2" :
  907. (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
  908. return type;
  909. }
  910. /*
  911. * Read the DRAM Configuration Low register. It differs between CG, D & E revs
  912. * and the later RevF memory controllers (DDR vs DDR2)
  913. *
  914. * Return:
  915. * number of memory channels in operation
  916. * Pass back:
  917. * contents of the DCL0_LOW register
  918. */
  919. static int k8_early_channel_count(struct amd64_pvt *pvt)
  920. {
  921. int flag, err = 0;
  922. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  923. if (err)
  924. return err;
  925. if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
  926. /* RevF (NPT) and later */
  927. flag = pvt->dclr0 & F10_WIDTH_128;
  928. } else {
  929. /* RevE and earlier */
  930. flag = pvt->dclr0 & REVE_WIDTH_128;
  931. }
  932. /* not used */
  933. pvt->dclr1 = 0;
  934. return (flag) ? 2 : 1;
  935. }
  936. /* extract the ERROR ADDRESS for the K8 CPUs */
  937. static u64 k8_get_error_address(struct mem_ctl_info *mci,
  938. struct err_regs *info)
  939. {
  940. return (((u64) (info->nbeah & 0xff)) << 32) +
  941. (info->nbeal & ~0x03);
  942. }
  943. /*
  944. * Read the Base and Limit registers for K8 based Memory controllers; extract
  945. * fields from the 'raw' reg into separate data fields
  946. *
  947. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
  948. */
  949. static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  950. {
  951. u32 low;
  952. u32 off = dram << 3; /* 8 bytes between DRAM entries */
  953. int err;
  954. err = pci_read_config_dword(pvt->addr_f1_ctl,
  955. K8_DRAM_BASE_LOW + off, &low);
  956. if (err)
  957. debugf0("Reading K8_DRAM_BASE_LOW failed\n");
  958. /* Extract parts into separate data entries */
  959. pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 24;
  960. pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
  961. pvt->dram_rw_en[dram] = (low & 0x3);
  962. err = pci_read_config_dword(pvt->addr_f1_ctl,
  963. K8_DRAM_LIMIT_LOW + off, &low);
  964. if (err)
  965. debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
  966. /*
  967. * Extract parts into separate data entries. Limit is the HIGHEST memory
  968. * location of the region, so lower 24 bits need to be all ones
  969. */
  970. pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 24) | 0x00FFFFFF;
  971. pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
  972. pvt->dram_DstNode[dram] = (low & 0x7);
  973. }
  974. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  975. struct err_regs *info,
  976. u64 SystemAddress)
  977. {
  978. struct mem_ctl_info *src_mci;
  979. unsigned short syndrome;
  980. int channel, csrow;
  981. u32 page, offset;
  982. /* Extract the syndrome parts and form a 16-bit syndrome */
  983. syndrome = HIGH_SYNDROME(info->nbsl) << 8;
  984. syndrome |= LOW_SYNDROME(info->nbsh);
  985. /* CHIPKILL enabled */
  986. if (info->nbcfg & K8_NBCFG_CHIPKILL) {
  987. channel = get_channel_from_ecc_syndrome(syndrome);
  988. if (channel < 0) {
  989. /*
  990. * Syndrome didn't map, so we don't know which of the
  991. * 2 DIMMs is in error. So we need to ID 'both' of them
  992. * as suspect.
  993. */
  994. amd64_mc_printk(mci, KERN_WARNING,
  995. "unknown syndrome 0x%x - possible error "
  996. "reporting race\n", syndrome);
  997. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  998. return;
  999. }
  1000. } else {
  1001. /*
  1002. * non-chipkill ecc mode
  1003. *
  1004. * The k8 documentation is unclear about how to determine the
  1005. * channel number when using non-chipkill memory. This method
  1006. * was obtained from email communication with someone at AMD.
  1007. * (Wish the email was placed in this comment - norsk)
  1008. */
  1009. channel = ((SystemAddress & BIT(3)) != 0);
  1010. }
  1011. /*
  1012. * Find out which node the error address belongs to. This may be
  1013. * different from the node that detected the error.
  1014. */
  1015. src_mci = find_mc_by_sys_addr(mci, SystemAddress);
  1016. if (src_mci) {
  1017. amd64_mc_printk(mci, KERN_ERR,
  1018. "failed to map error address 0x%lx to a node\n",
  1019. (unsigned long)SystemAddress);
  1020. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1021. return;
  1022. }
  1023. /* Now map the SystemAddress to a CSROW */
  1024. csrow = sys_addr_to_csrow(src_mci, SystemAddress);
  1025. if (csrow < 0) {
  1026. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  1027. } else {
  1028. error_address_to_page_and_offset(SystemAddress, &page, &offset);
  1029. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  1030. channel, EDAC_MOD_STR);
  1031. }
  1032. }
  1033. /*
  1034. * determrine the number of PAGES in for this DIMM's size based on its DRAM
  1035. * Address Mapping.
  1036. *
  1037. * First step is to calc the number of bits to shift a value of 1 left to
  1038. * indicate show many pages. Start with the DBAM value as the starting bits,
  1039. * then proceed to adjust those shift bits, based on CPU rev and the table.
  1040. * See BKDG on the DBAM
  1041. */
  1042. static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
  1043. {
  1044. int nr_pages;
  1045. if (pvt->ext_model >= OPTERON_CPU_REV_F) {
  1046. nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
  1047. } else {
  1048. /*
  1049. * RevE and less section; this line is tricky. It collapses the
  1050. * table used by RevD and later to one that matches revisions CG
  1051. * and earlier.
  1052. */
  1053. dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
  1054. (dram_map > 8 ? 4 : (dram_map > 5 ?
  1055. 3 : (dram_map > 2 ? 1 : 0))) : 0;
  1056. /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
  1057. nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
  1058. }
  1059. return nr_pages;
  1060. }
  1061. /*
  1062. * Get the number of DCT channels in use.
  1063. *
  1064. * Return:
  1065. * number of Memory Channels in operation
  1066. * Pass back:
  1067. * contents of the DCL0_LOW register
  1068. */
  1069. static int f10_early_channel_count(struct amd64_pvt *pvt)
  1070. {
  1071. int dbams[] = { DBAM0, DBAM1 };
  1072. int err = 0, channels = 0;
  1073. int i, j;
  1074. u32 dbam;
  1075. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  1076. if (err)
  1077. goto err_reg;
  1078. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
  1079. if (err)
  1080. goto err_reg;
  1081. /* If we are in 128 bit mode, then we are using 2 channels */
  1082. if (pvt->dclr0 & F10_WIDTH_128) {
  1083. debugf0("Data WIDTH is 128 bits - 2 channels\n");
  1084. channels = 2;
  1085. return channels;
  1086. }
  1087. /*
  1088. * Need to check if in UN-ganged mode: In such, there are 2 channels,
  1089. * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
  1090. * will be OFF.
  1091. *
  1092. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  1093. * their CSEnable bit on. If so, then SINGLE DIMM case.
  1094. */
  1095. debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
  1096. /*
  1097. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  1098. * is more than just one DIMM present in unganged mode. Need to check
  1099. * both controllers since DIMMs can be placed in either one.
  1100. */
  1101. for (i = 0; i < ARRAY_SIZE(dbams); i++) {
  1102. err = pci_read_config_dword(pvt->dram_f2_ctl, dbams[i], &dbam);
  1103. if (err)
  1104. goto err_reg;
  1105. for (j = 0; j < 4; j++) {
  1106. if (DBAM_DIMM(j, dbam) > 0) {
  1107. channels++;
  1108. break;
  1109. }
  1110. }
  1111. }
  1112. debugf0("MCT channel count: %d\n", channels);
  1113. return channels;
  1114. err_reg:
  1115. return -1;
  1116. }
  1117. static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
  1118. {
  1119. return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
  1120. }
  1121. /* Enable extended configuration access via 0xCF8 feature */
  1122. static void amd64_setup(struct amd64_pvt *pvt)
  1123. {
  1124. u32 reg;
  1125. pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1126. pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
  1127. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1128. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1129. }
  1130. /* Restore the extended configuration access via 0xCF8 feature */
  1131. static void amd64_teardown(struct amd64_pvt *pvt)
  1132. {
  1133. u32 reg;
  1134. pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1135. reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1136. if (pvt->flags.cf8_extcfg)
  1137. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1138. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1139. }
  1140. static u64 f10_get_error_address(struct mem_ctl_info *mci,
  1141. struct err_regs *info)
  1142. {
  1143. return (((u64) (info->nbeah & 0xffff)) << 32) +
  1144. (info->nbeal & ~0x01);
  1145. }
  1146. /*
  1147. * Read the Base and Limit registers for F10 based Memory controllers. Extract
  1148. * fields from the 'raw' reg into separate data fields.
  1149. *
  1150. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
  1151. */
  1152. static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  1153. {
  1154. u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
  1155. low_offset = K8_DRAM_BASE_LOW + (dram << 3);
  1156. high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
  1157. /* read the 'raw' DRAM BASE Address register */
  1158. pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
  1159. /* Read from the ECS data register */
  1160. pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
  1161. /* Extract parts into separate data entries */
  1162. pvt->dram_rw_en[dram] = (low_base & 0x3);
  1163. if (pvt->dram_rw_en[dram] == 0)
  1164. return;
  1165. pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
  1166. pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
  1167. ((u64) low_base & 0xFFFF0000))) << 8;
  1168. low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
  1169. high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
  1170. /* read the 'raw' LIMIT registers */
  1171. pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
  1172. /* Read from the ECS data register for the HIGH portion */
  1173. pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
  1174. debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
  1175. high_base, low_base, high_limit, low_limit);
  1176. pvt->dram_DstNode[dram] = (low_limit & 0x7);
  1177. pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
  1178. /*
  1179. * Extract address values and form a LIMIT address. Limit is the HIGHEST
  1180. * memory location of the region, so low 24 bits need to be all ones.
  1181. */
  1182. low_limit |= 0x0000FFFF;
  1183. pvt->dram_limit[dram] =
  1184. ((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
  1185. }
  1186. static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
  1187. {
  1188. int err = 0;
  1189. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
  1190. &pvt->dram_ctl_select_low);
  1191. if (err) {
  1192. debugf0("Reading F10_DCTL_SEL_LOW failed\n");
  1193. } else {
  1194. debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
  1195. pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
  1196. debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
  1197. "sel-hi-range=%s\n",
  1198. (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
  1199. (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
  1200. (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
  1201. debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
  1202. (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
  1203. (dct_memory_cleared(pvt) ? "True " : "False "),
  1204. dct_sel_interleave_addr(pvt));
  1205. }
  1206. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
  1207. &pvt->dram_ctl_select_high);
  1208. if (err)
  1209. debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
  1210. }
  1211. /*
  1212. * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1213. * Interleaving Modes.
  1214. */
  1215. static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1216. int hi_range_sel, u32 intlv_en)
  1217. {
  1218. u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
  1219. if (dct_ganging_enabled(pvt))
  1220. cs = 0;
  1221. else if (hi_range_sel)
  1222. cs = dct_sel_high;
  1223. else if (dct_interleave_enabled(pvt)) {
  1224. /*
  1225. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1226. */
  1227. if (dct_sel_interleave_addr(pvt) == 0)
  1228. cs = sys_addr >> 6 & 1;
  1229. else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
  1230. temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1231. if (dct_sel_interleave_addr(pvt) & 1)
  1232. cs = (sys_addr >> 9 & 1) ^ temp;
  1233. else
  1234. cs = (sys_addr >> 6 & 1) ^ temp;
  1235. } else if (intlv_en & 4)
  1236. cs = sys_addr >> 15 & 1;
  1237. else if (intlv_en & 2)
  1238. cs = sys_addr >> 14 & 1;
  1239. else if (intlv_en & 1)
  1240. cs = sys_addr >> 13 & 1;
  1241. else
  1242. cs = sys_addr >> 12 & 1;
  1243. } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
  1244. cs = ~dct_sel_high & 1;
  1245. else
  1246. cs = 0;
  1247. return cs;
  1248. }
  1249. static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
  1250. {
  1251. if (intlv_en == 1)
  1252. return 1;
  1253. else if (intlv_en == 3)
  1254. return 2;
  1255. else if (intlv_en == 7)
  1256. return 3;
  1257. return 0;
  1258. }
  1259. /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
  1260. static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
  1261. u32 dct_sel_base_addr,
  1262. u64 dct_sel_base_off,
  1263. u32 hole_valid, u32 hole_off,
  1264. u64 dram_base)
  1265. {
  1266. u64 chan_off;
  1267. if (hi_range_sel) {
  1268. if (!(dct_sel_base_addr & 0xFFFFF800) &&
  1269. hole_valid && (sys_addr >= 0x100000000ULL))
  1270. chan_off = hole_off << 16;
  1271. else
  1272. chan_off = dct_sel_base_off;
  1273. } else {
  1274. if (hole_valid && (sys_addr >= 0x100000000ULL))
  1275. chan_off = hole_off << 16;
  1276. else
  1277. chan_off = dram_base & 0xFFFFF8000000ULL;
  1278. }
  1279. return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
  1280. (chan_off & 0x0000FFFFFF800000ULL);
  1281. }
  1282. /* Hack for the time being - Can we get this from BIOS?? */
  1283. #define CH0SPARE_RANK 0
  1284. #define CH1SPARE_RANK 1
  1285. /*
  1286. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1287. * spare row
  1288. */
  1289. static inline int f10_process_possible_spare(int csrow,
  1290. u32 cs, struct amd64_pvt *pvt)
  1291. {
  1292. u32 swap_done;
  1293. u32 bad_dram_cs;
  1294. /* Depending on channel, isolate respective SPARING info */
  1295. if (cs) {
  1296. swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
  1297. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
  1298. if (swap_done && (csrow == bad_dram_cs))
  1299. csrow = CH1SPARE_RANK;
  1300. } else {
  1301. swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
  1302. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
  1303. if (swap_done && (csrow == bad_dram_cs))
  1304. csrow = CH0SPARE_RANK;
  1305. }
  1306. return csrow;
  1307. }
  1308. /*
  1309. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1310. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1311. *
  1312. * Return:
  1313. * -EINVAL: NOT FOUND
  1314. * 0..csrow = Chip-Select Row
  1315. */
  1316. static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
  1317. {
  1318. struct mem_ctl_info *mci;
  1319. struct amd64_pvt *pvt;
  1320. u32 cs_base, cs_mask;
  1321. int cs_found = -EINVAL;
  1322. int csrow;
  1323. mci = mci_lookup[nid];
  1324. if (!mci)
  1325. return cs_found;
  1326. pvt = mci->pvt_info;
  1327. debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
  1328. for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
  1329. cs_base = amd64_get_dct_base(pvt, cs, csrow);
  1330. if (!(cs_base & K8_DCSB_CS_ENABLE))
  1331. continue;
  1332. /*
  1333. * We have an ENABLED CSROW, Isolate just the MASK bits of the
  1334. * target: [28:19] and [13:5], which map to [36:27] and [21:13]
  1335. * of the actual address.
  1336. */
  1337. cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
  1338. /*
  1339. * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
  1340. * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
  1341. */
  1342. cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
  1343. debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
  1344. csrow, cs_base, cs_mask);
  1345. cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
  1346. debugf1(" Final CSMask=0x%x\n", cs_mask);
  1347. debugf1(" (InputAddr & ~CSMask)=0x%x "
  1348. "(CSBase & ~CSMask)=0x%x\n",
  1349. (in_addr & ~cs_mask), (cs_base & ~cs_mask));
  1350. if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
  1351. cs_found = f10_process_possible_spare(csrow, cs, pvt);
  1352. debugf1(" MATCH csrow=%d\n", cs_found);
  1353. break;
  1354. }
  1355. }
  1356. return cs_found;
  1357. }
  1358. /* For a given @dram_range, check if @sys_addr falls within it. */
  1359. static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
  1360. u64 sys_addr, int *nid, int *chan_sel)
  1361. {
  1362. int node_id, cs_found = -EINVAL, high_range = 0;
  1363. u32 intlv_en, intlv_sel, intlv_shift, hole_off;
  1364. u32 hole_valid, tmp, dct_sel_base, channel;
  1365. u64 dram_base, chan_addr, dct_sel_base_off;
  1366. dram_base = pvt->dram_base[dram_range];
  1367. intlv_en = pvt->dram_IntlvEn[dram_range];
  1368. node_id = pvt->dram_DstNode[dram_range];
  1369. intlv_sel = pvt->dram_IntlvSel[dram_range];
  1370. debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
  1371. dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
  1372. /*
  1373. * This assumes that one node's DHAR is the same as all the other
  1374. * nodes' DHAR.
  1375. */
  1376. hole_off = (pvt->dhar & 0x0000FF80);
  1377. hole_valid = (pvt->dhar & 0x1);
  1378. dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
  1379. debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
  1380. hole_off, hole_valid, intlv_sel);
  1381. if (intlv_en ||
  1382. (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1383. return -EINVAL;
  1384. dct_sel_base = dct_sel_baseaddr(pvt);
  1385. /*
  1386. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1387. * select between DCT0 and DCT1.
  1388. */
  1389. if (dct_high_range_enabled(pvt) &&
  1390. !dct_ganging_enabled(pvt) &&
  1391. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1392. high_range = 1;
  1393. channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1394. chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
  1395. dct_sel_base_off, hole_valid,
  1396. hole_off, dram_base);
  1397. intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
  1398. /* remove Node ID (in case of memory interleaving) */
  1399. tmp = chan_addr & 0xFC0;
  1400. chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
  1401. /* remove channel interleave and hash */
  1402. if (dct_interleave_enabled(pvt) &&
  1403. !dct_high_range_enabled(pvt) &&
  1404. !dct_ganging_enabled(pvt)) {
  1405. if (dct_sel_interleave_addr(pvt) != 1)
  1406. chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
  1407. else {
  1408. tmp = chan_addr & 0xFC0;
  1409. chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
  1410. | tmp;
  1411. }
  1412. }
  1413. debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
  1414. chan_addr, (u32)(chan_addr >> 8));
  1415. cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
  1416. if (cs_found >= 0) {
  1417. *nid = node_id;
  1418. *chan_sel = channel;
  1419. }
  1420. return cs_found;
  1421. }
  1422. static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1423. int *node, int *chan_sel)
  1424. {
  1425. int dram_range, cs_found = -EINVAL;
  1426. u64 dram_base, dram_limit;
  1427. for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
  1428. if (!pvt->dram_rw_en[dram_range])
  1429. continue;
  1430. dram_base = pvt->dram_base[dram_range];
  1431. dram_limit = pvt->dram_limit[dram_range];
  1432. if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
  1433. cs_found = f10_match_to_this_node(pvt, dram_range,
  1434. sys_addr, node,
  1435. chan_sel);
  1436. if (cs_found >= 0)
  1437. break;
  1438. }
  1439. }
  1440. return cs_found;
  1441. }
  1442. /*
  1443. * This the F10h reference code from AMD to map a @sys_addr to NodeID,
  1444. * CSROW, Channel.
  1445. *
  1446. * The @sys_addr is usually an error address received from the hardware.
  1447. */
  1448. static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  1449. struct err_regs *info,
  1450. u64 sys_addr)
  1451. {
  1452. struct amd64_pvt *pvt = mci->pvt_info;
  1453. u32 page, offset;
  1454. unsigned short syndrome;
  1455. int nid, csrow, chan = 0;
  1456. csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1457. if (csrow >= 0) {
  1458. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1459. syndrome = HIGH_SYNDROME(info->nbsl) << 8;
  1460. syndrome |= LOW_SYNDROME(info->nbsh);
  1461. /*
  1462. * Is CHIPKILL on? If so, then we can attempt to use the
  1463. * syndrome to isolate which channel the error was on.
  1464. */
  1465. if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
  1466. chan = get_channel_from_ecc_syndrome(syndrome);
  1467. if (chan >= 0) {
  1468. edac_mc_handle_ce(mci, page, offset, syndrome,
  1469. csrow, chan, EDAC_MOD_STR);
  1470. } else {
  1471. /*
  1472. * Channel unknown, report all channels on this
  1473. * CSROW as failed.
  1474. */
  1475. for (chan = 0; chan < mci->csrows[csrow].nr_channels;
  1476. chan++) {
  1477. edac_mc_handle_ce(mci, page, offset,
  1478. syndrome,
  1479. csrow, chan,
  1480. EDAC_MOD_STR);
  1481. }
  1482. }
  1483. } else {
  1484. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1485. }
  1486. }
  1487. /*
  1488. * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
  1489. * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
  1490. * indicates an empty DIMM slot, as reported by Hardware on empty slots.
  1491. *
  1492. * Normalize to 128MB by subracting 27 bit shift.
  1493. */
  1494. static int map_dbam_to_csrow_size(int index)
  1495. {
  1496. int mega_bytes = 0;
  1497. if (index > 0 && index <= DBAM_MAX_VALUE)
  1498. mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
  1499. return mega_bytes;
  1500. }
  1501. /*
  1502. * debug routine to display the memory sizes of a DIMM (ganged or not) and it
  1503. * CSROWs as well
  1504. */
  1505. static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
  1506. int ganged)
  1507. {
  1508. int dimm, size0, size1;
  1509. u32 dbam;
  1510. u32 *dcsb;
  1511. debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
  1512. ctrl ? pvt->dbam1 : pvt->dbam0,
  1513. ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
  1514. dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1515. dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
  1516. /* Dump memory sizes for DIMM and its CSROWs */
  1517. for (dimm = 0; dimm < 4; dimm++) {
  1518. size0 = 0;
  1519. if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
  1520. size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
  1521. size1 = 0;
  1522. if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
  1523. size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
  1524. debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
  1525. "CSROW-%d=%5dMB\n",
  1526. ctrl,
  1527. dimm,
  1528. size0 + size1,
  1529. dimm * 2,
  1530. size0,
  1531. dimm * 2 + 1,
  1532. size1);
  1533. }
  1534. }
  1535. /*
  1536. * Very early hardware probe on pci_probe thread to determine if this module
  1537. * supports the hardware.
  1538. *
  1539. * Return:
  1540. * 0 for OK
  1541. * 1 for error
  1542. */
  1543. static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
  1544. {
  1545. int ret = 0;
  1546. /*
  1547. * If we are on a DDR3 machine, we don't know yet if
  1548. * we support that properly at this time
  1549. */
  1550. if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
  1551. (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
  1552. amd64_printk(KERN_WARNING,
  1553. "%s() This machine is running with DDR3 memory. "
  1554. "This is not currently supported. "
  1555. "DCHR0=0x%x DCHR1=0x%x\n",
  1556. __func__, pvt->dchr0, pvt->dchr1);
  1557. amd64_printk(KERN_WARNING,
  1558. " Contact '%s' module MAINTAINER to help add"
  1559. " support.\n",
  1560. EDAC_MOD_STR);
  1561. ret = 1;
  1562. }
  1563. return ret;
  1564. }
  1565. /*
  1566. * There currently are 3 types type of MC devices for AMD Athlon/Opterons
  1567. * (as per PCI DEVICE_IDs):
  1568. *
  1569. * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
  1570. * DEVICE ID, even though there is differences between the different Revisions
  1571. * (CG,D,E,F).
  1572. *
  1573. * Family F10h and F11h.
  1574. *
  1575. */
  1576. static struct amd64_family_type amd64_family_types[] = {
  1577. [K8_CPUS] = {
  1578. .ctl_name = "RevF",
  1579. .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1580. .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1581. .ops = {
  1582. .early_channel_count = k8_early_channel_count,
  1583. .get_error_address = k8_get_error_address,
  1584. .read_dram_base_limit = k8_read_dram_base_limit,
  1585. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1586. .dbam_map_to_pages = k8_dbam_map_to_pages,
  1587. }
  1588. },
  1589. [F10_CPUS] = {
  1590. .ctl_name = "Family 10h",
  1591. .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1592. .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1593. .ops = {
  1594. .probe_valid_hardware = f10_probe_valid_hardware,
  1595. .early_channel_count = f10_early_channel_count,
  1596. .get_error_address = f10_get_error_address,
  1597. .read_dram_base_limit = f10_read_dram_base_limit,
  1598. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1599. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1600. .dbam_map_to_pages = f10_dbam_map_to_pages,
  1601. }
  1602. },
  1603. [F11_CPUS] = {
  1604. .ctl_name = "Family 11h",
  1605. .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
  1606. .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
  1607. .ops = {
  1608. .probe_valid_hardware = f10_probe_valid_hardware,
  1609. .early_channel_count = f10_early_channel_count,
  1610. .get_error_address = f10_get_error_address,
  1611. .read_dram_base_limit = f10_read_dram_base_limit,
  1612. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1613. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1614. .dbam_map_to_pages = f10_dbam_map_to_pages,
  1615. }
  1616. },
  1617. };
  1618. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1619. unsigned int device,
  1620. struct pci_dev *related)
  1621. {
  1622. struct pci_dev *dev = NULL;
  1623. dev = pci_get_device(vendor, device, dev);
  1624. while (dev) {
  1625. if ((dev->bus->number == related->bus->number) &&
  1626. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1627. break;
  1628. dev = pci_get_device(vendor, device, dev);
  1629. }
  1630. return dev;
  1631. }
  1632. /*
  1633. * syndrome mapping table for ECC ChipKill devices
  1634. *
  1635. * The comment in each row is the token (nibble) number that is in error.
  1636. * The least significant nibble of the syndrome is the mask for the bits
  1637. * that are in error (need to be toggled) for the particular nibble.
  1638. *
  1639. * Each row contains 16 entries.
  1640. * The first entry (0th) is the channel number for that row of syndromes.
  1641. * The remaining 15 entries are the syndromes for the respective Error
  1642. * bit mask index.
  1643. *
  1644. * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
  1645. * bit in error.
  1646. * The 2nd index entry is 0x0010 that the second bit is damaged.
  1647. * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
  1648. * are damaged.
  1649. * Thus so on until index 15, 0x1111, whose entry has the syndrome
  1650. * indicating that all 4 bits are damaged.
  1651. *
  1652. * A search is performed on this table looking for a given syndrome.
  1653. *
  1654. * See the AMD documentation for ECC syndromes. This ECC table is valid
  1655. * across all the versions of the AMD64 processors.
  1656. *
  1657. * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
  1658. * COLUMN index, then search all ROWS of that column, looking for a match
  1659. * with the input syndrome. The ROW value will be the token number.
  1660. *
  1661. * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
  1662. * error.
  1663. */
  1664. #define NUMBER_ECC_ROWS 36
  1665. static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
  1666. /* Channel 0 syndromes */
  1667. {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
  1668. 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
  1669. {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
  1670. 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
  1671. {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
  1672. 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
  1673. {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
  1674. 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
  1675. {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
  1676. 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
  1677. {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
  1678. 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
  1679. {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
  1680. 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
  1681. {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
  1682. 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
  1683. {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
  1684. 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
  1685. {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
  1686. 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
  1687. {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
  1688. 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
  1689. {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
  1690. 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
  1691. {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
  1692. 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
  1693. {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
  1694. 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
  1695. {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
  1696. 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
  1697. {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
  1698. 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
  1699. /* Channel 1 syndromes */
  1700. {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
  1701. 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
  1702. {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
  1703. 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
  1704. {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
  1705. 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
  1706. {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
  1707. 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
  1708. {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
  1709. 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
  1710. {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
  1711. 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
  1712. {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
  1713. 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
  1714. {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
  1715. 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
  1716. {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
  1717. 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
  1718. {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
  1719. 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
  1720. {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
  1721. 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
  1722. {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
  1723. 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
  1724. {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
  1725. 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
  1726. {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
  1727. 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
  1728. {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
  1729. 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
  1730. {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
  1731. 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
  1732. /* ECC bits are also in the set of tokens and they too can go bad
  1733. * first 2 cover channel 0, while the second 2 cover channel 1
  1734. */
  1735. {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
  1736. 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
  1737. {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
  1738. 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
  1739. {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
  1740. 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
  1741. {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
  1742. 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
  1743. };
  1744. /*
  1745. * Given the syndrome argument, scan each of the channel tables for a syndrome
  1746. * match. Depending on which table it is found, return the channel number.
  1747. */
  1748. static int get_channel_from_ecc_syndrome(unsigned short syndrome)
  1749. {
  1750. int row;
  1751. int column;
  1752. /* Determine column to scan */
  1753. column = syndrome & 0xF;
  1754. /* Scan all rows, looking for syndrome, or end of table */
  1755. for (row = 0; row < NUMBER_ECC_ROWS; row++) {
  1756. if (ecc_chipkill_syndromes[row][column] == syndrome)
  1757. return ecc_chipkill_syndromes[row][0];
  1758. }
  1759. debugf0("syndrome(%x) not found\n", syndrome);
  1760. return -1;
  1761. }
  1762. /*
  1763. * Check for valid error in the NB Status High register. If so, proceed to read
  1764. * NB Status Low, NB Address Low and NB Address High registers and store data
  1765. * into error structure.
  1766. *
  1767. * Returns:
  1768. * - 1: if hardware regs contains valid error info
  1769. * - 0: if no valid error is indicated
  1770. */
  1771. static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
  1772. struct err_regs *regs)
  1773. {
  1774. struct amd64_pvt *pvt;
  1775. struct pci_dev *misc_f3_ctl;
  1776. int err = 0;
  1777. pvt = mci->pvt_info;
  1778. misc_f3_ctl = pvt->misc_f3_ctl;
  1779. err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
  1780. if (err)
  1781. goto err_reg;
  1782. if (!(regs->nbsh & K8_NBSH_VALID_BIT))
  1783. return 0;
  1784. /* valid error, read remaining error information registers */
  1785. err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
  1786. if (err)
  1787. goto err_reg;
  1788. err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
  1789. if (err)
  1790. goto err_reg;
  1791. err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
  1792. if (err)
  1793. goto err_reg;
  1794. err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
  1795. if (err)
  1796. goto err_reg;
  1797. return 1;
  1798. err_reg:
  1799. debugf0("Reading error info register failed\n");
  1800. return 0;
  1801. }
  1802. /*
  1803. * This function is called to retrieve the error data from hardware and store it
  1804. * in the info structure.
  1805. *
  1806. * Returns:
  1807. * - 1: if a valid error is found
  1808. * - 0: if no error is found
  1809. */
  1810. static int amd64_get_error_info(struct mem_ctl_info *mci,
  1811. struct err_regs *info)
  1812. {
  1813. struct amd64_pvt *pvt;
  1814. struct err_regs regs;
  1815. pvt = mci->pvt_info;
  1816. if (!amd64_get_error_info_regs(mci, info))
  1817. return 0;
  1818. /*
  1819. * Here's the problem with the K8's EDAC reporting: There are four
  1820. * registers which report pieces of error information. They are shared
  1821. * between CEs and UEs. Furthermore, contrary to what is stated in the
  1822. * BKDG, the overflow bit is never used! Every error always updates the
  1823. * reporting registers.
  1824. *
  1825. * Can you see the race condition? All four error reporting registers
  1826. * must be read before a new error updates them! There is no way to read
  1827. * all four registers atomically. The best than can be done is to detect
  1828. * that a race has occured and then report the error without any kind of
  1829. * precision.
  1830. *
  1831. * What is still positive is that errors are still reported and thus
  1832. * problems can still be detected - just not localized because the
  1833. * syndrome and address are spread out across registers.
  1834. *
  1835. * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
  1836. * UEs and CEs should have separate register sets with proper overflow
  1837. * bits that are used! At very least the problem can be fixed by
  1838. * honoring the ErrValid bit in 'nbsh' and not updating registers - just
  1839. * set the overflow bit - unless the current error is CE and the new
  1840. * error is UE which would be the only situation for overwriting the
  1841. * current values.
  1842. */
  1843. regs = *info;
  1844. /* Use info from the second read - most current */
  1845. if (unlikely(!amd64_get_error_info_regs(mci, info)))
  1846. return 0;
  1847. /* clear the error bits in hardware */
  1848. pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
  1849. /* Check for the possible race condition */
  1850. if ((regs.nbsh != info->nbsh) ||
  1851. (regs.nbsl != info->nbsl) ||
  1852. (regs.nbeah != info->nbeah) ||
  1853. (regs.nbeal != info->nbeal)) {
  1854. amd64_mc_printk(mci, KERN_WARNING,
  1855. "hardware STATUS read access race condition "
  1856. "detected!\n");
  1857. return 0;
  1858. }
  1859. return 1;
  1860. }
  1861. /*
  1862. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1863. * ADDRESS and process.
  1864. */
  1865. static void amd64_handle_ce(struct mem_ctl_info *mci,
  1866. struct err_regs *info)
  1867. {
  1868. struct amd64_pvt *pvt = mci->pvt_info;
  1869. u64 SystemAddress;
  1870. /* Ensure that the Error Address is VALID */
  1871. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1872. amd64_mc_printk(mci, KERN_ERR,
  1873. "HW has no ERROR_ADDRESS available\n");
  1874. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1875. return;
  1876. }
  1877. SystemAddress = extract_error_address(mci, info);
  1878. amd64_mc_printk(mci, KERN_ERR,
  1879. "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
  1880. pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
  1881. }
  1882. /* Handle any Un-correctable Errors (UEs) */
  1883. static void amd64_handle_ue(struct mem_ctl_info *mci,
  1884. struct err_regs *info)
  1885. {
  1886. int csrow;
  1887. u64 SystemAddress;
  1888. u32 page, offset;
  1889. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1890. log_mci = mci;
  1891. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1892. amd64_mc_printk(mci, KERN_CRIT,
  1893. "HW has no ERROR_ADDRESS available\n");
  1894. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1895. return;
  1896. }
  1897. SystemAddress = extract_error_address(mci, info);
  1898. /*
  1899. * Find out which node the error address belongs to. This may be
  1900. * different from the node that detected the error.
  1901. */
  1902. src_mci = find_mc_by_sys_addr(mci, SystemAddress);
  1903. if (!src_mci) {
  1904. amd64_mc_printk(mci, KERN_CRIT,
  1905. "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
  1906. (unsigned long)SystemAddress);
  1907. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1908. return;
  1909. }
  1910. log_mci = src_mci;
  1911. csrow = sys_addr_to_csrow(log_mci, SystemAddress);
  1912. if (csrow < 0) {
  1913. amd64_mc_printk(mci, KERN_CRIT,
  1914. "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
  1915. (unsigned long)SystemAddress);
  1916. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1917. } else {
  1918. error_address_to_page_and_offset(SystemAddress, &page, &offset);
  1919. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1920. }
  1921. }
  1922. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1923. struct err_regs *info)
  1924. {
  1925. u32 ec = ERROR_CODE(info->nbsl);
  1926. u32 xec = EXT_ERROR_CODE(info->nbsl);
  1927. int ecc_type = info->nbsh & (0x3 << 13);
  1928. /* Bail early out if this was an 'observed' error */
  1929. if (PP(ec) == K8_NBSL_PP_OBS)
  1930. return;
  1931. /* Do only ECC errors */
  1932. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1933. return;
  1934. if (ecc_type == 2)
  1935. amd64_handle_ce(mci, info);
  1936. else if (ecc_type == 1)
  1937. amd64_handle_ue(mci, info);
  1938. /*
  1939. * If main error is CE then overflow must be CE. If main error is UE
  1940. * then overflow is unknown. We'll call the overflow a CE - if
  1941. * panic_on_ue is set then we're already panic'ed and won't arrive
  1942. * here. Else, then apparently someone doesn't think that UE's are
  1943. * catastrophic.
  1944. */
  1945. if (info->nbsh & K8_NBSH_OVERFLOW)
  1946. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
  1947. }
  1948. void amd64_decode_bus_error(int node_id, struct err_regs *regs)
  1949. {
  1950. struct mem_ctl_info *mci = mci_lookup[node_id];
  1951. __amd64_decode_bus_error(mci, regs);
  1952. /*
  1953. * Check the UE bit of the NB status high register, if set generate some
  1954. * logs. If NOT a GART error, then process the event as a NO-INFO event.
  1955. * If it was a GART error, skip that process.
  1956. *
  1957. * FIXME: this should go somewhere else, if at all.
  1958. */
  1959. if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
  1960. edac_mc_handle_ue_no_info(mci, "UE bit is set");
  1961. }
  1962. /*
  1963. * The main polling 'check' function, called FROM the edac core to perform the
  1964. * error checking and if an error is encountered, error processing.
  1965. */
  1966. static void amd64_check(struct mem_ctl_info *mci)
  1967. {
  1968. struct err_regs regs;
  1969. if (amd64_get_error_info(mci, &regs)) {
  1970. struct amd64_pvt *pvt = mci->pvt_info;
  1971. amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
  1972. }
  1973. }
  1974. /*
  1975. * Input:
  1976. * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
  1977. * 2) AMD Family index value
  1978. *
  1979. * Ouput:
  1980. * Upon return of 0, the following filled in:
  1981. *
  1982. * struct pvt->addr_f1_ctl
  1983. * struct pvt->misc_f3_ctl
  1984. *
  1985. * Filled in with related device funcitions of 'dram_f2_ctl'
  1986. * These devices are "reserved" via the pci_get_device()
  1987. *
  1988. * Upon return of 1 (error status):
  1989. *
  1990. * Nothing reserved
  1991. */
  1992. static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
  1993. {
  1994. const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
  1995. /* Reserve the ADDRESS MAP Device */
  1996. pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  1997. amd64_dev->addr_f1_ctl,
  1998. pvt->dram_f2_ctl);
  1999. if (!pvt->addr_f1_ctl) {
  2000. amd64_printk(KERN_ERR, "error address map device not found: "
  2001. "vendor %x device 0x%x (broken BIOS?)\n",
  2002. PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
  2003. return 1;
  2004. }
  2005. /* Reserve the MISC Device */
  2006. pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  2007. amd64_dev->misc_f3_ctl,
  2008. pvt->dram_f2_ctl);
  2009. if (!pvt->misc_f3_ctl) {
  2010. pci_dev_put(pvt->addr_f1_ctl);
  2011. pvt->addr_f1_ctl = NULL;
  2012. amd64_printk(KERN_ERR, "error miscellaneous device not found: "
  2013. "vendor %x device 0x%x (broken BIOS?)\n",
  2014. PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
  2015. return 1;
  2016. }
  2017. debugf1(" Addr Map device PCI Bus ID:\t%s\n",
  2018. pci_name(pvt->addr_f1_ctl));
  2019. debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
  2020. pci_name(pvt->dram_f2_ctl));
  2021. debugf1(" Misc device PCI Bus ID:\t%s\n",
  2022. pci_name(pvt->misc_f3_ctl));
  2023. return 0;
  2024. }
  2025. static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
  2026. {
  2027. pci_dev_put(pvt->addr_f1_ctl);
  2028. pci_dev_put(pvt->misc_f3_ctl);
  2029. }
  2030. /*
  2031. * Retrieve the hardware registers of the memory controller (this includes the
  2032. * 'Address Map' and 'Misc' device regs)
  2033. */
  2034. static void amd64_read_mc_registers(struct amd64_pvt *pvt)
  2035. {
  2036. u64 msr_val;
  2037. int dram, err = 0;
  2038. /*
  2039. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  2040. * those are Read-As-Zero
  2041. */
  2042. rdmsrl(MSR_K8_TOP_MEM1, msr_val);
  2043. pvt->top_mem = msr_val >> 23;
  2044. debugf0(" TOP_MEM=0x%08llx\n", pvt->top_mem);
  2045. /* check first whether TOP_MEM2 is enabled */
  2046. rdmsrl(MSR_K8_SYSCFG, msr_val);
  2047. if (msr_val & (1U << 21)) {
  2048. rdmsrl(MSR_K8_TOP_MEM2, msr_val);
  2049. pvt->top_mem2 = msr_val >> 23;
  2050. debugf0(" TOP_MEM2=0x%08llx\n", pvt->top_mem2);
  2051. } else
  2052. debugf0(" TOP_MEM2 disabled.\n");
  2053. amd64_cpu_display_info(pvt);
  2054. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
  2055. if (err)
  2056. goto err_reg;
  2057. if (pvt->ops->read_dram_ctl_register)
  2058. pvt->ops->read_dram_ctl_register(pvt);
  2059. for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
  2060. /*
  2061. * Call CPU specific READ function to get the DRAM Base and
  2062. * Limit values from the DCT.
  2063. */
  2064. pvt->ops->read_dram_base_limit(pvt, dram);
  2065. /*
  2066. * Only print out debug info on rows with both R and W Enabled.
  2067. * Normal processing, compiler should optimize this whole 'if'
  2068. * debug output block away.
  2069. */
  2070. if (pvt->dram_rw_en[dram] != 0) {
  2071. debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x "
  2072. "DRAM_LIMIT: 0x%8.08x-%8.08x\n",
  2073. dram,
  2074. (u32)(pvt->dram_base[dram] >> 32),
  2075. (u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
  2076. (u32)(pvt->dram_limit[dram] >> 32),
  2077. (u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
  2078. debugf1(" IntlvEn=%s %s %s "
  2079. "IntlvSel=%d DstNode=%d\n",
  2080. pvt->dram_IntlvEn[dram] ?
  2081. "Enabled" : "Disabled",
  2082. (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
  2083. (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
  2084. pvt->dram_IntlvSel[dram],
  2085. pvt->dram_DstNode[dram]);
  2086. }
  2087. }
  2088. amd64_read_dct_base_mask(pvt);
  2089. err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
  2090. if (err)
  2091. goto err_reg;
  2092. amd64_read_dbam_reg(pvt);
  2093. err = pci_read_config_dword(pvt->misc_f3_ctl,
  2094. F10_ONLINE_SPARE, &pvt->online_spare);
  2095. if (err)
  2096. goto err_reg;
  2097. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  2098. if (err)
  2099. goto err_reg;
  2100. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
  2101. if (err)
  2102. goto err_reg;
  2103. if (!dct_ganging_enabled(pvt)) {
  2104. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
  2105. &pvt->dclr1);
  2106. if (err)
  2107. goto err_reg;
  2108. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
  2109. &pvt->dchr1);
  2110. if (err)
  2111. goto err_reg;
  2112. }
  2113. amd64_dump_misc_regs(pvt);
  2114. return;
  2115. err_reg:
  2116. debugf0("Reading an MC register failed\n");
  2117. }
  2118. /*
  2119. * NOTE: CPU Revision Dependent code
  2120. *
  2121. * Input:
  2122. * @csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1)
  2123. * k8 private pointer to -->
  2124. * DRAM Bank Address mapping register
  2125. * node_id
  2126. * DCL register where dual_channel_active is
  2127. *
  2128. * The DBAM register consists of 4 sets of 4 bits each definitions:
  2129. *
  2130. * Bits: CSROWs
  2131. * 0-3 CSROWs 0 and 1
  2132. * 4-7 CSROWs 2 and 3
  2133. * 8-11 CSROWs 4 and 5
  2134. * 12-15 CSROWs 6 and 7
  2135. *
  2136. * Values range from: 0 to 15
  2137. * The meaning of the values depends on CPU revision and dual-channel state,
  2138. * see relevant BKDG more info.
  2139. *
  2140. * The memory controller provides for total of only 8 CSROWs in its current
  2141. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  2142. * single channel or two (2) DIMMs in dual channel mode.
  2143. *
  2144. * The following code logic collapses the various tables for CSROW based on CPU
  2145. * revision.
  2146. *
  2147. * Returns:
  2148. * The number of PAGE_SIZE pages on the specified CSROW number it
  2149. * encompasses
  2150. *
  2151. */
  2152. static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
  2153. {
  2154. u32 dram_map, nr_pages;
  2155. /*
  2156. * The math on this doesn't look right on the surface because x/2*4 can
  2157. * be simplified to x*2 but this expression makes use of the fact that
  2158. * it is integral math where 1/2=0. This intermediate value becomes the
  2159. * number of bits to shift the DBAM register to extract the proper CSROW
  2160. * field.
  2161. */
  2162. dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  2163. nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
  2164. /*
  2165. * If dual channel then double the memory size of single channel.
  2166. * Channel count is 1 or 2
  2167. */
  2168. nr_pages <<= (pvt->channel_count - 1);
  2169. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
  2170. debugf0(" nr_pages= %u channel-count = %d\n",
  2171. nr_pages, pvt->channel_count);
  2172. return nr_pages;
  2173. }
  2174. /*
  2175. * Initialize the array of csrow attribute instances, based on the values
  2176. * from pci config hardware registers.
  2177. */
  2178. static int amd64_init_csrows(struct mem_ctl_info *mci)
  2179. {
  2180. struct csrow_info *csrow;
  2181. struct amd64_pvt *pvt;
  2182. u64 input_addr_min, input_addr_max, sys_addr;
  2183. int i, err = 0, empty = 1;
  2184. pvt = mci->pvt_info;
  2185. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
  2186. if (err)
  2187. debugf0("Reading K8_NBCFG failed\n");
  2188. debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
  2189. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2190. (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
  2191. );
  2192. for (i = 0; i < CHIPSELECT_COUNT; i++) {
  2193. csrow = &mci->csrows[i];
  2194. if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
  2195. debugf1("----CSROW %d EMPTY for node %d\n", i,
  2196. pvt->mc_node_id);
  2197. continue;
  2198. }
  2199. debugf1("----CSROW %d VALID for MC node %d\n",
  2200. i, pvt->mc_node_id);
  2201. empty = 0;
  2202. csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
  2203. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  2204. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  2205. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  2206. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  2207. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  2208. csrow->page_mask = ~mask_from_dct_mask(pvt, i);
  2209. /* 8 bytes of resolution */
  2210. csrow->mtype = amd64_determine_memory_type(pvt);
  2211. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  2212. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  2213. (unsigned long)input_addr_min,
  2214. (unsigned long)input_addr_max);
  2215. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  2216. (unsigned long)sys_addr, csrow->page_mask);
  2217. debugf1(" nr_pages: %u first_page: 0x%lx "
  2218. "last_page: 0x%lx\n",
  2219. (unsigned)csrow->nr_pages,
  2220. csrow->first_page, csrow->last_page);
  2221. /*
  2222. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  2223. */
  2224. if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
  2225. csrow->edac_mode =
  2226. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
  2227. EDAC_S4ECD4ED : EDAC_SECDED;
  2228. else
  2229. csrow->edac_mode = EDAC_NONE;
  2230. }
  2231. return empty;
  2232. }
  2233. /*
  2234. * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
  2235. * enable it.
  2236. */
  2237. static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
  2238. {
  2239. struct amd64_pvt *pvt = mci->pvt_info;
  2240. const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
  2241. int cpu, idx = 0, err = 0;
  2242. struct msr msrs[cpumask_weight(cpumask)];
  2243. u32 value;
  2244. u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2245. if (!ecc_enable_override)
  2246. return;
  2247. memset(msrs, 0, sizeof(msrs));
  2248. amd64_printk(KERN_WARNING,
  2249. "'ecc_enable_override' parameter is active, "
  2250. "Enabling AMD ECC hardware now: CAUTION\n");
  2251. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2252. if (err)
  2253. debugf0("Reading K8_NBCTL failed\n");
  2254. /* turn on UECCn and CECCEn bits */
  2255. pvt->old_nbctl = value & mask;
  2256. pvt->nbctl_mcgctl_saved = 1;
  2257. value |= mask;
  2258. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2259. rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2260. for_each_cpu(cpu, cpumask) {
  2261. if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
  2262. set_bit(idx, &pvt->old_mcgctl);
  2263. msrs[idx].l |= K8_MSR_MCGCTL_NBE;
  2264. idx++;
  2265. }
  2266. wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2267. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2268. if (err)
  2269. debugf0("Reading K8_NBCFG failed\n");
  2270. debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2271. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2272. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2273. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2274. amd64_printk(KERN_WARNING,
  2275. "This node reports that DRAM ECC is "
  2276. "currently Disabled; ENABLING now\n");
  2277. /* Attempt to turn on DRAM ECC Enable */
  2278. value |= K8_NBCFG_ECC_ENABLE;
  2279. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
  2280. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2281. if (err)
  2282. debugf0("Reading K8_NBCFG failed\n");
  2283. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2284. amd64_printk(KERN_WARNING,
  2285. "Hardware rejects Enabling DRAM ECC checking\n"
  2286. "Check memory DIMM configuration\n");
  2287. } else {
  2288. amd64_printk(KERN_DEBUG,
  2289. "Hardware accepted DRAM ECC Enable\n");
  2290. }
  2291. }
  2292. debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2293. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2294. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2295. pvt->ctl_error_info.nbcfg = value;
  2296. }
  2297. static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
  2298. {
  2299. const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
  2300. int cpu, idx = 0, err = 0;
  2301. struct msr msrs[cpumask_weight(cpumask)];
  2302. u32 value;
  2303. u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2304. if (!pvt->nbctl_mcgctl_saved)
  2305. return;
  2306. memset(msrs, 0, sizeof(msrs));
  2307. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2308. if (err)
  2309. debugf0("Reading K8_NBCTL failed\n");
  2310. value &= ~mask;
  2311. value |= pvt->old_nbctl;
  2312. /* restore the NB Enable MCGCTL bit */
  2313. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2314. rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2315. for_each_cpu(cpu, cpumask) {
  2316. msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
  2317. msrs[idx].l |=
  2318. test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
  2319. idx++;
  2320. }
  2321. wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2322. }
  2323. /* get all cores on this DCT */
  2324. static void get_cpus_on_this_dct_cpumask(cpumask_t *mask, int nid)
  2325. {
  2326. int cpu;
  2327. for_each_online_cpu(cpu)
  2328. if (amd_get_nb_id(cpu) == nid)
  2329. cpumask_set_cpu(cpu, mask);
  2330. }
  2331. /* check MCG_CTL on all the cpus on this node */
  2332. static bool amd64_nb_mce_bank_enabled_on_node(int nid)
  2333. {
  2334. cpumask_t mask;
  2335. struct msr *msrs;
  2336. int cpu, nbe, idx = 0;
  2337. bool ret = false;
  2338. cpumask_clear(&mask);
  2339. get_cpus_on_this_dct_cpumask(&mask, nid);
  2340. msrs = kzalloc(sizeof(struct msr) * cpumask_weight(&mask), GFP_KERNEL);
  2341. if (!msrs) {
  2342. amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
  2343. __func__);
  2344. return false;
  2345. }
  2346. rdmsr_on_cpus(&mask, MSR_IA32_MCG_CTL, msrs);
  2347. for_each_cpu(cpu, &mask) {
  2348. nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
  2349. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  2350. cpu, msrs[idx].q,
  2351. (nbe ? "enabled" : "disabled"));
  2352. if (!nbe)
  2353. goto out;
  2354. idx++;
  2355. }
  2356. ret = true;
  2357. out:
  2358. kfree(msrs);
  2359. return ret;
  2360. }
  2361. /*
  2362. * EDAC requires that the BIOS have ECC enabled before taking over the
  2363. * processing of ECC errors. This is because the BIOS can properly initialize
  2364. * the memory system completely. A command line option allows to force-enable
  2365. * hardware ECC later in amd64_enable_ecc_error_reporting().
  2366. */
  2367. static const char *ecc_warning =
  2368. "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
  2369. " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
  2370. " Also, use of the override can cause unknown side effects.\n";
  2371. static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
  2372. {
  2373. u32 value;
  2374. int err = 0;
  2375. u8 ecc_enabled = 0;
  2376. bool nb_mce_en = false;
  2377. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2378. if (err)
  2379. debugf0("Reading K8_NBCTL failed\n");
  2380. ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
  2381. if (!ecc_enabled)
  2382. amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
  2383. "is currently disabled, set F3x%x[22] (%s).\n",
  2384. K8_NBCFG, pci_name(pvt->misc_f3_ctl));
  2385. else
  2386. amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
  2387. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
  2388. if (!nb_mce_en)
  2389. amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
  2390. "0x%08x[4] on node %d to enable.\n",
  2391. MSR_IA32_MCG_CTL, pvt->mc_node_id);
  2392. if (!ecc_enabled || !nb_mce_en) {
  2393. if (!ecc_enable_override) {
  2394. amd64_printk(KERN_WARNING, "%s", ecc_warning);
  2395. return -ENODEV;
  2396. }
  2397. } else
  2398. /* CLEAR the override, since BIOS controlled it */
  2399. ecc_enable_override = 0;
  2400. return 0;
  2401. }
  2402. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  2403. ARRAY_SIZE(amd64_inj_attrs) +
  2404. 1];
  2405. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  2406. static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
  2407. {
  2408. unsigned int i = 0, j = 0;
  2409. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  2410. sysfs_attrs[i] = amd64_dbg_attrs[i];
  2411. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  2412. sysfs_attrs[i] = amd64_inj_attrs[j];
  2413. sysfs_attrs[i] = terminator;
  2414. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  2415. }
  2416. static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
  2417. {
  2418. struct amd64_pvt *pvt = mci->pvt_info;
  2419. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2420. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2421. if (pvt->nbcap & K8_NBCAP_SECDED)
  2422. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2423. if (pvt->nbcap & K8_NBCAP_CHIPKILL)
  2424. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2425. mci->edac_cap = amd64_determine_edac_cap(pvt);
  2426. mci->mod_name = EDAC_MOD_STR;
  2427. mci->mod_ver = EDAC_AMD64_VERSION;
  2428. mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
  2429. mci->dev_name = pci_name(pvt->dram_f2_ctl);
  2430. mci->ctl_page_to_phys = NULL;
  2431. /* IMPORTANT: Set the polling 'check' function in this module */
  2432. mci->edac_check = amd64_check;
  2433. /* memory scrubber interface */
  2434. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  2435. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  2436. }
  2437. /*
  2438. * Init stuff for this DRAM Controller device.
  2439. *
  2440. * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
  2441. * Space feature MUST be enabled on ALL Processors prior to actually reading
  2442. * from the ECS registers. Since the loading of the module can occur on any
  2443. * 'core', and cores don't 'see' all the other processors ECS data when the
  2444. * others are NOT enabled. Our solution is to first enable ECS access in this
  2445. * routine on all processors, gather some data in a amd64_pvt structure and
  2446. * later come back in a finish-setup function to perform that final
  2447. * initialization. See also amd64_init_2nd_stage() for that.
  2448. */
  2449. static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
  2450. int mc_type_index)
  2451. {
  2452. struct amd64_pvt *pvt = NULL;
  2453. int err = 0, ret;
  2454. ret = -ENOMEM;
  2455. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2456. if (!pvt)
  2457. goto err_exit;
  2458. pvt->mc_node_id = get_node_id(dram_f2_ctl);
  2459. pvt->dram_f2_ctl = dram_f2_ctl;
  2460. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2461. pvt->mc_type_index = mc_type_index;
  2462. pvt->ops = family_ops(mc_type_index);
  2463. pvt->old_mcgctl = 0;
  2464. /*
  2465. * We have the dram_f2_ctl device as an argument, now go reserve its
  2466. * sibling devices from the PCI system.
  2467. */
  2468. ret = -ENODEV;
  2469. err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
  2470. if (err)
  2471. goto err_free;
  2472. ret = -EINVAL;
  2473. err = amd64_check_ecc_enabled(pvt);
  2474. if (err)
  2475. goto err_put;
  2476. /*
  2477. * Key operation here: setup of HW prior to performing ops on it. Some
  2478. * setup is required to access ECS data. After this is performed, the
  2479. * 'teardown' function must be called upon error and normal exit paths.
  2480. */
  2481. if (boot_cpu_data.x86 >= 0x10)
  2482. amd64_setup(pvt);
  2483. /*
  2484. * Save the pointer to the private data for use in 2nd initialization
  2485. * stage
  2486. */
  2487. pvt_lookup[pvt->mc_node_id] = pvt;
  2488. return 0;
  2489. err_put:
  2490. amd64_free_mc_sibling_devices(pvt);
  2491. err_free:
  2492. kfree(pvt);
  2493. err_exit:
  2494. return ret;
  2495. }
  2496. /*
  2497. * This is the finishing stage of the init code. Needs to be performed after all
  2498. * MCs' hardware have been prepped for accessing extended config space.
  2499. */
  2500. static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
  2501. {
  2502. int node_id = pvt->mc_node_id;
  2503. struct mem_ctl_info *mci;
  2504. int ret, err = 0;
  2505. amd64_read_mc_registers(pvt);
  2506. ret = -ENODEV;
  2507. if (pvt->ops->probe_valid_hardware) {
  2508. err = pvt->ops->probe_valid_hardware(pvt);
  2509. if (err)
  2510. goto err_exit;
  2511. }
  2512. /*
  2513. * We need to determine how many memory channels there are. Then use
  2514. * that information for calculating the size of the dynamic instance
  2515. * tables in the 'mci' structure
  2516. */
  2517. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2518. if (pvt->channel_count < 0)
  2519. goto err_exit;
  2520. ret = -ENOMEM;
  2521. mci = edac_mc_alloc(0, CHIPSELECT_COUNT, pvt->channel_count, node_id);
  2522. if (!mci)
  2523. goto err_exit;
  2524. mci->pvt_info = pvt;
  2525. mci->dev = &pvt->dram_f2_ctl->dev;
  2526. amd64_setup_mci_misc_attributes(mci);
  2527. if (amd64_init_csrows(mci))
  2528. mci->edac_cap = EDAC_FLAG_NONE;
  2529. amd64_enable_ecc_error_reporting(mci);
  2530. amd64_set_mc_sysfs_attributes(mci);
  2531. ret = -ENODEV;
  2532. if (edac_mc_add_mc(mci)) {
  2533. debugf1("failed edac_mc_add_mc()\n");
  2534. goto err_add_mc;
  2535. }
  2536. mci_lookup[node_id] = mci;
  2537. pvt_lookup[node_id] = NULL;
  2538. /* register stuff with EDAC MCE */
  2539. if (report_gart_errors)
  2540. amd_report_gart_errors(true);
  2541. amd_register_ecc_decoder(amd64_decode_bus_error);
  2542. return 0;
  2543. err_add_mc:
  2544. edac_mc_free(mci);
  2545. err_exit:
  2546. debugf0("failure to init 2nd stage: ret=%d\n", ret);
  2547. amd64_restore_ecc_error_reporting(pvt);
  2548. if (boot_cpu_data.x86 > 0xf)
  2549. amd64_teardown(pvt);
  2550. amd64_free_mc_sibling_devices(pvt);
  2551. kfree(pvt_lookup[pvt->mc_node_id]);
  2552. pvt_lookup[node_id] = NULL;
  2553. return ret;
  2554. }
  2555. static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
  2556. const struct pci_device_id *mc_type)
  2557. {
  2558. int ret = 0;
  2559. debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
  2560. get_amd_family_name(mc_type->driver_data));
  2561. ret = pci_enable_device(pdev);
  2562. if (ret < 0)
  2563. ret = -EIO;
  2564. else
  2565. ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
  2566. if (ret < 0)
  2567. debugf0("ret=%d\n", ret);
  2568. return ret;
  2569. }
  2570. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2571. {
  2572. struct mem_ctl_info *mci;
  2573. struct amd64_pvt *pvt;
  2574. /* Remove from EDAC CORE tracking list */
  2575. mci = edac_mc_del_mc(&pdev->dev);
  2576. if (!mci)
  2577. return;
  2578. pvt = mci->pvt_info;
  2579. amd64_restore_ecc_error_reporting(pvt);
  2580. if (boot_cpu_data.x86 > 0xf)
  2581. amd64_teardown(pvt);
  2582. amd64_free_mc_sibling_devices(pvt);
  2583. kfree(pvt);
  2584. mci->pvt_info = NULL;
  2585. mci_lookup[pvt->mc_node_id] = NULL;
  2586. /* unregister from EDAC MCE */
  2587. amd_report_gart_errors(false);
  2588. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2589. /* Free the EDAC CORE resources */
  2590. edac_mc_free(mci);
  2591. }
  2592. /*
  2593. * This table is part of the interface for loading drivers for PCI devices. The
  2594. * PCI core identifies what devices are on a system during boot, and then
  2595. * inquiry this table to see if this driver is for a given device found.
  2596. */
  2597. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2598. {
  2599. .vendor = PCI_VENDOR_ID_AMD,
  2600. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2601. .subvendor = PCI_ANY_ID,
  2602. .subdevice = PCI_ANY_ID,
  2603. .class = 0,
  2604. .class_mask = 0,
  2605. .driver_data = K8_CPUS
  2606. },
  2607. {
  2608. .vendor = PCI_VENDOR_ID_AMD,
  2609. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2610. .subvendor = PCI_ANY_ID,
  2611. .subdevice = PCI_ANY_ID,
  2612. .class = 0,
  2613. .class_mask = 0,
  2614. .driver_data = F10_CPUS
  2615. },
  2616. {
  2617. .vendor = PCI_VENDOR_ID_AMD,
  2618. .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
  2619. .subvendor = PCI_ANY_ID,
  2620. .subdevice = PCI_ANY_ID,
  2621. .class = 0,
  2622. .class_mask = 0,
  2623. .driver_data = F11_CPUS
  2624. },
  2625. {0, }
  2626. };
  2627. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2628. static struct pci_driver amd64_pci_driver = {
  2629. .name = EDAC_MOD_STR,
  2630. .probe = amd64_init_one_instance,
  2631. .remove = __devexit_p(amd64_remove_one_instance),
  2632. .id_table = amd64_pci_table,
  2633. };
  2634. static void amd64_setup_pci_device(void)
  2635. {
  2636. struct mem_ctl_info *mci;
  2637. struct amd64_pvt *pvt;
  2638. if (amd64_ctl_pci)
  2639. return;
  2640. mci = mci_lookup[0];
  2641. if (mci) {
  2642. pvt = mci->pvt_info;
  2643. amd64_ctl_pci =
  2644. edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
  2645. EDAC_MOD_STR);
  2646. if (!amd64_ctl_pci) {
  2647. pr_warning("%s(): Unable to create PCI control\n",
  2648. __func__);
  2649. pr_warning("%s(): PCI error report via EDAC not set\n",
  2650. __func__);
  2651. }
  2652. }
  2653. }
  2654. static int __init amd64_edac_init(void)
  2655. {
  2656. int nb, err = -ENODEV;
  2657. edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
  2658. opstate_init();
  2659. if (cache_k8_northbridges() < 0)
  2660. goto err_exit;
  2661. err = pci_register_driver(&amd64_pci_driver);
  2662. if (err)
  2663. return err;
  2664. /*
  2665. * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
  2666. * amd64_pvt structs. These will be used in the 2nd stage init function
  2667. * to finish initialization of the MC instances.
  2668. */
  2669. for (nb = 0; nb < num_k8_northbridges; nb++) {
  2670. if (!pvt_lookup[nb])
  2671. continue;
  2672. err = amd64_init_2nd_stage(pvt_lookup[nb]);
  2673. if (err)
  2674. goto err_2nd_stage;
  2675. }
  2676. amd64_setup_pci_device();
  2677. return 0;
  2678. err_2nd_stage:
  2679. debugf0("2nd stage failed\n");
  2680. err_exit:
  2681. pci_unregister_driver(&amd64_pci_driver);
  2682. return err;
  2683. }
  2684. static void __exit amd64_edac_exit(void)
  2685. {
  2686. if (amd64_ctl_pci)
  2687. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2688. pci_unregister_driver(&amd64_pci_driver);
  2689. }
  2690. module_init(amd64_edac_init);
  2691. module_exit(amd64_edac_exit);
  2692. MODULE_LICENSE("GPL");
  2693. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2694. "Dave Peterson, Thayne Harbaugh");
  2695. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2696. EDAC_AMD64_VERSION);
  2697. module_param(edac_op_state, int, 0444);
  2698. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");