sched.c 196 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <asm/tlb.h>
  69. #include <asm/irq_regs.h>
  70. /*
  71. * Scheduler clock - returns current time in nanosec units.
  72. * This is default implementation.
  73. * Architectures and sub-architectures can override this.
  74. */
  75. unsigned long long __attribute__((weak)) sched_clock(void)
  76. {
  77. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  78. }
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head queue[MAX_RT_PRIO];
  143. };
  144. #ifdef CONFIG_FAIR_GROUP_SCHED
  145. #include <linux/cgroup.h>
  146. struct cfs_rq;
  147. static LIST_HEAD(task_groups);
  148. /* task group related information */
  149. struct task_group {
  150. #ifdef CONFIG_FAIR_CGROUP_SCHED
  151. struct cgroup_subsys_state css;
  152. #endif
  153. /* schedulable entities of this group on each cpu */
  154. struct sched_entity **se;
  155. /* runqueue "owned" by this group on each cpu */
  156. struct cfs_rq **cfs_rq;
  157. struct sched_rt_entity **rt_se;
  158. struct rt_rq **rt_rq;
  159. unsigned int rt_ratio;
  160. /*
  161. * shares assigned to a task group governs how much of cpu bandwidth
  162. * is allocated to the group. The more shares a group has, the more is
  163. * the cpu bandwidth allocated to it.
  164. *
  165. * For ex, lets say that there are three task groups, A, B and C which
  166. * have been assigned shares 1000, 2000 and 3000 respectively. Then,
  167. * cpu bandwidth allocated by the scheduler to task groups A, B and C
  168. * should be:
  169. *
  170. * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
  171. * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
  172. * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
  173. *
  174. * The weight assigned to a task group's schedulable entities on every
  175. * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
  176. * group's shares. For ex: lets say that task group A has been
  177. * assigned shares of 1000 and there are two CPUs in a system. Then,
  178. *
  179. * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
  180. *
  181. * Note: It's not necessary that each of a task's group schedulable
  182. * entity have the same weight on all CPUs. If the group
  183. * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
  184. * better distribution of weight could be:
  185. *
  186. * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
  187. * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
  188. *
  189. * rebalance_shares() is responsible for distributing the shares of a
  190. * task groups like this among the group's schedulable entities across
  191. * cpus.
  192. *
  193. */
  194. unsigned long shares;
  195. struct rcu_head rcu;
  196. struct list_head list;
  197. };
  198. /* Default task group's sched entity on each cpu */
  199. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  200. /* Default task group's cfs_rq on each cpu */
  201. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  202. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  203. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  204. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  205. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  206. static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
  207. static struct rt_rq *init_rt_rq_p[NR_CPUS];
  208. /* task_group_lock serializes add/remove of task groups and also changes to
  209. * a task group's cpu shares.
  210. */
  211. static DEFINE_SPINLOCK(task_group_lock);
  212. /* doms_cur_mutex serializes access to doms_cur[] array */
  213. static DEFINE_MUTEX(doms_cur_mutex);
  214. #ifdef CONFIG_SMP
  215. /* kernel thread that runs rebalance_shares() periodically */
  216. static struct task_struct *lb_monitor_task;
  217. static int load_balance_monitor(void *unused);
  218. #endif
  219. static void set_se_shares(struct sched_entity *se, unsigned long shares);
  220. /* Default task group.
  221. * Every task in system belong to this group at bootup.
  222. */
  223. struct task_group init_task_group = {
  224. .se = init_sched_entity_p,
  225. .cfs_rq = init_cfs_rq_p,
  226. .rt_se = init_sched_rt_entity_p,
  227. .rt_rq = init_rt_rq_p,
  228. };
  229. #ifdef CONFIG_FAIR_USER_SCHED
  230. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  231. #else
  232. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  233. #endif
  234. #define MIN_GROUP_SHARES 2
  235. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  236. /* return group to which a task belongs */
  237. static inline struct task_group *task_group(struct task_struct *p)
  238. {
  239. struct task_group *tg;
  240. #ifdef CONFIG_FAIR_USER_SCHED
  241. tg = p->user->tg;
  242. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  243. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  244. struct task_group, css);
  245. #else
  246. tg = &init_task_group;
  247. #endif
  248. return tg;
  249. }
  250. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  251. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  252. {
  253. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  254. p->se.parent = task_group(p)->se[cpu];
  255. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  256. p->rt.parent = task_group(p)->rt_se[cpu];
  257. }
  258. static inline void lock_doms_cur(void)
  259. {
  260. mutex_lock(&doms_cur_mutex);
  261. }
  262. static inline void unlock_doms_cur(void)
  263. {
  264. mutex_unlock(&doms_cur_mutex);
  265. }
  266. #else
  267. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  268. static inline void lock_doms_cur(void) { }
  269. static inline void unlock_doms_cur(void) { }
  270. #endif /* CONFIG_FAIR_GROUP_SCHED */
  271. /* CFS-related fields in a runqueue */
  272. struct cfs_rq {
  273. struct load_weight load;
  274. unsigned long nr_running;
  275. u64 exec_clock;
  276. u64 min_vruntime;
  277. struct rb_root tasks_timeline;
  278. struct rb_node *rb_leftmost;
  279. struct rb_node *rb_load_balance_curr;
  280. /* 'curr' points to currently running entity on this cfs_rq.
  281. * It is set to NULL otherwise (i.e when none are currently running).
  282. */
  283. struct sched_entity *curr;
  284. unsigned long nr_spread_over;
  285. #ifdef CONFIG_FAIR_GROUP_SCHED
  286. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  287. /*
  288. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  289. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  290. * (like users, containers etc.)
  291. *
  292. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  293. * list is used during load balance.
  294. */
  295. struct list_head leaf_cfs_rq_list;
  296. struct task_group *tg; /* group that "owns" this runqueue */
  297. #endif
  298. };
  299. /* Real-Time classes' related field in a runqueue: */
  300. struct rt_rq {
  301. struct rt_prio_array active;
  302. unsigned long rt_nr_running;
  303. #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
  304. int highest_prio; /* highest queued rt task prio */
  305. #endif
  306. #ifdef CONFIG_SMP
  307. unsigned long rt_nr_migratory;
  308. int overloaded;
  309. #endif
  310. int rt_throttled;
  311. u64 rt_time;
  312. #ifdef CONFIG_FAIR_GROUP_SCHED
  313. struct rq *rq;
  314. struct list_head leaf_rt_rq_list;
  315. struct task_group *tg;
  316. struct sched_rt_entity *rt_se;
  317. #endif
  318. };
  319. #ifdef CONFIG_SMP
  320. /*
  321. * We add the notion of a root-domain which will be used to define per-domain
  322. * variables. Each exclusive cpuset essentially defines an island domain by
  323. * fully partitioning the member cpus from any other cpuset. Whenever a new
  324. * exclusive cpuset is created, we also create and attach a new root-domain
  325. * object.
  326. *
  327. */
  328. struct root_domain {
  329. atomic_t refcount;
  330. cpumask_t span;
  331. cpumask_t online;
  332. /*
  333. * The "RT overload" flag: it gets set if a CPU has more than
  334. * one runnable RT task.
  335. */
  336. cpumask_t rto_mask;
  337. atomic_t rto_count;
  338. };
  339. /*
  340. * By default the system creates a single root-domain with all cpus as
  341. * members (mimicking the global state we have today).
  342. */
  343. static struct root_domain def_root_domain;
  344. #endif
  345. /*
  346. * This is the main, per-CPU runqueue data structure.
  347. *
  348. * Locking rule: those places that want to lock multiple runqueues
  349. * (such as the load balancing or the thread migration code), lock
  350. * acquire operations must be ordered by ascending &runqueue.
  351. */
  352. struct rq {
  353. /* runqueue lock: */
  354. spinlock_t lock;
  355. /*
  356. * nr_running and cpu_load should be in the same cacheline because
  357. * remote CPUs use both these fields when doing load calculation.
  358. */
  359. unsigned long nr_running;
  360. #define CPU_LOAD_IDX_MAX 5
  361. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  362. unsigned char idle_at_tick;
  363. #ifdef CONFIG_NO_HZ
  364. unsigned char in_nohz_recently;
  365. #endif
  366. /* capture load from *all* tasks on this cpu: */
  367. struct load_weight load;
  368. unsigned long nr_load_updates;
  369. u64 nr_switches;
  370. struct cfs_rq cfs;
  371. struct rt_rq rt;
  372. u64 rt_period_expire;
  373. int rt_throttled;
  374. #ifdef CONFIG_FAIR_GROUP_SCHED
  375. /* list of leaf cfs_rq on this cpu: */
  376. struct list_head leaf_cfs_rq_list;
  377. struct list_head leaf_rt_rq_list;
  378. #endif
  379. /*
  380. * This is part of a global counter where only the total sum
  381. * over all CPUs matters. A task can increase this counter on
  382. * one CPU and if it got migrated afterwards it may decrease
  383. * it on another CPU. Always updated under the runqueue lock:
  384. */
  385. unsigned long nr_uninterruptible;
  386. struct task_struct *curr, *idle;
  387. unsigned long next_balance;
  388. struct mm_struct *prev_mm;
  389. u64 clock, prev_clock_raw;
  390. s64 clock_max_delta;
  391. unsigned int clock_warps, clock_overflows, clock_underflows;
  392. u64 idle_clock;
  393. unsigned int clock_deep_idle_events;
  394. u64 tick_timestamp;
  395. atomic_t nr_iowait;
  396. #ifdef CONFIG_SMP
  397. struct root_domain *rd;
  398. struct sched_domain *sd;
  399. /* For active balancing */
  400. int active_balance;
  401. int push_cpu;
  402. /* cpu of this runqueue: */
  403. int cpu;
  404. struct task_struct *migration_thread;
  405. struct list_head migration_queue;
  406. #endif
  407. #ifdef CONFIG_SCHED_HRTICK
  408. unsigned long hrtick_flags;
  409. ktime_t hrtick_expire;
  410. struct hrtimer hrtick_timer;
  411. #endif
  412. #ifdef CONFIG_SCHEDSTATS
  413. /* latency stats */
  414. struct sched_info rq_sched_info;
  415. /* sys_sched_yield() stats */
  416. unsigned int yld_exp_empty;
  417. unsigned int yld_act_empty;
  418. unsigned int yld_both_empty;
  419. unsigned int yld_count;
  420. /* schedule() stats */
  421. unsigned int sched_switch;
  422. unsigned int sched_count;
  423. unsigned int sched_goidle;
  424. /* try_to_wake_up() stats */
  425. unsigned int ttwu_count;
  426. unsigned int ttwu_local;
  427. /* BKL stats */
  428. unsigned int bkl_count;
  429. #endif
  430. struct lock_class_key rq_lock_key;
  431. };
  432. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  433. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  434. {
  435. rq->curr->sched_class->check_preempt_curr(rq, p);
  436. }
  437. static inline int cpu_of(struct rq *rq)
  438. {
  439. #ifdef CONFIG_SMP
  440. return rq->cpu;
  441. #else
  442. return 0;
  443. #endif
  444. }
  445. /*
  446. * Update the per-runqueue clock, as finegrained as the platform can give
  447. * us, but without assuming monotonicity, etc.:
  448. */
  449. static void __update_rq_clock(struct rq *rq)
  450. {
  451. u64 prev_raw = rq->prev_clock_raw;
  452. u64 now = sched_clock();
  453. s64 delta = now - prev_raw;
  454. u64 clock = rq->clock;
  455. #ifdef CONFIG_SCHED_DEBUG
  456. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  457. #endif
  458. /*
  459. * Protect against sched_clock() occasionally going backwards:
  460. */
  461. if (unlikely(delta < 0)) {
  462. clock++;
  463. rq->clock_warps++;
  464. } else {
  465. /*
  466. * Catch too large forward jumps too:
  467. */
  468. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  469. if (clock < rq->tick_timestamp + TICK_NSEC)
  470. clock = rq->tick_timestamp + TICK_NSEC;
  471. else
  472. clock++;
  473. rq->clock_overflows++;
  474. } else {
  475. if (unlikely(delta > rq->clock_max_delta))
  476. rq->clock_max_delta = delta;
  477. clock += delta;
  478. }
  479. }
  480. rq->prev_clock_raw = now;
  481. rq->clock = clock;
  482. }
  483. static void update_rq_clock(struct rq *rq)
  484. {
  485. if (likely(smp_processor_id() == cpu_of(rq)))
  486. __update_rq_clock(rq);
  487. }
  488. /*
  489. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  490. * See detach_destroy_domains: synchronize_sched for details.
  491. *
  492. * The domain tree of any CPU may only be accessed from within
  493. * preempt-disabled sections.
  494. */
  495. #define for_each_domain(cpu, __sd) \
  496. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  497. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  498. #define this_rq() (&__get_cpu_var(runqueues))
  499. #define task_rq(p) cpu_rq(task_cpu(p))
  500. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  501. unsigned long rt_needs_cpu(int cpu)
  502. {
  503. struct rq *rq = cpu_rq(cpu);
  504. u64 delta;
  505. if (!rq->rt_throttled)
  506. return 0;
  507. if (rq->clock > rq->rt_period_expire)
  508. return 1;
  509. delta = rq->rt_period_expire - rq->clock;
  510. do_div(delta, NSEC_PER_SEC / HZ);
  511. return (unsigned long)delta;
  512. }
  513. /*
  514. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  515. */
  516. #ifdef CONFIG_SCHED_DEBUG
  517. # define const_debug __read_mostly
  518. #else
  519. # define const_debug static const
  520. #endif
  521. /*
  522. * Debugging: various feature bits
  523. */
  524. enum {
  525. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  526. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  527. SCHED_FEAT_START_DEBIT = 4,
  528. SCHED_FEAT_TREE_AVG = 8,
  529. SCHED_FEAT_APPROX_AVG = 16,
  530. SCHED_FEAT_HRTICK = 32,
  531. SCHED_FEAT_DOUBLE_TICK = 64,
  532. };
  533. const_debug unsigned int sysctl_sched_features =
  534. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  535. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  536. SCHED_FEAT_START_DEBIT * 1 |
  537. SCHED_FEAT_TREE_AVG * 0 |
  538. SCHED_FEAT_APPROX_AVG * 0 |
  539. SCHED_FEAT_HRTICK * 1 |
  540. SCHED_FEAT_DOUBLE_TICK * 0;
  541. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  542. /*
  543. * Number of tasks to iterate in a single balance run.
  544. * Limited because this is done with IRQs disabled.
  545. */
  546. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  547. /*
  548. * period over which we measure -rt task cpu usage in ms.
  549. * default: 1s
  550. */
  551. const_debug unsigned int sysctl_sched_rt_period = 1000;
  552. #define SCHED_RT_FRAC_SHIFT 16
  553. #define SCHED_RT_FRAC (1UL << SCHED_RT_FRAC_SHIFT)
  554. /*
  555. * ratio of time -rt tasks may consume.
  556. * default: 95%
  557. */
  558. const_debug unsigned int sysctl_sched_rt_ratio = 62259;
  559. /*
  560. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  561. * clock constructed from sched_clock():
  562. */
  563. unsigned long long cpu_clock(int cpu)
  564. {
  565. unsigned long long now;
  566. unsigned long flags;
  567. struct rq *rq;
  568. local_irq_save(flags);
  569. rq = cpu_rq(cpu);
  570. /*
  571. * Only call sched_clock() if the scheduler has already been
  572. * initialized (some code might call cpu_clock() very early):
  573. */
  574. if (rq->idle)
  575. update_rq_clock(rq);
  576. now = rq->clock;
  577. local_irq_restore(flags);
  578. return now;
  579. }
  580. EXPORT_SYMBOL_GPL(cpu_clock);
  581. #ifndef prepare_arch_switch
  582. # define prepare_arch_switch(next) do { } while (0)
  583. #endif
  584. #ifndef finish_arch_switch
  585. # define finish_arch_switch(prev) do { } while (0)
  586. #endif
  587. static inline int task_current(struct rq *rq, struct task_struct *p)
  588. {
  589. return rq->curr == p;
  590. }
  591. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  592. static inline int task_running(struct rq *rq, struct task_struct *p)
  593. {
  594. return task_current(rq, p);
  595. }
  596. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  597. {
  598. }
  599. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  600. {
  601. #ifdef CONFIG_DEBUG_SPINLOCK
  602. /* this is a valid case when another task releases the spinlock */
  603. rq->lock.owner = current;
  604. #endif
  605. /*
  606. * If we are tracking spinlock dependencies then we have to
  607. * fix up the runqueue lock - which gets 'carried over' from
  608. * prev into current:
  609. */
  610. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  611. spin_unlock_irq(&rq->lock);
  612. }
  613. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  614. static inline int task_running(struct rq *rq, struct task_struct *p)
  615. {
  616. #ifdef CONFIG_SMP
  617. return p->oncpu;
  618. #else
  619. return task_current(rq, p);
  620. #endif
  621. }
  622. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  623. {
  624. #ifdef CONFIG_SMP
  625. /*
  626. * We can optimise this out completely for !SMP, because the
  627. * SMP rebalancing from interrupt is the only thing that cares
  628. * here.
  629. */
  630. next->oncpu = 1;
  631. #endif
  632. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  633. spin_unlock_irq(&rq->lock);
  634. #else
  635. spin_unlock(&rq->lock);
  636. #endif
  637. }
  638. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  639. {
  640. #ifdef CONFIG_SMP
  641. /*
  642. * After ->oncpu is cleared, the task can be moved to a different CPU.
  643. * We must ensure this doesn't happen until the switch is completely
  644. * finished.
  645. */
  646. smp_wmb();
  647. prev->oncpu = 0;
  648. #endif
  649. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  650. local_irq_enable();
  651. #endif
  652. }
  653. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  654. /*
  655. * __task_rq_lock - lock the runqueue a given task resides on.
  656. * Must be called interrupts disabled.
  657. */
  658. static inline struct rq *__task_rq_lock(struct task_struct *p)
  659. __acquires(rq->lock)
  660. {
  661. for (;;) {
  662. struct rq *rq = task_rq(p);
  663. spin_lock(&rq->lock);
  664. if (likely(rq == task_rq(p)))
  665. return rq;
  666. spin_unlock(&rq->lock);
  667. }
  668. }
  669. /*
  670. * task_rq_lock - lock the runqueue a given task resides on and disable
  671. * interrupts. Note the ordering: we can safely lookup the task_rq without
  672. * explicitly disabling preemption.
  673. */
  674. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  675. __acquires(rq->lock)
  676. {
  677. struct rq *rq;
  678. for (;;) {
  679. local_irq_save(*flags);
  680. rq = task_rq(p);
  681. spin_lock(&rq->lock);
  682. if (likely(rq == task_rq(p)))
  683. return rq;
  684. spin_unlock_irqrestore(&rq->lock, *flags);
  685. }
  686. }
  687. static void __task_rq_unlock(struct rq *rq)
  688. __releases(rq->lock)
  689. {
  690. spin_unlock(&rq->lock);
  691. }
  692. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  693. __releases(rq->lock)
  694. {
  695. spin_unlock_irqrestore(&rq->lock, *flags);
  696. }
  697. /*
  698. * this_rq_lock - lock this runqueue and disable interrupts.
  699. */
  700. static struct rq *this_rq_lock(void)
  701. __acquires(rq->lock)
  702. {
  703. struct rq *rq;
  704. local_irq_disable();
  705. rq = this_rq();
  706. spin_lock(&rq->lock);
  707. return rq;
  708. }
  709. /*
  710. * We are going deep-idle (irqs are disabled):
  711. */
  712. void sched_clock_idle_sleep_event(void)
  713. {
  714. struct rq *rq = cpu_rq(smp_processor_id());
  715. spin_lock(&rq->lock);
  716. __update_rq_clock(rq);
  717. spin_unlock(&rq->lock);
  718. rq->clock_deep_idle_events++;
  719. }
  720. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  721. /*
  722. * We just idled delta nanoseconds (called with irqs disabled):
  723. */
  724. void sched_clock_idle_wakeup_event(u64 delta_ns)
  725. {
  726. struct rq *rq = cpu_rq(smp_processor_id());
  727. u64 now = sched_clock();
  728. rq->idle_clock += delta_ns;
  729. /*
  730. * Override the previous timestamp and ignore all
  731. * sched_clock() deltas that occured while we idled,
  732. * and use the PM-provided delta_ns to advance the
  733. * rq clock:
  734. */
  735. spin_lock(&rq->lock);
  736. rq->prev_clock_raw = now;
  737. rq->clock += delta_ns;
  738. spin_unlock(&rq->lock);
  739. touch_softlockup_watchdog();
  740. }
  741. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  742. static void __resched_task(struct task_struct *p, int tif_bit);
  743. static inline void resched_task(struct task_struct *p)
  744. {
  745. __resched_task(p, TIF_NEED_RESCHED);
  746. }
  747. #ifdef CONFIG_SCHED_HRTICK
  748. /*
  749. * Use HR-timers to deliver accurate preemption points.
  750. *
  751. * Its all a bit involved since we cannot program an hrt while holding the
  752. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  753. * reschedule event.
  754. *
  755. * When we get rescheduled we reprogram the hrtick_timer outside of the
  756. * rq->lock.
  757. */
  758. static inline void resched_hrt(struct task_struct *p)
  759. {
  760. __resched_task(p, TIF_HRTICK_RESCHED);
  761. }
  762. static inline void resched_rq(struct rq *rq)
  763. {
  764. unsigned long flags;
  765. spin_lock_irqsave(&rq->lock, flags);
  766. resched_task(rq->curr);
  767. spin_unlock_irqrestore(&rq->lock, flags);
  768. }
  769. enum {
  770. HRTICK_SET, /* re-programm hrtick_timer */
  771. HRTICK_RESET, /* not a new slice */
  772. };
  773. /*
  774. * Use hrtick when:
  775. * - enabled by features
  776. * - hrtimer is actually high res
  777. */
  778. static inline int hrtick_enabled(struct rq *rq)
  779. {
  780. if (!sched_feat(HRTICK))
  781. return 0;
  782. return hrtimer_is_hres_active(&rq->hrtick_timer);
  783. }
  784. /*
  785. * Called to set the hrtick timer state.
  786. *
  787. * called with rq->lock held and irqs disabled
  788. */
  789. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  790. {
  791. assert_spin_locked(&rq->lock);
  792. /*
  793. * preempt at: now + delay
  794. */
  795. rq->hrtick_expire =
  796. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  797. /*
  798. * indicate we need to program the timer
  799. */
  800. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  801. if (reset)
  802. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  803. /*
  804. * New slices are called from the schedule path and don't need a
  805. * forced reschedule.
  806. */
  807. if (reset)
  808. resched_hrt(rq->curr);
  809. }
  810. static void hrtick_clear(struct rq *rq)
  811. {
  812. if (hrtimer_active(&rq->hrtick_timer))
  813. hrtimer_cancel(&rq->hrtick_timer);
  814. }
  815. /*
  816. * Update the timer from the possible pending state.
  817. */
  818. static void hrtick_set(struct rq *rq)
  819. {
  820. ktime_t time;
  821. int set, reset;
  822. unsigned long flags;
  823. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  824. spin_lock_irqsave(&rq->lock, flags);
  825. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  826. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  827. time = rq->hrtick_expire;
  828. clear_thread_flag(TIF_HRTICK_RESCHED);
  829. spin_unlock_irqrestore(&rq->lock, flags);
  830. if (set) {
  831. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  832. if (reset && !hrtimer_active(&rq->hrtick_timer))
  833. resched_rq(rq);
  834. } else
  835. hrtick_clear(rq);
  836. }
  837. /*
  838. * High-resolution timer tick.
  839. * Runs from hardirq context with interrupts disabled.
  840. */
  841. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  842. {
  843. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  844. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  845. spin_lock(&rq->lock);
  846. __update_rq_clock(rq);
  847. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  848. spin_unlock(&rq->lock);
  849. return HRTIMER_NORESTART;
  850. }
  851. static inline void init_rq_hrtick(struct rq *rq)
  852. {
  853. rq->hrtick_flags = 0;
  854. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  855. rq->hrtick_timer.function = hrtick;
  856. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  857. }
  858. void hrtick_resched(void)
  859. {
  860. struct rq *rq;
  861. unsigned long flags;
  862. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  863. return;
  864. local_irq_save(flags);
  865. rq = cpu_rq(smp_processor_id());
  866. hrtick_set(rq);
  867. local_irq_restore(flags);
  868. }
  869. #else
  870. static inline void hrtick_clear(struct rq *rq)
  871. {
  872. }
  873. static inline void hrtick_set(struct rq *rq)
  874. {
  875. }
  876. static inline void init_rq_hrtick(struct rq *rq)
  877. {
  878. }
  879. void hrtick_resched(void)
  880. {
  881. }
  882. #endif
  883. /*
  884. * resched_task - mark a task 'to be rescheduled now'.
  885. *
  886. * On UP this means the setting of the need_resched flag, on SMP it
  887. * might also involve a cross-CPU call to trigger the scheduler on
  888. * the target CPU.
  889. */
  890. #ifdef CONFIG_SMP
  891. #ifndef tsk_is_polling
  892. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  893. #endif
  894. static void __resched_task(struct task_struct *p, int tif_bit)
  895. {
  896. int cpu;
  897. assert_spin_locked(&task_rq(p)->lock);
  898. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  899. return;
  900. set_tsk_thread_flag(p, tif_bit);
  901. cpu = task_cpu(p);
  902. if (cpu == smp_processor_id())
  903. return;
  904. /* NEED_RESCHED must be visible before we test polling */
  905. smp_mb();
  906. if (!tsk_is_polling(p))
  907. smp_send_reschedule(cpu);
  908. }
  909. static void resched_cpu(int cpu)
  910. {
  911. struct rq *rq = cpu_rq(cpu);
  912. unsigned long flags;
  913. if (!spin_trylock_irqsave(&rq->lock, flags))
  914. return;
  915. resched_task(cpu_curr(cpu));
  916. spin_unlock_irqrestore(&rq->lock, flags);
  917. }
  918. #else
  919. static void __resched_task(struct task_struct *p, int tif_bit)
  920. {
  921. assert_spin_locked(&task_rq(p)->lock);
  922. set_tsk_thread_flag(p, tif_bit);
  923. }
  924. #endif
  925. #if BITS_PER_LONG == 32
  926. # define WMULT_CONST (~0UL)
  927. #else
  928. # define WMULT_CONST (1UL << 32)
  929. #endif
  930. #define WMULT_SHIFT 32
  931. /*
  932. * Shift right and round:
  933. */
  934. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  935. static unsigned long
  936. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  937. struct load_weight *lw)
  938. {
  939. u64 tmp;
  940. if (unlikely(!lw->inv_weight))
  941. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  942. tmp = (u64)delta_exec * weight;
  943. /*
  944. * Check whether we'd overflow the 64-bit multiplication:
  945. */
  946. if (unlikely(tmp > WMULT_CONST))
  947. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  948. WMULT_SHIFT/2);
  949. else
  950. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  951. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  952. }
  953. static inline unsigned long
  954. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  955. {
  956. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  957. }
  958. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  959. {
  960. lw->weight += inc;
  961. }
  962. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  963. {
  964. lw->weight -= dec;
  965. }
  966. /*
  967. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  968. * of tasks with abnormal "nice" values across CPUs the contribution that
  969. * each task makes to its run queue's load is weighted according to its
  970. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  971. * scaled version of the new time slice allocation that they receive on time
  972. * slice expiry etc.
  973. */
  974. #define WEIGHT_IDLEPRIO 2
  975. #define WMULT_IDLEPRIO (1 << 31)
  976. /*
  977. * Nice levels are multiplicative, with a gentle 10% change for every
  978. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  979. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  980. * that remained on nice 0.
  981. *
  982. * The "10% effect" is relative and cumulative: from _any_ nice level,
  983. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  984. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  985. * If a task goes up by ~10% and another task goes down by ~10% then
  986. * the relative distance between them is ~25%.)
  987. */
  988. static const int prio_to_weight[40] = {
  989. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  990. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  991. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  992. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  993. /* 0 */ 1024, 820, 655, 526, 423,
  994. /* 5 */ 335, 272, 215, 172, 137,
  995. /* 10 */ 110, 87, 70, 56, 45,
  996. /* 15 */ 36, 29, 23, 18, 15,
  997. };
  998. /*
  999. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1000. *
  1001. * In cases where the weight does not change often, we can use the
  1002. * precalculated inverse to speed up arithmetics by turning divisions
  1003. * into multiplications:
  1004. */
  1005. static const u32 prio_to_wmult[40] = {
  1006. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1007. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1008. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1009. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1010. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1011. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1012. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1013. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1014. };
  1015. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1016. /*
  1017. * runqueue iterator, to support SMP load-balancing between different
  1018. * scheduling classes, without having to expose their internal data
  1019. * structures to the load-balancing proper:
  1020. */
  1021. struct rq_iterator {
  1022. void *arg;
  1023. struct task_struct *(*start)(void *);
  1024. struct task_struct *(*next)(void *);
  1025. };
  1026. #ifdef CONFIG_SMP
  1027. static unsigned long
  1028. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1029. unsigned long max_load_move, struct sched_domain *sd,
  1030. enum cpu_idle_type idle, int *all_pinned,
  1031. int *this_best_prio, struct rq_iterator *iterator);
  1032. static int
  1033. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1034. struct sched_domain *sd, enum cpu_idle_type idle,
  1035. struct rq_iterator *iterator);
  1036. #endif
  1037. #ifdef CONFIG_CGROUP_CPUACCT
  1038. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1039. #else
  1040. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1041. #endif
  1042. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1043. {
  1044. update_load_add(&rq->load, load);
  1045. }
  1046. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1047. {
  1048. update_load_sub(&rq->load, load);
  1049. }
  1050. #ifdef CONFIG_SMP
  1051. static unsigned long source_load(int cpu, int type);
  1052. static unsigned long target_load(int cpu, int type);
  1053. static unsigned long cpu_avg_load_per_task(int cpu);
  1054. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1055. #endif /* CONFIG_SMP */
  1056. #include "sched_stats.h"
  1057. #include "sched_idletask.c"
  1058. #include "sched_fair.c"
  1059. #include "sched_rt.c"
  1060. #ifdef CONFIG_SCHED_DEBUG
  1061. # include "sched_debug.c"
  1062. #endif
  1063. #define sched_class_highest (&rt_sched_class)
  1064. static void inc_nr_running(struct rq *rq)
  1065. {
  1066. rq->nr_running++;
  1067. }
  1068. static void dec_nr_running(struct rq *rq)
  1069. {
  1070. rq->nr_running--;
  1071. }
  1072. static void set_load_weight(struct task_struct *p)
  1073. {
  1074. if (task_has_rt_policy(p)) {
  1075. p->se.load.weight = prio_to_weight[0] * 2;
  1076. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1077. return;
  1078. }
  1079. /*
  1080. * SCHED_IDLE tasks get minimal weight:
  1081. */
  1082. if (p->policy == SCHED_IDLE) {
  1083. p->se.load.weight = WEIGHT_IDLEPRIO;
  1084. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1085. return;
  1086. }
  1087. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1088. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1089. }
  1090. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1091. {
  1092. sched_info_queued(p);
  1093. p->sched_class->enqueue_task(rq, p, wakeup);
  1094. p->se.on_rq = 1;
  1095. }
  1096. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1097. {
  1098. p->sched_class->dequeue_task(rq, p, sleep);
  1099. p->se.on_rq = 0;
  1100. }
  1101. /*
  1102. * __normal_prio - return the priority that is based on the static prio
  1103. */
  1104. static inline int __normal_prio(struct task_struct *p)
  1105. {
  1106. return p->static_prio;
  1107. }
  1108. /*
  1109. * Calculate the expected normal priority: i.e. priority
  1110. * without taking RT-inheritance into account. Might be
  1111. * boosted by interactivity modifiers. Changes upon fork,
  1112. * setprio syscalls, and whenever the interactivity
  1113. * estimator recalculates.
  1114. */
  1115. static inline int normal_prio(struct task_struct *p)
  1116. {
  1117. int prio;
  1118. if (task_has_rt_policy(p))
  1119. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1120. else
  1121. prio = __normal_prio(p);
  1122. return prio;
  1123. }
  1124. /*
  1125. * Calculate the current priority, i.e. the priority
  1126. * taken into account by the scheduler. This value might
  1127. * be boosted by RT tasks, or might be boosted by
  1128. * interactivity modifiers. Will be RT if the task got
  1129. * RT-boosted. If not then it returns p->normal_prio.
  1130. */
  1131. static int effective_prio(struct task_struct *p)
  1132. {
  1133. p->normal_prio = normal_prio(p);
  1134. /*
  1135. * If we are RT tasks or we were boosted to RT priority,
  1136. * keep the priority unchanged. Otherwise, update priority
  1137. * to the normal priority:
  1138. */
  1139. if (!rt_prio(p->prio))
  1140. return p->normal_prio;
  1141. return p->prio;
  1142. }
  1143. /*
  1144. * activate_task - move a task to the runqueue.
  1145. */
  1146. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1147. {
  1148. if (task_contributes_to_load(p))
  1149. rq->nr_uninterruptible--;
  1150. enqueue_task(rq, p, wakeup);
  1151. inc_nr_running(rq);
  1152. }
  1153. /*
  1154. * deactivate_task - remove a task from the runqueue.
  1155. */
  1156. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1157. {
  1158. if (task_contributes_to_load(p))
  1159. rq->nr_uninterruptible++;
  1160. dequeue_task(rq, p, sleep);
  1161. dec_nr_running(rq);
  1162. }
  1163. /**
  1164. * task_curr - is this task currently executing on a CPU?
  1165. * @p: the task in question.
  1166. */
  1167. inline int task_curr(const struct task_struct *p)
  1168. {
  1169. return cpu_curr(task_cpu(p)) == p;
  1170. }
  1171. /* Used instead of source_load when we know the type == 0 */
  1172. unsigned long weighted_cpuload(const int cpu)
  1173. {
  1174. return cpu_rq(cpu)->load.weight;
  1175. }
  1176. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1177. {
  1178. set_task_rq(p, cpu);
  1179. #ifdef CONFIG_SMP
  1180. /*
  1181. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1182. * successfuly executed on another CPU. We must ensure that updates of
  1183. * per-task data have been completed by this moment.
  1184. */
  1185. smp_wmb();
  1186. task_thread_info(p)->cpu = cpu;
  1187. #endif
  1188. }
  1189. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1190. const struct sched_class *prev_class,
  1191. int oldprio, int running)
  1192. {
  1193. if (prev_class != p->sched_class) {
  1194. if (prev_class->switched_from)
  1195. prev_class->switched_from(rq, p, running);
  1196. p->sched_class->switched_to(rq, p, running);
  1197. } else
  1198. p->sched_class->prio_changed(rq, p, oldprio, running);
  1199. }
  1200. #ifdef CONFIG_SMP
  1201. /*
  1202. * Is this task likely cache-hot:
  1203. */
  1204. static int
  1205. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1206. {
  1207. s64 delta;
  1208. if (p->sched_class != &fair_sched_class)
  1209. return 0;
  1210. if (sysctl_sched_migration_cost == -1)
  1211. return 1;
  1212. if (sysctl_sched_migration_cost == 0)
  1213. return 0;
  1214. delta = now - p->se.exec_start;
  1215. return delta < (s64)sysctl_sched_migration_cost;
  1216. }
  1217. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1218. {
  1219. int old_cpu = task_cpu(p);
  1220. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1221. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1222. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1223. u64 clock_offset;
  1224. clock_offset = old_rq->clock - new_rq->clock;
  1225. #ifdef CONFIG_SCHEDSTATS
  1226. if (p->se.wait_start)
  1227. p->se.wait_start -= clock_offset;
  1228. if (p->se.sleep_start)
  1229. p->se.sleep_start -= clock_offset;
  1230. if (p->se.block_start)
  1231. p->se.block_start -= clock_offset;
  1232. if (old_cpu != new_cpu) {
  1233. schedstat_inc(p, se.nr_migrations);
  1234. if (task_hot(p, old_rq->clock, NULL))
  1235. schedstat_inc(p, se.nr_forced2_migrations);
  1236. }
  1237. #endif
  1238. p->se.vruntime -= old_cfsrq->min_vruntime -
  1239. new_cfsrq->min_vruntime;
  1240. __set_task_cpu(p, new_cpu);
  1241. }
  1242. struct migration_req {
  1243. struct list_head list;
  1244. struct task_struct *task;
  1245. int dest_cpu;
  1246. struct completion done;
  1247. };
  1248. /*
  1249. * The task's runqueue lock must be held.
  1250. * Returns true if you have to wait for migration thread.
  1251. */
  1252. static int
  1253. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1254. {
  1255. struct rq *rq = task_rq(p);
  1256. /*
  1257. * If the task is not on a runqueue (and not running), then
  1258. * it is sufficient to simply update the task's cpu field.
  1259. */
  1260. if (!p->se.on_rq && !task_running(rq, p)) {
  1261. set_task_cpu(p, dest_cpu);
  1262. return 0;
  1263. }
  1264. init_completion(&req->done);
  1265. req->task = p;
  1266. req->dest_cpu = dest_cpu;
  1267. list_add(&req->list, &rq->migration_queue);
  1268. return 1;
  1269. }
  1270. /*
  1271. * wait_task_inactive - wait for a thread to unschedule.
  1272. *
  1273. * The caller must ensure that the task *will* unschedule sometime soon,
  1274. * else this function might spin for a *long* time. This function can't
  1275. * be called with interrupts off, or it may introduce deadlock with
  1276. * smp_call_function() if an IPI is sent by the same process we are
  1277. * waiting to become inactive.
  1278. */
  1279. void wait_task_inactive(struct task_struct *p)
  1280. {
  1281. unsigned long flags;
  1282. int running, on_rq;
  1283. struct rq *rq;
  1284. for (;;) {
  1285. /*
  1286. * We do the initial early heuristics without holding
  1287. * any task-queue locks at all. We'll only try to get
  1288. * the runqueue lock when things look like they will
  1289. * work out!
  1290. */
  1291. rq = task_rq(p);
  1292. /*
  1293. * If the task is actively running on another CPU
  1294. * still, just relax and busy-wait without holding
  1295. * any locks.
  1296. *
  1297. * NOTE! Since we don't hold any locks, it's not
  1298. * even sure that "rq" stays as the right runqueue!
  1299. * But we don't care, since "task_running()" will
  1300. * return false if the runqueue has changed and p
  1301. * is actually now running somewhere else!
  1302. */
  1303. while (task_running(rq, p))
  1304. cpu_relax();
  1305. /*
  1306. * Ok, time to look more closely! We need the rq
  1307. * lock now, to be *sure*. If we're wrong, we'll
  1308. * just go back and repeat.
  1309. */
  1310. rq = task_rq_lock(p, &flags);
  1311. running = task_running(rq, p);
  1312. on_rq = p->se.on_rq;
  1313. task_rq_unlock(rq, &flags);
  1314. /*
  1315. * Was it really running after all now that we
  1316. * checked with the proper locks actually held?
  1317. *
  1318. * Oops. Go back and try again..
  1319. */
  1320. if (unlikely(running)) {
  1321. cpu_relax();
  1322. continue;
  1323. }
  1324. /*
  1325. * It's not enough that it's not actively running,
  1326. * it must be off the runqueue _entirely_, and not
  1327. * preempted!
  1328. *
  1329. * So if it wa still runnable (but just not actively
  1330. * running right now), it's preempted, and we should
  1331. * yield - it could be a while.
  1332. */
  1333. if (unlikely(on_rq)) {
  1334. schedule_timeout_uninterruptible(1);
  1335. continue;
  1336. }
  1337. /*
  1338. * Ahh, all good. It wasn't running, and it wasn't
  1339. * runnable, which means that it will never become
  1340. * running in the future either. We're all done!
  1341. */
  1342. break;
  1343. }
  1344. }
  1345. /***
  1346. * kick_process - kick a running thread to enter/exit the kernel
  1347. * @p: the to-be-kicked thread
  1348. *
  1349. * Cause a process which is running on another CPU to enter
  1350. * kernel-mode, without any delay. (to get signals handled.)
  1351. *
  1352. * NOTE: this function doesnt have to take the runqueue lock,
  1353. * because all it wants to ensure is that the remote task enters
  1354. * the kernel. If the IPI races and the task has been migrated
  1355. * to another CPU then no harm is done and the purpose has been
  1356. * achieved as well.
  1357. */
  1358. void kick_process(struct task_struct *p)
  1359. {
  1360. int cpu;
  1361. preempt_disable();
  1362. cpu = task_cpu(p);
  1363. if ((cpu != smp_processor_id()) && task_curr(p))
  1364. smp_send_reschedule(cpu);
  1365. preempt_enable();
  1366. }
  1367. /*
  1368. * Return a low guess at the load of a migration-source cpu weighted
  1369. * according to the scheduling class and "nice" value.
  1370. *
  1371. * We want to under-estimate the load of migration sources, to
  1372. * balance conservatively.
  1373. */
  1374. static unsigned long source_load(int cpu, int type)
  1375. {
  1376. struct rq *rq = cpu_rq(cpu);
  1377. unsigned long total = weighted_cpuload(cpu);
  1378. if (type == 0)
  1379. return total;
  1380. return min(rq->cpu_load[type-1], total);
  1381. }
  1382. /*
  1383. * Return a high guess at the load of a migration-target cpu weighted
  1384. * according to the scheduling class and "nice" value.
  1385. */
  1386. static unsigned long target_load(int cpu, int type)
  1387. {
  1388. struct rq *rq = cpu_rq(cpu);
  1389. unsigned long total = weighted_cpuload(cpu);
  1390. if (type == 0)
  1391. return total;
  1392. return max(rq->cpu_load[type-1], total);
  1393. }
  1394. /*
  1395. * Return the average load per task on the cpu's run queue
  1396. */
  1397. static unsigned long cpu_avg_load_per_task(int cpu)
  1398. {
  1399. struct rq *rq = cpu_rq(cpu);
  1400. unsigned long total = weighted_cpuload(cpu);
  1401. unsigned long n = rq->nr_running;
  1402. return n ? total / n : SCHED_LOAD_SCALE;
  1403. }
  1404. /*
  1405. * find_idlest_group finds and returns the least busy CPU group within the
  1406. * domain.
  1407. */
  1408. static struct sched_group *
  1409. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1410. {
  1411. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1412. unsigned long min_load = ULONG_MAX, this_load = 0;
  1413. int load_idx = sd->forkexec_idx;
  1414. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1415. do {
  1416. unsigned long load, avg_load;
  1417. int local_group;
  1418. int i;
  1419. /* Skip over this group if it has no CPUs allowed */
  1420. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1421. continue;
  1422. local_group = cpu_isset(this_cpu, group->cpumask);
  1423. /* Tally up the load of all CPUs in the group */
  1424. avg_load = 0;
  1425. for_each_cpu_mask(i, group->cpumask) {
  1426. /* Bias balancing toward cpus of our domain */
  1427. if (local_group)
  1428. load = source_load(i, load_idx);
  1429. else
  1430. load = target_load(i, load_idx);
  1431. avg_load += load;
  1432. }
  1433. /* Adjust by relative CPU power of the group */
  1434. avg_load = sg_div_cpu_power(group,
  1435. avg_load * SCHED_LOAD_SCALE);
  1436. if (local_group) {
  1437. this_load = avg_load;
  1438. this = group;
  1439. } else if (avg_load < min_load) {
  1440. min_load = avg_load;
  1441. idlest = group;
  1442. }
  1443. } while (group = group->next, group != sd->groups);
  1444. if (!idlest || 100*this_load < imbalance*min_load)
  1445. return NULL;
  1446. return idlest;
  1447. }
  1448. /*
  1449. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1450. */
  1451. static int
  1452. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1453. {
  1454. cpumask_t tmp;
  1455. unsigned long load, min_load = ULONG_MAX;
  1456. int idlest = -1;
  1457. int i;
  1458. /* Traverse only the allowed CPUs */
  1459. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1460. for_each_cpu_mask(i, tmp) {
  1461. load = weighted_cpuload(i);
  1462. if (load < min_load || (load == min_load && i == this_cpu)) {
  1463. min_load = load;
  1464. idlest = i;
  1465. }
  1466. }
  1467. return idlest;
  1468. }
  1469. /*
  1470. * sched_balance_self: balance the current task (running on cpu) in domains
  1471. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1472. * SD_BALANCE_EXEC.
  1473. *
  1474. * Balance, ie. select the least loaded group.
  1475. *
  1476. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1477. *
  1478. * preempt must be disabled.
  1479. */
  1480. static int sched_balance_self(int cpu, int flag)
  1481. {
  1482. struct task_struct *t = current;
  1483. struct sched_domain *tmp, *sd = NULL;
  1484. for_each_domain(cpu, tmp) {
  1485. /*
  1486. * If power savings logic is enabled for a domain, stop there.
  1487. */
  1488. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1489. break;
  1490. if (tmp->flags & flag)
  1491. sd = tmp;
  1492. }
  1493. while (sd) {
  1494. cpumask_t span;
  1495. struct sched_group *group;
  1496. int new_cpu, weight;
  1497. if (!(sd->flags & flag)) {
  1498. sd = sd->child;
  1499. continue;
  1500. }
  1501. span = sd->span;
  1502. group = find_idlest_group(sd, t, cpu);
  1503. if (!group) {
  1504. sd = sd->child;
  1505. continue;
  1506. }
  1507. new_cpu = find_idlest_cpu(group, t, cpu);
  1508. if (new_cpu == -1 || new_cpu == cpu) {
  1509. /* Now try balancing at a lower domain level of cpu */
  1510. sd = sd->child;
  1511. continue;
  1512. }
  1513. /* Now try balancing at a lower domain level of new_cpu */
  1514. cpu = new_cpu;
  1515. sd = NULL;
  1516. weight = cpus_weight(span);
  1517. for_each_domain(cpu, tmp) {
  1518. if (weight <= cpus_weight(tmp->span))
  1519. break;
  1520. if (tmp->flags & flag)
  1521. sd = tmp;
  1522. }
  1523. /* while loop will break here if sd == NULL */
  1524. }
  1525. return cpu;
  1526. }
  1527. #endif /* CONFIG_SMP */
  1528. /***
  1529. * try_to_wake_up - wake up a thread
  1530. * @p: the to-be-woken-up thread
  1531. * @state: the mask of task states that can be woken
  1532. * @sync: do a synchronous wakeup?
  1533. *
  1534. * Put it on the run-queue if it's not already there. The "current"
  1535. * thread is always on the run-queue (except when the actual
  1536. * re-schedule is in progress), and as such you're allowed to do
  1537. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1538. * runnable without the overhead of this.
  1539. *
  1540. * returns failure only if the task is already active.
  1541. */
  1542. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1543. {
  1544. int cpu, orig_cpu, this_cpu, success = 0;
  1545. unsigned long flags;
  1546. long old_state;
  1547. struct rq *rq;
  1548. rq = task_rq_lock(p, &flags);
  1549. old_state = p->state;
  1550. if (!(old_state & state))
  1551. goto out;
  1552. if (p->se.on_rq)
  1553. goto out_running;
  1554. cpu = task_cpu(p);
  1555. orig_cpu = cpu;
  1556. this_cpu = smp_processor_id();
  1557. #ifdef CONFIG_SMP
  1558. if (unlikely(task_running(rq, p)))
  1559. goto out_activate;
  1560. cpu = p->sched_class->select_task_rq(p, sync);
  1561. if (cpu != orig_cpu) {
  1562. set_task_cpu(p, cpu);
  1563. task_rq_unlock(rq, &flags);
  1564. /* might preempt at this point */
  1565. rq = task_rq_lock(p, &flags);
  1566. old_state = p->state;
  1567. if (!(old_state & state))
  1568. goto out;
  1569. if (p->se.on_rq)
  1570. goto out_running;
  1571. this_cpu = smp_processor_id();
  1572. cpu = task_cpu(p);
  1573. }
  1574. #ifdef CONFIG_SCHEDSTATS
  1575. schedstat_inc(rq, ttwu_count);
  1576. if (cpu == this_cpu)
  1577. schedstat_inc(rq, ttwu_local);
  1578. else {
  1579. struct sched_domain *sd;
  1580. for_each_domain(this_cpu, sd) {
  1581. if (cpu_isset(cpu, sd->span)) {
  1582. schedstat_inc(sd, ttwu_wake_remote);
  1583. break;
  1584. }
  1585. }
  1586. }
  1587. #endif
  1588. out_activate:
  1589. #endif /* CONFIG_SMP */
  1590. schedstat_inc(p, se.nr_wakeups);
  1591. if (sync)
  1592. schedstat_inc(p, se.nr_wakeups_sync);
  1593. if (orig_cpu != cpu)
  1594. schedstat_inc(p, se.nr_wakeups_migrate);
  1595. if (cpu == this_cpu)
  1596. schedstat_inc(p, se.nr_wakeups_local);
  1597. else
  1598. schedstat_inc(p, se.nr_wakeups_remote);
  1599. update_rq_clock(rq);
  1600. activate_task(rq, p, 1);
  1601. check_preempt_curr(rq, p);
  1602. success = 1;
  1603. out_running:
  1604. p->state = TASK_RUNNING;
  1605. #ifdef CONFIG_SMP
  1606. if (p->sched_class->task_wake_up)
  1607. p->sched_class->task_wake_up(rq, p);
  1608. #endif
  1609. out:
  1610. task_rq_unlock(rq, &flags);
  1611. return success;
  1612. }
  1613. int wake_up_process(struct task_struct *p)
  1614. {
  1615. return try_to_wake_up(p, TASK_ALL, 0);
  1616. }
  1617. EXPORT_SYMBOL(wake_up_process);
  1618. int wake_up_state(struct task_struct *p, unsigned int state)
  1619. {
  1620. return try_to_wake_up(p, state, 0);
  1621. }
  1622. /*
  1623. * Perform scheduler related setup for a newly forked process p.
  1624. * p is forked by current.
  1625. *
  1626. * __sched_fork() is basic setup used by init_idle() too:
  1627. */
  1628. static void __sched_fork(struct task_struct *p)
  1629. {
  1630. p->se.exec_start = 0;
  1631. p->se.sum_exec_runtime = 0;
  1632. p->se.prev_sum_exec_runtime = 0;
  1633. #ifdef CONFIG_SCHEDSTATS
  1634. p->se.wait_start = 0;
  1635. p->se.sum_sleep_runtime = 0;
  1636. p->se.sleep_start = 0;
  1637. p->se.block_start = 0;
  1638. p->se.sleep_max = 0;
  1639. p->se.block_max = 0;
  1640. p->se.exec_max = 0;
  1641. p->se.slice_max = 0;
  1642. p->se.wait_max = 0;
  1643. #endif
  1644. INIT_LIST_HEAD(&p->rt.run_list);
  1645. p->se.on_rq = 0;
  1646. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1647. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1648. #endif
  1649. /*
  1650. * We mark the process as running here, but have not actually
  1651. * inserted it onto the runqueue yet. This guarantees that
  1652. * nobody will actually run it, and a signal or other external
  1653. * event cannot wake it up and insert it on the runqueue either.
  1654. */
  1655. p->state = TASK_RUNNING;
  1656. }
  1657. /*
  1658. * fork()/clone()-time setup:
  1659. */
  1660. void sched_fork(struct task_struct *p, int clone_flags)
  1661. {
  1662. int cpu = get_cpu();
  1663. __sched_fork(p);
  1664. #ifdef CONFIG_SMP
  1665. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1666. #endif
  1667. set_task_cpu(p, cpu);
  1668. /*
  1669. * Make sure we do not leak PI boosting priority to the child:
  1670. */
  1671. p->prio = current->normal_prio;
  1672. if (!rt_prio(p->prio))
  1673. p->sched_class = &fair_sched_class;
  1674. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1675. if (likely(sched_info_on()))
  1676. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1677. #endif
  1678. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1679. p->oncpu = 0;
  1680. #endif
  1681. #ifdef CONFIG_PREEMPT
  1682. /* Want to start with kernel preemption disabled. */
  1683. task_thread_info(p)->preempt_count = 1;
  1684. #endif
  1685. put_cpu();
  1686. }
  1687. /*
  1688. * wake_up_new_task - wake up a newly created task for the first time.
  1689. *
  1690. * This function will do some initial scheduler statistics housekeeping
  1691. * that must be done for every newly created context, then puts the task
  1692. * on the runqueue and wakes it.
  1693. */
  1694. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1695. {
  1696. unsigned long flags;
  1697. struct rq *rq;
  1698. rq = task_rq_lock(p, &flags);
  1699. BUG_ON(p->state != TASK_RUNNING);
  1700. update_rq_clock(rq);
  1701. p->prio = effective_prio(p);
  1702. if (!p->sched_class->task_new || !current->se.on_rq) {
  1703. activate_task(rq, p, 0);
  1704. } else {
  1705. /*
  1706. * Let the scheduling class do new task startup
  1707. * management (if any):
  1708. */
  1709. p->sched_class->task_new(rq, p);
  1710. inc_nr_running(rq);
  1711. }
  1712. check_preempt_curr(rq, p);
  1713. #ifdef CONFIG_SMP
  1714. if (p->sched_class->task_wake_up)
  1715. p->sched_class->task_wake_up(rq, p);
  1716. #endif
  1717. task_rq_unlock(rq, &flags);
  1718. }
  1719. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1720. /**
  1721. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1722. * @notifier: notifier struct to register
  1723. */
  1724. void preempt_notifier_register(struct preempt_notifier *notifier)
  1725. {
  1726. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1727. }
  1728. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1729. /**
  1730. * preempt_notifier_unregister - no longer interested in preemption notifications
  1731. * @notifier: notifier struct to unregister
  1732. *
  1733. * This is safe to call from within a preemption notifier.
  1734. */
  1735. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1736. {
  1737. hlist_del(&notifier->link);
  1738. }
  1739. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1740. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1741. {
  1742. struct preempt_notifier *notifier;
  1743. struct hlist_node *node;
  1744. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1745. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1746. }
  1747. static void
  1748. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1749. struct task_struct *next)
  1750. {
  1751. struct preempt_notifier *notifier;
  1752. struct hlist_node *node;
  1753. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1754. notifier->ops->sched_out(notifier, next);
  1755. }
  1756. #else
  1757. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1758. {
  1759. }
  1760. static void
  1761. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1762. struct task_struct *next)
  1763. {
  1764. }
  1765. #endif
  1766. /**
  1767. * prepare_task_switch - prepare to switch tasks
  1768. * @rq: the runqueue preparing to switch
  1769. * @prev: the current task that is being switched out
  1770. * @next: the task we are going to switch to.
  1771. *
  1772. * This is called with the rq lock held and interrupts off. It must
  1773. * be paired with a subsequent finish_task_switch after the context
  1774. * switch.
  1775. *
  1776. * prepare_task_switch sets up locking and calls architecture specific
  1777. * hooks.
  1778. */
  1779. static inline void
  1780. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1781. struct task_struct *next)
  1782. {
  1783. fire_sched_out_preempt_notifiers(prev, next);
  1784. prepare_lock_switch(rq, next);
  1785. prepare_arch_switch(next);
  1786. }
  1787. /**
  1788. * finish_task_switch - clean up after a task-switch
  1789. * @rq: runqueue associated with task-switch
  1790. * @prev: the thread we just switched away from.
  1791. *
  1792. * finish_task_switch must be called after the context switch, paired
  1793. * with a prepare_task_switch call before the context switch.
  1794. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1795. * and do any other architecture-specific cleanup actions.
  1796. *
  1797. * Note that we may have delayed dropping an mm in context_switch(). If
  1798. * so, we finish that here outside of the runqueue lock. (Doing it
  1799. * with the lock held can cause deadlocks; see schedule() for
  1800. * details.)
  1801. */
  1802. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1803. __releases(rq->lock)
  1804. {
  1805. struct mm_struct *mm = rq->prev_mm;
  1806. long prev_state;
  1807. rq->prev_mm = NULL;
  1808. /*
  1809. * A task struct has one reference for the use as "current".
  1810. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1811. * schedule one last time. The schedule call will never return, and
  1812. * the scheduled task must drop that reference.
  1813. * The test for TASK_DEAD must occur while the runqueue locks are
  1814. * still held, otherwise prev could be scheduled on another cpu, die
  1815. * there before we look at prev->state, and then the reference would
  1816. * be dropped twice.
  1817. * Manfred Spraul <manfred@colorfullife.com>
  1818. */
  1819. prev_state = prev->state;
  1820. finish_arch_switch(prev);
  1821. finish_lock_switch(rq, prev);
  1822. #ifdef CONFIG_SMP
  1823. if (current->sched_class->post_schedule)
  1824. current->sched_class->post_schedule(rq);
  1825. #endif
  1826. fire_sched_in_preempt_notifiers(current);
  1827. if (mm)
  1828. mmdrop(mm);
  1829. if (unlikely(prev_state == TASK_DEAD)) {
  1830. /*
  1831. * Remove function-return probe instances associated with this
  1832. * task and put them back on the free list.
  1833. */
  1834. kprobe_flush_task(prev);
  1835. put_task_struct(prev);
  1836. }
  1837. }
  1838. /**
  1839. * schedule_tail - first thing a freshly forked thread must call.
  1840. * @prev: the thread we just switched away from.
  1841. */
  1842. asmlinkage void schedule_tail(struct task_struct *prev)
  1843. __releases(rq->lock)
  1844. {
  1845. struct rq *rq = this_rq();
  1846. finish_task_switch(rq, prev);
  1847. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1848. /* In this case, finish_task_switch does not reenable preemption */
  1849. preempt_enable();
  1850. #endif
  1851. if (current->set_child_tid)
  1852. put_user(task_pid_vnr(current), current->set_child_tid);
  1853. }
  1854. /*
  1855. * context_switch - switch to the new MM and the new
  1856. * thread's register state.
  1857. */
  1858. static inline void
  1859. context_switch(struct rq *rq, struct task_struct *prev,
  1860. struct task_struct *next)
  1861. {
  1862. struct mm_struct *mm, *oldmm;
  1863. prepare_task_switch(rq, prev, next);
  1864. mm = next->mm;
  1865. oldmm = prev->active_mm;
  1866. /*
  1867. * For paravirt, this is coupled with an exit in switch_to to
  1868. * combine the page table reload and the switch backend into
  1869. * one hypercall.
  1870. */
  1871. arch_enter_lazy_cpu_mode();
  1872. if (unlikely(!mm)) {
  1873. next->active_mm = oldmm;
  1874. atomic_inc(&oldmm->mm_count);
  1875. enter_lazy_tlb(oldmm, next);
  1876. } else
  1877. switch_mm(oldmm, mm, next);
  1878. if (unlikely(!prev->mm)) {
  1879. prev->active_mm = NULL;
  1880. rq->prev_mm = oldmm;
  1881. }
  1882. /*
  1883. * Since the runqueue lock will be released by the next
  1884. * task (which is an invalid locking op but in the case
  1885. * of the scheduler it's an obvious special-case), so we
  1886. * do an early lockdep release here:
  1887. */
  1888. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1889. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1890. #endif
  1891. /* Here we just switch the register state and the stack. */
  1892. switch_to(prev, next, prev);
  1893. barrier();
  1894. /*
  1895. * this_rq must be evaluated again because prev may have moved
  1896. * CPUs since it called schedule(), thus the 'rq' on its stack
  1897. * frame will be invalid.
  1898. */
  1899. finish_task_switch(this_rq(), prev);
  1900. }
  1901. /*
  1902. * nr_running, nr_uninterruptible and nr_context_switches:
  1903. *
  1904. * externally visible scheduler statistics: current number of runnable
  1905. * threads, current number of uninterruptible-sleeping threads, total
  1906. * number of context switches performed since bootup.
  1907. */
  1908. unsigned long nr_running(void)
  1909. {
  1910. unsigned long i, sum = 0;
  1911. for_each_online_cpu(i)
  1912. sum += cpu_rq(i)->nr_running;
  1913. return sum;
  1914. }
  1915. unsigned long nr_uninterruptible(void)
  1916. {
  1917. unsigned long i, sum = 0;
  1918. for_each_possible_cpu(i)
  1919. sum += cpu_rq(i)->nr_uninterruptible;
  1920. /*
  1921. * Since we read the counters lockless, it might be slightly
  1922. * inaccurate. Do not allow it to go below zero though:
  1923. */
  1924. if (unlikely((long)sum < 0))
  1925. sum = 0;
  1926. return sum;
  1927. }
  1928. unsigned long long nr_context_switches(void)
  1929. {
  1930. int i;
  1931. unsigned long long sum = 0;
  1932. for_each_possible_cpu(i)
  1933. sum += cpu_rq(i)->nr_switches;
  1934. return sum;
  1935. }
  1936. unsigned long nr_iowait(void)
  1937. {
  1938. unsigned long i, sum = 0;
  1939. for_each_possible_cpu(i)
  1940. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1941. return sum;
  1942. }
  1943. unsigned long nr_active(void)
  1944. {
  1945. unsigned long i, running = 0, uninterruptible = 0;
  1946. for_each_online_cpu(i) {
  1947. running += cpu_rq(i)->nr_running;
  1948. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1949. }
  1950. if (unlikely((long)uninterruptible < 0))
  1951. uninterruptible = 0;
  1952. return running + uninterruptible;
  1953. }
  1954. /*
  1955. * Update rq->cpu_load[] statistics. This function is usually called every
  1956. * scheduler tick (TICK_NSEC).
  1957. */
  1958. static void update_cpu_load(struct rq *this_rq)
  1959. {
  1960. unsigned long this_load = this_rq->load.weight;
  1961. int i, scale;
  1962. this_rq->nr_load_updates++;
  1963. /* Update our load: */
  1964. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1965. unsigned long old_load, new_load;
  1966. /* scale is effectively 1 << i now, and >> i divides by scale */
  1967. old_load = this_rq->cpu_load[i];
  1968. new_load = this_load;
  1969. /*
  1970. * Round up the averaging division if load is increasing. This
  1971. * prevents us from getting stuck on 9 if the load is 10, for
  1972. * example.
  1973. */
  1974. if (new_load > old_load)
  1975. new_load += scale-1;
  1976. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1977. }
  1978. }
  1979. #ifdef CONFIG_SMP
  1980. /*
  1981. * double_rq_lock - safely lock two runqueues
  1982. *
  1983. * Note this does not disable interrupts like task_rq_lock,
  1984. * you need to do so manually before calling.
  1985. */
  1986. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1987. __acquires(rq1->lock)
  1988. __acquires(rq2->lock)
  1989. {
  1990. BUG_ON(!irqs_disabled());
  1991. if (rq1 == rq2) {
  1992. spin_lock(&rq1->lock);
  1993. __acquire(rq2->lock); /* Fake it out ;) */
  1994. } else {
  1995. if (rq1 < rq2) {
  1996. spin_lock(&rq1->lock);
  1997. spin_lock(&rq2->lock);
  1998. } else {
  1999. spin_lock(&rq2->lock);
  2000. spin_lock(&rq1->lock);
  2001. }
  2002. }
  2003. update_rq_clock(rq1);
  2004. update_rq_clock(rq2);
  2005. }
  2006. /*
  2007. * double_rq_unlock - safely unlock two runqueues
  2008. *
  2009. * Note this does not restore interrupts like task_rq_unlock,
  2010. * you need to do so manually after calling.
  2011. */
  2012. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2013. __releases(rq1->lock)
  2014. __releases(rq2->lock)
  2015. {
  2016. spin_unlock(&rq1->lock);
  2017. if (rq1 != rq2)
  2018. spin_unlock(&rq2->lock);
  2019. else
  2020. __release(rq2->lock);
  2021. }
  2022. /*
  2023. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2024. */
  2025. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2026. __releases(this_rq->lock)
  2027. __acquires(busiest->lock)
  2028. __acquires(this_rq->lock)
  2029. {
  2030. int ret = 0;
  2031. if (unlikely(!irqs_disabled())) {
  2032. /* printk() doesn't work good under rq->lock */
  2033. spin_unlock(&this_rq->lock);
  2034. BUG_ON(1);
  2035. }
  2036. if (unlikely(!spin_trylock(&busiest->lock))) {
  2037. if (busiest < this_rq) {
  2038. spin_unlock(&this_rq->lock);
  2039. spin_lock(&busiest->lock);
  2040. spin_lock(&this_rq->lock);
  2041. ret = 1;
  2042. } else
  2043. spin_lock(&busiest->lock);
  2044. }
  2045. return ret;
  2046. }
  2047. /*
  2048. * If dest_cpu is allowed for this process, migrate the task to it.
  2049. * This is accomplished by forcing the cpu_allowed mask to only
  2050. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2051. * the cpu_allowed mask is restored.
  2052. */
  2053. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2054. {
  2055. struct migration_req req;
  2056. unsigned long flags;
  2057. struct rq *rq;
  2058. rq = task_rq_lock(p, &flags);
  2059. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2060. || unlikely(cpu_is_offline(dest_cpu)))
  2061. goto out;
  2062. /* force the process onto the specified CPU */
  2063. if (migrate_task(p, dest_cpu, &req)) {
  2064. /* Need to wait for migration thread (might exit: take ref). */
  2065. struct task_struct *mt = rq->migration_thread;
  2066. get_task_struct(mt);
  2067. task_rq_unlock(rq, &flags);
  2068. wake_up_process(mt);
  2069. put_task_struct(mt);
  2070. wait_for_completion(&req.done);
  2071. return;
  2072. }
  2073. out:
  2074. task_rq_unlock(rq, &flags);
  2075. }
  2076. /*
  2077. * sched_exec - execve() is a valuable balancing opportunity, because at
  2078. * this point the task has the smallest effective memory and cache footprint.
  2079. */
  2080. void sched_exec(void)
  2081. {
  2082. int new_cpu, this_cpu = get_cpu();
  2083. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2084. put_cpu();
  2085. if (new_cpu != this_cpu)
  2086. sched_migrate_task(current, new_cpu);
  2087. }
  2088. /*
  2089. * pull_task - move a task from a remote runqueue to the local runqueue.
  2090. * Both runqueues must be locked.
  2091. */
  2092. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2093. struct rq *this_rq, int this_cpu)
  2094. {
  2095. deactivate_task(src_rq, p, 0);
  2096. set_task_cpu(p, this_cpu);
  2097. activate_task(this_rq, p, 0);
  2098. /*
  2099. * Note that idle threads have a prio of MAX_PRIO, for this test
  2100. * to be always true for them.
  2101. */
  2102. check_preempt_curr(this_rq, p);
  2103. }
  2104. /*
  2105. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2106. */
  2107. static
  2108. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2109. struct sched_domain *sd, enum cpu_idle_type idle,
  2110. int *all_pinned)
  2111. {
  2112. /*
  2113. * We do not migrate tasks that are:
  2114. * 1) running (obviously), or
  2115. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2116. * 3) are cache-hot on their current CPU.
  2117. */
  2118. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2119. schedstat_inc(p, se.nr_failed_migrations_affine);
  2120. return 0;
  2121. }
  2122. *all_pinned = 0;
  2123. if (task_running(rq, p)) {
  2124. schedstat_inc(p, se.nr_failed_migrations_running);
  2125. return 0;
  2126. }
  2127. /*
  2128. * Aggressive migration if:
  2129. * 1) task is cache cold, or
  2130. * 2) too many balance attempts have failed.
  2131. */
  2132. if (!task_hot(p, rq->clock, sd) ||
  2133. sd->nr_balance_failed > sd->cache_nice_tries) {
  2134. #ifdef CONFIG_SCHEDSTATS
  2135. if (task_hot(p, rq->clock, sd)) {
  2136. schedstat_inc(sd, lb_hot_gained[idle]);
  2137. schedstat_inc(p, se.nr_forced_migrations);
  2138. }
  2139. #endif
  2140. return 1;
  2141. }
  2142. if (task_hot(p, rq->clock, sd)) {
  2143. schedstat_inc(p, se.nr_failed_migrations_hot);
  2144. return 0;
  2145. }
  2146. return 1;
  2147. }
  2148. static unsigned long
  2149. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2150. unsigned long max_load_move, struct sched_domain *sd,
  2151. enum cpu_idle_type idle, int *all_pinned,
  2152. int *this_best_prio, struct rq_iterator *iterator)
  2153. {
  2154. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2155. struct task_struct *p;
  2156. long rem_load_move = max_load_move;
  2157. if (max_load_move == 0)
  2158. goto out;
  2159. pinned = 1;
  2160. /*
  2161. * Start the load-balancing iterator:
  2162. */
  2163. p = iterator->start(iterator->arg);
  2164. next:
  2165. if (!p || loops++ > sysctl_sched_nr_migrate)
  2166. goto out;
  2167. /*
  2168. * To help distribute high priority tasks across CPUs we don't
  2169. * skip a task if it will be the highest priority task (i.e. smallest
  2170. * prio value) on its new queue regardless of its load weight
  2171. */
  2172. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2173. SCHED_LOAD_SCALE_FUZZ;
  2174. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2175. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2176. p = iterator->next(iterator->arg);
  2177. goto next;
  2178. }
  2179. pull_task(busiest, p, this_rq, this_cpu);
  2180. pulled++;
  2181. rem_load_move -= p->se.load.weight;
  2182. /*
  2183. * We only want to steal up to the prescribed amount of weighted load.
  2184. */
  2185. if (rem_load_move > 0) {
  2186. if (p->prio < *this_best_prio)
  2187. *this_best_prio = p->prio;
  2188. p = iterator->next(iterator->arg);
  2189. goto next;
  2190. }
  2191. out:
  2192. /*
  2193. * Right now, this is one of only two places pull_task() is called,
  2194. * so we can safely collect pull_task() stats here rather than
  2195. * inside pull_task().
  2196. */
  2197. schedstat_add(sd, lb_gained[idle], pulled);
  2198. if (all_pinned)
  2199. *all_pinned = pinned;
  2200. return max_load_move - rem_load_move;
  2201. }
  2202. /*
  2203. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2204. * this_rq, as part of a balancing operation within domain "sd".
  2205. * Returns 1 if successful and 0 otherwise.
  2206. *
  2207. * Called with both runqueues locked.
  2208. */
  2209. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2210. unsigned long max_load_move,
  2211. struct sched_domain *sd, enum cpu_idle_type idle,
  2212. int *all_pinned)
  2213. {
  2214. const struct sched_class *class = sched_class_highest;
  2215. unsigned long total_load_moved = 0;
  2216. int this_best_prio = this_rq->curr->prio;
  2217. do {
  2218. total_load_moved +=
  2219. class->load_balance(this_rq, this_cpu, busiest,
  2220. max_load_move - total_load_moved,
  2221. sd, idle, all_pinned, &this_best_prio);
  2222. class = class->next;
  2223. } while (class && max_load_move > total_load_moved);
  2224. return total_load_moved > 0;
  2225. }
  2226. static int
  2227. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2228. struct sched_domain *sd, enum cpu_idle_type idle,
  2229. struct rq_iterator *iterator)
  2230. {
  2231. struct task_struct *p = iterator->start(iterator->arg);
  2232. int pinned = 0;
  2233. while (p) {
  2234. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2235. pull_task(busiest, p, this_rq, this_cpu);
  2236. /*
  2237. * Right now, this is only the second place pull_task()
  2238. * is called, so we can safely collect pull_task()
  2239. * stats here rather than inside pull_task().
  2240. */
  2241. schedstat_inc(sd, lb_gained[idle]);
  2242. return 1;
  2243. }
  2244. p = iterator->next(iterator->arg);
  2245. }
  2246. return 0;
  2247. }
  2248. /*
  2249. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2250. * part of active balancing operations within "domain".
  2251. * Returns 1 if successful and 0 otherwise.
  2252. *
  2253. * Called with both runqueues locked.
  2254. */
  2255. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2256. struct sched_domain *sd, enum cpu_idle_type idle)
  2257. {
  2258. const struct sched_class *class;
  2259. for (class = sched_class_highest; class; class = class->next)
  2260. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2261. return 1;
  2262. return 0;
  2263. }
  2264. /*
  2265. * find_busiest_group finds and returns the busiest CPU group within the
  2266. * domain. It calculates and returns the amount of weighted load which
  2267. * should be moved to restore balance via the imbalance parameter.
  2268. */
  2269. static struct sched_group *
  2270. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2271. unsigned long *imbalance, enum cpu_idle_type idle,
  2272. int *sd_idle, cpumask_t *cpus, int *balance)
  2273. {
  2274. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2275. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2276. unsigned long max_pull;
  2277. unsigned long busiest_load_per_task, busiest_nr_running;
  2278. unsigned long this_load_per_task, this_nr_running;
  2279. int load_idx, group_imb = 0;
  2280. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2281. int power_savings_balance = 1;
  2282. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2283. unsigned long min_nr_running = ULONG_MAX;
  2284. struct sched_group *group_min = NULL, *group_leader = NULL;
  2285. #endif
  2286. max_load = this_load = total_load = total_pwr = 0;
  2287. busiest_load_per_task = busiest_nr_running = 0;
  2288. this_load_per_task = this_nr_running = 0;
  2289. if (idle == CPU_NOT_IDLE)
  2290. load_idx = sd->busy_idx;
  2291. else if (idle == CPU_NEWLY_IDLE)
  2292. load_idx = sd->newidle_idx;
  2293. else
  2294. load_idx = sd->idle_idx;
  2295. do {
  2296. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2297. int local_group;
  2298. int i;
  2299. int __group_imb = 0;
  2300. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2301. unsigned long sum_nr_running, sum_weighted_load;
  2302. local_group = cpu_isset(this_cpu, group->cpumask);
  2303. if (local_group)
  2304. balance_cpu = first_cpu(group->cpumask);
  2305. /* Tally up the load of all CPUs in the group */
  2306. sum_weighted_load = sum_nr_running = avg_load = 0;
  2307. max_cpu_load = 0;
  2308. min_cpu_load = ~0UL;
  2309. for_each_cpu_mask(i, group->cpumask) {
  2310. struct rq *rq;
  2311. if (!cpu_isset(i, *cpus))
  2312. continue;
  2313. rq = cpu_rq(i);
  2314. if (*sd_idle && rq->nr_running)
  2315. *sd_idle = 0;
  2316. /* Bias balancing toward cpus of our domain */
  2317. if (local_group) {
  2318. if (idle_cpu(i) && !first_idle_cpu) {
  2319. first_idle_cpu = 1;
  2320. balance_cpu = i;
  2321. }
  2322. load = target_load(i, load_idx);
  2323. } else {
  2324. load = source_load(i, load_idx);
  2325. if (load > max_cpu_load)
  2326. max_cpu_load = load;
  2327. if (min_cpu_load > load)
  2328. min_cpu_load = load;
  2329. }
  2330. avg_load += load;
  2331. sum_nr_running += rq->nr_running;
  2332. sum_weighted_load += weighted_cpuload(i);
  2333. }
  2334. /*
  2335. * First idle cpu or the first cpu(busiest) in this sched group
  2336. * is eligible for doing load balancing at this and above
  2337. * domains. In the newly idle case, we will allow all the cpu's
  2338. * to do the newly idle load balance.
  2339. */
  2340. if (idle != CPU_NEWLY_IDLE && local_group &&
  2341. balance_cpu != this_cpu && balance) {
  2342. *balance = 0;
  2343. goto ret;
  2344. }
  2345. total_load += avg_load;
  2346. total_pwr += group->__cpu_power;
  2347. /* Adjust by relative CPU power of the group */
  2348. avg_load = sg_div_cpu_power(group,
  2349. avg_load * SCHED_LOAD_SCALE);
  2350. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2351. __group_imb = 1;
  2352. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2353. if (local_group) {
  2354. this_load = avg_load;
  2355. this = group;
  2356. this_nr_running = sum_nr_running;
  2357. this_load_per_task = sum_weighted_load;
  2358. } else if (avg_load > max_load &&
  2359. (sum_nr_running > group_capacity || __group_imb)) {
  2360. max_load = avg_load;
  2361. busiest = group;
  2362. busiest_nr_running = sum_nr_running;
  2363. busiest_load_per_task = sum_weighted_load;
  2364. group_imb = __group_imb;
  2365. }
  2366. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2367. /*
  2368. * Busy processors will not participate in power savings
  2369. * balance.
  2370. */
  2371. if (idle == CPU_NOT_IDLE ||
  2372. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2373. goto group_next;
  2374. /*
  2375. * If the local group is idle or completely loaded
  2376. * no need to do power savings balance at this domain
  2377. */
  2378. if (local_group && (this_nr_running >= group_capacity ||
  2379. !this_nr_running))
  2380. power_savings_balance = 0;
  2381. /*
  2382. * If a group is already running at full capacity or idle,
  2383. * don't include that group in power savings calculations
  2384. */
  2385. if (!power_savings_balance || sum_nr_running >= group_capacity
  2386. || !sum_nr_running)
  2387. goto group_next;
  2388. /*
  2389. * Calculate the group which has the least non-idle load.
  2390. * This is the group from where we need to pick up the load
  2391. * for saving power
  2392. */
  2393. if ((sum_nr_running < min_nr_running) ||
  2394. (sum_nr_running == min_nr_running &&
  2395. first_cpu(group->cpumask) <
  2396. first_cpu(group_min->cpumask))) {
  2397. group_min = group;
  2398. min_nr_running = sum_nr_running;
  2399. min_load_per_task = sum_weighted_load /
  2400. sum_nr_running;
  2401. }
  2402. /*
  2403. * Calculate the group which is almost near its
  2404. * capacity but still has some space to pick up some load
  2405. * from other group and save more power
  2406. */
  2407. if (sum_nr_running <= group_capacity - 1) {
  2408. if (sum_nr_running > leader_nr_running ||
  2409. (sum_nr_running == leader_nr_running &&
  2410. first_cpu(group->cpumask) >
  2411. first_cpu(group_leader->cpumask))) {
  2412. group_leader = group;
  2413. leader_nr_running = sum_nr_running;
  2414. }
  2415. }
  2416. group_next:
  2417. #endif
  2418. group = group->next;
  2419. } while (group != sd->groups);
  2420. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2421. goto out_balanced;
  2422. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2423. if (this_load >= avg_load ||
  2424. 100*max_load <= sd->imbalance_pct*this_load)
  2425. goto out_balanced;
  2426. busiest_load_per_task /= busiest_nr_running;
  2427. if (group_imb)
  2428. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2429. /*
  2430. * We're trying to get all the cpus to the average_load, so we don't
  2431. * want to push ourselves above the average load, nor do we wish to
  2432. * reduce the max loaded cpu below the average load, as either of these
  2433. * actions would just result in more rebalancing later, and ping-pong
  2434. * tasks around. Thus we look for the minimum possible imbalance.
  2435. * Negative imbalances (*we* are more loaded than anyone else) will
  2436. * be counted as no imbalance for these purposes -- we can't fix that
  2437. * by pulling tasks to us. Be careful of negative numbers as they'll
  2438. * appear as very large values with unsigned longs.
  2439. */
  2440. if (max_load <= busiest_load_per_task)
  2441. goto out_balanced;
  2442. /*
  2443. * In the presence of smp nice balancing, certain scenarios can have
  2444. * max load less than avg load(as we skip the groups at or below
  2445. * its cpu_power, while calculating max_load..)
  2446. */
  2447. if (max_load < avg_load) {
  2448. *imbalance = 0;
  2449. goto small_imbalance;
  2450. }
  2451. /* Don't want to pull so many tasks that a group would go idle */
  2452. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2453. /* How much load to actually move to equalise the imbalance */
  2454. *imbalance = min(max_pull * busiest->__cpu_power,
  2455. (avg_load - this_load) * this->__cpu_power)
  2456. / SCHED_LOAD_SCALE;
  2457. /*
  2458. * if *imbalance is less than the average load per runnable task
  2459. * there is no gaurantee that any tasks will be moved so we'll have
  2460. * a think about bumping its value to force at least one task to be
  2461. * moved
  2462. */
  2463. if (*imbalance < busiest_load_per_task) {
  2464. unsigned long tmp, pwr_now, pwr_move;
  2465. unsigned int imbn;
  2466. small_imbalance:
  2467. pwr_move = pwr_now = 0;
  2468. imbn = 2;
  2469. if (this_nr_running) {
  2470. this_load_per_task /= this_nr_running;
  2471. if (busiest_load_per_task > this_load_per_task)
  2472. imbn = 1;
  2473. } else
  2474. this_load_per_task = SCHED_LOAD_SCALE;
  2475. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2476. busiest_load_per_task * imbn) {
  2477. *imbalance = busiest_load_per_task;
  2478. return busiest;
  2479. }
  2480. /*
  2481. * OK, we don't have enough imbalance to justify moving tasks,
  2482. * however we may be able to increase total CPU power used by
  2483. * moving them.
  2484. */
  2485. pwr_now += busiest->__cpu_power *
  2486. min(busiest_load_per_task, max_load);
  2487. pwr_now += this->__cpu_power *
  2488. min(this_load_per_task, this_load);
  2489. pwr_now /= SCHED_LOAD_SCALE;
  2490. /* Amount of load we'd subtract */
  2491. tmp = sg_div_cpu_power(busiest,
  2492. busiest_load_per_task * SCHED_LOAD_SCALE);
  2493. if (max_load > tmp)
  2494. pwr_move += busiest->__cpu_power *
  2495. min(busiest_load_per_task, max_load - tmp);
  2496. /* Amount of load we'd add */
  2497. if (max_load * busiest->__cpu_power <
  2498. busiest_load_per_task * SCHED_LOAD_SCALE)
  2499. tmp = sg_div_cpu_power(this,
  2500. max_load * busiest->__cpu_power);
  2501. else
  2502. tmp = sg_div_cpu_power(this,
  2503. busiest_load_per_task * SCHED_LOAD_SCALE);
  2504. pwr_move += this->__cpu_power *
  2505. min(this_load_per_task, this_load + tmp);
  2506. pwr_move /= SCHED_LOAD_SCALE;
  2507. /* Move if we gain throughput */
  2508. if (pwr_move > pwr_now)
  2509. *imbalance = busiest_load_per_task;
  2510. }
  2511. return busiest;
  2512. out_balanced:
  2513. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2514. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2515. goto ret;
  2516. if (this == group_leader && group_leader != group_min) {
  2517. *imbalance = min_load_per_task;
  2518. return group_min;
  2519. }
  2520. #endif
  2521. ret:
  2522. *imbalance = 0;
  2523. return NULL;
  2524. }
  2525. /*
  2526. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2527. */
  2528. static struct rq *
  2529. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2530. unsigned long imbalance, cpumask_t *cpus)
  2531. {
  2532. struct rq *busiest = NULL, *rq;
  2533. unsigned long max_load = 0;
  2534. int i;
  2535. for_each_cpu_mask(i, group->cpumask) {
  2536. unsigned long wl;
  2537. if (!cpu_isset(i, *cpus))
  2538. continue;
  2539. rq = cpu_rq(i);
  2540. wl = weighted_cpuload(i);
  2541. if (rq->nr_running == 1 && wl > imbalance)
  2542. continue;
  2543. if (wl > max_load) {
  2544. max_load = wl;
  2545. busiest = rq;
  2546. }
  2547. }
  2548. return busiest;
  2549. }
  2550. /*
  2551. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2552. * so long as it is large enough.
  2553. */
  2554. #define MAX_PINNED_INTERVAL 512
  2555. /*
  2556. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2557. * tasks if there is an imbalance.
  2558. */
  2559. static int load_balance(int this_cpu, struct rq *this_rq,
  2560. struct sched_domain *sd, enum cpu_idle_type idle,
  2561. int *balance)
  2562. {
  2563. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2564. struct sched_group *group;
  2565. unsigned long imbalance;
  2566. struct rq *busiest;
  2567. cpumask_t cpus = CPU_MASK_ALL;
  2568. unsigned long flags;
  2569. /*
  2570. * When power savings policy is enabled for the parent domain, idle
  2571. * sibling can pick up load irrespective of busy siblings. In this case,
  2572. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2573. * portraying it as CPU_NOT_IDLE.
  2574. */
  2575. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2576. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2577. sd_idle = 1;
  2578. schedstat_inc(sd, lb_count[idle]);
  2579. redo:
  2580. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2581. &cpus, balance);
  2582. if (*balance == 0)
  2583. goto out_balanced;
  2584. if (!group) {
  2585. schedstat_inc(sd, lb_nobusyg[idle]);
  2586. goto out_balanced;
  2587. }
  2588. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2589. if (!busiest) {
  2590. schedstat_inc(sd, lb_nobusyq[idle]);
  2591. goto out_balanced;
  2592. }
  2593. BUG_ON(busiest == this_rq);
  2594. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2595. ld_moved = 0;
  2596. if (busiest->nr_running > 1) {
  2597. /*
  2598. * Attempt to move tasks. If find_busiest_group has found
  2599. * an imbalance but busiest->nr_running <= 1, the group is
  2600. * still unbalanced. ld_moved simply stays zero, so it is
  2601. * correctly treated as an imbalance.
  2602. */
  2603. local_irq_save(flags);
  2604. double_rq_lock(this_rq, busiest);
  2605. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2606. imbalance, sd, idle, &all_pinned);
  2607. double_rq_unlock(this_rq, busiest);
  2608. local_irq_restore(flags);
  2609. /*
  2610. * some other cpu did the load balance for us.
  2611. */
  2612. if (ld_moved && this_cpu != smp_processor_id())
  2613. resched_cpu(this_cpu);
  2614. /* All tasks on this runqueue were pinned by CPU affinity */
  2615. if (unlikely(all_pinned)) {
  2616. cpu_clear(cpu_of(busiest), cpus);
  2617. if (!cpus_empty(cpus))
  2618. goto redo;
  2619. goto out_balanced;
  2620. }
  2621. }
  2622. if (!ld_moved) {
  2623. schedstat_inc(sd, lb_failed[idle]);
  2624. sd->nr_balance_failed++;
  2625. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2626. spin_lock_irqsave(&busiest->lock, flags);
  2627. /* don't kick the migration_thread, if the curr
  2628. * task on busiest cpu can't be moved to this_cpu
  2629. */
  2630. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2631. spin_unlock_irqrestore(&busiest->lock, flags);
  2632. all_pinned = 1;
  2633. goto out_one_pinned;
  2634. }
  2635. if (!busiest->active_balance) {
  2636. busiest->active_balance = 1;
  2637. busiest->push_cpu = this_cpu;
  2638. active_balance = 1;
  2639. }
  2640. spin_unlock_irqrestore(&busiest->lock, flags);
  2641. if (active_balance)
  2642. wake_up_process(busiest->migration_thread);
  2643. /*
  2644. * We've kicked active balancing, reset the failure
  2645. * counter.
  2646. */
  2647. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2648. }
  2649. } else
  2650. sd->nr_balance_failed = 0;
  2651. if (likely(!active_balance)) {
  2652. /* We were unbalanced, so reset the balancing interval */
  2653. sd->balance_interval = sd->min_interval;
  2654. } else {
  2655. /*
  2656. * If we've begun active balancing, start to back off. This
  2657. * case may not be covered by the all_pinned logic if there
  2658. * is only 1 task on the busy runqueue (because we don't call
  2659. * move_tasks).
  2660. */
  2661. if (sd->balance_interval < sd->max_interval)
  2662. sd->balance_interval *= 2;
  2663. }
  2664. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2665. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2666. return -1;
  2667. return ld_moved;
  2668. out_balanced:
  2669. schedstat_inc(sd, lb_balanced[idle]);
  2670. sd->nr_balance_failed = 0;
  2671. out_one_pinned:
  2672. /* tune up the balancing interval */
  2673. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2674. (sd->balance_interval < sd->max_interval))
  2675. sd->balance_interval *= 2;
  2676. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2677. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2678. return -1;
  2679. return 0;
  2680. }
  2681. /*
  2682. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2683. * tasks if there is an imbalance.
  2684. *
  2685. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2686. * this_rq is locked.
  2687. */
  2688. static int
  2689. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2690. {
  2691. struct sched_group *group;
  2692. struct rq *busiest = NULL;
  2693. unsigned long imbalance;
  2694. int ld_moved = 0;
  2695. int sd_idle = 0;
  2696. int all_pinned = 0;
  2697. cpumask_t cpus = CPU_MASK_ALL;
  2698. /*
  2699. * When power savings policy is enabled for the parent domain, idle
  2700. * sibling can pick up load irrespective of busy siblings. In this case,
  2701. * let the state of idle sibling percolate up as IDLE, instead of
  2702. * portraying it as CPU_NOT_IDLE.
  2703. */
  2704. if (sd->flags & SD_SHARE_CPUPOWER &&
  2705. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2706. sd_idle = 1;
  2707. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2708. redo:
  2709. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2710. &sd_idle, &cpus, NULL);
  2711. if (!group) {
  2712. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2713. goto out_balanced;
  2714. }
  2715. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2716. &cpus);
  2717. if (!busiest) {
  2718. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2719. goto out_balanced;
  2720. }
  2721. BUG_ON(busiest == this_rq);
  2722. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2723. ld_moved = 0;
  2724. if (busiest->nr_running > 1) {
  2725. /* Attempt to move tasks */
  2726. double_lock_balance(this_rq, busiest);
  2727. /* this_rq->clock is already updated */
  2728. update_rq_clock(busiest);
  2729. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2730. imbalance, sd, CPU_NEWLY_IDLE,
  2731. &all_pinned);
  2732. spin_unlock(&busiest->lock);
  2733. if (unlikely(all_pinned)) {
  2734. cpu_clear(cpu_of(busiest), cpus);
  2735. if (!cpus_empty(cpus))
  2736. goto redo;
  2737. }
  2738. }
  2739. if (!ld_moved) {
  2740. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2741. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2742. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2743. return -1;
  2744. } else
  2745. sd->nr_balance_failed = 0;
  2746. return ld_moved;
  2747. out_balanced:
  2748. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2749. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2750. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2751. return -1;
  2752. sd->nr_balance_failed = 0;
  2753. return 0;
  2754. }
  2755. /*
  2756. * idle_balance is called by schedule() if this_cpu is about to become
  2757. * idle. Attempts to pull tasks from other CPUs.
  2758. */
  2759. static void idle_balance(int this_cpu, struct rq *this_rq)
  2760. {
  2761. struct sched_domain *sd;
  2762. int pulled_task = -1;
  2763. unsigned long next_balance = jiffies + HZ;
  2764. for_each_domain(this_cpu, sd) {
  2765. unsigned long interval;
  2766. if (!(sd->flags & SD_LOAD_BALANCE))
  2767. continue;
  2768. if (sd->flags & SD_BALANCE_NEWIDLE)
  2769. /* If we've pulled tasks over stop searching: */
  2770. pulled_task = load_balance_newidle(this_cpu,
  2771. this_rq, sd);
  2772. interval = msecs_to_jiffies(sd->balance_interval);
  2773. if (time_after(next_balance, sd->last_balance + interval))
  2774. next_balance = sd->last_balance + interval;
  2775. if (pulled_task)
  2776. break;
  2777. }
  2778. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2779. /*
  2780. * We are going idle. next_balance may be set based on
  2781. * a busy processor. So reset next_balance.
  2782. */
  2783. this_rq->next_balance = next_balance;
  2784. }
  2785. }
  2786. /*
  2787. * active_load_balance is run by migration threads. It pushes running tasks
  2788. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2789. * running on each physical CPU where possible, and avoids physical /
  2790. * logical imbalances.
  2791. *
  2792. * Called with busiest_rq locked.
  2793. */
  2794. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2795. {
  2796. int target_cpu = busiest_rq->push_cpu;
  2797. struct sched_domain *sd;
  2798. struct rq *target_rq;
  2799. /* Is there any task to move? */
  2800. if (busiest_rq->nr_running <= 1)
  2801. return;
  2802. target_rq = cpu_rq(target_cpu);
  2803. /*
  2804. * This condition is "impossible", if it occurs
  2805. * we need to fix it. Originally reported by
  2806. * Bjorn Helgaas on a 128-cpu setup.
  2807. */
  2808. BUG_ON(busiest_rq == target_rq);
  2809. /* move a task from busiest_rq to target_rq */
  2810. double_lock_balance(busiest_rq, target_rq);
  2811. update_rq_clock(busiest_rq);
  2812. update_rq_clock(target_rq);
  2813. /* Search for an sd spanning us and the target CPU. */
  2814. for_each_domain(target_cpu, sd) {
  2815. if ((sd->flags & SD_LOAD_BALANCE) &&
  2816. cpu_isset(busiest_cpu, sd->span))
  2817. break;
  2818. }
  2819. if (likely(sd)) {
  2820. schedstat_inc(sd, alb_count);
  2821. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2822. sd, CPU_IDLE))
  2823. schedstat_inc(sd, alb_pushed);
  2824. else
  2825. schedstat_inc(sd, alb_failed);
  2826. }
  2827. spin_unlock(&target_rq->lock);
  2828. }
  2829. #ifdef CONFIG_NO_HZ
  2830. static struct {
  2831. atomic_t load_balancer;
  2832. cpumask_t cpu_mask;
  2833. } nohz ____cacheline_aligned = {
  2834. .load_balancer = ATOMIC_INIT(-1),
  2835. .cpu_mask = CPU_MASK_NONE,
  2836. };
  2837. /*
  2838. * This routine will try to nominate the ilb (idle load balancing)
  2839. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2840. * load balancing on behalf of all those cpus. If all the cpus in the system
  2841. * go into this tickless mode, then there will be no ilb owner (as there is
  2842. * no need for one) and all the cpus will sleep till the next wakeup event
  2843. * arrives...
  2844. *
  2845. * For the ilb owner, tick is not stopped. And this tick will be used
  2846. * for idle load balancing. ilb owner will still be part of
  2847. * nohz.cpu_mask..
  2848. *
  2849. * While stopping the tick, this cpu will become the ilb owner if there
  2850. * is no other owner. And will be the owner till that cpu becomes busy
  2851. * or if all cpus in the system stop their ticks at which point
  2852. * there is no need for ilb owner.
  2853. *
  2854. * When the ilb owner becomes busy, it nominates another owner, during the
  2855. * next busy scheduler_tick()
  2856. */
  2857. int select_nohz_load_balancer(int stop_tick)
  2858. {
  2859. int cpu = smp_processor_id();
  2860. if (stop_tick) {
  2861. cpu_set(cpu, nohz.cpu_mask);
  2862. cpu_rq(cpu)->in_nohz_recently = 1;
  2863. /*
  2864. * If we are going offline and still the leader, give up!
  2865. */
  2866. if (cpu_is_offline(cpu) &&
  2867. atomic_read(&nohz.load_balancer) == cpu) {
  2868. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2869. BUG();
  2870. return 0;
  2871. }
  2872. /* time for ilb owner also to sleep */
  2873. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2874. if (atomic_read(&nohz.load_balancer) == cpu)
  2875. atomic_set(&nohz.load_balancer, -1);
  2876. return 0;
  2877. }
  2878. if (atomic_read(&nohz.load_balancer) == -1) {
  2879. /* make me the ilb owner */
  2880. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2881. return 1;
  2882. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2883. return 1;
  2884. } else {
  2885. if (!cpu_isset(cpu, nohz.cpu_mask))
  2886. return 0;
  2887. cpu_clear(cpu, nohz.cpu_mask);
  2888. if (atomic_read(&nohz.load_balancer) == cpu)
  2889. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2890. BUG();
  2891. }
  2892. return 0;
  2893. }
  2894. #endif
  2895. static DEFINE_SPINLOCK(balancing);
  2896. /*
  2897. * It checks each scheduling domain to see if it is due to be balanced,
  2898. * and initiates a balancing operation if so.
  2899. *
  2900. * Balancing parameters are set up in arch_init_sched_domains.
  2901. */
  2902. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2903. {
  2904. int balance = 1;
  2905. struct rq *rq = cpu_rq(cpu);
  2906. unsigned long interval;
  2907. struct sched_domain *sd;
  2908. /* Earliest time when we have to do rebalance again */
  2909. unsigned long next_balance = jiffies + 60*HZ;
  2910. int update_next_balance = 0;
  2911. for_each_domain(cpu, sd) {
  2912. if (!(sd->flags & SD_LOAD_BALANCE))
  2913. continue;
  2914. interval = sd->balance_interval;
  2915. if (idle != CPU_IDLE)
  2916. interval *= sd->busy_factor;
  2917. /* scale ms to jiffies */
  2918. interval = msecs_to_jiffies(interval);
  2919. if (unlikely(!interval))
  2920. interval = 1;
  2921. if (interval > HZ*NR_CPUS/10)
  2922. interval = HZ*NR_CPUS/10;
  2923. if (sd->flags & SD_SERIALIZE) {
  2924. if (!spin_trylock(&balancing))
  2925. goto out;
  2926. }
  2927. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2928. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2929. /*
  2930. * We've pulled tasks over so either we're no
  2931. * longer idle, or one of our SMT siblings is
  2932. * not idle.
  2933. */
  2934. idle = CPU_NOT_IDLE;
  2935. }
  2936. sd->last_balance = jiffies;
  2937. }
  2938. if (sd->flags & SD_SERIALIZE)
  2939. spin_unlock(&balancing);
  2940. out:
  2941. if (time_after(next_balance, sd->last_balance + interval)) {
  2942. next_balance = sd->last_balance + interval;
  2943. update_next_balance = 1;
  2944. }
  2945. /*
  2946. * Stop the load balance at this level. There is another
  2947. * CPU in our sched group which is doing load balancing more
  2948. * actively.
  2949. */
  2950. if (!balance)
  2951. break;
  2952. }
  2953. /*
  2954. * next_balance will be updated only when there is a need.
  2955. * When the cpu is attached to null domain for ex, it will not be
  2956. * updated.
  2957. */
  2958. if (likely(update_next_balance))
  2959. rq->next_balance = next_balance;
  2960. }
  2961. /*
  2962. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2963. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2964. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2965. */
  2966. static void run_rebalance_domains(struct softirq_action *h)
  2967. {
  2968. int this_cpu = smp_processor_id();
  2969. struct rq *this_rq = cpu_rq(this_cpu);
  2970. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2971. CPU_IDLE : CPU_NOT_IDLE;
  2972. rebalance_domains(this_cpu, idle);
  2973. #ifdef CONFIG_NO_HZ
  2974. /*
  2975. * If this cpu is the owner for idle load balancing, then do the
  2976. * balancing on behalf of the other idle cpus whose ticks are
  2977. * stopped.
  2978. */
  2979. if (this_rq->idle_at_tick &&
  2980. atomic_read(&nohz.load_balancer) == this_cpu) {
  2981. cpumask_t cpus = nohz.cpu_mask;
  2982. struct rq *rq;
  2983. int balance_cpu;
  2984. cpu_clear(this_cpu, cpus);
  2985. for_each_cpu_mask(balance_cpu, cpus) {
  2986. /*
  2987. * If this cpu gets work to do, stop the load balancing
  2988. * work being done for other cpus. Next load
  2989. * balancing owner will pick it up.
  2990. */
  2991. if (need_resched())
  2992. break;
  2993. rebalance_domains(balance_cpu, CPU_IDLE);
  2994. rq = cpu_rq(balance_cpu);
  2995. if (time_after(this_rq->next_balance, rq->next_balance))
  2996. this_rq->next_balance = rq->next_balance;
  2997. }
  2998. }
  2999. #endif
  3000. }
  3001. /*
  3002. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3003. *
  3004. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3005. * idle load balancing owner or decide to stop the periodic load balancing,
  3006. * if the whole system is idle.
  3007. */
  3008. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3009. {
  3010. #ifdef CONFIG_NO_HZ
  3011. /*
  3012. * If we were in the nohz mode recently and busy at the current
  3013. * scheduler tick, then check if we need to nominate new idle
  3014. * load balancer.
  3015. */
  3016. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3017. rq->in_nohz_recently = 0;
  3018. if (atomic_read(&nohz.load_balancer) == cpu) {
  3019. cpu_clear(cpu, nohz.cpu_mask);
  3020. atomic_set(&nohz.load_balancer, -1);
  3021. }
  3022. if (atomic_read(&nohz.load_balancer) == -1) {
  3023. /*
  3024. * simple selection for now: Nominate the
  3025. * first cpu in the nohz list to be the next
  3026. * ilb owner.
  3027. *
  3028. * TBD: Traverse the sched domains and nominate
  3029. * the nearest cpu in the nohz.cpu_mask.
  3030. */
  3031. int ilb = first_cpu(nohz.cpu_mask);
  3032. if (ilb != NR_CPUS)
  3033. resched_cpu(ilb);
  3034. }
  3035. }
  3036. /*
  3037. * If this cpu is idle and doing idle load balancing for all the
  3038. * cpus with ticks stopped, is it time for that to stop?
  3039. */
  3040. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3041. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3042. resched_cpu(cpu);
  3043. return;
  3044. }
  3045. /*
  3046. * If this cpu is idle and the idle load balancing is done by
  3047. * someone else, then no need raise the SCHED_SOFTIRQ
  3048. */
  3049. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3050. cpu_isset(cpu, nohz.cpu_mask))
  3051. return;
  3052. #endif
  3053. if (time_after_eq(jiffies, rq->next_balance))
  3054. raise_softirq(SCHED_SOFTIRQ);
  3055. }
  3056. #else /* CONFIG_SMP */
  3057. /*
  3058. * on UP we do not need to balance between CPUs:
  3059. */
  3060. static inline void idle_balance(int cpu, struct rq *rq)
  3061. {
  3062. }
  3063. #endif
  3064. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3065. EXPORT_PER_CPU_SYMBOL(kstat);
  3066. /*
  3067. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3068. * that have not yet been banked in case the task is currently running.
  3069. */
  3070. unsigned long long task_sched_runtime(struct task_struct *p)
  3071. {
  3072. unsigned long flags;
  3073. u64 ns, delta_exec;
  3074. struct rq *rq;
  3075. rq = task_rq_lock(p, &flags);
  3076. ns = p->se.sum_exec_runtime;
  3077. if (task_current(rq, p)) {
  3078. update_rq_clock(rq);
  3079. delta_exec = rq->clock - p->se.exec_start;
  3080. if ((s64)delta_exec > 0)
  3081. ns += delta_exec;
  3082. }
  3083. task_rq_unlock(rq, &flags);
  3084. return ns;
  3085. }
  3086. /*
  3087. * Account user cpu time to a process.
  3088. * @p: the process that the cpu time gets accounted to
  3089. * @cputime: the cpu time spent in user space since the last update
  3090. */
  3091. void account_user_time(struct task_struct *p, cputime_t cputime)
  3092. {
  3093. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3094. cputime64_t tmp;
  3095. p->utime = cputime_add(p->utime, cputime);
  3096. /* Add user time to cpustat. */
  3097. tmp = cputime_to_cputime64(cputime);
  3098. if (TASK_NICE(p) > 0)
  3099. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3100. else
  3101. cpustat->user = cputime64_add(cpustat->user, tmp);
  3102. }
  3103. /*
  3104. * Account guest cpu time to a process.
  3105. * @p: the process that the cpu time gets accounted to
  3106. * @cputime: the cpu time spent in virtual machine since the last update
  3107. */
  3108. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3109. {
  3110. cputime64_t tmp;
  3111. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3112. tmp = cputime_to_cputime64(cputime);
  3113. p->utime = cputime_add(p->utime, cputime);
  3114. p->gtime = cputime_add(p->gtime, cputime);
  3115. cpustat->user = cputime64_add(cpustat->user, tmp);
  3116. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3117. }
  3118. /*
  3119. * Account scaled user cpu time to a process.
  3120. * @p: the process that the cpu time gets accounted to
  3121. * @cputime: the cpu time spent in user space since the last update
  3122. */
  3123. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3124. {
  3125. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3126. }
  3127. /*
  3128. * Account system cpu time to a process.
  3129. * @p: the process that the cpu time gets accounted to
  3130. * @hardirq_offset: the offset to subtract from hardirq_count()
  3131. * @cputime: the cpu time spent in kernel space since the last update
  3132. */
  3133. void account_system_time(struct task_struct *p, int hardirq_offset,
  3134. cputime_t cputime)
  3135. {
  3136. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3137. struct rq *rq = this_rq();
  3138. cputime64_t tmp;
  3139. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  3140. return account_guest_time(p, cputime);
  3141. p->stime = cputime_add(p->stime, cputime);
  3142. /* Add system time to cpustat. */
  3143. tmp = cputime_to_cputime64(cputime);
  3144. if (hardirq_count() - hardirq_offset)
  3145. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3146. else if (softirq_count())
  3147. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3148. else if (p != rq->idle)
  3149. cpustat->system = cputime64_add(cpustat->system, tmp);
  3150. else if (atomic_read(&rq->nr_iowait) > 0)
  3151. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3152. else
  3153. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3154. /* Account for system time used */
  3155. acct_update_integrals(p);
  3156. }
  3157. /*
  3158. * Account scaled system cpu time to a process.
  3159. * @p: the process that the cpu time gets accounted to
  3160. * @hardirq_offset: the offset to subtract from hardirq_count()
  3161. * @cputime: the cpu time spent in kernel space since the last update
  3162. */
  3163. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3164. {
  3165. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3166. }
  3167. /*
  3168. * Account for involuntary wait time.
  3169. * @p: the process from which the cpu time has been stolen
  3170. * @steal: the cpu time spent in involuntary wait
  3171. */
  3172. void account_steal_time(struct task_struct *p, cputime_t steal)
  3173. {
  3174. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3175. cputime64_t tmp = cputime_to_cputime64(steal);
  3176. struct rq *rq = this_rq();
  3177. if (p == rq->idle) {
  3178. p->stime = cputime_add(p->stime, steal);
  3179. if (atomic_read(&rq->nr_iowait) > 0)
  3180. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3181. else
  3182. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3183. } else
  3184. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3185. }
  3186. /*
  3187. * This function gets called by the timer code, with HZ frequency.
  3188. * We call it with interrupts disabled.
  3189. *
  3190. * It also gets called by the fork code, when changing the parent's
  3191. * timeslices.
  3192. */
  3193. void scheduler_tick(void)
  3194. {
  3195. int cpu = smp_processor_id();
  3196. struct rq *rq = cpu_rq(cpu);
  3197. struct task_struct *curr = rq->curr;
  3198. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3199. spin_lock(&rq->lock);
  3200. __update_rq_clock(rq);
  3201. /*
  3202. * Let rq->clock advance by at least TICK_NSEC:
  3203. */
  3204. if (unlikely(rq->clock < next_tick)) {
  3205. rq->clock = next_tick;
  3206. rq->clock_underflows++;
  3207. }
  3208. rq->tick_timestamp = rq->clock;
  3209. update_cpu_load(rq);
  3210. curr->sched_class->task_tick(rq, curr, 0);
  3211. update_sched_rt_period(rq);
  3212. spin_unlock(&rq->lock);
  3213. #ifdef CONFIG_SMP
  3214. rq->idle_at_tick = idle_cpu(cpu);
  3215. trigger_load_balance(rq, cpu);
  3216. #endif
  3217. }
  3218. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3219. void add_preempt_count(int val)
  3220. {
  3221. /*
  3222. * Underflow?
  3223. */
  3224. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3225. return;
  3226. preempt_count() += val;
  3227. /*
  3228. * Spinlock count overflowing soon?
  3229. */
  3230. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3231. PREEMPT_MASK - 10);
  3232. }
  3233. EXPORT_SYMBOL(add_preempt_count);
  3234. void sub_preempt_count(int val)
  3235. {
  3236. /*
  3237. * Underflow?
  3238. */
  3239. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3240. return;
  3241. /*
  3242. * Is the spinlock portion underflowing?
  3243. */
  3244. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3245. !(preempt_count() & PREEMPT_MASK)))
  3246. return;
  3247. preempt_count() -= val;
  3248. }
  3249. EXPORT_SYMBOL(sub_preempt_count);
  3250. #endif
  3251. /*
  3252. * Print scheduling while atomic bug:
  3253. */
  3254. static noinline void __schedule_bug(struct task_struct *prev)
  3255. {
  3256. struct pt_regs *regs = get_irq_regs();
  3257. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3258. prev->comm, prev->pid, preempt_count());
  3259. debug_show_held_locks(prev);
  3260. if (irqs_disabled())
  3261. print_irqtrace_events(prev);
  3262. if (regs)
  3263. show_regs(regs);
  3264. else
  3265. dump_stack();
  3266. }
  3267. /*
  3268. * Various schedule()-time debugging checks and statistics:
  3269. */
  3270. static inline void schedule_debug(struct task_struct *prev)
  3271. {
  3272. /*
  3273. * Test if we are atomic. Since do_exit() needs to call into
  3274. * schedule() atomically, we ignore that path for now.
  3275. * Otherwise, whine if we are scheduling when we should not be.
  3276. */
  3277. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3278. __schedule_bug(prev);
  3279. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3280. schedstat_inc(this_rq(), sched_count);
  3281. #ifdef CONFIG_SCHEDSTATS
  3282. if (unlikely(prev->lock_depth >= 0)) {
  3283. schedstat_inc(this_rq(), bkl_count);
  3284. schedstat_inc(prev, sched_info.bkl_count);
  3285. }
  3286. #endif
  3287. }
  3288. /*
  3289. * Pick up the highest-prio task:
  3290. */
  3291. static inline struct task_struct *
  3292. pick_next_task(struct rq *rq, struct task_struct *prev)
  3293. {
  3294. const struct sched_class *class;
  3295. struct task_struct *p;
  3296. /*
  3297. * Optimization: we know that if all tasks are in
  3298. * the fair class we can call that function directly:
  3299. */
  3300. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3301. p = fair_sched_class.pick_next_task(rq);
  3302. if (likely(p))
  3303. return p;
  3304. }
  3305. class = sched_class_highest;
  3306. for ( ; ; ) {
  3307. p = class->pick_next_task(rq);
  3308. if (p)
  3309. return p;
  3310. /*
  3311. * Will never be NULL as the idle class always
  3312. * returns a non-NULL p:
  3313. */
  3314. class = class->next;
  3315. }
  3316. }
  3317. /*
  3318. * schedule() is the main scheduler function.
  3319. */
  3320. asmlinkage void __sched schedule(void)
  3321. {
  3322. struct task_struct *prev, *next;
  3323. long *switch_count;
  3324. struct rq *rq;
  3325. int cpu;
  3326. need_resched:
  3327. preempt_disable();
  3328. cpu = smp_processor_id();
  3329. rq = cpu_rq(cpu);
  3330. rcu_qsctr_inc(cpu);
  3331. prev = rq->curr;
  3332. switch_count = &prev->nivcsw;
  3333. release_kernel_lock(prev);
  3334. need_resched_nonpreemptible:
  3335. schedule_debug(prev);
  3336. hrtick_clear(rq);
  3337. /*
  3338. * Do the rq-clock update outside the rq lock:
  3339. */
  3340. local_irq_disable();
  3341. __update_rq_clock(rq);
  3342. spin_lock(&rq->lock);
  3343. clear_tsk_need_resched(prev);
  3344. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3345. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3346. unlikely(signal_pending(prev)))) {
  3347. prev->state = TASK_RUNNING;
  3348. } else {
  3349. deactivate_task(rq, prev, 1);
  3350. }
  3351. switch_count = &prev->nvcsw;
  3352. }
  3353. #ifdef CONFIG_SMP
  3354. if (prev->sched_class->pre_schedule)
  3355. prev->sched_class->pre_schedule(rq, prev);
  3356. #endif
  3357. if (unlikely(!rq->nr_running))
  3358. idle_balance(cpu, rq);
  3359. prev->sched_class->put_prev_task(rq, prev);
  3360. next = pick_next_task(rq, prev);
  3361. sched_info_switch(prev, next);
  3362. if (likely(prev != next)) {
  3363. rq->nr_switches++;
  3364. rq->curr = next;
  3365. ++*switch_count;
  3366. context_switch(rq, prev, next); /* unlocks the rq */
  3367. /*
  3368. * the context switch might have flipped the stack from under
  3369. * us, hence refresh the local variables.
  3370. */
  3371. cpu = smp_processor_id();
  3372. rq = cpu_rq(cpu);
  3373. } else
  3374. spin_unlock_irq(&rq->lock);
  3375. hrtick_set(rq);
  3376. if (unlikely(reacquire_kernel_lock(current) < 0))
  3377. goto need_resched_nonpreemptible;
  3378. preempt_enable_no_resched();
  3379. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3380. goto need_resched;
  3381. }
  3382. EXPORT_SYMBOL(schedule);
  3383. #ifdef CONFIG_PREEMPT
  3384. /*
  3385. * this is the entry point to schedule() from in-kernel preemption
  3386. * off of preempt_enable. Kernel preemptions off return from interrupt
  3387. * occur there and call schedule directly.
  3388. */
  3389. asmlinkage void __sched preempt_schedule(void)
  3390. {
  3391. struct thread_info *ti = current_thread_info();
  3392. struct task_struct *task = current;
  3393. int saved_lock_depth;
  3394. /*
  3395. * If there is a non-zero preempt_count or interrupts are disabled,
  3396. * we do not want to preempt the current task. Just return..
  3397. */
  3398. if (likely(ti->preempt_count || irqs_disabled()))
  3399. return;
  3400. do {
  3401. add_preempt_count(PREEMPT_ACTIVE);
  3402. /*
  3403. * We keep the big kernel semaphore locked, but we
  3404. * clear ->lock_depth so that schedule() doesnt
  3405. * auto-release the semaphore:
  3406. */
  3407. saved_lock_depth = task->lock_depth;
  3408. task->lock_depth = -1;
  3409. schedule();
  3410. task->lock_depth = saved_lock_depth;
  3411. sub_preempt_count(PREEMPT_ACTIVE);
  3412. /*
  3413. * Check again in case we missed a preemption opportunity
  3414. * between schedule and now.
  3415. */
  3416. barrier();
  3417. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3418. }
  3419. EXPORT_SYMBOL(preempt_schedule);
  3420. /*
  3421. * this is the entry point to schedule() from kernel preemption
  3422. * off of irq context.
  3423. * Note, that this is called and return with irqs disabled. This will
  3424. * protect us against recursive calling from irq.
  3425. */
  3426. asmlinkage void __sched preempt_schedule_irq(void)
  3427. {
  3428. struct thread_info *ti = current_thread_info();
  3429. struct task_struct *task = current;
  3430. int saved_lock_depth;
  3431. /* Catch callers which need to be fixed */
  3432. BUG_ON(ti->preempt_count || !irqs_disabled());
  3433. do {
  3434. add_preempt_count(PREEMPT_ACTIVE);
  3435. /*
  3436. * We keep the big kernel semaphore locked, but we
  3437. * clear ->lock_depth so that schedule() doesnt
  3438. * auto-release the semaphore:
  3439. */
  3440. saved_lock_depth = task->lock_depth;
  3441. task->lock_depth = -1;
  3442. local_irq_enable();
  3443. schedule();
  3444. local_irq_disable();
  3445. task->lock_depth = saved_lock_depth;
  3446. sub_preempt_count(PREEMPT_ACTIVE);
  3447. /*
  3448. * Check again in case we missed a preemption opportunity
  3449. * between schedule and now.
  3450. */
  3451. barrier();
  3452. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3453. }
  3454. #endif /* CONFIG_PREEMPT */
  3455. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3456. void *key)
  3457. {
  3458. return try_to_wake_up(curr->private, mode, sync);
  3459. }
  3460. EXPORT_SYMBOL(default_wake_function);
  3461. /*
  3462. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3463. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3464. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3465. *
  3466. * There are circumstances in which we can try to wake a task which has already
  3467. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3468. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3469. */
  3470. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3471. int nr_exclusive, int sync, void *key)
  3472. {
  3473. wait_queue_t *curr, *next;
  3474. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3475. unsigned flags = curr->flags;
  3476. if (curr->func(curr, mode, sync, key) &&
  3477. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3478. break;
  3479. }
  3480. }
  3481. /**
  3482. * __wake_up - wake up threads blocked on a waitqueue.
  3483. * @q: the waitqueue
  3484. * @mode: which threads
  3485. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3486. * @key: is directly passed to the wakeup function
  3487. */
  3488. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3489. int nr_exclusive, void *key)
  3490. {
  3491. unsigned long flags;
  3492. spin_lock_irqsave(&q->lock, flags);
  3493. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3494. spin_unlock_irqrestore(&q->lock, flags);
  3495. }
  3496. EXPORT_SYMBOL(__wake_up);
  3497. /*
  3498. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3499. */
  3500. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3501. {
  3502. __wake_up_common(q, mode, 1, 0, NULL);
  3503. }
  3504. /**
  3505. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3506. * @q: the waitqueue
  3507. * @mode: which threads
  3508. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3509. *
  3510. * The sync wakeup differs that the waker knows that it will schedule
  3511. * away soon, so while the target thread will be woken up, it will not
  3512. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3513. * with each other. This can prevent needless bouncing between CPUs.
  3514. *
  3515. * On UP it can prevent extra preemption.
  3516. */
  3517. void
  3518. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3519. {
  3520. unsigned long flags;
  3521. int sync = 1;
  3522. if (unlikely(!q))
  3523. return;
  3524. if (unlikely(!nr_exclusive))
  3525. sync = 0;
  3526. spin_lock_irqsave(&q->lock, flags);
  3527. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3528. spin_unlock_irqrestore(&q->lock, flags);
  3529. }
  3530. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3531. void complete(struct completion *x)
  3532. {
  3533. unsigned long flags;
  3534. spin_lock_irqsave(&x->wait.lock, flags);
  3535. x->done++;
  3536. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3537. spin_unlock_irqrestore(&x->wait.lock, flags);
  3538. }
  3539. EXPORT_SYMBOL(complete);
  3540. void complete_all(struct completion *x)
  3541. {
  3542. unsigned long flags;
  3543. spin_lock_irqsave(&x->wait.lock, flags);
  3544. x->done += UINT_MAX/2;
  3545. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3546. spin_unlock_irqrestore(&x->wait.lock, flags);
  3547. }
  3548. EXPORT_SYMBOL(complete_all);
  3549. static inline long __sched
  3550. do_wait_for_common(struct completion *x, long timeout, int state)
  3551. {
  3552. if (!x->done) {
  3553. DECLARE_WAITQUEUE(wait, current);
  3554. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3555. __add_wait_queue_tail(&x->wait, &wait);
  3556. do {
  3557. if ((state == TASK_INTERRUPTIBLE &&
  3558. signal_pending(current)) ||
  3559. (state == TASK_KILLABLE &&
  3560. fatal_signal_pending(current))) {
  3561. __remove_wait_queue(&x->wait, &wait);
  3562. return -ERESTARTSYS;
  3563. }
  3564. __set_current_state(state);
  3565. spin_unlock_irq(&x->wait.lock);
  3566. timeout = schedule_timeout(timeout);
  3567. spin_lock_irq(&x->wait.lock);
  3568. if (!timeout) {
  3569. __remove_wait_queue(&x->wait, &wait);
  3570. return timeout;
  3571. }
  3572. } while (!x->done);
  3573. __remove_wait_queue(&x->wait, &wait);
  3574. }
  3575. x->done--;
  3576. return timeout;
  3577. }
  3578. static long __sched
  3579. wait_for_common(struct completion *x, long timeout, int state)
  3580. {
  3581. might_sleep();
  3582. spin_lock_irq(&x->wait.lock);
  3583. timeout = do_wait_for_common(x, timeout, state);
  3584. spin_unlock_irq(&x->wait.lock);
  3585. return timeout;
  3586. }
  3587. void __sched wait_for_completion(struct completion *x)
  3588. {
  3589. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3590. }
  3591. EXPORT_SYMBOL(wait_for_completion);
  3592. unsigned long __sched
  3593. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3594. {
  3595. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3596. }
  3597. EXPORT_SYMBOL(wait_for_completion_timeout);
  3598. int __sched wait_for_completion_interruptible(struct completion *x)
  3599. {
  3600. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3601. if (t == -ERESTARTSYS)
  3602. return t;
  3603. return 0;
  3604. }
  3605. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3606. unsigned long __sched
  3607. wait_for_completion_interruptible_timeout(struct completion *x,
  3608. unsigned long timeout)
  3609. {
  3610. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3611. }
  3612. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3613. int __sched wait_for_completion_killable(struct completion *x)
  3614. {
  3615. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3616. if (t == -ERESTARTSYS)
  3617. return t;
  3618. return 0;
  3619. }
  3620. EXPORT_SYMBOL(wait_for_completion_killable);
  3621. static long __sched
  3622. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3623. {
  3624. unsigned long flags;
  3625. wait_queue_t wait;
  3626. init_waitqueue_entry(&wait, current);
  3627. __set_current_state(state);
  3628. spin_lock_irqsave(&q->lock, flags);
  3629. __add_wait_queue(q, &wait);
  3630. spin_unlock(&q->lock);
  3631. timeout = schedule_timeout(timeout);
  3632. spin_lock_irq(&q->lock);
  3633. __remove_wait_queue(q, &wait);
  3634. spin_unlock_irqrestore(&q->lock, flags);
  3635. return timeout;
  3636. }
  3637. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3638. {
  3639. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3640. }
  3641. EXPORT_SYMBOL(interruptible_sleep_on);
  3642. long __sched
  3643. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3644. {
  3645. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3646. }
  3647. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3648. void __sched sleep_on(wait_queue_head_t *q)
  3649. {
  3650. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3651. }
  3652. EXPORT_SYMBOL(sleep_on);
  3653. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3654. {
  3655. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3656. }
  3657. EXPORT_SYMBOL(sleep_on_timeout);
  3658. #ifdef CONFIG_RT_MUTEXES
  3659. /*
  3660. * rt_mutex_setprio - set the current priority of a task
  3661. * @p: task
  3662. * @prio: prio value (kernel-internal form)
  3663. *
  3664. * This function changes the 'effective' priority of a task. It does
  3665. * not touch ->normal_prio like __setscheduler().
  3666. *
  3667. * Used by the rt_mutex code to implement priority inheritance logic.
  3668. */
  3669. void rt_mutex_setprio(struct task_struct *p, int prio)
  3670. {
  3671. unsigned long flags;
  3672. int oldprio, on_rq, running;
  3673. struct rq *rq;
  3674. const struct sched_class *prev_class = p->sched_class;
  3675. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3676. rq = task_rq_lock(p, &flags);
  3677. update_rq_clock(rq);
  3678. oldprio = p->prio;
  3679. on_rq = p->se.on_rq;
  3680. running = task_current(rq, p);
  3681. if (on_rq) {
  3682. dequeue_task(rq, p, 0);
  3683. if (running)
  3684. p->sched_class->put_prev_task(rq, p);
  3685. }
  3686. if (rt_prio(prio))
  3687. p->sched_class = &rt_sched_class;
  3688. else
  3689. p->sched_class = &fair_sched_class;
  3690. p->prio = prio;
  3691. if (on_rq) {
  3692. if (running)
  3693. p->sched_class->set_curr_task(rq);
  3694. enqueue_task(rq, p, 0);
  3695. check_class_changed(rq, p, prev_class, oldprio, running);
  3696. }
  3697. task_rq_unlock(rq, &flags);
  3698. }
  3699. #endif
  3700. void set_user_nice(struct task_struct *p, long nice)
  3701. {
  3702. int old_prio, delta, on_rq;
  3703. unsigned long flags;
  3704. struct rq *rq;
  3705. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3706. return;
  3707. /*
  3708. * We have to be careful, if called from sys_setpriority(),
  3709. * the task might be in the middle of scheduling on another CPU.
  3710. */
  3711. rq = task_rq_lock(p, &flags);
  3712. update_rq_clock(rq);
  3713. /*
  3714. * The RT priorities are set via sched_setscheduler(), but we still
  3715. * allow the 'normal' nice value to be set - but as expected
  3716. * it wont have any effect on scheduling until the task is
  3717. * SCHED_FIFO/SCHED_RR:
  3718. */
  3719. if (task_has_rt_policy(p)) {
  3720. p->static_prio = NICE_TO_PRIO(nice);
  3721. goto out_unlock;
  3722. }
  3723. on_rq = p->se.on_rq;
  3724. if (on_rq)
  3725. dequeue_task(rq, p, 0);
  3726. p->static_prio = NICE_TO_PRIO(nice);
  3727. set_load_weight(p);
  3728. old_prio = p->prio;
  3729. p->prio = effective_prio(p);
  3730. delta = p->prio - old_prio;
  3731. if (on_rq) {
  3732. enqueue_task(rq, p, 0);
  3733. /*
  3734. * If the task increased its priority or is running and
  3735. * lowered its priority, then reschedule its CPU:
  3736. */
  3737. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3738. resched_task(rq->curr);
  3739. }
  3740. out_unlock:
  3741. task_rq_unlock(rq, &flags);
  3742. }
  3743. EXPORT_SYMBOL(set_user_nice);
  3744. /*
  3745. * can_nice - check if a task can reduce its nice value
  3746. * @p: task
  3747. * @nice: nice value
  3748. */
  3749. int can_nice(const struct task_struct *p, const int nice)
  3750. {
  3751. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3752. int nice_rlim = 20 - nice;
  3753. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3754. capable(CAP_SYS_NICE));
  3755. }
  3756. #ifdef __ARCH_WANT_SYS_NICE
  3757. /*
  3758. * sys_nice - change the priority of the current process.
  3759. * @increment: priority increment
  3760. *
  3761. * sys_setpriority is a more generic, but much slower function that
  3762. * does similar things.
  3763. */
  3764. asmlinkage long sys_nice(int increment)
  3765. {
  3766. long nice, retval;
  3767. /*
  3768. * Setpriority might change our priority at the same moment.
  3769. * We don't have to worry. Conceptually one call occurs first
  3770. * and we have a single winner.
  3771. */
  3772. if (increment < -40)
  3773. increment = -40;
  3774. if (increment > 40)
  3775. increment = 40;
  3776. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3777. if (nice < -20)
  3778. nice = -20;
  3779. if (nice > 19)
  3780. nice = 19;
  3781. if (increment < 0 && !can_nice(current, nice))
  3782. return -EPERM;
  3783. retval = security_task_setnice(current, nice);
  3784. if (retval)
  3785. return retval;
  3786. set_user_nice(current, nice);
  3787. return 0;
  3788. }
  3789. #endif
  3790. /**
  3791. * task_prio - return the priority value of a given task.
  3792. * @p: the task in question.
  3793. *
  3794. * This is the priority value as seen by users in /proc.
  3795. * RT tasks are offset by -200. Normal tasks are centered
  3796. * around 0, value goes from -16 to +15.
  3797. */
  3798. int task_prio(const struct task_struct *p)
  3799. {
  3800. return p->prio - MAX_RT_PRIO;
  3801. }
  3802. /**
  3803. * task_nice - return the nice value of a given task.
  3804. * @p: the task in question.
  3805. */
  3806. int task_nice(const struct task_struct *p)
  3807. {
  3808. return TASK_NICE(p);
  3809. }
  3810. EXPORT_SYMBOL_GPL(task_nice);
  3811. /**
  3812. * idle_cpu - is a given cpu idle currently?
  3813. * @cpu: the processor in question.
  3814. */
  3815. int idle_cpu(int cpu)
  3816. {
  3817. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3818. }
  3819. /**
  3820. * idle_task - return the idle task for a given cpu.
  3821. * @cpu: the processor in question.
  3822. */
  3823. struct task_struct *idle_task(int cpu)
  3824. {
  3825. return cpu_rq(cpu)->idle;
  3826. }
  3827. /**
  3828. * find_process_by_pid - find a process with a matching PID value.
  3829. * @pid: the pid in question.
  3830. */
  3831. static struct task_struct *find_process_by_pid(pid_t pid)
  3832. {
  3833. return pid ? find_task_by_vpid(pid) : current;
  3834. }
  3835. /* Actually do priority change: must hold rq lock. */
  3836. static void
  3837. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3838. {
  3839. BUG_ON(p->se.on_rq);
  3840. p->policy = policy;
  3841. switch (p->policy) {
  3842. case SCHED_NORMAL:
  3843. case SCHED_BATCH:
  3844. case SCHED_IDLE:
  3845. p->sched_class = &fair_sched_class;
  3846. break;
  3847. case SCHED_FIFO:
  3848. case SCHED_RR:
  3849. p->sched_class = &rt_sched_class;
  3850. break;
  3851. }
  3852. p->rt_priority = prio;
  3853. p->normal_prio = normal_prio(p);
  3854. /* we are holding p->pi_lock already */
  3855. p->prio = rt_mutex_getprio(p);
  3856. set_load_weight(p);
  3857. }
  3858. /**
  3859. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3860. * @p: the task in question.
  3861. * @policy: new policy.
  3862. * @param: structure containing the new RT priority.
  3863. *
  3864. * NOTE that the task may be already dead.
  3865. */
  3866. int sched_setscheduler(struct task_struct *p, int policy,
  3867. struct sched_param *param)
  3868. {
  3869. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3870. unsigned long flags;
  3871. const struct sched_class *prev_class = p->sched_class;
  3872. struct rq *rq;
  3873. /* may grab non-irq protected spin_locks */
  3874. BUG_ON(in_interrupt());
  3875. recheck:
  3876. /* double check policy once rq lock held */
  3877. if (policy < 0)
  3878. policy = oldpolicy = p->policy;
  3879. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3880. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3881. policy != SCHED_IDLE)
  3882. return -EINVAL;
  3883. /*
  3884. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3885. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3886. * SCHED_BATCH and SCHED_IDLE is 0.
  3887. */
  3888. if (param->sched_priority < 0 ||
  3889. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3890. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3891. return -EINVAL;
  3892. if (rt_policy(policy) != (param->sched_priority != 0))
  3893. return -EINVAL;
  3894. /*
  3895. * Allow unprivileged RT tasks to decrease priority:
  3896. */
  3897. if (!capable(CAP_SYS_NICE)) {
  3898. if (rt_policy(policy)) {
  3899. unsigned long rlim_rtprio;
  3900. if (!lock_task_sighand(p, &flags))
  3901. return -ESRCH;
  3902. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3903. unlock_task_sighand(p, &flags);
  3904. /* can't set/change the rt policy */
  3905. if (policy != p->policy && !rlim_rtprio)
  3906. return -EPERM;
  3907. /* can't increase priority */
  3908. if (param->sched_priority > p->rt_priority &&
  3909. param->sched_priority > rlim_rtprio)
  3910. return -EPERM;
  3911. }
  3912. /*
  3913. * Like positive nice levels, dont allow tasks to
  3914. * move out of SCHED_IDLE either:
  3915. */
  3916. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3917. return -EPERM;
  3918. /* can't change other user's priorities */
  3919. if ((current->euid != p->euid) &&
  3920. (current->euid != p->uid))
  3921. return -EPERM;
  3922. }
  3923. retval = security_task_setscheduler(p, policy, param);
  3924. if (retval)
  3925. return retval;
  3926. /*
  3927. * make sure no PI-waiters arrive (or leave) while we are
  3928. * changing the priority of the task:
  3929. */
  3930. spin_lock_irqsave(&p->pi_lock, flags);
  3931. /*
  3932. * To be able to change p->policy safely, the apropriate
  3933. * runqueue lock must be held.
  3934. */
  3935. rq = __task_rq_lock(p);
  3936. /* recheck policy now with rq lock held */
  3937. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3938. policy = oldpolicy = -1;
  3939. __task_rq_unlock(rq);
  3940. spin_unlock_irqrestore(&p->pi_lock, flags);
  3941. goto recheck;
  3942. }
  3943. update_rq_clock(rq);
  3944. on_rq = p->se.on_rq;
  3945. running = task_current(rq, p);
  3946. if (on_rq) {
  3947. deactivate_task(rq, p, 0);
  3948. if (running)
  3949. p->sched_class->put_prev_task(rq, p);
  3950. }
  3951. oldprio = p->prio;
  3952. __setscheduler(rq, p, policy, param->sched_priority);
  3953. if (on_rq) {
  3954. if (running)
  3955. p->sched_class->set_curr_task(rq);
  3956. activate_task(rq, p, 0);
  3957. check_class_changed(rq, p, prev_class, oldprio, running);
  3958. }
  3959. __task_rq_unlock(rq);
  3960. spin_unlock_irqrestore(&p->pi_lock, flags);
  3961. rt_mutex_adjust_pi(p);
  3962. return 0;
  3963. }
  3964. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3965. static int
  3966. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3967. {
  3968. struct sched_param lparam;
  3969. struct task_struct *p;
  3970. int retval;
  3971. if (!param || pid < 0)
  3972. return -EINVAL;
  3973. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3974. return -EFAULT;
  3975. rcu_read_lock();
  3976. retval = -ESRCH;
  3977. p = find_process_by_pid(pid);
  3978. if (p != NULL)
  3979. retval = sched_setscheduler(p, policy, &lparam);
  3980. rcu_read_unlock();
  3981. return retval;
  3982. }
  3983. /**
  3984. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3985. * @pid: the pid in question.
  3986. * @policy: new policy.
  3987. * @param: structure containing the new RT priority.
  3988. */
  3989. asmlinkage long
  3990. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3991. {
  3992. /* negative values for policy are not valid */
  3993. if (policy < 0)
  3994. return -EINVAL;
  3995. return do_sched_setscheduler(pid, policy, param);
  3996. }
  3997. /**
  3998. * sys_sched_setparam - set/change the RT priority of a thread
  3999. * @pid: the pid in question.
  4000. * @param: structure containing the new RT priority.
  4001. */
  4002. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4003. {
  4004. return do_sched_setscheduler(pid, -1, param);
  4005. }
  4006. /**
  4007. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4008. * @pid: the pid in question.
  4009. */
  4010. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4011. {
  4012. struct task_struct *p;
  4013. int retval;
  4014. if (pid < 0)
  4015. return -EINVAL;
  4016. retval = -ESRCH;
  4017. read_lock(&tasklist_lock);
  4018. p = find_process_by_pid(pid);
  4019. if (p) {
  4020. retval = security_task_getscheduler(p);
  4021. if (!retval)
  4022. retval = p->policy;
  4023. }
  4024. read_unlock(&tasklist_lock);
  4025. return retval;
  4026. }
  4027. /**
  4028. * sys_sched_getscheduler - get the RT priority of a thread
  4029. * @pid: the pid in question.
  4030. * @param: structure containing the RT priority.
  4031. */
  4032. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4033. {
  4034. struct sched_param lp;
  4035. struct task_struct *p;
  4036. int retval;
  4037. if (!param || pid < 0)
  4038. return -EINVAL;
  4039. read_lock(&tasklist_lock);
  4040. p = find_process_by_pid(pid);
  4041. retval = -ESRCH;
  4042. if (!p)
  4043. goto out_unlock;
  4044. retval = security_task_getscheduler(p);
  4045. if (retval)
  4046. goto out_unlock;
  4047. lp.sched_priority = p->rt_priority;
  4048. read_unlock(&tasklist_lock);
  4049. /*
  4050. * This one might sleep, we cannot do it with a spinlock held ...
  4051. */
  4052. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4053. return retval;
  4054. out_unlock:
  4055. read_unlock(&tasklist_lock);
  4056. return retval;
  4057. }
  4058. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  4059. {
  4060. cpumask_t cpus_allowed;
  4061. struct task_struct *p;
  4062. int retval;
  4063. get_online_cpus();
  4064. read_lock(&tasklist_lock);
  4065. p = find_process_by_pid(pid);
  4066. if (!p) {
  4067. read_unlock(&tasklist_lock);
  4068. put_online_cpus();
  4069. return -ESRCH;
  4070. }
  4071. /*
  4072. * It is not safe to call set_cpus_allowed with the
  4073. * tasklist_lock held. We will bump the task_struct's
  4074. * usage count and then drop tasklist_lock.
  4075. */
  4076. get_task_struct(p);
  4077. read_unlock(&tasklist_lock);
  4078. retval = -EPERM;
  4079. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4080. !capable(CAP_SYS_NICE))
  4081. goto out_unlock;
  4082. retval = security_task_setscheduler(p, 0, NULL);
  4083. if (retval)
  4084. goto out_unlock;
  4085. cpus_allowed = cpuset_cpus_allowed(p);
  4086. cpus_and(new_mask, new_mask, cpus_allowed);
  4087. again:
  4088. retval = set_cpus_allowed(p, new_mask);
  4089. if (!retval) {
  4090. cpus_allowed = cpuset_cpus_allowed(p);
  4091. if (!cpus_subset(new_mask, cpus_allowed)) {
  4092. /*
  4093. * We must have raced with a concurrent cpuset
  4094. * update. Just reset the cpus_allowed to the
  4095. * cpuset's cpus_allowed
  4096. */
  4097. new_mask = cpus_allowed;
  4098. goto again;
  4099. }
  4100. }
  4101. out_unlock:
  4102. put_task_struct(p);
  4103. put_online_cpus();
  4104. return retval;
  4105. }
  4106. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4107. cpumask_t *new_mask)
  4108. {
  4109. if (len < sizeof(cpumask_t)) {
  4110. memset(new_mask, 0, sizeof(cpumask_t));
  4111. } else if (len > sizeof(cpumask_t)) {
  4112. len = sizeof(cpumask_t);
  4113. }
  4114. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4115. }
  4116. /**
  4117. * sys_sched_setaffinity - set the cpu affinity of a process
  4118. * @pid: pid of the process
  4119. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4120. * @user_mask_ptr: user-space pointer to the new cpu mask
  4121. */
  4122. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4123. unsigned long __user *user_mask_ptr)
  4124. {
  4125. cpumask_t new_mask;
  4126. int retval;
  4127. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4128. if (retval)
  4129. return retval;
  4130. return sched_setaffinity(pid, new_mask);
  4131. }
  4132. /*
  4133. * Represents all cpu's present in the system
  4134. * In systems capable of hotplug, this map could dynamically grow
  4135. * as new cpu's are detected in the system via any platform specific
  4136. * method, such as ACPI for e.g.
  4137. */
  4138. cpumask_t cpu_present_map __read_mostly;
  4139. EXPORT_SYMBOL(cpu_present_map);
  4140. #ifndef CONFIG_SMP
  4141. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4142. EXPORT_SYMBOL(cpu_online_map);
  4143. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4144. EXPORT_SYMBOL(cpu_possible_map);
  4145. #endif
  4146. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4147. {
  4148. struct task_struct *p;
  4149. int retval;
  4150. get_online_cpus();
  4151. read_lock(&tasklist_lock);
  4152. retval = -ESRCH;
  4153. p = find_process_by_pid(pid);
  4154. if (!p)
  4155. goto out_unlock;
  4156. retval = security_task_getscheduler(p);
  4157. if (retval)
  4158. goto out_unlock;
  4159. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4160. out_unlock:
  4161. read_unlock(&tasklist_lock);
  4162. put_online_cpus();
  4163. return retval;
  4164. }
  4165. /**
  4166. * sys_sched_getaffinity - get the cpu affinity of a process
  4167. * @pid: pid of the process
  4168. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4169. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4170. */
  4171. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4172. unsigned long __user *user_mask_ptr)
  4173. {
  4174. int ret;
  4175. cpumask_t mask;
  4176. if (len < sizeof(cpumask_t))
  4177. return -EINVAL;
  4178. ret = sched_getaffinity(pid, &mask);
  4179. if (ret < 0)
  4180. return ret;
  4181. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4182. return -EFAULT;
  4183. return sizeof(cpumask_t);
  4184. }
  4185. /**
  4186. * sys_sched_yield - yield the current processor to other threads.
  4187. *
  4188. * This function yields the current CPU to other tasks. If there are no
  4189. * other threads running on this CPU then this function will return.
  4190. */
  4191. asmlinkage long sys_sched_yield(void)
  4192. {
  4193. struct rq *rq = this_rq_lock();
  4194. schedstat_inc(rq, yld_count);
  4195. current->sched_class->yield_task(rq);
  4196. /*
  4197. * Since we are going to call schedule() anyway, there's
  4198. * no need to preempt or enable interrupts:
  4199. */
  4200. __release(rq->lock);
  4201. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4202. _raw_spin_unlock(&rq->lock);
  4203. preempt_enable_no_resched();
  4204. schedule();
  4205. return 0;
  4206. }
  4207. static void __cond_resched(void)
  4208. {
  4209. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4210. __might_sleep(__FILE__, __LINE__);
  4211. #endif
  4212. /*
  4213. * The BKS might be reacquired before we have dropped
  4214. * PREEMPT_ACTIVE, which could trigger a second
  4215. * cond_resched() call.
  4216. */
  4217. do {
  4218. add_preempt_count(PREEMPT_ACTIVE);
  4219. schedule();
  4220. sub_preempt_count(PREEMPT_ACTIVE);
  4221. } while (need_resched());
  4222. }
  4223. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4224. int __sched _cond_resched(void)
  4225. {
  4226. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4227. system_state == SYSTEM_RUNNING) {
  4228. __cond_resched();
  4229. return 1;
  4230. }
  4231. return 0;
  4232. }
  4233. EXPORT_SYMBOL(_cond_resched);
  4234. #endif
  4235. /*
  4236. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4237. * call schedule, and on return reacquire the lock.
  4238. *
  4239. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4240. * operations here to prevent schedule() from being called twice (once via
  4241. * spin_unlock(), once by hand).
  4242. */
  4243. int cond_resched_lock(spinlock_t *lock)
  4244. {
  4245. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4246. int ret = 0;
  4247. if (spin_needbreak(lock) || resched) {
  4248. spin_unlock(lock);
  4249. if (resched && need_resched())
  4250. __cond_resched();
  4251. else
  4252. cpu_relax();
  4253. ret = 1;
  4254. spin_lock(lock);
  4255. }
  4256. return ret;
  4257. }
  4258. EXPORT_SYMBOL(cond_resched_lock);
  4259. int __sched cond_resched_softirq(void)
  4260. {
  4261. BUG_ON(!in_softirq());
  4262. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4263. local_bh_enable();
  4264. __cond_resched();
  4265. local_bh_disable();
  4266. return 1;
  4267. }
  4268. return 0;
  4269. }
  4270. EXPORT_SYMBOL(cond_resched_softirq);
  4271. /**
  4272. * yield - yield the current processor to other threads.
  4273. *
  4274. * This is a shortcut for kernel-space yielding - it marks the
  4275. * thread runnable and calls sys_sched_yield().
  4276. */
  4277. void __sched yield(void)
  4278. {
  4279. set_current_state(TASK_RUNNING);
  4280. sys_sched_yield();
  4281. }
  4282. EXPORT_SYMBOL(yield);
  4283. /*
  4284. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4285. * that process accounting knows that this is a task in IO wait state.
  4286. *
  4287. * But don't do that if it is a deliberate, throttling IO wait (this task
  4288. * has set its backing_dev_info: the queue against which it should throttle)
  4289. */
  4290. void __sched io_schedule(void)
  4291. {
  4292. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4293. delayacct_blkio_start();
  4294. atomic_inc(&rq->nr_iowait);
  4295. schedule();
  4296. atomic_dec(&rq->nr_iowait);
  4297. delayacct_blkio_end();
  4298. }
  4299. EXPORT_SYMBOL(io_schedule);
  4300. long __sched io_schedule_timeout(long timeout)
  4301. {
  4302. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4303. long ret;
  4304. delayacct_blkio_start();
  4305. atomic_inc(&rq->nr_iowait);
  4306. ret = schedule_timeout(timeout);
  4307. atomic_dec(&rq->nr_iowait);
  4308. delayacct_blkio_end();
  4309. return ret;
  4310. }
  4311. /**
  4312. * sys_sched_get_priority_max - return maximum RT priority.
  4313. * @policy: scheduling class.
  4314. *
  4315. * this syscall returns the maximum rt_priority that can be used
  4316. * by a given scheduling class.
  4317. */
  4318. asmlinkage long sys_sched_get_priority_max(int policy)
  4319. {
  4320. int ret = -EINVAL;
  4321. switch (policy) {
  4322. case SCHED_FIFO:
  4323. case SCHED_RR:
  4324. ret = MAX_USER_RT_PRIO-1;
  4325. break;
  4326. case SCHED_NORMAL:
  4327. case SCHED_BATCH:
  4328. case SCHED_IDLE:
  4329. ret = 0;
  4330. break;
  4331. }
  4332. return ret;
  4333. }
  4334. /**
  4335. * sys_sched_get_priority_min - return minimum RT priority.
  4336. * @policy: scheduling class.
  4337. *
  4338. * this syscall returns the minimum rt_priority that can be used
  4339. * by a given scheduling class.
  4340. */
  4341. asmlinkage long sys_sched_get_priority_min(int policy)
  4342. {
  4343. int ret = -EINVAL;
  4344. switch (policy) {
  4345. case SCHED_FIFO:
  4346. case SCHED_RR:
  4347. ret = 1;
  4348. break;
  4349. case SCHED_NORMAL:
  4350. case SCHED_BATCH:
  4351. case SCHED_IDLE:
  4352. ret = 0;
  4353. }
  4354. return ret;
  4355. }
  4356. /**
  4357. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4358. * @pid: pid of the process.
  4359. * @interval: userspace pointer to the timeslice value.
  4360. *
  4361. * this syscall writes the default timeslice value of a given process
  4362. * into the user-space timespec buffer. A value of '0' means infinity.
  4363. */
  4364. asmlinkage
  4365. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4366. {
  4367. struct task_struct *p;
  4368. unsigned int time_slice;
  4369. int retval;
  4370. struct timespec t;
  4371. if (pid < 0)
  4372. return -EINVAL;
  4373. retval = -ESRCH;
  4374. read_lock(&tasklist_lock);
  4375. p = find_process_by_pid(pid);
  4376. if (!p)
  4377. goto out_unlock;
  4378. retval = security_task_getscheduler(p);
  4379. if (retval)
  4380. goto out_unlock;
  4381. /*
  4382. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4383. * tasks that are on an otherwise idle runqueue:
  4384. */
  4385. time_slice = 0;
  4386. if (p->policy == SCHED_RR) {
  4387. time_slice = DEF_TIMESLICE;
  4388. } else {
  4389. struct sched_entity *se = &p->se;
  4390. unsigned long flags;
  4391. struct rq *rq;
  4392. rq = task_rq_lock(p, &flags);
  4393. if (rq->cfs.load.weight)
  4394. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4395. task_rq_unlock(rq, &flags);
  4396. }
  4397. read_unlock(&tasklist_lock);
  4398. jiffies_to_timespec(time_slice, &t);
  4399. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4400. return retval;
  4401. out_unlock:
  4402. read_unlock(&tasklist_lock);
  4403. return retval;
  4404. }
  4405. static const char stat_nam[] = "RSDTtZX";
  4406. void sched_show_task(struct task_struct *p)
  4407. {
  4408. unsigned long free = 0;
  4409. unsigned state;
  4410. state = p->state ? __ffs(p->state) + 1 : 0;
  4411. printk(KERN_INFO "%-13.13s %c", p->comm,
  4412. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4413. #if BITS_PER_LONG == 32
  4414. if (state == TASK_RUNNING)
  4415. printk(KERN_CONT " running ");
  4416. else
  4417. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4418. #else
  4419. if (state == TASK_RUNNING)
  4420. printk(KERN_CONT " running task ");
  4421. else
  4422. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4423. #endif
  4424. #ifdef CONFIG_DEBUG_STACK_USAGE
  4425. {
  4426. unsigned long *n = end_of_stack(p);
  4427. while (!*n)
  4428. n++;
  4429. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4430. }
  4431. #endif
  4432. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4433. task_pid_nr(p), task_pid_nr(p->real_parent));
  4434. show_stack(p, NULL);
  4435. }
  4436. void show_state_filter(unsigned long state_filter)
  4437. {
  4438. struct task_struct *g, *p;
  4439. #if BITS_PER_LONG == 32
  4440. printk(KERN_INFO
  4441. " task PC stack pid father\n");
  4442. #else
  4443. printk(KERN_INFO
  4444. " task PC stack pid father\n");
  4445. #endif
  4446. read_lock(&tasklist_lock);
  4447. do_each_thread(g, p) {
  4448. /*
  4449. * reset the NMI-timeout, listing all files on a slow
  4450. * console might take alot of time:
  4451. */
  4452. touch_nmi_watchdog();
  4453. if (!state_filter || (p->state & state_filter))
  4454. sched_show_task(p);
  4455. } while_each_thread(g, p);
  4456. touch_all_softlockup_watchdogs();
  4457. #ifdef CONFIG_SCHED_DEBUG
  4458. sysrq_sched_debug_show();
  4459. #endif
  4460. read_unlock(&tasklist_lock);
  4461. /*
  4462. * Only show locks if all tasks are dumped:
  4463. */
  4464. if (state_filter == -1)
  4465. debug_show_all_locks();
  4466. }
  4467. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4468. {
  4469. idle->sched_class = &idle_sched_class;
  4470. }
  4471. /**
  4472. * init_idle - set up an idle thread for a given CPU
  4473. * @idle: task in question
  4474. * @cpu: cpu the idle task belongs to
  4475. *
  4476. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4477. * flag, to make booting more robust.
  4478. */
  4479. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4480. {
  4481. struct rq *rq = cpu_rq(cpu);
  4482. unsigned long flags;
  4483. __sched_fork(idle);
  4484. idle->se.exec_start = sched_clock();
  4485. idle->prio = idle->normal_prio = MAX_PRIO;
  4486. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4487. __set_task_cpu(idle, cpu);
  4488. spin_lock_irqsave(&rq->lock, flags);
  4489. rq->curr = rq->idle = idle;
  4490. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4491. idle->oncpu = 1;
  4492. #endif
  4493. spin_unlock_irqrestore(&rq->lock, flags);
  4494. /* Set the preempt count _outside_ the spinlocks! */
  4495. task_thread_info(idle)->preempt_count = 0;
  4496. /*
  4497. * The idle tasks have their own, simple scheduling class:
  4498. */
  4499. idle->sched_class = &idle_sched_class;
  4500. }
  4501. /*
  4502. * In a system that switches off the HZ timer nohz_cpu_mask
  4503. * indicates which cpus entered this state. This is used
  4504. * in the rcu update to wait only for active cpus. For system
  4505. * which do not switch off the HZ timer nohz_cpu_mask should
  4506. * always be CPU_MASK_NONE.
  4507. */
  4508. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4509. /*
  4510. * Increase the granularity value when there are more CPUs,
  4511. * because with more CPUs the 'effective latency' as visible
  4512. * to users decreases. But the relationship is not linear,
  4513. * so pick a second-best guess by going with the log2 of the
  4514. * number of CPUs.
  4515. *
  4516. * This idea comes from the SD scheduler of Con Kolivas:
  4517. */
  4518. static inline void sched_init_granularity(void)
  4519. {
  4520. unsigned int factor = 1 + ilog2(num_online_cpus());
  4521. const unsigned long limit = 200000000;
  4522. sysctl_sched_min_granularity *= factor;
  4523. if (sysctl_sched_min_granularity > limit)
  4524. sysctl_sched_min_granularity = limit;
  4525. sysctl_sched_latency *= factor;
  4526. if (sysctl_sched_latency > limit)
  4527. sysctl_sched_latency = limit;
  4528. sysctl_sched_wakeup_granularity *= factor;
  4529. sysctl_sched_batch_wakeup_granularity *= factor;
  4530. }
  4531. #ifdef CONFIG_SMP
  4532. /*
  4533. * This is how migration works:
  4534. *
  4535. * 1) we queue a struct migration_req structure in the source CPU's
  4536. * runqueue and wake up that CPU's migration thread.
  4537. * 2) we down() the locked semaphore => thread blocks.
  4538. * 3) migration thread wakes up (implicitly it forces the migrated
  4539. * thread off the CPU)
  4540. * 4) it gets the migration request and checks whether the migrated
  4541. * task is still in the wrong runqueue.
  4542. * 5) if it's in the wrong runqueue then the migration thread removes
  4543. * it and puts it into the right queue.
  4544. * 6) migration thread up()s the semaphore.
  4545. * 7) we wake up and the migration is done.
  4546. */
  4547. /*
  4548. * Change a given task's CPU affinity. Migrate the thread to a
  4549. * proper CPU and schedule it away if the CPU it's executing on
  4550. * is removed from the allowed bitmask.
  4551. *
  4552. * NOTE: the caller must have a valid reference to the task, the
  4553. * task must not exit() & deallocate itself prematurely. The
  4554. * call is not atomic; no spinlocks may be held.
  4555. */
  4556. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4557. {
  4558. struct migration_req req;
  4559. unsigned long flags;
  4560. struct rq *rq;
  4561. int ret = 0;
  4562. rq = task_rq_lock(p, &flags);
  4563. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4564. ret = -EINVAL;
  4565. goto out;
  4566. }
  4567. if (p->sched_class->set_cpus_allowed)
  4568. p->sched_class->set_cpus_allowed(p, &new_mask);
  4569. else {
  4570. p->cpus_allowed = new_mask;
  4571. p->rt.nr_cpus_allowed = cpus_weight(new_mask);
  4572. }
  4573. /* Can the task run on the task's current CPU? If so, we're done */
  4574. if (cpu_isset(task_cpu(p), new_mask))
  4575. goto out;
  4576. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4577. /* Need help from migration thread: drop lock and wait. */
  4578. task_rq_unlock(rq, &flags);
  4579. wake_up_process(rq->migration_thread);
  4580. wait_for_completion(&req.done);
  4581. tlb_migrate_finish(p->mm);
  4582. return 0;
  4583. }
  4584. out:
  4585. task_rq_unlock(rq, &flags);
  4586. return ret;
  4587. }
  4588. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4589. /*
  4590. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4591. * this because either it can't run here any more (set_cpus_allowed()
  4592. * away from this CPU, or CPU going down), or because we're
  4593. * attempting to rebalance this task on exec (sched_exec).
  4594. *
  4595. * So we race with normal scheduler movements, but that's OK, as long
  4596. * as the task is no longer on this CPU.
  4597. *
  4598. * Returns non-zero if task was successfully migrated.
  4599. */
  4600. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4601. {
  4602. struct rq *rq_dest, *rq_src;
  4603. int ret = 0, on_rq;
  4604. if (unlikely(cpu_is_offline(dest_cpu)))
  4605. return ret;
  4606. rq_src = cpu_rq(src_cpu);
  4607. rq_dest = cpu_rq(dest_cpu);
  4608. double_rq_lock(rq_src, rq_dest);
  4609. /* Already moved. */
  4610. if (task_cpu(p) != src_cpu)
  4611. goto out;
  4612. /* Affinity changed (again). */
  4613. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4614. goto out;
  4615. on_rq = p->se.on_rq;
  4616. if (on_rq)
  4617. deactivate_task(rq_src, p, 0);
  4618. set_task_cpu(p, dest_cpu);
  4619. if (on_rq) {
  4620. activate_task(rq_dest, p, 0);
  4621. check_preempt_curr(rq_dest, p);
  4622. }
  4623. ret = 1;
  4624. out:
  4625. double_rq_unlock(rq_src, rq_dest);
  4626. return ret;
  4627. }
  4628. /*
  4629. * migration_thread - this is a highprio system thread that performs
  4630. * thread migration by bumping thread off CPU then 'pushing' onto
  4631. * another runqueue.
  4632. */
  4633. static int migration_thread(void *data)
  4634. {
  4635. int cpu = (long)data;
  4636. struct rq *rq;
  4637. rq = cpu_rq(cpu);
  4638. BUG_ON(rq->migration_thread != current);
  4639. set_current_state(TASK_INTERRUPTIBLE);
  4640. while (!kthread_should_stop()) {
  4641. struct migration_req *req;
  4642. struct list_head *head;
  4643. spin_lock_irq(&rq->lock);
  4644. if (cpu_is_offline(cpu)) {
  4645. spin_unlock_irq(&rq->lock);
  4646. goto wait_to_die;
  4647. }
  4648. if (rq->active_balance) {
  4649. active_load_balance(rq, cpu);
  4650. rq->active_balance = 0;
  4651. }
  4652. head = &rq->migration_queue;
  4653. if (list_empty(head)) {
  4654. spin_unlock_irq(&rq->lock);
  4655. schedule();
  4656. set_current_state(TASK_INTERRUPTIBLE);
  4657. continue;
  4658. }
  4659. req = list_entry(head->next, struct migration_req, list);
  4660. list_del_init(head->next);
  4661. spin_unlock(&rq->lock);
  4662. __migrate_task(req->task, cpu, req->dest_cpu);
  4663. local_irq_enable();
  4664. complete(&req->done);
  4665. }
  4666. __set_current_state(TASK_RUNNING);
  4667. return 0;
  4668. wait_to_die:
  4669. /* Wait for kthread_stop */
  4670. set_current_state(TASK_INTERRUPTIBLE);
  4671. while (!kthread_should_stop()) {
  4672. schedule();
  4673. set_current_state(TASK_INTERRUPTIBLE);
  4674. }
  4675. __set_current_state(TASK_RUNNING);
  4676. return 0;
  4677. }
  4678. #ifdef CONFIG_HOTPLUG_CPU
  4679. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4680. {
  4681. int ret;
  4682. local_irq_disable();
  4683. ret = __migrate_task(p, src_cpu, dest_cpu);
  4684. local_irq_enable();
  4685. return ret;
  4686. }
  4687. /*
  4688. * Figure out where task on dead CPU should go, use force if necessary.
  4689. * NOTE: interrupts should be disabled by the caller
  4690. */
  4691. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4692. {
  4693. unsigned long flags;
  4694. cpumask_t mask;
  4695. struct rq *rq;
  4696. int dest_cpu;
  4697. do {
  4698. /* On same node? */
  4699. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4700. cpus_and(mask, mask, p->cpus_allowed);
  4701. dest_cpu = any_online_cpu(mask);
  4702. /* On any allowed CPU? */
  4703. if (dest_cpu == NR_CPUS)
  4704. dest_cpu = any_online_cpu(p->cpus_allowed);
  4705. /* No more Mr. Nice Guy. */
  4706. if (dest_cpu == NR_CPUS) {
  4707. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4708. /*
  4709. * Try to stay on the same cpuset, where the
  4710. * current cpuset may be a subset of all cpus.
  4711. * The cpuset_cpus_allowed_locked() variant of
  4712. * cpuset_cpus_allowed() will not block. It must be
  4713. * called within calls to cpuset_lock/cpuset_unlock.
  4714. */
  4715. rq = task_rq_lock(p, &flags);
  4716. p->cpus_allowed = cpus_allowed;
  4717. dest_cpu = any_online_cpu(p->cpus_allowed);
  4718. task_rq_unlock(rq, &flags);
  4719. /*
  4720. * Don't tell them about moving exiting tasks or
  4721. * kernel threads (both mm NULL), since they never
  4722. * leave kernel.
  4723. */
  4724. if (p->mm && printk_ratelimit()) {
  4725. printk(KERN_INFO "process %d (%s) no "
  4726. "longer affine to cpu%d\n",
  4727. task_pid_nr(p), p->comm, dead_cpu);
  4728. }
  4729. }
  4730. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4731. }
  4732. /*
  4733. * While a dead CPU has no uninterruptible tasks queued at this point,
  4734. * it might still have a nonzero ->nr_uninterruptible counter, because
  4735. * for performance reasons the counter is not stricly tracking tasks to
  4736. * their home CPUs. So we just add the counter to another CPU's counter,
  4737. * to keep the global sum constant after CPU-down:
  4738. */
  4739. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4740. {
  4741. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4742. unsigned long flags;
  4743. local_irq_save(flags);
  4744. double_rq_lock(rq_src, rq_dest);
  4745. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4746. rq_src->nr_uninterruptible = 0;
  4747. double_rq_unlock(rq_src, rq_dest);
  4748. local_irq_restore(flags);
  4749. }
  4750. /* Run through task list and migrate tasks from the dead cpu. */
  4751. static void migrate_live_tasks(int src_cpu)
  4752. {
  4753. struct task_struct *p, *t;
  4754. read_lock(&tasklist_lock);
  4755. do_each_thread(t, p) {
  4756. if (p == current)
  4757. continue;
  4758. if (task_cpu(p) == src_cpu)
  4759. move_task_off_dead_cpu(src_cpu, p);
  4760. } while_each_thread(t, p);
  4761. read_unlock(&tasklist_lock);
  4762. }
  4763. /*
  4764. * Schedules idle task to be the next runnable task on current CPU.
  4765. * It does so by boosting its priority to highest possible.
  4766. * Used by CPU offline code.
  4767. */
  4768. void sched_idle_next(void)
  4769. {
  4770. int this_cpu = smp_processor_id();
  4771. struct rq *rq = cpu_rq(this_cpu);
  4772. struct task_struct *p = rq->idle;
  4773. unsigned long flags;
  4774. /* cpu has to be offline */
  4775. BUG_ON(cpu_online(this_cpu));
  4776. /*
  4777. * Strictly not necessary since rest of the CPUs are stopped by now
  4778. * and interrupts disabled on the current cpu.
  4779. */
  4780. spin_lock_irqsave(&rq->lock, flags);
  4781. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4782. update_rq_clock(rq);
  4783. activate_task(rq, p, 0);
  4784. spin_unlock_irqrestore(&rq->lock, flags);
  4785. }
  4786. /*
  4787. * Ensures that the idle task is using init_mm right before its cpu goes
  4788. * offline.
  4789. */
  4790. void idle_task_exit(void)
  4791. {
  4792. struct mm_struct *mm = current->active_mm;
  4793. BUG_ON(cpu_online(smp_processor_id()));
  4794. if (mm != &init_mm)
  4795. switch_mm(mm, &init_mm, current);
  4796. mmdrop(mm);
  4797. }
  4798. /* called under rq->lock with disabled interrupts */
  4799. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4800. {
  4801. struct rq *rq = cpu_rq(dead_cpu);
  4802. /* Must be exiting, otherwise would be on tasklist. */
  4803. BUG_ON(!p->exit_state);
  4804. /* Cannot have done final schedule yet: would have vanished. */
  4805. BUG_ON(p->state == TASK_DEAD);
  4806. get_task_struct(p);
  4807. /*
  4808. * Drop lock around migration; if someone else moves it,
  4809. * that's OK. No task can be added to this CPU, so iteration is
  4810. * fine.
  4811. */
  4812. spin_unlock_irq(&rq->lock);
  4813. move_task_off_dead_cpu(dead_cpu, p);
  4814. spin_lock_irq(&rq->lock);
  4815. put_task_struct(p);
  4816. }
  4817. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4818. static void migrate_dead_tasks(unsigned int dead_cpu)
  4819. {
  4820. struct rq *rq = cpu_rq(dead_cpu);
  4821. struct task_struct *next;
  4822. for ( ; ; ) {
  4823. if (!rq->nr_running)
  4824. break;
  4825. update_rq_clock(rq);
  4826. next = pick_next_task(rq, rq->curr);
  4827. if (!next)
  4828. break;
  4829. migrate_dead(dead_cpu, next);
  4830. }
  4831. }
  4832. #endif /* CONFIG_HOTPLUG_CPU */
  4833. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4834. static struct ctl_table sd_ctl_dir[] = {
  4835. {
  4836. .procname = "sched_domain",
  4837. .mode = 0555,
  4838. },
  4839. {0, },
  4840. };
  4841. static struct ctl_table sd_ctl_root[] = {
  4842. {
  4843. .ctl_name = CTL_KERN,
  4844. .procname = "kernel",
  4845. .mode = 0555,
  4846. .child = sd_ctl_dir,
  4847. },
  4848. {0, },
  4849. };
  4850. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4851. {
  4852. struct ctl_table *entry =
  4853. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4854. return entry;
  4855. }
  4856. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4857. {
  4858. struct ctl_table *entry;
  4859. /*
  4860. * In the intermediate directories, both the child directory and
  4861. * procname are dynamically allocated and could fail but the mode
  4862. * will always be set. In the lowest directory the names are
  4863. * static strings and all have proc handlers.
  4864. */
  4865. for (entry = *tablep; entry->mode; entry++) {
  4866. if (entry->child)
  4867. sd_free_ctl_entry(&entry->child);
  4868. if (entry->proc_handler == NULL)
  4869. kfree(entry->procname);
  4870. }
  4871. kfree(*tablep);
  4872. *tablep = NULL;
  4873. }
  4874. static void
  4875. set_table_entry(struct ctl_table *entry,
  4876. const char *procname, void *data, int maxlen,
  4877. mode_t mode, proc_handler *proc_handler)
  4878. {
  4879. entry->procname = procname;
  4880. entry->data = data;
  4881. entry->maxlen = maxlen;
  4882. entry->mode = mode;
  4883. entry->proc_handler = proc_handler;
  4884. }
  4885. static struct ctl_table *
  4886. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4887. {
  4888. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4889. if (table == NULL)
  4890. return NULL;
  4891. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4892. sizeof(long), 0644, proc_doulongvec_minmax);
  4893. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4894. sizeof(long), 0644, proc_doulongvec_minmax);
  4895. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4896. sizeof(int), 0644, proc_dointvec_minmax);
  4897. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4898. sizeof(int), 0644, proc_dointvec_minmax);
  4899. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4900. sizeof(int), 0644, proc_dointvec_minmax);
  4901. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4902. sizeof(int), 0644, proc_dointvec_minmax);
  4903. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4904. sizeof(int), 0644, proc_dointvec_minmax);
  4905. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4906. sizeof(int), 0644, proc_dointvec_minmax);
  4907. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4908. sizeof(int), 0644, proc_dointvec_minmax);
  4909. set_table_entry(&table[9], "cache_nice_tries",
  4910. &sd->cache_nice_tries,
  4911. sizeof(int), 0644, proc_dointvec_minmax);
  4912. set_table_entry(&table[10], "flags", &sd->flags,
  4913. sizeof(int), 0644, proc_dointvec_minmax);
  4914. /* &table[11] is terminator */
  4915. return table;
  4916. }
  4917. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4918. {
  4919. struct ctl_table *entry, *table;
  4920. struct sched_domain *sd;
  4921. int domain_num = 0, i;
  4922. char buf[32];
  4923. for_each_domain(cpu, sd)
  4924. domain_num++;
  4925. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4926. if (table == NULL)
  4927. return NULL;
  4928. i = 0;
  4929. for_each_domain(cpu, sd) {
  4930. snprintf(buf, 32, "domain%d", i);
  4931. entry->procname = kstrdup(buf, GFP_KERNEL);
  4932. entry->mode = 0555;
  4933. entry->child = sd_alloc_ctl_domain_table(sd);
  4934. entry++;
  4935. i++;
  4936. }
  4937. return table;
  4938. }
  4939. static struct ctl_table_header *sd_sysctl_header;
  4940. static void register_sched_domain_sysctl(void)
  4941. {
  4942. int i, cpu_num = num_online_cpus();
  4943. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4944. char buf[32];
  4945. WARN_ON(sd_ctl_dir[0].child);
  4946. sd_ctl_dir[0].child = entry;
  4947. if (entry == NULL)
  4948. return;
  4949. for_each_online_cpu(i) {
  4950. snprintf(buf, 32, "cpu%d", i);
  4951. entry->procname = kstrdup(buf, GFP_KERNEL);
  4952. entry->mode = 0555;
  4953. entry->child = sd_alloc_ctl_cpu_table(i);
  4954. entry++;
  4955. }
  4956. WARN_ON(sd_sysctl_header);
  4957. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4958. }
  4959. /* may be called multiple times per register */
  4960. static void unregister_sched_domain_sysctl(void)
  4961. {
  4962. if (sd_sysctl_header)
  4963. unregister_sysctl_table(sd_sysctl_header);
  4964. sd_sysctl_header = NULL;
  4965. if (sd_ctl_dir[0].child)
  4966. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4967. }
  4968. #else
  4969. static void register_sched_domain_sysctl(void)
  4970. {
  4971. }
  4972. static void unregister_sched_domain_sysctl(void)
  4973. {
  4974. }
  4975. #endif
  4976. /*
  4977. * migration_call - callback that gets triggered when a CPU is added.
  4978. * Here we can start up the necessary migration thread for the new CPU.
  4979. */
  4980. static int __cpuinit
  4981. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4982. {
  4983. struct task_struct *p;
  4984. int cpu = (long)hcpu;
  4985. unsigned long flags;
  4986. struct rq *rq;
  4987. switch (action) {
  4988. case CPU_UP_PREPARE:
  4989. case CPU_UP_PREPARE_FROZEN:
  4990. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4991. if (IS_ERR(p))
  4992. return NOTIFY_BAD;
  4993. kthread_bind(p, cpu);
  4994. /* Must be high prio: stop_machine expects to yield to it. */
  4995. rq = task_rq_lock(p, &flags);
  4996. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4997. task_rq_unlock(rq, &flags);
  4998. cpu_rq(cpu)->migration_thread = p;
  4999. break;
  5000. case CPU_ONLINE:
  5001. case CPU_ONLINE_FROZEN:
  5002. /* Strictly unnecessary, as first user will wake it. */
  5003. wake_up_process(cpu_rq(cpu)->migration_thread);
  5004. /* Update our root-domain */
  5005. rq = cpu_rq(cpu);
  5006. spin_lock_irqsave(&rq->lock, flags);
  5007. if (rq->rd) {
  5008. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5009. cpu_set(cpu, rq->rd->online);
  5010. }
  5011. spin_unlock_irqrestore(&rq->lock, flags);
  5012. break;
  5013. #ifdef CONFIG_HOTPLUG_CPU
  5014. case CPU_UP_CANCELED:
  5015. case CPU_UP_CANCELED_FROZEN:
  5016. if (!cpu_rq(cpu)->migration_thread)
  5017. break;
  5018. /* Unbind it from offline cpu so it can run. Fall thru. */
  5019. kthread_bind(cpu_rq(cpu)->migration_thread,
  5020. any_online_cpu(cpu_online_map));
  5021. kthread_stop(cpu_rq(cpu)->migration_thread);
  5022. cpu_rq(cpu)->migration_thread = NULL;
  5023. break;
  5024. case CPU_DEAD:
  5025. case CPU_DEAD_FROZEN:
  5026. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5027. migrate_live_tasks(cpu);
  5028. rq = cpu_rq(cpu);
  5029. kthread_stop(rq->migration_thread);
  5030. rq->migration_thread = NULL;
  5031. /* Idle task back to normal (off runqueue, low prio) */
  5032. spin_lock_irq(&rq->lock);
  5033. update_rq_clock(rq);
  5034. deactivate_task(rq, rq->idle, 0);
  5035. rq->idle->static_prio = MAX_PRIO;
  5036. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5037. rq->idle->sched_class = &idle_sched_class;
  5038. migrate_dead_tasks(cpu);
  5039. spin_unlock_irq(&rq->lock);
  5040. cpuset_unlock();
  5041. migrate_nr_uninterruptible(rq);
  5042. BUG_ON(rq->nr_running != 0);
  5043. /*
  5044. * No need to migrate the tasks: it was best-effort if
  5045. * they didn't take sched_hotcpu_mutex. Just wake up
  5046. * the requestors.
  5047. */
  5048. spin_lock_irq(&rq->lock);
  5049. while (!list_empty(&rq->migration_queue)) {
  5050. struct migration_req *req;
  5051. req = list_entry(rq->migration_queue.next,
  5052. struct migration_req, list);
  5053. list_del_init(&req->list);
  5054. complete(&req->done);
  5055. }
  5056. spin_unlock_irq(&rq->lock);
  5057. break;
  5058. case CPU_DOWN_PREPARE:
  5059. /* Update our root-domain */
  5060. rq = cpu_rq(cpu);
  5061. spin_lock_irqsave(&rq->lock, flags);
  5062. if (rq->rd) {
  5063. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5064. cpu_clear(cpu, rq->rd->online);
  5065. }
  5066. spin_unlock_irqrestore(&rq->lock, flags);
  5067. break;
  5068. #endif
  5069. }
  5070. return NOTIFY_OK;
  5071. }
  5072. /* Register at highest priority so that task migration (migrate_all_tasks)
  5073. * happens before everything else.
  5074. */
  5075. static struct notifier_block __cpuinitdata migration_notifier = {
  5076. .notifier_call = migration_call,
  5077. .priority = 10
  5078. };
  5079. void __init migration_init(void)
  5080. {
  5081. void *cpu = (void *)(long)smp_processor_id();
  5082. int err;
  5083. /* Start one for the boot CPU: */
  5084. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5085. BUG_ON(err == NOTIFY_BAD);
  5086. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5087. register_cpu_notifier(&migration_notifier);
  5088. }
  5089. #endif
  5090. #ifdef CONFIG_SMP
  5091. /* Number of possible processor ids */
  5092. int nr_cpu_ids __read_mostly = NR_CPUS;
  5093. EXPORT_SYMBOL(nr_cpu_ids);
  5094. #ifdef CONFIG_SCHED_DEBUG
  5095. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  5096. {
  5097. struct sched_group *group = sd->groups;
  5098. cpumask_t groupmask;
  5099. char str[NR_CPUS];
  5100. cpumask_scnprintf(str, NR_CPUS, sd->span);
  5101. cpus_clear(groupmask);
  5102. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5103. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5104. printk("does not load-balance\n");
  5105. if (sd->parent)
  5106. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5107. " has parent");
  5108. return -1;
  5109. }
  5110. printk(KERN_CONT "span %s\n", str);
  5111. if (!cpu_isset(cpu, sd->span)) {
  5112. printk(KERN_ERR "ERROR: domain->span does not contain "
  5113. "CPU%d\n", cpu);
  5114. }
  5115. if (!cpu_isset(cpu, group->cpumask)) {
  5116. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5117. " CPU%d\n", cpu);
  5118. }
  5119. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5120. do {
  5121. if (!group) {
  5122. printk("\n");
  5123. printk(KERN_ERR "ERROR: group is NULL\n");
  5124. break;
  5125. }
  5126. if (!group->__cpu_power) {
  5127. printk(KERN_CONT "\n");
  5128. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5129. "set\n");
  5130. break;
  5131. }
  5132. if (!cpus_weight(group->cpumask)) {
  5133. printk(KERN_CONT "\n");
  5134. printk(KERN_ERR "ERROR: empty group\n");
  5135. break;
  5136. }
  5137. if (cpus_intersects(groupmask, group->cpumask)) {
  5138. printk(KERN_CONT "\n");
  5139. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5140. break;
  5141. }
  5142. cpus_or(groupmask, groupmask, group->cpumask);
  5143. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  5144. printk(KERN_CONT " %s", str);
  5145. group = group->next;
  5146. } while (group != sd->groups);
  5147. printk(KERN_CONT "\n");
  5148. if (!cpus_equal(sd->span, groupmask))
  5149. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5150. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  5151. printk(KERN_ERR "ERROR: parent span is not a superset "
  5152. "of domain->span\n");
  5153. return 0;
  5154. }
  5155. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5156. {
  5157. int level = 0;
  5158. if (!sd) {
  5159. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5160. return;
  5161. }
  5162. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5163. for (;;) {
  5164. if (sched_domain_debug_one(sd, cpu, level))
  5165. break;
  5166. level++;
  5167. sd = sd->parent;
  5168. if (!sd)
  5169. break;
  5170. }
  5171. }
  5172. #else
  5173. # define sched_domain_debug(sd, cpu) do { } while (0)
  5174. #endif
  5175. static int sd_degenerate(struct sched_domain *sd)
  5176. {
  5177. if (cpus_weight(sd->span) == 1)
  5178. return 1;
  5179. /* Following flags need at least 2 groups */
  5180. if (sd->flags & (SD_LOAD_BALANCE |
  5181. SD_BALANCE_NEWIDLE |
  5182. SD_BALANCE_FORK |
  5183. SD_BALANCE_EXEC |
  5184. SD_SHARE_CPUPOWER |
  5185. SD_SHARE_PKG_RESOURCES)) {
  5186. if (sd->groups != sd->groups->next)
  5187. return 0;
  5188. }
  5189. /* Following flags don't use groups */
  5190. if (sd->flags & (SD_WAKE_IDLE |
  5191. SD_WAKE_AFFINE |
  5192. SD_WAKE_BALANCE))
  5193. return 0;
  5194. return 1;
  5195. }
  5196. static int
  5197. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5198. {
  5199. unsigned long cflags = sd->flags, pflags = parent->flags;
  5200. if (sd_degenerate(parent))
  5201. return 1;
  5202. if (!cpus_equal(sd->span, parent->span))
  5203. return 0;
  5204. /* Does parent contain flags not in child? */
  5205. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5206. if (cflags & SD_WAKE_AFFINE)
  5207. pflags &= ~SD_WAKE_BALANCE;
  5208. /* Flags needing groups don't count if only 1 group in parent */
  5209. if (parent->groups == parent->groups->next) {
  5210. pflags &= ~(SD_LOAD_BALANCE |
  5211. SD_BALANCE_NEWIDLE |
  5212. SD_BALANCE_FORK |
  5213. SD_BALANCE_EXEC |
  5214. SD_SHARE_CPUPOWER |
  5215. SD_SHARE_PKG_RESOURCES);
  5216. }
  5217. if (~cflags & pflags)
  5218. return 0;
  5219. return 1;
  5220. }
  5221. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5222. {
  5223. unsigned long flags;
  5224. const struct sched_class *class;
  5225. spin_lock_irqsave(&rq->lock, flags);
  5226. if (rq->rd) {
  5227. struct root_domain *old_rd = rq->rd;
  5228. for (class = sched_class_highest; class; class = class->next) {
  5229. if (class->leave_domain)
  5230. class->leave_domain(rq);
  5231. }
  5232. cpu_clear(rq->cpu, old_rd->span);
  5233. cpu_clear(rq->cpu, old_rd->online);
  5234. if (atomic_dec_and_test(&old_rd->refcount))
  5235. kfree(old_rd);
  5236. }
  5237. atomic_inc(&rd->refcount);
  5238. rq->rd = rd;
  5239. cpu_set(rq->cpu, rd->span);
  5240. if (cpu_isset(rq->cpu, cpu_online_map))
  5241. cpu_set(rq->cpu, rd->online);
  5242. for (class = sched_class_highest; class; class = class->next) {
  5243. if (class->join_domain)
  5244. class->join_domain(rq);
  5245. }
  5246. spin_unlock_irqrestore(&rq->lock, flags);
  5247. }
  5248. static void init_rootdomain(struct root_domain *rd)
  5249. {
  5250. memset(rd, 0, sizeof(*rd));
  5251. cpus_clear(rd->span);
  5252. cpus_clear(rd->online);
  5253. }
  5254. static void init_defrootdomain(void)
  5255. {
  5256. init_rootdomain(&def_root_domain);
  5257. atomic_set(&def_root_domain.refcount, 1);
  5258. }
  5259. static struct root_domain *alloc_rootdomain(void)
  5260. {
  5261. struct root_domain *rd;
  5262. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5263. if (!rd)
  5264. return NULL;
  5265. init_rootdomain(rd);
  5266. return rd;
  5267. }
  5268. /*
  5269. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5270. * hold the hotplug lock.
  5271. */
  5272. static void
  5273. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5274. {
  5275. struct rq *rq = cpu_rq(cpu);
  5276. struct sched_domain *tmp;
  5277. /* Remove the sched domains which do not contribute to scheduling. */
  5278. for (tmp = sd; tmp; tmp = tmp->parent) {
  5279. struct sched_domain *parent = tmp->parent;
  5280. if (!parent)
  5281. break;
  5282. if (sd_parent_degenerate(tmp, parent)) {
  5283. tmp->parent = parent->parent;
  5284. if (parent->parent)
  5285. parent->parent->child = tmp;
  5286. }
  5287. }
  5288. if (sd && sd_degenerate(sd)) {
  5289. sd = sd->parent;
  5290. if (sd)
  5291. sd->child = NULL;
  5292. }
  5293. sched_domain_debug(sd, cpu);
  5294. rq_attach_root(rq, rd);
  5295. rcu_assign_pointer(rq->sd, sd);
  5296. }
  5297. /* cpus with isolated domains */
  5298. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5299. /* Setup the mask of cpus configured for isolated domains */
  5300. static int __init isolated_cpu_setup(char *str)
  5301. {
  5302. int ints[NR_CPUS], i;
  5303. str = get_options(str, ARRAY_SIZE(ints), ints);
  5304. cpus_clear(cpu_isolated_map);
  5305. for (i = 1; i <= ints[0]; i++)
  5306. if (ints[i] < NR_CPUS)
  5307. cpu_set(ints[i], cpu_isolated_map);
  5308. return 1;
  5309. }
  5310. __setup("isolcpus=", isolated_cpu_setup);
  5311. /*
  5312. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5313. * to a function which identifies what group(along with sched group) a CPU
  5314. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5315. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5316. *
  5317. * init_sched_build_groups will build a circular linked list of the groups
  5318. * covered by the given span, and will set each group's ->cpumask correctly,
  5319. * and ->cpu_power to 0.
  5320. */
  5321. static void
  5322. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5323. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5324. struct sched_group **sg))
  5325. {
  5326. struct sched_group *first = NULL, *last = NULL;
  5327. cpumask_t covered = CPU_MASK_NONE;
  5328. int i;
  5329. for_each_cpu_mask(i, span) {
  5330. struct sched_group *sg;
  5331. int group = group_fn(i, cpu_map, &sg);
  5332. int j;
  5333. if (cpu_isset(i, covered))
  5334. continue;
  5335. sg->cpumask = CPU_MASK_NONE;
  5336. sg->__cpu_power = 0;
  5337. for_each_cpu_mask(j, span) {
  5338. if (group_fn(j, cpu_map, NULL) != group)
  5339. continue;
  5340. cpu_set(j, covered);
  5341. cpu_set(j, sg->cpumask);
  5342. }
  5343. if (!first)
  5344. first = sg;
  5345. if (last)
  5346. last->next = sg;
  5347. last = sg;
  5348. }
  5349. last->next = first;
  5350. }
  5351. #define SD_NODES_PER_DOMAIN 16
  5352. #ifdef CONFIG_NUMA
  5353. /**
  5354. * find_next_best_node - find the next node to include in a sched_domain
  5355. * @node: node whose sched_domain we're building
  5356. * @used_nodes: nodes already in the sched_domain
  5357. *
  5358. * Find the next node to include in a given scheduling domain. Simply
  5359. * finds the closest node not already in the @used_nodes map.
  5360. *
  5361. * Should use nodemask_t.
  5362. */
  5363. static int find_next_best_node(int node, unsigned long *used_nodes)
  5364. {
  5365. int i, n, val, min_val, best_node = 0;
  5366. min_val = INT_MAX;
  5367. for (i = 0; i < MAX_NUMNODES; i++) {
  5368. /* Start at @node */
  5369. n = (node + i) % MAX_NUMNODES;
  5370. if (!nr_cpus_node(n))
  5371. continue;
  5372. /* Skip already used nodes */
  5373. if (test_bit(n, used_nodes))
  5374. continue;
  5375. /* Simple min distance search */
  5376. val = node_distance(node, n);
  5377. if (val < min_val) {
  5378. min_val = val;
  5379. best_node = n;
  5380. }
  5381. }
  5382. set_bit(best_node, used_nodes);
  5383. return best_node;
  5384. }
  5385. /**
  5386. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5387. * @node: node whose cpumask we're constructing
  5388. * @size: number of nodes to include in this span
  5389. *
  5390. * Given a node, construct a good cpumask for its sched_domain to span. It
  5391. * should be one that prevents unnecessary balancing, but also spreads tasks
  5392. * out optimally.
  5393. */
  5394. static cpumask_t sched_domain_node_span(int node)
  5395. {
  5396. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5397. cpumask_t span, nodemask;
  5398. int i;
  5399. cpus_clear(span);
  5400. bitmap_zero(used_nodes, MAX_NUMNODES);
  5401. nodemask = node_to_cpumask(node);
  5402. cpus_or(span, span, nodemask);
  5403. set_bit(node, used_nodes);
  5404. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5405. int next_node = find_next_best_node(node, used_nodes);
  5406. nodemask = node_to_cpumask(next_node);
  5407. cpus_or(span, span, nodemask);
  5408. }
  5409. return span;
  5410. }
  5411. #endif
  5412. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5413. /*
  5414. * SMT sched-domains:
  5415. */
  5416. #ifdef CONFIG_SCHED_SMT
  5417. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5418. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5419. static int
  5420. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5421. {
  5422. if (sg)
  5423. *sg = &per_cpu(sched_group_cpus, cpu);
  5424. return cpu;
  5425. }
  5426. #endif
  5427. /*
  5428. * multi-core sched-domains:
  5429. */
  5430. #ifdef CONFIG_SCHED_MC
  5431. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5432. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5433. #endif
  5434. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5435. static int
  5436. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5437. {
  5438. int group;
  5439. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5440. cpus_and(mask, mask, *cpu_map);
  5441. group = first_cpu(mask);
  5442. if (sg)
  5443. *sg = &per_cpu(sched_group_core, group);
  5444. return group;
  5445. }
  5446. #elif defined(CONFIG_SCHED_MC)
  5447. static int
  5448. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5449. {
  5450. if (sg)
  5451. *sg = &per_cpu(sched_group_core, cpu);
  5452. return cpu;
  5453. }
  5454. #endif
  5455. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5456. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5457. static int
  5458. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5459. {
  5460. int group;
  5461. #ifdef CONFIG_SCHED_MC
  5462. cpumask_t mask = cpu_coregroup_map(cpu);
  5463. cpus_and(mask, mask, *cpu_map);
  5464. group = first_cpu(mask);
  5465. #elif defined(CONFIG_SCHED_SMT)
  5466. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5467. cpus_and(mask, mask, *cpu_map);
  5468. group = first_cpu(mask);
  5469. #else
  5470. group = cpu;
  5471. #endif
  5472. if (sg)
  5473. *sg = &per_cpu(sched_group_phys, group);
  5474. return group;
  5475. }
  5476. #ifdef CONFIG_NUMA
  5477. /*
  5478. * The init_sched_build_groups can't handle what we want to do with node
  5479. * groups, so roll our own. Now each node has its own list of groups which
  5480. * gets dynamically allocated.
  5481. */
  5482. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5483. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5484. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5485. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5486. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5487. struct sched_group **sg)
  5488. {
  5489. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5490. int group;
  5491. cpus_and(nodemask, nodemask, *cpu_map);
  5492. group = first_cpu(nodemask);
  5493. if (sg)
  5494. *sg = &per_cpu(sched_group_allnodes, group);
  5495. return group;
  5496. }
  5497. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5498. {
  5499. struct sched_group *sg = group_head;
  5500. int j;
  5501. if (!sg)
  5502. return;
  5503. do {
  5504. for_each_cpu_mask(j, sg->cpumask) {
  5505. struct sched_domain *sd;
  5506. sd = &per_cpu(phys_domains, j);
  5507. if (j != first_cpu(sd->groups->cpumask)) {
  5508. /*
  5509. * Only add "power" once for each
  5510. * physical package.
  5511. */
  5512. continue;
  5513. }
  5514. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5515. }
  5516. sg = sg->next;
  5517. } while (sg != group_head);
  5518. }
  5519. #endif
  5520. #ifdef CONFIG_NUMA
  5521. /* Free memory allocated for various sched_group structures */
  5522. static void free_sched_groups(const cpumask_t *cpu_map)
  5523. {
  5524. int cpu, i;
  5525. for_each_cpu_mask(cpu, *cpu_map) {
  5526. struct sched_group **sched_group_nodes
  5527. = sched_group_nodes_bycpu[cpu];
  5528. if (!sched_group_nodes)
  5529. continue;
  5530. for (i = 0; i < MAX_NUMNODES; i++) {
  5531. cpumask_t nodemask = node_to_cpumask(i);
  5532. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5533. cpus_and(nodemask, nodemask, *cpu_map);
  5534. if (cpus_empty(nodemask))
  5535. continue;
  5536. if (sg == NULL)
  5537. continue;
  5538. sg = sg->next;
  5539. next_sg:
  5540. oldsg = sg;
  5541. sg = sg->next;
  5542. kfree(oldsg);
  5543. if (oldsg != sched_group_nodes[i])
  5544. goto next_sg;
  5545. }
  5546. kfree(sched_group_nodes);
  5547. sched_group_nodes_bycpu[cpu] = NULL;
  5548. }
  5549. }
  5550. #else
  5551. static void free_sched_groups(const cpumask_t *cpu_map)
  5552. {
  5553. }
  5554. #endif
  5555. /*
  5556. * Initialize sched groups cpu_power.
  5557. *
  5558. * cpu_power indicates the capacity of sched group, which is used while
  5559. * distributing the load between different sched groups in a sched domain.
  5560. * Typically cpu_power for all the groups in a sched domain will be same unless
  5561. * there are asymmetries in the topology. If there are asymmetries, group
  5562. * having more cpu_power will pickup more load compared to the group having
  5563. * less cpu_power.
  5564. *
  5565. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5566. * the maximum number of tasks a group can handle in the presence of other idle
  5567. * or lightly loaded groups in the same sched domain.
  5568. */
  5569. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5570. {
  5571. struct sched_domain *child;
  5572. struct sched_group *group;
  5573. WARN_ON(!sd || !sd->groups);
  5574. if (cpu != first_cpu(sd->groups->cpumask))
  5575. return;
  5576. child = sd->child;
  5577. sd->groups->__cpu_power = 0;
  5578. /*
  5579. * For perf policy, if the groups in child domain share resources
  5580. * (for example cores sharing some portions of the cache hierarchy
  5581. * or SMT), then set this domain groups cpu_power such that each group
  5582. * can handle only one task, when there are other idle groups in the
  5583. * same sched domain.
  5584. */
  5585. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5586. (child->flags &
  5587. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5588. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5589. return;
  5590. }
  5591. /*
  5592. * add cpu_power of each child group to this groups cpu_power
  5593. */
  5594. group = child->groups;
  5595. do {
  5596. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5597. group = group->next;
  5598. } while (group != child->groups);
  5599. }
  5600. /*
  5601. * Build sched domains for a given set of cpus and attach the sched domains
  5602. * to the individual cpus
  5603. */
  5604. static int build_sched_domains(const cpumask_t *cpu_map)
  5605. {
  5606. int i;
  5607. struct root_domain *rd;
  5608. #ifdef CONFIG_NUMA
  5609. struct sched_group **sched_group_nodes = NULL;
  5610. int sd_allnodes = 0;
  5611. /*
  5612. * Allocate the per-node list of sched groups
  5613. */
  5614. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5615. GFP_KERNEL);
  5616. if (!sched_group_nodes) {
  5617. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5618. return -ENOMEM;
  5619. }
  5620. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5621. #endif
  5622. rd = alloc_rootdomain();
  5623. if (!rd) {
  5624. printk(KERN_WARNING "Cannot alloc root domain\n");
  5625. return -ENOMEM;
  5626. }
  5627. /*
  5628. * Set up domains for cpus specified by the cpu_map.
  5629. */
  5630. for_each_cpu_mask(i, *cpu_map) {
  5631. struct sched_domain *sd = NULL, *p;
  5632. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5633. cpus_and(nodemask, nodemask, *cpu_map);
  5634. #ifdef CONFIG_NUMA
  5635. if (cpus_weight(*cpu_map) >
  5636. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5637. sd = &per_cpu(allnodes_domains, i);
  5638. *sd = SD_ALLNODES_INIT;
  5639. sd->span = *cpu_map;
  5640. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5641. p = sd;
  5642. sd_allnodes = 1;
  5643. } else
  5644. p = NULL;
  5645. sd = &per_cpu(node_domains, i);
  5646. *sd = SD_NODE_INIT;
  5647. sd->span = sched_domain_node_span(cpu_to_node(i));
  5648. sd->parent = p;
  5649. if (p)
  5650. p->child = sd;
  5651. cpus_and(sd->span, sd->span, *cpu_map);
  5652. #endif
  5653. p = sd;
  5654. sd = &per_cpu(phys_domains, i);
  5655. *sd = SD_CPU_INIT;
  5656. sd->span = nodemask;
  5657. sd->parent = p;
  5658. if (p)
  5659. p->child = sd;
  5660. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5661. #ifdef CONFIG_SCHED_MC
  5662. p = sd;
  5663. sd = &per_cpu(core_domains, i);
  5664. *sd = SD_MC_INIT;
  5665. sd->span = cpu_coregroup_map(i);
  5666. cpus_and(sd->span, sd->span, *cpu_map);
  5667. sd->parent = p;
  5668. p->child = sd;
  5669. cpu_to_core_group(i, cpu_map, &sd->groups);
  5670. #endif
  5671. #ifdef CONFIG_SCHED_SMT
  5672. p = sd;
  5673. sd = &per_cpu(cpu_domains, i);
  5674. *sd = SD_SIBLING_INIT;
  5675. sd->span = per_cpu(cpu_sibling_map, i);
  5676. cpus_and(sd->span, sd->span, *cpu_map);
  5677. sd->parent = p;
  5678. p->child = sd;
  5679. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5680. #endif
  5681. }
  5682. #ifdef CONFIG_SCHED_SMT
  5683. /* Set up CPU (sibling) groups */
  5684. for_each_cpu_mask(i, *cpu_map) {
  5685. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5686. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5687. if (i != first_cpu(this_sibling_map))
  5688. continue;
  5689. init_sched_build_groups(this_sibling_map, cpu_map,
  5690. &cpu_to_cpu_group);
  5691. }
  5692. #endif
  5693. #ifdef CONFIG_SCHED_MC
  5694. /* Set up multi-core groups */
  5695. for_each_cpu_mask(i, *cpu_map) {
  5696. cpumask_t this_core_map = cpu_coregroup_map(i);
  5697. cpus_and(this_core_map, this_core_map, *cpu_map);
  5698. if (i != first_cpu(this_core_map))
  5699. continue;
  5700. init_sched_build_groups(this_core_map, cpu_map,
  5701. &cpu_to_core_group);
  5702. }
  5703. #endif
  5704. /* Set up physical groups */
  5705. for (i = 0; i < MAX_NUMNODES; i++) {
  5706. cpumask_t nodemask = node_to_cpumask(i);
  5707. cpus_and(nodemask, nodemask, *cpu_map);
  5708. if (cpus_empty(nodemask))
  5709. continue;
  5710. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5711. }
  5712. #ifdef CONFIG_NUMA
  5713. /* Set up node groups */
  5714. if (sd_allnodes)
  5715. init_sched_build_groups(*cpu_map, cpu_map,
  5716. &cpu_to_allnodes_group);
  5717. for (i = 0; i < MAX_NUMNODES; i++) {
  5718. /* Set up node groups */
  5719. struct sched_group *sg, *prev;
  5720. cpumask_t nodemask = node_to_cpumask(i);
  5721. cpumask_t domainspan;
  5722. cpumask_t covered = CPU_MASK_NONE;
  5723. int j;
  5724. cpus_and(nodemask, nodemask, *cpu_map);
  5725. if (cpus_empty(nodemask)) {
  5726. sched_group_nodes[i] = NULL;
  5727. continue;
  5728. }
  5729. domainspan = sched_domain_node_span(i);
  5730. cpus_and(domainspan, domainspan, *cpu_map);
  5731. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5732. if (!sg) {
  5733. printk(KERN_WARNING "Can not alloc domain group for "
  5734. "node %d\n", i);
  5735. goto error;
  5736. }
  5737. sched_group_nodes[i] = sg;
  5738. for_each_cpu_mask(j, nodemask) {
  5739. struct sched_domain *sd;
  5740. sd = &per_cpu(node_domains, j);
  5741. sd->groups = sg;
  5742. }
  5743. sg->__cpu_power = 0;
  5744. sg->cpumask = nodemask;
  5745. sg->next = sg;
  5746. cpus_or(covered, covered, nodemask);
  5747. prev = sg;
  5748. for (j = 0; j < MAX_NUMNODES; j++) {
  5749. cpumask_t tmp, notcovered;
  5750. int n = (i + j) % MAX_NUMNODES;
  5751. cpus_complement(notcovered, covered);
  5752. cpus_and(tmp, notcovered, *cpu_map);
  5753. cpus_and(tmp, tmp, domainspan);
  5754. if (cpus_empty(tmp))
  5755. break;
  5756. nodemask = node_to_cpumask(n);
  5757. cpus_and(tmp, tmp, nodemask);
  5758. if (cpus_empty(tmp))
  5759. continue;
  5760. sg = kmalloc_node(sizeof(struct sched_group),
  5761. GFP_KERNEL, i);
  5762. if (!sg) {
  5763. printk(KERN_WARNING
  5764. "Can not alloc domain group for node %d\n", j);
  5765. goto error;
  5766. }
  5767. sg->__cpu_power = 0;
  5768. sg->cpumask = tmp;
  5769. sg->next = prev->next;
  5770. cpus_or(covered, covered, tmp);
  5771. prev->next = sg;
  5772. prev = sg;
  5773. }
  5774. }
  5775. #endif
  5776. /* Calculate CPU power for physical packages and nodes */
  5777. #ifdef CONFIG_SCHED_SMT
  5778. for_each_cpu_mask(i, *cpu_map) {
  5779. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5780. init_sched_groups_power(i, sd);
  5781. }
  5782. #endif
  5783. #ifdef CONFIG_SCHED_MC
  5784. for_each_cpu_mask(i, *cpu_map) {
  5785. struct sched_domain *sd = &per_cpu(core_domains, i);
  5786. init_sched_groups_power(i, sd);
  5787. }
  5788. #endif
  5789. for_each_cpu_mask(i, *cpu_map) {
  5790. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5791. init_sched_groups_power(i, sd);
  5792. }
  5793. #ifdef CONFIG_NUMA
  5794. for (i = 0; i < MAX_NUMNODES; i++)
  5795. init_numa_sched_groups_power(sched_group_nodes[i]);
  5796. if (sd_allnodes) {
  5797. struct sched_group *sg;
  5798. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5799. init_numa_sched_groups_power(sg);
  5800. }
  5801. #endif
  5802. /* Attach the domains */
  5803. for_each_cpu_mask(i, *cpu_map) {
  5804. struct sched_domain *sd;
  5805. #ifdef CONFIG_SCHED_SMT
  5806. sd = &per_cpu(cpu_domains, i);
  5807. #elif defined(CONFIG_SCHED_MC)
  5808. sd = &per_cpu(core_domains, i);
  5809. #else
  5810. sd = &per_cpu(phys_domains, i);
  5811. #endif
  5812. cpu_attach_domain(sd, rd, i);
  5813. }
  5814. return 0;
  5815. #ifdef CONFIG_NUMA
  5816. error:
  5817. free_sched_groups(cpu_map);
  5818. return -ENOMEM;
  5819. #endif
  5820. }
  5821. static cpumask_t *doms_cur; /* current sched domains */
  5822. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5823. /*
  5824. * Special case: If a kmalloc of a doms_cur partition (array of
  5825. * cpumask_t) fails, then fallback to a single sched domain,
  5826. * as determined by the single cpumask_t fallback_doms.
  5827. */
  5828. static cpumask_t fallback_doms;
  5829. /*
  5830. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5831. * For now this just excludes isolated cpus, but could be used to
  5832. * exclude other special cases in the future.
  5833. */
  5834. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5835. {
  5836. int err;
  5837. ndoms_cur = 1;
  5838. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5839. if (!doms_cur)
  5840. doms_cur = &fallback_doms;
  5841. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5842. err = build_sched_domains(doms_cur);
  5843. register_sched_domain_sysctl();
  5844. return err;
  5845. }
  5846. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5847. {
  5848. free_sched_groups(cpu_map);
  5849. }
  5850. /*
  5851. * Detach sched domains from a group of cpus specified in cpu_map
  5852. * These cpus will now be attached to the NULL domain
  5853. */
  5854. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5855. {
  5856. int i;
  5857. unregister_sched_domain_sysctl();
  5858. for_each_cpu_mask(i, *cpu_map)
  5859. cpu_attach_domain(NULL, &def_root_domain, i);
  5860. synchronize_sched();
  5861. arch_destroy_sched_domains(cpu_map);
  5862. }
  5863. /*
  5864. * Partition sched domains as specified by the 'ndoms_new'
  5865. * cpumasks in the array doms_new[] of cpumasks. This compares
  5866. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5867. * It destroys each deleted domain and builds each new domain.
  5868. *
  5869. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5870. * The masks don't intersect (don't overlap.) We should setup one
  5871. * sched domain for each mask. CPUs not in any of the cpumasks will
  5872. * not be load balanced. If the same cpumask appears both in the
  5873. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5874. * it as it is.
  5875. *
  5876. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5877. * ownership of it and will kfree it when done with it. If the caller
  5878. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5879. * and partition_sched_domains() will fallback to the single partition
  5880. * 'fallback_doms'.
  5881. *
  5882. * Call with hotplug lock held
  5883. */
  5884. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5885. {
  5886. int i, j;
  5887. lock_doms_cur();
  5888. /* always unregister in case we don't destroy any domains */
  5889. unregister_sched_domain_sysctl();
  5890. if (doms_new == NULL) {
  5891. ndoms_new = 1;
  5892. doms_new = &fallback_doms;
  5893. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5894. }
  5895. /* Destroy deleted domains */
  5896. for (i = 0; i < ndoms_cur; i++) {
  5897. for (j = 0; j < ndoms_new; j++) {
  5898. if (cpus_equal(doms_cur[i], doms_new[j]))
  5899. goto match1;
  5900. }
  5901. /* no match - a current sched domain not in new doms_new[] */
  5902. detach_destroy_domains(doms_cur + i);
  5903. match1:
  5904. ;
  5905. }
  5906. /* Build new domains */
  5907. for (i = 0; i < ndoms_new; i++) {
  5908. for (j = 0; j < ndoms_cur; j++) {
  5909. if (cpus_equal(doms_new[i], doms_cur[j]))
  5910. goto match2;
  5911. }
  5912. /* no match - add a new doms_new */
  5913. build_sched_domains(doms_new + i);
  5914. match2:
  5915. ;
  5916. }
  5917. /* Remember the new sched domains */
  5918. if (doms_cur != &fallback_doms)
  5919. kfree(doms_cur);
  5920. doms_cur = doms_new;
  5921. ndoms_cur = ndoms_new;
  5922. register_sched_domain_sysctl();
  5923. unlock_doms_cur();
  5924. }
  5925. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5926. static int arch_reinit_sched_domains(void)
  5927. {
  5928. int err;
  5929. get_online_cpus();
  5930. detach_destroy_domains(&cpu_online_map);
  5931. err = arch_init_sched_domains(&cpu_online_map);
  5932. put_online_cpus();
  5933. return err;
  5934. }
  5935. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5936. {
  5937. int ret;
  5938. if (buf[0] != '0' && buf[0] != '1')
  5939. return -EINVAL;
  5940. if (smt)
  5941. sched_smt_power_savings = (buf[0] == '1');
  5942. else
  5943. sched_mc_power_savings = (buf[0] == '1');
  5944. ret = arch_reinit_sched_domains();
  5945. return ret ? ret : count;
  5946. }
  5947. #ifdef CONFIG_SCHED_MC
  5948. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5949. {
  5950. return sprintf(page, "%u\n", sched_mc_power_savings);
  5951. }
  5952. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5953. const char *buf, size_t count)
  5954. {
  5955. return sched_power_savings_store(buf, count, 0);
  5956. }
  5957. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5958. sched_mc_power_savings_store);
  5959. #endif
  5960. #ifdef CONFIG_SCHED_SMT
  5961. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5962. {
  5963. return sprintf(page, "%u\n", sched_smt_power_savings);
  5964. }
  5965. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5966. const char *buf, size_t count)
  5967. {
  5968. return sched_power_savings_store(buf, count, 1);
  5969. }
  5970. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5971. sched_smt_power_savings_store);
  5972. #endif
  5973. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5974. {
  5975. int err = 0;
  5976. #ifdef CONFIG_SCHED_SMT
  5977. if (smt_capable())
  5978. err = sysfs_create_file(&cls->kset.kobj,
  5979. &attr_sched_smt_power_savings.attr);
  5980. #endif
  5981. #ifdef CONFIG_SCHED_MC
  5982. if (!err && mc_capable())
  5983. err = sysfs_create_file(&cls->kset.kobj,
  5984. &attr_sched_mc_power_savings.attr);
  5985. #endif
  5986. return err;
  5987. }
  5988. #endif
  5989. /*
  5990. * Force a reinitialization of the sched domains hierarchy. The domains
  5991. * and groups cannot be updated in place without racing with the balancing
  5992. * code, so we temporarily attach all running cpus to the NULL domain
  5993. * which will prevent rebalancing while the sched domains are recalculated.
  5994. */
  5995. static int update_sched_domains(struct notifier_block *nfb,
  5996. unsigned long action, void *hcpu)
  5997. {
  5998. switch (action) {
  5999. case CPU_UP_PREPARE:
  6000. case CPU_UP_PREPARE_FROZEN:
  6001. case CPU_DOWN_PREPARE:
  6002. case CPU_DOWN_PREPARE_FROZEN:
  6003. detach_destroy_domains(&cpu_online_map);
  6004. return NOTIFY_OK;
  6005. case CPU_UP_CANCELED:
  6006. case CPU_UP_CANCELED_FROZEN:
  6007. case CPU_DOWN_FAILED:
  6008. case CPU_DOWN_FAILED_FROZEN:
  6009. case CPU_ONLINE:
  6010. case CPU_ONLINE_FROZEN:
  6011. case CPU_DEAD:
  6012. case CPU_DEAD_FROZEN:
  6013. /*
  6014. * Fall through and re-initialise the domains.
  6015. */
  6016. break;
  6017. default:
  6018. return NOTIFY_DONE;
  6019. }
  6020. /* The hotplug lock is already held by cpu_up/cpu_down */
  6021. arch_init_sched_domains(&cpu_online_map);
  6022. return NOTIFY_OK;
  6023. }
  6024. void __init sched_init_smp(void)
  6025. {
  6026. cpumask_t non_isolated_cpus;
  6027. get_online_cpus();
  6028. arch_init_sched_domains(&cpu_online_map);
  6029. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6030. if (cpus_empty(non_isolated_cpus))
  6031. cpu_set(smp_processor_id(), non_isolated_cpus);
  6032. put_online_cpus();
  6033. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6034. hotcpu_notifier(update_sched_domains, 0);
  6035. /* Move init over to a non-isolated CPU */
  6036. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  6037. BUG();
  6038. sched_init_granularity();
  6039. #ifdef CONFIG_FAIR_GROUP_SCHED
  6040. if (nr_cpu_ids == 1)
  6041. return;
  6042. lb_monitor_task = kthread_create(load_balance_monitor, NULL,
  6043. "group_balance");
  6044. if (!IS_ERR(lb_monitor_task)) {
  6045. lb_monitor_task->flags |= PF_NOFREEZE;
  6046. wake_up_process(lb_monitor_task);
  6047. } else {
  6048. printk(KERN_ERR "Could not create load balance monitor thread"
  6049. "(error = %ld) \n", PTR_ERR(lb_monitor_task));
  6050. }
  6051. #endif
  6052. }
  6053. #else
  6054. void __init sched_init_smp(void)
  6055. {
  6056. sched_init_granularity();
  6057. }
  6058. #endif /* CONFIG_SMP */
  6059. int in_sched_functions(unsigned long addr)
  6060. {
  6061. return in_lock_functions(addr) ||
  6062. (addr >= (unsigned long)__sched_text_start
  6063. && addr < (unsigned long)__sched_text_end);
  6064. }
  6065. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6066. {
  6067. cfs_rq->tasks_timeline = RB_ROOT;
  6068. #ifdef CONFIG_FAIR_GROUP_SCHED
  6069. cfs_rq->rq = rq;
  6070. #endif
  6071. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6072. }
  6073. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6074. {
  6075. struct rt_prio_array *array;
  6076. int i;
  6077. array = &rt_rq->active;
  6078. for (i = 0; i < MAX_RT_PRIO; i++) {
  6079. INIT_LIST_HEAD(array->queue + i);
  6080. __clear_bit(i, array->bitmap);
  6081. }
  6082. /* delimiter for bitsearch: */
  6083. __set_bit(MAX_RT_PRIO, array->bitmap);
  6084. #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
  6085. rt_rq->highest_prio = MAX_RT_PRIO;
  6086. #endif
  6087. #ifdef CONFIG_SMP
  6088. rt_rq->rt_nr_migratory = 0;
  6089. rt_rq->overloaded = 0;
  6090. #endif
  6091. rt_rq->rt_time = 0;
  6092. rt_rq->rt_throttled = 0;
  6093. #ifdef CONFIG_FAIR_GROUP_SCHED
  6094. rt_rq->rq = rq;
  6095. #endif
  6096. }
  6097. #ifdef CONFIG_FAIR_GROUP_SCHED
  6098. static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
  6099. struct cfs_rq *cfs_rq, struct sched_entity *se,
  6100. int cpu, int add)
  6101. {
  6102. tg->cfs_rq[cpu] = cfs_rq;
  6103. init_cfs_rq(cfs_rq, rq);
  6104. cfs_rq->tg = tg;
  6105. if (add)
  6106. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6107. tg->se[cpu] = se;
  6108. se->cfs_rq = &rq->cfs;
  6109. se->my_q = cfs_rq;
  6110. se->load.weight = tg->shares;
  6111. se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
  6112. se->parent = NULL;
  6113. }
  6114. static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
  6115. struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
  6116. int cpu, int add)
  6117. {
  6118. tg->rt_rq[cpu] = rt_rq;
  6119. init_rt_rq(rt_rq, rq);
  6120. rt_rq->tg = tg;
  6121. rt_rq->rt_se = rt_se;
  6122. if (add)
  6123. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6124. tg->rt_se[cpu] = rt_se;
  6125. rt_se->rt_rq = &rq->rt;
  6126. rt_se->my_q = rt_rq;
  6127. rt_se->parent = NULL;
  6128. INIT_LIST_HEAD(&rt_se->run_list);
  6129. }
  6130. #endif
  6131. void __init sched_init(void)
  6132. {
  6133. int highest_cpu = 0;
  6134. int i, j;
  6135. #ifdef CONFIG_SMP
  6136. init_defrootdomain();
  6137. #endif
  6138. #ifdef CONFIG_FAIR_GROUP_SCHED
  6139. list_add(&init_task_group.list, &task_groups);
  6140. #endif
  6141. for_each_possible_cpu(i) {
  6142. struct rq *rq;
  6143. rq = cpu_rq(i);
  6144. spin_lock_init(&rq->lock);
  6145. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6146. rq->nr_running = 0;
  6147. rq->clock = 1;
  6148. init_cfs_rq(&rq->cfs, rq);
  6149. init_rt_rq(&rq->rt, rq);
  6150. #ifdef CONFIG_FAIR_GROUP_SCHED
  6151. init_task_group.shares = init_task_group_load;
  6152. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6153. init_tg_cfs_entry(rq, &init_task_group,
  6154. &per_cpu(init_cfs_rq, i),
  6155. &per_cpu(init_sched_entity, i), i, 1);
  6156. init_task_group.rt_ratio = sysctl_sched_rt_ratio; /* XXX */
  6157. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6158. init_tg_rt_entry(rq, &init_task_group,
  6159. &per_cpu(init_rt_rq, i),
  6160. &per_cpu(init_sched_rt_entity, i), i, 1);
  6161. #endif
  6162. rq->rt_period_expire = 0;
  6163. rq->rt_throttled = 0;
  6164. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6165. rq->cpu_load[j] = 0;
  6166. #ifdef CONFIG_SMP
  6167. rq->sd = NULL;
  6168. rq->rd = NULL;
  6169. rq->active_balance = 0;
  6170. rq->next_balance = jiffies;
  6171. rq->push_cpu = 0;
  6172. rq->cpu = i;
  6173. rq->migration_thread = NULL;
  6174. INIT_LIST_HEAD(&rq->migration_queue);
  6175. rq_attach_root(rq, &def_root_domain);
  6176. #endif
  6177. init_rq_hrtick(rq);
  6178. atomic_set(&rq->nr_iowait, 0);
  6179. highest_cpu = i;
  6180. }
  6181. set_load_weight(&init_task);
  6182. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6183. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6184. #endif
  6185. #ifdef CONFIG_SMP
  6186. nr_cpu_ids = highest_cpu + 1;
  6187. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6188. #endif
  6189. #ifdef CONFIG_RT_MUTEXES
  6190. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6191. #endif
  6192. /*
  6193. * The boot idle thread does lazy MMU switching as well:
  6194. */
  6195. atomic_inc(&init_mm.mm_count);
  6196. enter_lazy_tlb(&init_mm, current);
  6197. /*
  6198. * Make us the idle thread. Technically, schedule() should not be
  6199. * called from this thread, however somewhere below it might be,
  6200. * but because we are the idle thread, we just pick up running again
  6201. * when this runqueue becomes "idle".
  6202. */
  6203. init_idle(current, smp_processor_id());
  6204. /*
  6205. * During early bootup we pretend to be a normal task:
  6206. */
  6207. current->sched_class = &fair_sched_class;
  6208. }
  6209. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6210. void __might_sleep(char *file, int line)
  6211. {
  6212. #ifdef in_atomic
  6213. static unsigned long prev_jiffy; /* ratelimiting */
  6214. if ((in_atomic() || irqs_disabled()) &&
  6215. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6216. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6217. return;
  6218. prev_jiffy = jiffies;
  6219. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6220. " context at %s:%d\n", file, line);
  6221. printk("in_atomic():%d, irqs_disabled():%d\n",
  6222. in_atomic(), irqs_disabled());
  6223. debug_show_held_locks(current);
  6224. if (irqs_disabled())
  6225. print_irqtrace_events(current);
  6226. dump_stack();
  6227. }
  6228. #endif
  6229. }
  6230. EXPORT_SYMBOL(__might_sleep);
  6231. #endif
  6232. #ifdef CONFIG_MAGIC_SYSRQ
  6233. static void normalize_task(struct rq *rq, struct task_struct *p)
  6234. {
  6235. int on_rq;
  6236. update_rq_clock(rq);
  6237. on_rq = p->se.on_rq;
  6238. if (on_rq)
  6239. deactivate_task(rq, p, 0);
  6240. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6241. if (on_rq) {
  6242. activate_task(rq, p, 0);
  6243. resched_task(rq->curr);
  6244. }
  6245. }
  6246. void normalize_rt_tasks(void)
  6247. {
  6248. struct task_struct *g, *p;
  6249. unsigned long flags;
  6250. struct rq *rq;
  6251. read_lock_irq(&tasklist_lock);
  6252. do_each_thread(g, p) {
  6253. /*
  6254. * Only normalize user tasks:
  6255. */
  6256. if (!p->mm)
  6257. continue;
  6258. p->se.exec_start = 0;
  6259. #ifdef CONFIG_SCHEDSTATS
  6260. p->se.wait_start = 0;
  6261. p->se.sleep_start = 0;
  6262. p->se.block_start = 0;
  6263. #endif
  6264. task_rq(p)->clock = 0;
  6265. if (!rt_task(p)) {
  6266. /*
  6267. * Renice negative nice level userspace
  6268. * tasks back to 0:
  6269. */
  6270. if (TASK_NICE(p) < 0 && p->mm)
  6271. set_user_nice(p, 0);
  6272. continue;
  6273. }
  6274. spin_lock_irqsave(&p->pi_lock, flags);
  6275. rq = __task_rq_lock(p);
  6276. normalize_task(rq, p);
  6277. __task_rq_unlock(rq);
  6278. spin_unlock_irqrestore(&p->pi_lock, flags);
  6279. } while_each_thread(g, p);
  6280. read_unlock_irq(&tasklist_lock);
  6281. }
  6282. #endif /* CONFIG_MAGIC_SYSRQ */
  6283. #ifdef CONFIG_IA64
  6284. /*
  6285. * These functions are only useful for the IA64 MCA handling.
  6286. *
  6287. * They can only be called when the whole system has been
  6288. * stopped - every CPU needs to be quiescent, and no scheduling
  6289. * activity can take place. Using them for anything else would
  6290. * be a serious bug, and as a result, they aren't even visible
  6291. * under any other configuration.
  6292. */
  6293. /**
  6294. * curr_task - return the current task for a given cpu.
  6295. * @cpu: the processor in question.
  6296. *
  6297. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6298. */
  6299. struct task_struct *curr_task(int cpu)
  6300. {
  6301. return cpu_curr(cpu);
  6302. }
  6303. /**
  6304. * set_curr_task - set the current task for a given cpu.
  6305. * @cpu: the processor in question.
  6306. * @p: the task pointer to set.
  6307. *
  6308. * Description: This function must only be used when non-maskable interrupts
  6309. * are serviced on a separate stack. It allows the architecture to switch the
  6310. * notion of the current task on a cpu in a non-blocking manner. This function
  6311. * must be called with all CPU's synchronized, and interrupts disabled, the
  6312. * and caller must save the original value of the current task (see
  6313. * curr_task() above) and restore that value before reenabling interrupts and
  6314. * re-starting the system.
  6315. *
  6316. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6317. */
  6318. void set_curr_task(int cpu, struct task_struct *p)
  6319. {
  6320. cpu_curr(cpu) = p;
  6321. }
  6322. #endif
  6323. #ifdef CONFIG_FAIR_GROUP_SCHED
  6324. #ifdef CONFIG_SMP
  6325. /*
  6326. * distribute shares of all task groups among their schedulable entities,
  6327. * to reflect load distribution across cpus.
  6328. */
  6329. static int rebalance_shares(struct sched_domain *sd, int this_cpu)
  6330. {
  6331. struct cfs_rq *cfs_rq;
  6332. struct rq *rq = cpu_rq(this_cpu);
  6333. cpumask_t sdspan = sd->span;
  6334. int balanced = 1;
  6335. /* Walk thr' all the task groups that we have */
  6336. for_each_leaf_cfs_rq(rq, cfs_rq) {
  6337. int i;
  6338. unsigned long total_load = 0, total_shares;
  6339. struct task_group *tg = cfs_rq->tg;
  6340. /* Gather total task load of this group across cpus */
  6341. for_each_cpu_mask(i, sdspan)
  6342. total_load += tg->cfs_rq[i]->load.weight;
  6343. /* Nothing to do if this group has no load */
  6344. if (!total_load)
  6345. continue;
  6346. /*
  6347. * tg->shares represents the number of cpu shares the task group
  6348. * is eligible to hold on a single cpu. On N cpus, it is
  6349. * eligible to hold (N * tg->shares) number of cpu shares.
  6350. */
  6351. total_shares = tg->shares * cpus_weight(sdspan);
  6352. /*
  6353. * redistribute total_shares across cpus as per the task load
  6354. * distribution.
  6355. */
  6356. for_each_cpu_mask(i, sdspan) {
  6357. unsigned long local_load, local_shares;
  6358. local_load = tg->cfs_rq[i]->load.weight;
  6359. local_shares = (local_load * total_shares) / total_load;
  6360. if (!local_shares)
  6361. local_shares = MIN_GROUP_SHARES;
  6362. if (local_shares == tg->se[i]->load.weight)
  6363. continue;
  6364. spin_lock_irq(&cpu_rq(i)->lock);
  6365. set_se_shares(tg->se[i], local_shares);
  6366. spin_unlock_irq(&cpu_rq(i)->lock);
  6367. balanced = 0;
  6368. }
  6369. }
  6370. return balanced;
  6371. }
  6372. /*
  6373. * How frequently should we rebalance_shares() across cpus?
  6374. *
  6375. * The more frequently we rebalance shares, the more accurate is the fairness
  6376. * of cpu bandwidth distribution between task groups. However higher frequency
  6377. * also implies increased scheduling overhead.
  6378. *
  6379. * sysctl_sched_min_bal_int_shares represents the minimum interval between
  6380. * consecutive calls to rebalance_shares() in the same sched domain.
  6381. *
  6382. * sysctl_sched_max_bal_int_shares represents the maximum interval between
  6383. * consecutive calls to rebalance_shares() in the same sched domain.
  6384. *
  6385. * These settings allows for the appropriate trade-off between accuracy of
  6386. * fairness and the associated overhead.
  6387. *
  6388. */
  6389. /* default: 8ms, units: milliseconds */
  6390. const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
  6391. /* default: 128ms, units: milliseconds */
  6392. const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
  6393. /* kernel thread that runs rebalance_shares() periodically */
  6394. static int load_balance_monitor(void *unused)
  6395. {
  6396. unsigned int timeout = sysctl_sched_min_bal_int_shares;
  6397. struct sched_param schedparm;
  6398. int ret;
  6399. /*
  6400. * We don't want this thread's execution to be limited by the shares
  6401. * assigned to default group (init_task_group). Hence make it run
  6402. * as a SCHED_RR RT task at the lowest priority.
  6403. */
  6404. schedparm.sched_priority = 1;
  6405. ret = sched_setscheduler(current, SCHED_RR, &schedparm);
  6406. if (ret)
  6407. printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
  6408. " monitor thread (error = %d) \n", ret);
  6409. while (!kthread_should_stop()) {
  6410. int i, cpu, balanced = 1;
  6411. /* Prevent cpus going down or coming up */
  6412. get_online_cpus();
  6413. /* lockout changes to doms_cur[] array */
  6414. lock_doms_cur();
  6415. /*
  6416. * Enter a rcu read-side critical section to safely walk rq->sd
  6417. * chain on various cpus and to walk task group list
  6418. * (rq->leaf_cfs_rq_list) in rebalance_shares().
  6419. */
  6420. rcu_read_lock();
  6421. for (i = 0; i < ndoms_cur; i++) {
  6422. cpumask_t cpumap = doms_cur[i];
  6423. struct sched_domain *sd = NULL, *sd_prev = NULL;
  6424. cpu = first_cpu(cpumap);
  6425. /* Find the highest domain at which to balance shares */
  6426. for_each_domain(cpu, sd) {
  6427. if (!(sd->flags & SD_LOAD_BALANCE))
  6428. continue;
  6429. sd_prev = sd;
  6430. }
  6431. sd = sd_prev;
  6432. /* sd == NULL? No load balance reqd in this domain */
  6433. if (!sd)
  6434. continue;
  6435. balanced &= rebalance_shares(sd, cpu);
  6436. }
  6437. rcu_read_unlock();
  6438. unlock_doms_cur();
  6439. put_online_cpus();
  6440. if (!balanced)
  6441. timeout = sysctl_sched_min_bal_int_shares;
  6442. else if (timeout < sysctl_sched_max_bal_int_shares)
  6443. timeout *= 2;
  6444. msleep_interruptible(timeout);
  6445. }
  6446. return 0;
  6447. }
  6448. #endif /* CONFIG_SMP */
  6449. static void free_sched_group(struct task_group *tg)
  6450. {
  6451. int i;
  6452. for_each_possible_cpu(i) {
  6453. if (tg->cfs_rq)
  6454. kfree(tg->cfs_rq[i]);
  6455. if (tg->se)
  6456. kfree(tg->se[i]);
  6457. if (tg->rt_rq)
  6458. kfree(tg->rt_rq[i]);
  6459. if (tg->rt_se)
  6460. kfree(tg->rt_se[i]);
  6461. }
  6462. kfree(tg->cfs_rq);
  6463. kfree(tg->se);
  6464. kfree(tg->rt_rq);
  6465. kfree(tg->rt_se);
  6466. kfree(tg);
  6467. }
  6468. /* allocate runqueue etc for a new task group */
  6469. struct task_group *sched_create_group(void)
  6470. {
  6471. struct task_group *tg;
  6472. struct cfs_rq *cfs_rq;
  6473. struct sched_entity *se;
  6474. struct rt_rq *rt_rq;
  6475. struct sched_rt_entity *rt_se;
  6476. struct rq *rq;
  6477. unsigned long flags;
  6478. int i;
  6479. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6480. if (!tg)
  6481. return ERR_PTR(-ENOMEM);
  6482. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6483. if (!tg->cfs_rq)
  6484. goto err;
  6485. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6486. if (!tg->se)
  6487. goto err;
  6488. tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
  6489. if (!tg->rt_rq)
  6490. goto err;
  6491. tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
  6492. if (!tg->rt_se)
  6493. goto err;
  6494. tg->shares = NICE_0_LOAD;
  6495. tg->rt_ratio = 0; /* XXX */
  6496. for_each_possible_cpu(i) {
  6497. rq = cpu_rq(i);
  6498. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6499. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6500. if (!cfs_rq)
  6501. goto err;
  6502. se = kmalloc_node(sizeof(struct sched_entity),
  6503. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6504. if (!se)
  6505. goto err;
  6506. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6507. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6508. if (!rt_rq)
  6509. goto err;
  6510. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6511. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6512. if (!rt_se)
  6513. goto err;
  6514. init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
  6515. init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
  6516. }
  6517. spin_lock_irqsave(&task_group_lock, flags);
  6518. for_each_possible_cpu(i) {
  6519. rq = cpu_rq(i);
  6520. cfs_rq = tg->cfs_rq[i];
  6521. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6522. rt_rq = tg->rt_rq[i];
  6523. list_add_rcu(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6524. }
  6525. list_add_rcu(&tg->list, &task_groups);
  6526. spin_unlock_irqrestore(&task_group_lock, flags);
  6527. return tg;
  6528. err:
  6529. free_sched_group(tg);
  6530. return ERR_PTR(-ENOMEM);
  6531. }
  6532. /* rcu callback to free various structures associated with a task group */
  6533. static void free_sched_group_rcu(struct rcu_head *rhp)
  6534. {
  6535. /* now it should be safe to free those cfs_rqs */
  6536. free_sched_group(container_of(rhp, struct task_group, rcu));
  6537. }
  6538. /* Destroy runqueue etc associated with a task group */
  6539. void sched_destroy_group(struct task_group *tg)
  6540. {
  6541. struct cfs_rq *cfs_rq = NULL;
  6542. struct rt_rq *rt_rq = NULL;
  6543. unsigned long flags;
  6544. int i;
  6545. spin_lock_irqsave(&task_group_lock, flags);
  6546. for_each_possible_cpu(i) {
  6547. cfs_rq = tg->cfs_rq[i];
  6548. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6549. rt_rq = tg->rt_rq[i];
  6550. list_del_rcu(&rt_rq->leaf_rt_rq_list);
  6551. }
  6552. list_del_rcu(&tg->list);
  6553. spin_unlock_irqrestore(&task_group_lock, flags);
  6554. BUG_ON(!cfs_rq);
  6555. /* wait for possible concurrent references to cfs_rqs complete */
  6556. call_rcu(&tg->rcu, free_sched_group_rcu);
  6557. }
  6558. /* change task's runqueue when it moves between groups.
  6559. * The caller of this function should have put the task in its new group
  6560. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6561. * reflect its new group.
  6562. */
  6563. void sched_move_task(struct task_struct *tsk)
  6564. {
  6565. int on_rq, running;
  6566. unsigned long flags;
  6567. struct rq *rq;
  6568. rq = task_rq_lock(tsk, &flags);
  6569. update_rq_clock(rq);
  6570. running = task_current(rq, tsk);
  6571. on_rq = tsk->se.on_rq;
  6572. if (on_rq) {
  6573. dequeue_task(rq, tsk, 0);
  6574. if (unlikely(running))
  6575. tsk->sched_class->put_prev_task(rq, tsk);
  6576. }
  6577. set_task_rq(tsk, task_cpu(tsk));
  6578. if (on_rq) {
  6579. if (unlikely(running))
  6580. tsk->sched_class->set_curr_task(rq);
  6581. enqueue_task(rq, tsk, 0);
  6582. }
  6583. task_rq_unlock(rq, &flags);
  6584. }
  6585. /* rq->lock to be locked by caller */
  6586. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6587. {
  6588. struct cfs_rq *cfs_rq = se->cfs_rq;
  6589. struct rq *rq = cfs_rq->rq;
  6590. int on_rq;
  6591. if (!shares)
  6592. shares = MIN_GROUP_SHARES;
  6593. on_rq = se->on_rq;
  6594. if (on_rq) {
  6595. dequeue_entity(cfs_rq, se, 0);
  6596. dec_cpu_load(rq, se->load.weight);
  6597. }
  6598. se->load.weight = shares;
  6599. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6600. if (on_rq) {
  6601. enqueue_entity(cfs_rq, se, 0);
  6602. inc_cpu_load(rq, se->load.weight);
  6603. }
  6604. }
  6605. static DEFINE_MUTEX(shares_mutex);
  6606. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6607. {
  6608. int i;
  6609. struct cfs_rq *cfs_rq;
  6610. struct rq *rq;
  6611. unsigned long flags;
  6612. mutex_lock(&shares_mutex);
  6613. if (tg->shares == shares)
  6614. goto done;
  6615. if (shares < MIN_GROUP_SHARES)
  6616. shares = MIN_GROUP_SHARES;
  6617. /*
  6618. * Prevent any load balance activity (rebalance_shares,
  6619. * load_balance_fair) from referring to this group first,
  6620. * by taking it off the rq->leaf_cfs_rq_list on each cpu.
  6621. */
  6622. spin_lock_irqsave(&task_group_lock, flags);
  6623. for_each_possible_cpu(i) {
  6624. cfs_rq = tg->cfs_rq[i];
  6625. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6626. }
  6627. spin_unlock_irqrestore(&task_group_lock, flags);
  6628. /* wait for any ongoing reference to this group to finish */
  6629. synchronize_sched();
  6630. /*
  6631. * Now we are free to modify the group's share on each cpu
  6632. * w/o tripping rebalance_share or load_balance_fair.
  6633. */
  6634. tg->shares = shares;
  6635. for_each_possible_cpu(i) {
  6636. spin_lock_irq(&cpu_rq(i)->lock);
  6637. set_se_shares(tg->se[i], shares);
  6638. spin_unlock_irq(&cpu_rq(i)->lock);
  6639. }
  6640. /*
  6641. * Enable load balance activity on this group, by inserting it back on
  6642. * each cpu's rq->leaf_cfs_rq_list.
  6643. */
  6644. spin_lock_irqsave(&task_group_lock, flags);
  6645. for_each_possible_cpu(i) {
  6646. rq = cpu_rq(i);
  6647. cfs_rq = tg->cfs_rq[i];
  6648. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6649. }
  6650. spin_unlock_irqrestore(&task_group_lock, flags);
  6651. done:
  6652. mutex_unlock(&shares_mutex);
  6653. return 0;
  6654. }
  6655. unsigned long sched_group_shares(struct task_group *tg)
  6656. {
  6657. return tg->shares;
  6658. }
  6659. /*
  6660. * Ensure the total rt_ratio <= sysctl_sched_rt_ratio
  6661. */
  6662. int sched_group_set_rt_ratio(struct task_group *tg, unsigned long rt_ratio)
  6663. {
  6664. struct task_group *tgi;
  6665. unsigned long total = 0;
  6666. rcu_read_lock();
  6667. list_for_each_entry_rcu(tgi, &task_groups, list)
  6668. total += tgi->rt_ratio;
  6669. rcu_read_unlock();
  6670. if (total + rt_ratio - tg->rt_ratio > sysctl_sched_rt_ratio)
  6671. return -EINVAL;
  6672. tg->rt_ratio = rt_ratio;
  6673. return 0;
  6674. }
  6675. unsigned long sched_group_rt_ratio(struct task_group *tg)
  6676. {
  6677. return tg->rt_ratio;
  6678. }
  6679. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6680. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6681. /* return corresponding task_group object of a cgroup */
  6682. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6683. {
  6684. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6685. struct task_group, css);
  6686. }
  6687. static struct cgroup_subsys_state *
  6688. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6689. {
  6690. struct task_group *tg;
  6691. if (!cgrp->parent) {
  6692. /* This is early initialization for the top cgroup */
  6693. init_task_group.css.cgroup = cgrp;
  6694. return &init_task_group.css;
  6695. }
  6696. /* we support only 1-level deep hierarchical scheduler atm */
  6697. if (cgrp->parent->parent)
  6698. return ERR_PTR(-EINVAL);
  6699. tg = sched_create_group();
  6700. if (IS_ERR(tg))
  6701. return ERR_PTR(-ENOMEM);
  6702. /* Bind the cgroup to task_group object we just created */
  6703. tg->css.cgroup = cgrp;
  6704. return &tg->css;
  6705. }
  6706. static void
  6707. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6708. {
  6709. struct task_group *tg = cgroup_tg(cgrp);
  6710. sched_destroy_group(tg);
  6711. }
  6712. static int
  6713. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6714. struct task_struct *tsk)
  6715. {
  6716. /* We don't support RT-tasks being in separate groups */
  6717. if (tsk->sched_class != &fair_sched_class)
  6718. return -EINVAL;
  6719. return 0;
  6720. }
  6721. static void
  6722. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6723. struct cgroup *old_cont, struct task_struct *tsk)
  6724. {
  6725. sched_move_task(tsk);
  6726. }
  6727. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6728. u64 shareval)
  6729. {
  6730. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6731. }
  6732. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6733. {
  6734. struct task_group *tg = cgroup_tg(cgrp);
  6735. return (u64) tg->shares;
  6736. }
  6737. static int cpu_rt_ratio_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6738. u64 rt_ratio_val)
  6739. {
  6740. return sched_group_set_rt_ratio(cgroup_tg(cgrp), rt_ratio_val);
  6741. }
  6742. static u64 cpu_rt_ratio_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6743. {
  6744. struct task_group *tg = cgroup_tg(cgrp);
  6745. return (u64) tg->rt_ratio;
  6746. }
  6747. static struct cftype cpu_files[] = {
  6748. {
  6749. .name = "shares",
  6750. .read_uint = cpu_shares_read_uint,
  6751. .write_uint = cpu_shares_write_uint,
  6752. },
  6753. {
  6754. .name = "rt_ratio",
  6755. .read_uint = cpu_rt_ratio_read_uint,
  6756. .write_uint = cpu_rt_ratio_write_uint,
  6757. },
  6758. };
  6759. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6760. {
  6761. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6762. }
  6763. struct cgroup_subsys cpu_cgroup_subsys = {
  6764. .name = "cpu",
  6765. .create = cpu_cgroup_create,
  6766. .destroy = cpu_cgroup_destroy,
  6767. .can_attach = cpu_cgroup_can_attach,
  6768. .attach = cpu_cgroup_attach,
  6769. .populate = cpu_cgroup_populate,
  6770. .subsys_id = cpu_cgroup_subsys_id,
  6771. .early_init = 1,
  6772. };
  6773. #endif /* CONFIG_FAIR_CGROUP_SCHED */
  6774. #ifdef CONFIG_CGROUP_CPUACCT
  6775. /*
  6776. * CPU accounting code for task groups.
  6777. *
  6778. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6779. * (balbir@in.ibm.com).
  6780. */
  6781. /* track cpu usage of a group of tasks */
  6782. struct cpuacct {
  6783. struct cgroup_subsys_state css;
  6784. /* cpuusage holds pointer to a u64-type object on every cpu */
  6785. u64 *cpuusage;
  6786. };
  6787. struct cgroup_subsys cpuacct_subsys;
  6788. /* return cpu accounting group corresponding to this container */
  6789. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6790. {
  6791. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6792. struct cpuacct, css);
  6793. }
  6794. /* return cpu accounting group to which this task belongs */
  6795. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6796. {
  6797. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6798. struct cpuacct, css);
  6799. }
  6800. /* create a new cpu accounting group */
  6801. static struct cgroup_subsys_state *cpuacct_create(
  6802. struct cgroup_subsys *ss, struct cgroup *cont)
  6803. {
  6804. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6805. if (!ca)
  6806. return ERR_PTR(-ENOMEM);
  6807. ca->cpuusage = alloc_percpu(u64);
  6808. if (!ca->cpuusage) {
  6809. kfree(ca);
  6810. return ERR_PTR(-ENOMEM);
  6811. }
  6812. return &ca->css;
  6813. }
  6814. /* destroy an existing cpu accounting group */
  6815. static void
  6816. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  6817. {
  6818. struct cpuacct *ca = cgroup_ca(cont);
  6819. free_percpu(ca->cpuusage);
  6820. kfree(ca);
  6821. }
  6822. /* return total cpu usage (in nanoseconds) of a group */
  6823. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  6824. {
  6825. struct cpuacct *ca = cgroup_ca(cont);
  6826. u64 totalcpuusage = 0;
  6827. int i;
  6828. for_each_possible_cpu(i) {
  6829. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  6830. /*
  6831. * Take rq->lock to make 64-bit addition safe on 32-bit
  6832. * platforms.
  6833. */
  6834. spin_lock_irq(&cpu_rq(i)->lock);
  6835. totalcpuusage += *cpuusage;
  6836. spin_unlock_irq(&cpu_rq(i)->lock);
  6837. }
  6838. return totalcpuusage;
  6839. }
  6840. static struct cftype files[] = {
  6841. {
  6842. .name = "usage",
  6843. .read_uint = cpuusage_read,
  6844. },
  6845. };
  6846. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6847. {
  6848. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  6849. }
  6850. /*
  6851. * charge this task's execution time to its accounting group.
  6852. *
  6853. * called with rq->lock held.
  6854. */
  6855. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6856. {
  6857. struct cpuacct *ca;
  6858. if (!cpuacct_subsys.active)
  6859. return;
  6860. ca = task_ca(tsk);
  6861. if (ca) {
  6862. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  6863. *cpuusage += cputime;
  6864. }
  6865. }
  6866. struct cgroup_subsys cpuacct_subsys = {
  6867. .name = "cpuacct",
  6868. .create = cpuacct_create,
  6869. .destroy = cpuacct_destroy,
  6870. .populate = cpuacct_populate,
  6871. .subsys_id = cpuacct_subsys_id,
  6872. };
  6873. #endif /* CONFIG_CGROUP_CPUACCT */