sched.c 165 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <linux/pagemap.h>
  64. #include <asm/tlb.h>
  65. /*
  66. * Scheduler clock - returns current time in nanosec units.
  67. * This is default implementation.
  68. * Architectures and sub-architectures can override this.
  69. */
  70. unsigned long long __attribute__((weak)) sched_clock(void)
  71. {
  72. return (unsigned long long)jiffies * (1000000000 / HZ);
  73. }
  74. /*
  75. * Convert user-nice values [ -20 ... 0 ... 19 ]
  76. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  77. * and back.
  78. */
  79. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  80. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  81. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  82. /*
  83. * 'User priority' is the nice value converted to something we
  84. * can work with better when scaling various scheduler parameters,
  85. * it's a [ 0 ... 39 ] range.
  86. */
  87. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  88. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  89. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  90. /*
  91. * Some helpers for converting nanosecond timing to jiffy resolution
  92. */
  93. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  94. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  101. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  102. * Timeslices get refilled after they expire.
  103. */
  104. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. #define SCALE_PRIO(x, prio) \
  126. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  127. /*
  128. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  129. * to time slice values: [800ms ... 100ms ... 5ms]
  130. */
  131. static unsigned int static_prio_timeslice(int static_prio)
  132. {
  133. if (static_prio == NICE_TO_PRIO(19))
  134. return 1;
  135. if (static_prio < NICE_TO_PRIO(0))
  136. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  137. else
  138. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  139. }
  140. static inline int rt_policy(int policy)
  141. {
  142. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  143. return 1;
  144. return 0;
  145. }
  146. static inline int task_has_rt_policy(struct task_struct *p)
  147. {
  148. return rt_policy(p->policy);
  149. }
  150. /*
  151. * This is the priority-queue data structure of the RT scheduling class:
  152. */
  153. struct rt_prio_array {
  154. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  155. struct list_head queue[MAX_RT_PRIO];
  156. };
  157. struct load_stat {
  158. struct load_weight load;
  159. u64 load_update_start, load_update_last;
  160. unsigned long delta_fair, delta_exec, delta_stat;
  161. };
  162. /* CFS-related fields in a runqueue */
  163. struct cfs_rq {
  164. struct load_weight load;
  165. unsigned long nr_running;
  166. s64 fair_clock;
  167. u64 exec_clock;
  168. s64 wait_runtime;
  169. u64 sleeper_bonus;
  170. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  171. struct rb_root tasks_timeline;
  172. struct rb_node *rb_leftmost;
  173. struct rb_node *rb_load_balance_curr;
  174. #ifdef CONFIG_FAIR_GROUP_SCHED
  175. /* 'curr' points to currently running entity on this cfs_rq.
  176. * It is set to NULL otherwise (i.e when none are currently running).
  177. */
  178. struct sched_entity *curr;
  179. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  180. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  181. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  182. * (like users, containers etc.)
  183. *
  184. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  185. * list is used during load balance.
  186. */
  187. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  188. #endif
  189. };
  190. /* Real-Time classes' related field in a runqueue: */
  191. struct rt_rq {
  192. struct rt_prio_array active;
  193. int rt_load_balance_idx;
  194. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  195. };
  196. /*
  197. * This is the main, per-CPU runqueue data structure.
  198. *
  199. * Locking rule: those places that want to lock multiple runqueues
  200. * (such as the load balancing or the thread migration code), lock
  201. * acquire operations must be ordered by ascending &runqueue.
  202. */
  203. struct rq {
  204. spinlock_t lock; /* runqueue lock */
  205. /*
  206. * nr_running and cpu_load should be in the same cacheline because
  207. * remote CPUs use both these fields when doing load calculation.
  208. */
  209. unsigned long nr_running;
  210. #define CPU_LOAD_IDX_MAX 5
  211. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  212. unsigned char idle_at_tick;
  213. #ifdef CONFIG_NO_HZ
  214. unsigned char in_nohz_recently;
  215. #endif
  216. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  217. unsigned long nr_load_updates;
  218. u64 nr_switches;
  219. struct cfs_rq cfs;
  220. #ifdef CONFIG_FAIR_GROUP_SCHED
  221. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  222. #endif
  223. struct rt_rq rt;
  224. /*
  225. * This is part of a global counter where only the total sum
  226. * over all CPUs matters. A task can increase this counter on
  227. * one CPU and if it got migrated afterwards it may decrease
  228. * it on another CPU. Always updated under the runqueue lock:
  229. */
  230. unsigned long nr_uninterruptible;
  231. struct task_struct *curr, *idle;
  232. unsigned long next_balance;
  233. struct mm_struct *prev_mm;
  234. u64 clock, prev_clock_raw;
  235. s64 clock_max_delta;
  236. unsigned int clock_warps, clock_overflows;
  237. u64 idle_clock;
  238. unsigned int clock_deep_idle_events;
  239. u64 tick_timestamp;
  240. atomic_t nr_iowait;
  241. #ifdef CONFIG_SMP
  242. struct sched_domain *sd;
  243. /* For active balancing */
  244. int active_balance;
  245. int push_cpu;
  246. int cpu; /* cpu of this runqueue */
  247. struct task_struct *migration_thread;
  248. struct list_head migration_queue;
  249. #endif
  250. #ifdef CONFIG_SCHEDSTATS
  251. /* latency stats */
  252. struct sched_info rq_sched_info;
  253. /* sys_sched_yield() stats */
  254. unsigned long yld_exp_empty;
  255. unsigned long yld_act_empty;
  256. unsigned long yld_both_empty;
  257. unsigned long yld_cnt;
  258. /* schedule() stats */
  259. unsigned long sched_switch;
  260. unsigned long sched_cnt;
  261. unsigned long sched_goidle;
  262. /* try_to_wake_up() stats */
  263. unsigned long ttwu_cnt;
  264. unsigned long ttwu_local;
  265. #endif
  266. struct lock_class_key rq_lock_key;
  267. };
  268. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  269. static DEFINE_MUTEX(sched_hotcpu_mutex);
  270. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  271. {
  272. rq->curr->sched_class->check_preempt_curr(rq, p);
  273. }
  274. static inline int cpu_of(struct rq *rq)
  275. {
  276. #ifdef CONFIG_SMP
  277. return rq->cpu;
  278. #else
  279. return 0;
  280. #endif
  281. }
  282. /*
  283. * Update the per-runqueue clock, as finegrained as the platform can give
  284. * us, but without assuming monotonicity, etc.:
  285. */
  286. static void __update_rq_clock(struct rq *rq)
  287. {
  288. u64 prev_raw = rq->prev_clock_raw;
  289. u64 now = sched_clock();
  290. s64 delta = now - prev_raw;
  291. u64 clock = rq->clock;
  292. #ifdef CONFIG_SCHED_DEBUG
  293. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  294. #endif
  295. /*
  296. * Protect against sched_clock() occasionally going backwards:
  297. */
  298. if (unlikely(delta < 0)) {
  299. clock++;
  300. rq->clock_warps++;
  301. } else {
  302. /*
  303. * Catch too large forward jumps too:
  304. */
  305. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  306. if (clock < rq->tick_timestamp + TICK_NSEC)
  307. clock = rq->tick_timestamp + TICK_NSEC;
  308. else
  309. clock++;
  310. rq->clock_overflows++;
  311. } else {
  312. if (unlikely(delta > rq->clock_max_delta))
  313. rq->clock_max_delta = delta;
  314. clock += delta;
  315. }
  316. }
  317. rq->prev_clock_raw = now;
  318. rq->clock = clock;
  319. }
  320. static void update_rq_clock(struct rq *rq)
  321. {
  322. if (likely(smp_processor_id() == cpu_of(rq)))
  323. __update_rq_clock(rq);
  324. }
  325. /*
  326. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  327. * See detach_destroy_domains: synchronize_sched for details.
  328. *
  329. * The domain tree of any CPU may only be accessed from within
  330. * preempt-disabled sections.
  331. */
  332. #define for_each_domain(cpu, __sd) \
  333. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  334. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  335. #define this_rq() (&__get_cpu_var(runqueues))
  336. #define task_rq(p) cpu_rq(task_cpu(p))
  337. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  338. /*
  339. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  340. * clock constructed from sched_clock():
  341. */
  342. unsigned long long cpu_clock(int cpu)
  343. {
  344. unsigned long long now;
  345. unsigned long flags;
  346. struct rq *rq;
  347. local_irq_save(flags);
  348. rq = cpu_rq(cpu);
  349. update_rq_clock(rq);
  350. now = rq->clock;
  351. local_irq_restore(flags);
  352. return now;
  353. }
  354. #ifdef CONFIG_FAIR_GROUP_SCHED
  355. /* Change a task's ->cfs_rq if it moves across CPUs */
  356. static inline void set_task_cfs_rq(struct task_struct *p)
  357. {
  358. p->se.cfs_rq = &task_rq(p)->cfs;
  359. }
  360. #else
  361. static inline void set_task_cfs_rq(struct task_struct *p)
  362. {
  363. }
  364. #endif
  365. #ifndef prepare_arch_switch
  366. # define prepare_arch_switch(next) do { } while (0)
  367. #endif
  368. #ifndef finish_arch_switch
  369. # define finish_arch_switch(prev) do { } while (0)
  370. #endif
  371. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  372. static inline int task_running(struct rq *rq, struct task_struct *p)
  373. {
  374. return rq->curr == p;
  375. }
  376. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  377. {
  378. }
  379. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  380. {
  381. #ifdef CONFIG_DEBUG_SPINLOCK
  382. /* this is a valid case when another task releases the spinlock */
  383. rq->lock.owner = current;
  384. #endif
  385. /*
  386. * If we are tracking spinlock dependencies then we have to
  387. * fix up the runqueue lock - which gets 'carried over' from
  388. * prev into current:
  389. */
  390. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  391. spin_unlock_irq(&rq->lock);
  392. }
  393. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  394. static inline int task_running(struct rq *rq, struct task_struct *p)
  395. {
  396. #ifdef CONFIG_SMP
  397. return p->oncpu;
  398. #else
  399. return rq->curr == p;
  400. #endif
  401. }
  402. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  403. {
  404. #ifdef CONFIG_SMP
  405. /*
  406. * We can optimise this out completely for !SMP, because the
  407. * SMP rebalancing from interrupt is the only thing that cares
  408. * here.
  409. */
  410. next->oncpu = 1;
  411. #endif
  412. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  413. spin_unlock_irq(&rq->lock);
  414. #else
  415. spin_unlock(&rq->lock);
  416. #endif
  417. }
  418. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  419. {
  420. #ifdef CONFIG_SMP
  421. /*
  422. * After ->oncpu is cleared, the task can be moved to a different CPU.
  423. * We must ensure this doesn't happen until the switch is completely
  424. * finished.
  425. */
  426. smp_wmb();
  427. prev->oncpu = 0;
  428. #endif
  429. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  430. local_irq_enable();
  431. #endif
  432. }
  433. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  434. /*
  435. * __task_rq_lock - lock the runqueue a given task resides on.
  436. * Must be called interrupts disabled.
  437. */
  438. static inline struct rq *__task_rq_lock(struct task_struct *p)
  439. __acquires(rq->lock)
  440. {
  441. struct rq *rq;
  442. repeat_lock_task:
  443. rq = task_rq(p);
  444. spin_lock(&rq->lock);
  445. if (unlikely(rq != task_rq(p))) {
  446. spin_unlock(&rq->lock);
  447. goto repeat_lock_task;
  448. }
  449. return rq;
  450. }
  451. /*
  452. * task_rq_lock - lock the runqueue a given task resides on and disable
  453. * interrupts. Note the ordering: we can safely lookup the task_rq without
  454. * explicitly disabling preemption.
  455. */
  456. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  457. __acquires(rq->lock)
  458. {
  459. struct rq *rq;
  460. repeat_lock_task:
  461. local_irq_save(*flags);
  462. rq = task_rq(p);
  463. spin_lock(&rq->lock);
  464. if (unlikely(rq != task_rq(p))) {
  465. spin_unlock_irqrestore(&rq->lock, *flags);
  466. goto repeat_lock_task;
  467. }
  468. return rq;
  469. }
  470. static inline void __task_rq_unlock(struct rq *rq)
  471. __releases(rq->lock)
  472. {
  473. spin_unlock(&rq->lock);
  474. }
  475. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  476. __releases(rq->lock)
  477. {
  478. spin_unlock_irqrestore(&rq->lock, *flags);
  479. }
  480. /*
  481. * this_rq_lock - lock this runqueue and disable interrupts.
  482. */
  483. static inline struct rq *this_rq_lock(void)
  484. __acquires(rq->lock)
  485. {
  486. struct rq *rq;
  487. local_irq_disable();
  488. rq = this_rq();
  489. spin_lock(&rq->lock);
  490. return rq;
  491. }
  492. /*
  493. * We are going deep-idle (irqs are disabled):
  494. */
  495. void sched_clock_idle_sleep_event(void)
  496. {
  497. struct rq *rq = cpu_rq(smp_processor_id());
  498. spin_lock(&rq->lock);
  499. __update_rq_clock(rq);
  500. spin_unlock(&rq->lock);
  501. rq->clock_deep_idle_events++;
  502. }
  503. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  504. /*
  505. * We just idled delta nanoseconds (called with irqs disabled):
  506. */
  507. void sched_clock_idle_wakeup_event(u64 delta_ns)
  508. {
  509. struct rq *rq = cpu_rq(smp_processor_id());
  510. u64 now = sched_clock();
  511. rq->idle_clock += delta_ns;
  512. /*
  513. * Override the previous timestamp and ignore all
  514. * sched_clock() deltas that occured while we idled,
  515. * and use the PM-provided delta_ns to advance the
  516. * rq clock:
  517. */
  518. spin_lock(&rq->lock);
  519. rq->prev_clock_raw = now;
  520. rq->clock += delta_ns;
  521. spin_unlock(&rq->lock);
  522. }
  523. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  524. /*
  525. * resched_task - mark a task 'to be rescheduled now'.
  526. *
  527. * On UP this means the setting of the need_resched flag, on SMP it
  528. * might also involve a cross-CPU call to trigger the scheduler on
  529. * the target CPU.
  530. */
  531. #ifdef CONFIG_SMP
  532. #ifndef tsk_is_polling
  533. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  534. #endif
  535. static void resched_task(struct task_struct *p)
  536. {
  537. int cpu;
  538. assert_spin_locked(&task_rq(p)->lock);
  539. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  540. return;
  541. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  542. cpu = task_cpu(p);
  543. if (cpu == smp_processor_id())
  544. return;
  545. /* NEED_RESCHED must be visible before we test polling */
  546. smp_mb();
  547. if (!tsk_is_polling(p))
  548. smp_send_reschedule(cpu);
  549. }
  550. static void resched_cpu(int cpu)
  551. {
  552. struct rq *rq = cpu_rq(cpu);
  553. unsigned long flags;
  554. if (!spin_trylock_irqsave(&rq->lock, flags))
  555. return;
  556. resched_task(cpu_curr(cpu));
  557. spin_unlock_irqrestore(&rq->lock, flags);
  558. }
  559. #else
  560. static inline void resched_task(struct task_struct *p)
  561. {
  562. assert_spin_locked(&task_rq(p)->lock);
  563. set_tsk_need_resched(p);
  564. }
  565. #endif
  566. static u64 div64_likely32(u64 divident, unsigned long divisor)
  567. {
  568. #if BITS_PER_LONG == 32
  569. if (likely(divident <= 0xffffffffULL))
  570. return (u32)divident / divisor;
  571. do_div(divident, divisor);
  572. return divident;
  573. #else
  574. return divident / divisor;
  575. #endif
  576. }
  577. #if BITS_PER_LONG == 32
  578. # define WMULT_CONST (~0UL)
  579. #else
  580. # define WMULT_CONST (1UL << 32)
  581. #endif
  582. #define WMULT_SHIFT 32
  583. /*
  584. * Shift right and round:
  585. */
  586. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  587. static unsigned long
  588. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  589. struct load_weight *lw)
  590. {
  591. u64 tmp;
  592. if (unlikely(!lw->inv_weight))
  593. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  594. tmp = (u64)delta_exec * weight;
  595. /*
  596. * Check whether we'd overflow the 64-bit multiplication:
  597. */
  598. if (unlikely(tmp > WMULT_CONST))
  599. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  600. WMULT_SHIFT/2);
  601. else
  602. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  603. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  604. }
  605. static inline unsigned long
  606. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  607. {
  608. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  609. }
  610. static void update_load_add(struct load_weight *lw, unsigned long inc)
  611. {
  612. lw->weight += inc;
  613. lw->inv_weight = 0;
  614. }
  615. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  616. {
  617. lw->weight -= dec;
  618. lw->inv_weight = 0;
  619. }
  620. /*
  621. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  622. * of tasks with abnormal "nice" values across CPUs the contribution that
  623. * each task makes to its run queue's load is weighted according to its
  624. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  625. * scaled version of the new time slice allocation that they receive on time
  626. * slice expiry etc.
  627. */
  628. #define WEIGHT_IDLEPRIO 2
  629. #define WMULT_IDLEPRIO (1 << 31)
  630. /*
  631. * Nice levels are multiplicative, with a gentle 10% change for every
  632. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  633. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  634. * that remained on nice 0.
  635. *
  636. * The "10% effect" is relative and cumulative: from _any_ nice level,
  637. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  638. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  639. * If a task goes up by ~10% and another task goes down by ~10% then
  640. * the relative distance between them is ~25%.)
  641. */
  642. static const int prio_to_weight[40] = {
  643. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  644. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  645. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  646. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  647. /* 0 */ 1024, 820, 655, 526, 423,
  648. /* 5 */ 335, 272, 215, 172, 137,
  649. /* 10 */ 110, 87, 70, 56, 45,
  650. /* 15 */ 36, 29, 23, 18, 15,
  651. };
  652. /*
  653. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  654. *
  655. * In cases where the weight does not change often, we can use the
  656. * precalculated inverse to speed up arithmetics by turning divisions
  657. * into multiplications:
  658. */
  659. static const u32 prio_to_wmult[40] = {
  660. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  661. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  662. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  663. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  664. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  665. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  666. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  667. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  668. };
  669. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  670. /*
  671. * runqueue iterator, to support SMP load-balancing between different
  672. * scheduling classes, without having to expose their internal data
  673. * structures to the load-balancing proper:
  674. */
  675. struct rq_iterator {
  676. void *arg;
  677. struct task_struct *(*start)(void *);
  678. struct task_struct *(*next)(void *);
  679. };
  680. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  681. unsigned long max_nr_move, unsigned long max_load_move,
  682. struct sched_domain *sd, enum cpu_idle_type idle,
  683. int *all_pinned, unsigned long *load_moved,
  684. int *this_best_prio, struct rq_iterator *iterator);
  685. #include "sched_stats.h"
  686. #include "sched_rt.c"
  687. #include "sched_fair.c"
  688. #include "sched_idletask.c"
  689. #ifdef CONFIG_SCHED_DEBUG
  690. # include "sched_debug.c"
  691. #endif
  692. #define sched_class_highest (&rt_sched_class)
  693. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  694. {
  695. if (rq->curr != rq->idle && ls->load.weight) {
  696. ls->delta_exec += ls->delta_stat;
  697. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  698. ls->delta_stat = 0;
  699. }
  700. }
  701. /*
  702. * Update delta_exec, delta_fair fields for rq.
  703. *
  704. * delta_fair clock advances at a rate inversely proportional to
  705. * total load (rq->ls.load.weight) on the runqueue, while
  706. * delta_exec advances at the same rate as wall-clock (provided
  707. * cpu is not idle).
  708. *
  709. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  710. * runqueue over any given interval. This (smoothened) load is used
  711. * during load balance.
  712. *
  713. * This function is called /before/ updating rq->ls.load
  714. * and when switching tasks.
  715. */
  716. static void update_curr_load(struct rq *rq)
  717. {
  718. struct load_stat *ls = &rq->ls;
  719. u64 start;
  720. start = ls->load_update_start;
  721. ls->load_update_start = rq->clock;
  722. ls->delta_stat += rq->clock - start;
  723. /*
  724. * Stagger updates to ls->delta_fair. Very frequent updates
  725. * can be expensive.
  726. */
  727. if (ls->delta_stat)
  728. __update_curr_load(rq, ls);
  729. }
  730. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  731. {
  732. update_curr_load(rq);
  733. update_load_add(&rq->ls.load, p->se.load.weight);
  734. }
  735. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  736. {
  737. update_curr_load(rq);
  738. update_load_sub(&rq->ls.load, p->se.load.weight);
  739. }
  740. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  741. {
  742. rq->nr_running++;
  743. inc_load(rq, p);
  744. }
  745. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  746. {
  747. rq->nr_running--;
  748. dec_load(rq, p);
  749. }
  750. static void set_load_weight(struct task_struct *p)
  751. {
  752. p->se.wait_runtime = 0;
  753. if (task_has_rt_policy(p)) {
  754. p->se.load.weight = prio_to_weight[0] * 2;
  755. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  756. return;
  757. }
  758. /*
  759. * SCHED_IDLE tasks get minimal weight:
  760. */
  761. if (p->policy == SCHED_IDLE) {
  762. p->se.load.weight = WEIGHT_IDLEPRIO;
  763. p->se.load.inv_weight = WMULT_IDLEPRIO;
  764. return;
  765. }
  766. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  767. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  768. }
  769. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  770. {
  771. sched_info_queued(p);
  772. p->sched_class->enqueue_task(rq, p, wakeup);
  773. p->se.on_rq = 1;
  774. }
  775. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  776. {
  777. p->sched_class->dequeue_task(rq, p, sleep);
  778. p->se.on_rq = 0;
  779. }
  780. /*
  781. * __normal_prio - return the priority that is based on the static prio
  782. */
  783. static inline int __normal_prio(struct task_struct *p)
  784. {
  785. return p->static_prio;
  786. }
  787. /*
  788. * Calculate the expected normal priority: i.e. priority
  789. * without taking RT-inheritance into account. Might be
  790. * boosted by interactivity modifiers. Changes upon fork,
  791. * setprio syscalls, and whenever the interactivity
  792. * estimator recalculates.
  793. */
  794. static inline int normal_prio(struct task_struct *p)
  795. {
  796. int prio;
  797. if (task_has_rt_policy(p))
  798. prio = MAX_RT_PRIO-1 - p->rt_priority;
  799. else
  800. prio = __normal_prio(p);
  801. return prio;
  802. }
  803. /*
  804. * Calculate the current priority, i.e. the priority
  805. * taken into account by the scheduler. This value might
  806. * be boosted by RT tasks, or might be boosted by
  807. * interactivity modifiers. Will be RT if the task got
  808. * RT-boosted. If not then it returns p->normal_prio.
  809. */
  810. static int effective_prio(struct task_struct *p)
  811. {
  812. p->normal_prio = normal_prio(p);
  813. /*
  814. * If we are RT tasks or we were boosted to RT priority,
  815. * keep the priority unchanged. Otherwise, update priority
  816. * to the normal priority:
  817. */
  818. if (!rt_prio(p->prio))
  819. return p->normal_prio;
  820. return p->prio;
  821. }
  822. /*
  823. * activate_task - move a task to the runqueue.
  824. */
  825. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  826. {
  827. if (p->state == TASK_UNINTERRUPTIBLE)
  828. rq->nr_uninterruptible--;
  829. enqueue_task(rq, p, wakeup);
  830. inc_nr_running(p, rq);
  831. }
  832. /*
  833. * activate_idle_task - move idle task to the _front_ of runqueue.
  834. */
  835. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  836. {
  837. update_rq_clock(rq);
  838. if (p->state == TASK_UNINTERRUPTIBLE)
  839. rq->nr_uninterruptible--;
  840. enqueue_task(rq, p, 0);
  841. inc_nr_running(p, rq);
  842. }
  843. /*
  844. * deactivate_task - remove a task from the runqueue.
  845. */
  846. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  847. {
  848. if (p->state == TASK_UNINTERRUPTIBLE)
  849. rq->nr_uninterruptible++;
  850. dequeue_task(rq, p, sleep);
  851. dec_nr_running(p, rq);
  852. }
  853. /**
  854. * task_curr - is this task currently executing on a CPU?
  855. * @p: the task in question.
  856. */
  857. inline int task_curr(const struct task_struct *p)
  858. {
  859. return cpu_curr(task_cpu(p)) == p;
  860. }
  861. /* Used instead of source_load when we know the type == 0 */
  862. unsigned long weighted_cpuload(const int cpu)
  863. {
  864. return cpu_rq(cpu)->ls.load.weight;
  865. }
  866. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  867. {
  868. #ifdef CONFIG_SMP
  869. task_thread_info(p)->cpu = cpu;
  870. set_task_cfs_rq(p);
  871. #endif
  872. }
  873. #ifdef CONFIG_SMP
  874. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  875. {
  876. int old_cpu = task_cpu(p);
  877. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  878. u64 clock_offset, fair_clock_offset;
  879. clock_offset = old_rq->clock - new_rq->clock;
  880. fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
  881. if (p->se.wait_start_fair)
  882. p->se.wait_start_fair -= fair_clock_offset;
  883. if (p->se.sleep_start_fair)
  884. p->se.sleep_start_fair -= fair_clock_offset;
  885. #ifdef CONFIG_SCHEDSTATS
  886. if (p->se.wait_start)
  887. p->se.wait_start -= clock_offset;
  888. if (p->se.sleep_start)
  889. p->se.sleep_start -= clock_offset;
  890. if (p->se.block_start)
  891. p->se.block_start -= clock_offset;
  892. #endif
  893. __set_task_cpu(p, new_cpu);
  894. }
  895. struct migration_req {
  896. struct list_head list;
  897. struct task_struct *task;
  898. int dest_cpu;
  899. struct completion done;
  900. };
  901. /*
  902. * The task's runqueue lock must be held.
  903. * Returns true if you have to wait for migration thread.
  904. */
  905. static int
  906. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  907. {
  908. struct rq *rq = task_rq(p);
  909. /*
  910. * If the task is not on a runqueue (and not running), then
  911. * it is sufficient to simply update the task's cpu field.
  912. */
  913. if (!p->se.on_rq && !task_running(rq, p)) {
  914. set_task_cpu(p, dest_cpu);
  915. return 0;
  916. }
  917. init_completion(&req->done);
  918. req->task = p;
  919. req->dest_cpu = dest_cpu;
  920. list_add(&req->list, &rq->migration_queue);
  921. return 1;
  922. }
  923. /*
  924. * wait_task_inactive - wait for a thread to unschedule.
  925. *
  926. * The caller must ensure that the task *will* unschedule sometime soon,
  927. * else this function might spin for a *long* time. This function can't
  928. * be called with interrupts off, or it may introduce deadlock with
  929. * smp_call_function() if an IPI is sent by the same process we are
  930. * waiting to become inactive.
  931. */
  932. void wait_task_inactive(struct task_struct *p)
  933. {
  934. unsigned long flags;
  935. int running, on_rq;
  936. struct rq *rq;
  937. repeat:
  938. /*
  939. * We do the initial early heuristics without holding
  940. * any task-queue locks at all. We'll only try to get
  941. * the runqueue lock when things look like they will
  942. * work out!
  943. */
  944. rq = task_rq(p);
  945. /*
  946. * If the task is actively running on another CPU
  947. * still, just relax and busy-wait without holding
  948. * any locks.
  949. *
  950. * NOTE! Since we don't hold any locks, it's not
  951. * even sure that "rq" stays as the right runqueue!
  952. * But we don't care, since "task_running()" will
  953. * return false if the runqueue has changed and p
  954. * is actually now running somewhere else!
  955. */
  956. while (task_running(rq, p))
  957. cpu_relax();
  958. /*
  959. * Ok, time to look more closely! We need the rq
  960. * lock now, to be *sure*. If we're wrong, we'll
  961. * just go back and repeat.
  962. */
  963. rq = task_rq_lock(p, &flags);
  964. running = task_running(rq, p);
  965. on_rq = p->se.on_rq;
  966. task_rq_unlock(rq, &flags);
  967. /*
  968. * Was it really running after all now that we
  969. * checked with the proper locks actually held?
  970. *
  971. * Oops. Go back and try again..
  972. */
  973. if (unlikely(running)) {
  974. cpu_relax();
  975. goto repeat;
  976. }
  977. /*
  978. * It's not enough that it's not actively running,
  979. * it must be off the runqueue _entirely_, and not
  980. * preempted!
  981. *
  982. * So if it wa still runnable (but just not actively
  983. * running right now), it's preempted, and we should
  984. * yield - it could be a while.
  985. */
  986. if (unlikely(on_rq)) {
  987. yield();
  988. goto repeat;
  989. }
  990. /*
  991. * Ahh, all good. It wasn't running, and it wasn't
  992. * runnable, which means that it will never become
  993. * running in the future either. We're all done!
  994. */
  995. }
  996. /***
  997. * kick_process - kick a running thread to enter/exit the kernel
  998. * @p: the to-be-kicked thread
  999. *
  1000. * Cause a process which is running on another CPU to enter
  1001. * kernel-mode, without any delay. (to get signals handled.)
  1002. *
  1003. * NOTE: this function doesnt have to take the runqueue lock,
  1004. * because all it wants to ensure is that the remote task enters
  1005. * the kernel. If the IPI races and the task has been migrated
  1006. * to another CPU then no harm is done and the purpose has been
  1007. * achieved as well.
  1008. */
  1009. void kick_process(struct task_struct *p)
  1010. {
  1011. int cpu;
  1012. preempt_disable();
  1013. cpu = task_cpu(p);
  1014. if ((cpu != smp_processor_id()) && task_curr(p))
  1015. smp_send_reschedule(cpu);
  1016. preempt_enable();
  1017. }
  1018. /*
  1019. * Return a low guess at the load of a migration-source cpu weighted
  1020. * according to the scheduling class and "nice" value.
  1021. *
  1022. * We want to under-estimate the load of migration sources, to
  1023. * balance conservatively.
  1024. */
  1025. static inline unsigned long source_load(int cpu, int type)
  1026. {
  1027. struct rq *rq = cpu_rq(cpu);
  1028. unsigned long total = weighted_cpuload(cpu);
  1029. if (type == 0)
  1030. return total;
  1031. return min(rq->cpu_load[type-1], total);
  1032. }
  1033. /*
  1034. * Return a high guess at the load of a migration-target cpu weighted
  1035. * according to the scheduling class and "nice" value.
  1036. */
  1037. static inline unsigned long target_load(int cpu, int type)
  1038. {
  1039. struct rq *rq = cpu_rq(cpu);
  1040. unsigned long total = weighted_cpuload(cpu);
  1041. if (type == 0)
  1042. return total;
  1043. return max(rq->cpu_load[type-1], total);
  1044. }
  1045. /*
  1046. * Return the average load per task on the cpu's run queue
  1047. */
  1048. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1049. {
  1050. struct rq *rq = cpu_rq(cpu);
  1051. unsigned long total = weighted_cpuload(cpu);
  1052. unsigned long n = rq->nr_running;
  1053. return n ? total / n : SCHED_LOAD_SCALE;
  1054. }
  1055. /*
  1056. * find_idlest_group finds and returns the least busy CPU group within the
  1057. * domain.
  1058. */
  1059. static struct sched_group *
  1060. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1061. {
  1062. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1063. unsigned long min_load = ULONG_MAX, this_load = 0;
  1064. int load_idx = sd->forkexec_idx;
  1065. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1066. do {
  1067. unsigned long load, avg_load;
  1068. int local_group;
  1069. int i;
  1070. /* Skip over this group if it has no CPUs allowed */
  1071. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1072. goto nextgroup;
  1073. local_group = cpu_isset(this_cpu, group->cpumask);
  1074. /* Tally up the load of all CPUs in the group */
  1075. avg_load = 0;
  1076. for_each_cpu_mask(i, group->cpumask) {
  1077. /* Bias balancing toward cpus of our domain */
  1078. if (local_group)
  1079. load = source_load(i, load_idx);
  1080. else
  1081. load = target_load(i, load_idx);
  1082. avg_load += load;
  1083. }
  1084. /* Adjust by relative CPU power of the group */
  1085. avg_load = sg_div_cpu_power(group,
  1086. avg_load * SCHED_LOAD_SCALE);
  1087. if (local_group) {
  1088. this_load = avg_load;
  1089. this = group;
  1090. } else if (avg_load < min_load) {
  1091. min_load = avg_load;
  1092. idlest = group;
  1093. }
  1094. nextgroup:
  1095. group = group->next;
  1096. } while (group != sd->groups);
  1097. if (!idlest || 100*this_load < imbalance*min_load)
  1098. return NULL;
  1099. return idlest;
  1100. }
  1101. /*
  1102. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1103. */
  1104. static int
  1105. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1106. {
  1107. cpumask_t tmp;
  1108. unsigned long load, min_load = ULONG_MAX;
  1109. int idlest = -1;
  1110. int i;
  1111. /* Traverse only the allowed CPUs */
  1112. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1113. for_each_cpu_mask(i, tmp) {
  1114. load = weighted_cpuload(i);
  1115. if (load < min_load || (load == min_load && i == this_cpu)) {
  1116. min_load = load;
  1117. idlest = i;
  1118. }
  1119. }
  1120. return idlest;
  1121. }
  1122. /*
  1123. * sched_balance_self: balance the current task (running on cpu) in domains
  1124. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1125. * SD_BALANCE_EXEC.
  1126. *
  1127. * Balance, ie. select the least loaded group.
  1128. *
  1129. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1130. *
  1131. * preempt must be disabled.
  1132. */
  1133. static int sched_balance_self(int cpu, int flag)
  1134. {
  1135. struct task_struct *t = current;
  1136. struct sched_domain *tmp, *sd = NULL;
  1137. for_each_domain(cpu, tmp) {
  1138. /*
  1139. * If power savings logic is enabled for a domain, stop there.
  1140. */
  1141. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1142. break;
  1143. if (tmp->flags & flag)
  1144. sd = tmp;
  1145. }
  1146. while (sd) {
  1147. cpumask_t span;
  1148. struct sched_group *group;
  1149. int new_cpu, weight;
  1150. if (!(sd->flags & flag)) {
  1151. sd = sd->child;
  1152. continue;
  1153. }
  1154. span = sd->span;
  1155. group = find_idlest_group(sd, t, cpu);
  1156. if (!group) {
  1157. sd = sd->child;
  1158. continue;
  1159. }
  1160. new_cpu = find_idlest_cpu(group, t, cpu);
  1161. if (new_cpu == -1 || new_cpu == cpu) {
  1162. /* Now try balancing at a lower domain level of cpu */
  1163. sd = sd->child;
  1164. continue;
  1165. }
  1166. /* Now try balancing at a lower domain level of new_cpu */
  1167. cpu = new_cpu;
  1168. sd = NULL;
  1169. weight = cpus_weight(span);
  1170. for_each_domain(cpu, tmp) {
  1171. if (weight <= cpus_weight(tmp->span))
  1172. break;
  1173. if (tmp->flags & flag)
  1174. sd = tmp;
  1175. }
  1176. /* while loop will break here if sd == NULL */
  1177. }
  1178. return cpu;
  1179. }
  1180. #endif /* CONFIG_SMP */
  1181. /*
  1182. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1183. * not idle and an idle cpu is available. The span of cpus to
  1184. * search starts with cpus closest then further out as needed,
  1185. * so we always favor a closer, idle cpu.
  1186. *
  1187. * Returns the CPU we should wake onto.
  1188. */
  1189. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1190. static int wake_idle(int cpu, struct task_struct *p)
  1191. {
  1192. cpumask_t tmp;
  1193. struct sched_domain *sd;
  1194. int i;
  1195. /*
  1196. * If it is idle, then it is the best cpu to run this task.
  1197. *
  1198. * This cpu is also the best, if it has more than one task already.
  1199. * Siblings must be also busy(in most cases) as they didn't already
  1200. * pickup the extra load from this cpu and hence we need not check
  1201. * sibling runqueue info. This will avoid the checks and cache miss
  1202. * penalities associated with that.
  1203. */
  1204. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1205. return cpu;
  1206. for_each_domain(cpu, sd) {
  1207. if (sd->flags & SD_WAKE_IDLE) {
  1208. cpus_and(tmp, sd->span, p->cpus_allowed);
  1209. for_each_cpu_mask(i, tmp) {
  1210. if (idle_cpu(i))
  1211. return i;
  1212. }
  1213. } else {
  1214. break;
  1215. }
  1216. }
  1217. return cpu;
  1218. }
  1219. #else
  1220. static inline int wake_idle(int cpu, struct task_struct *p)
  1221. {
  1222. return cpu;
  1223. }
  1224. #endif
  1225. /***
  1226. * try_to_wake_up - wake up a thread
  1227. * @p: the to-be-woken-up thread
  1228. * @state: the mask of task states that can be woken
  1229. * @sync: do a synchronous wakeup?
  1230. *
  1231. * Put it on the run-queue if it's not already there. The "current"
  1232. * thread is always on the run-queue (except when the actual
  1233. * re-schedule is in progress), and as such you're allowed to do
  1234. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1235. * runnable without the overhead of this.
  1236. *
  1237. * returns failure only if the task is already active.
  1238. */
  1239. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1240. {
  1241. int cpu, this_cpu, success = 0;
  1242. unsigned long flags;
  1243. long old_state;
  1244. struct rq *rq;
  1245. #ifdef CONFIG_SMP
  1246. struct sched_domain *sd, *this_sd = NULL;
  1247. unsigned long load, this_load;
  1248. int new_cpu;
  1249. #endif
  1250. rq = task_rq_lock(p, &flags);
  1251. old_state = p->state;
  1252. if (!(old_state & state))
  1253. goto out;
  1254. if (p->se.on_rq)
  1255. goto out_running;
  1256. cpu = task_cpu(p);
  1257. this_cpu = smp_processor_id();
  1258. #ifdef CONFIG_SMP
  1259. if (unlikely(task_running(rq, p)))
  1260. goto out_activate;
  1261. new_cpu = cpu;
  1262. schedstat_inc(rq, ttwu_cnt);
  1263. if (cpu == this_cpu) {
  1264. schedstat_inc(rq, ttwu_local);
  1265. goto out_set_cpu;
  1266. }
  1267. for_each_domain(this_cpu, sd) {
  1268. if (cpu_isset(cpu, sd->span)) {
  1269. schedstat_inc(sd, ttwu_wake_remote);
  1270. this_sd = sd;
  1271. break;
  1272. }
  1273. }
  1274. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1275. goto out_set_cpu;
  1276. /*
  1277. * Check for affine wakeup and passive balancing possibilities.
  1278. */
  1279. if (this_sd) {
  1280. int idx = this_sd->wake_idx;
  1281. unsigned int imbalance;
  1282. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1283. load = source_load(cpu, idx);
  1284. this_load = target_load(this_cpu, idx);
  1285. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1286. if (this_sd->flags & SD_WAKE_AFFINE) {
  1287. unsigned long tl = this_load;
  1288. unsigned long tl_per_task;
  1289. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1290. /*
  1291. * If sync wakeup then subtract the (maximum possible)
  1292. * effect of the currently running task from the load
  1293. * of the current CPU:
  1294. */
  1295. if (sync)
  1296. tl -= current->se.load.weight;
  1297. if ((tl <= load &&
  1298. tl + target_load(cpu, idx) <= tl_per_task) ||
  1299. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1300. /*
  1301. * This domain has SD_WAKE_AFFINE and
  1302. * p is cache cold in this domain, and
  1303. * there is no bad imbalance.
  1304. */
  1305. schedstat_inc(this_sd, ttwu_move_affine);
  1306. goto out_set_cpu;
  1307. }
  1308. }
  1309. /*
  1310. * Start passive balancing when half the imbalance_pct
  1311. * limit is reached.
  1312. */
  1313. if (this_sd->flags & SD_WAKE_BALANCE) {
  1314. if (imbalance*this_load <= 100*load) {
  1315. schedstat_inc(this_sd, ttwu_move_balance);
  1316. goto out_set_cpu;
  1317. }
  1318. }
  1319. }
  1320. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1321. out_set_cpu:
  1322. new_cpu = wake_idle(new_cpu, p);
  1323. if (new_cpu != cpu) {
  1324. set_task_cpu(p, new_cpu);
  1325. task_rq_unlock(rq, &flags);
  1326. /* might preempt at this point */
  1327. rq = task_rq_lock(p, &flags);
  1328. old_state = p->state;
  1329. if (!(old_state & state))
  1330. goto out;
  1331. if (p->se.on_rq)
  1332. goto out_running;
  1333. this_cpu = smp_processor_id();
  1334. cpu = task_cpu(p);
  1335. }
  1336. out_activate:
  1337. #endif /* CONFIG_SMP */
  1338. update_rq_clock(rq);
  1339. activate_task(rq, p, 1);
  1340. /*
  1341. * Sync wakeups (i.e. those types of wakeups where the waker
  1342. * has indicated that it will leave the CPU in short order)
  1343. * don't trigger a preemption, if the woken up task will run on
  1344. * this cpu. (in this case the 'I will reschedule' promise of
  1345. * the waker guarantees that the freshly woken up task is going
  1346. * to be considered on this CPU.)
  1347. */
  1348. if (!sync || cpu != this_cpu)
  1349. check_preempt_curr(rq, p);
  1350. success = 1;
  1351. out_running:
  1352. p->state = TASK_RUNNING;
  1353. out:
  1354. task_rq_unlock(rq, &flags);
  1355. return success;
  1356. }
  1357. int fastcall wake_up_process(struct task_struct *p)
  1358. {
  1359. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1360. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1361. }
  1362. EXPORT_SYMBOL(wake_up_process);
  1363. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1364. {
  1365. return try_to_wake_up(p, state, 0);
  1366. }
  1367. /*
  1368. * Perform scheduler related setup for a newly forked process p.
  1369. * p is forked by current.
  1370. *
  1371. * __sched_fork() is basic setup used by init_idle() too:
  1372. */
  1373. static void __sched_fork(struct task_struct *p)
  1374. {
  1375. p->se.wait_start_fair = 0;
  1376. p->se.exec_start = 0;
  1377. p->se.sum_exec_runtime = 0;
  1378. p->se.prev_sum_exec_runtime = 0;
  1379. p->se.wait_runtime = 0;
  1380. p->se.sleep_start_fair = 0;
  1381. #ifdef CONFIG_SCHEDSTATS
  1382. p->se.wait_start = 0;
  1383. p->se.sum_wait_runtime = 0;
  1384. p->se.sum_sleep_runtime = 0;
  1385. p->se.sleep_start = 0;
  1386. p->se.block_start = 0;
  1387. p->se.sleep_max = 0;
  1388. p->se.block_max = 0;
  1389. p->se.exec_max = 0;
  1390. p->se.slice_max = 0;
  1391. p->se.wait_max = 0;
  1392. p->se.wait_runtime_overruns = 0;
  1393. p->se.wait_runtime_underruns = 0;
  1394. #endif
  1395. INIT_LIST_HEAD(&p->run_list);
  1396. p->se.on_rq = 0;
  1397. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1398. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1399. #endif
  1400. /*
  1401. * We mark the process as running here, but have not actually
  1402. * inserted it onto the runqueue yet. This guarantees that
  1403. * nobody will actually run it, and a signal or other external
  1404. * event cannot wake it up and insert it on the runqueue either.
  1405. */
  1406. p->state = TASK_RUNNING;
  1407. }
  1408. /*
  1409. * fork()/clone()-time setup:
  1410. */
  1411. void sched_fork(struct task_struct *p, int clone_flags)
  1412. {
  1413. int cpu = get_cpu();
  1414. __sched_fork(p);
  1415. #ifdef CONFIG_SMP
  1416. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1417. #endif
  1418. __set_task_cpu(p, cpu);
  1419. /*
  1420. * Make sure we do not leak PI boosting priority to the child:
  1421. */
  1422. p->prio = current->normal_prio;
  1423. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1424. if (likely(sched_info_on()))
  1425. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1426. #endif
  1427. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1428. p->oncpu = 0;
  1429. #endif
  1430. #ifdef CONFIG_PREEMPT
  1431. /* Want to start with kernel preemption disabled. */
  1432. task_thread_info(p)->preempt_count = 1;
  1433. #endif
  1434. put_cpu();
  1435. }
  1436. /*
  1437. * wake_up_new_task - wake up a newly created task for the first time.
  1438. *
  1439. * This function will do some initial scheduler statistics housekeeping
  1440. * that must be done for every newly created context, then puts the task
  1441. * on the runqueue and wakes it.
  1442. */
  1443. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1444. {
  1445. unsigned long flags;
  1446. struct rq *rq;
  1447. int this_cpu;
  1448. rq = task_rq_lock(p, &flags);
  1449. BUG_ON(p->state != TASK_RUNNING);
  1450. this_cpu = smp_processor_id(); /* parent's CPU */
  1451. update_rq_clock(rq);
  1452. p->prio = effective_prio(p);
  1453. if (rt_prio(p->prio))
  1454. p->sched_class = &rt_sched_class;
  1455. else
  1456. p->sched_class = &fair_sched_class;
  1457. if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
  1458. !current->se.on_rq) {
  1459. activate_task(rq, p, 0);
  1460. } else {
  1461. /*
  1462. * Let the scheduling class do new task startup
  1463. * management (if any):
  1464. */
  1465. p->sched_class->task_new(rq, p);
  1466. inc_nr_running(p, rq);
  1467. }
  1468. check_preempt_curr(rq, p);
  1469. task_rq_unlock(rq, &flags);
  1470. }
  1471. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1472. /**
  1473. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1474. * @notifier: notifier struct to register
  1475. */
  1476. void preempt_notifier_register(struct preempt_notifier *notifier)
  1477. {
  1478. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1479. }
  1480. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1481. /**
  1482. * preempt_notifier_unregister - no longer interested in preemption notifications
  1483. * @notifier: notifier struct to unregister
  1484. *
  1485. * This is safe to call from within a preemption notifier.
  1486. */
  1487. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1488. {
  1489. hlist_del(&notifier->link);
  1490. }
  1491. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1492. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1493. {
  1494. struct preempt_notifier *notifier;
  1495. struct hlist_node *node;
  1496. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1497. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1498. }
  1499. static void
  1500. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1501. struct task_struct *next)
  1502. {
  1503. struct preempt_notifier *notifier;
  1504. struct hlist_node *node;
  1505. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1506. notifier->ops->sched_out(notifier, next);
  1507. }
  1508. #else
  1509. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1510. {
  1511. }
  1512. static void
  1513. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1514. struct task_struct *next)
  1515. {
  1516. }
  1517. #endif
  1518. /**
  1519. * prepare_task_switch - prepare to switch tasks
  1520. * @rq: the runqueue preparing to switch
  1521. * @prev: the current task that is being switched out
  1522. * @next: the task we are going to switch to.
  1523. *
  1524. * This is called with the rq lock held and interrupts off. It must
  1525. * be paired with a subsequent finish_task_switch after the context
  1526. * switch.
  1527. *
  1528. * prepare_task_switch sets up locking and calls architecture specific
  1529. * hooks.
  1530. */
  1531. static inline void
  1532. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1533. struct task_struct *next)
  1534. {
  1535. fire_sched_out_preempt_notifiers(prev, next);
  1536. prepare_lock_switch(rq, next);
  1537. prepare_arch_switch(next);
  1538. }
  1539. /**
  1540. * finish_task_switch - clean up after a task-switch
  1541. * @rq: runqueue associated with task-switch
  1542. * @prev: the thread we just switched away from.
  1543. *
  1544. * finish_task_switch must be called after the context switch, paired
  1545. * with a prepare_task_switch call before the context switch.
  1546. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1547. * and do any other architecture-specific cleanup actions.
  1548. *
  1549. * Note that we may have delayed dropping an mm in context_switch(). If
  1550. * so, we finish that here outside of the runqueue lock. (Doing it
  1551. * with the lock held can cause deadlocks; see schedule() for
  1552. * details.)
  1553. */
  1554. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1555. __releases(rq->lock)
  1556. {
  1557. struct mm_struct *mm = rq->prev_mm;
  1558. long prev_state;
  1559. rq->prev_mm = NULL;
  1560. /*
  1561. * A task struct has one reference for the use as "current".
  1562. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1563. * schedule one last time. The schedule call will never return, and
  1564. * the scheduled task must drop that reference.
  1565. * The test for TASK_DEAD must occur while the runqueue locks are
  1566. * still held, otherwise prev could be scheduled on another cpu, die
  1567. * there before we look at prev->state, and then the reference would
  1568. * be dropped twice.
  1569. * Manfred Spraul <manfred@colorfullife.com>
  1570. */
  1571. prev_state = prev->state;
  1572. finish_arch_switch(prev);
  1573. finish_lock_switch(rq, prev);
  1574. fire_sched_in_preempt_notifiers(current);
  1575. if (mm)
  1576. mmdrop(mm);
  1577. if (unlikely(prev_state == TASK_DEAD)) {
  1578. /*
  1579. * Remove function-return probe instances associated with this
  1580. * task and put them back on the free list.
  1581. */
  1582. kprobe_flush_task(prev);
  1583. put_task_struct(prev);
  1584. }
  1585. }
  1586. /**
  1587. * schedule_tail - first thing a freshly forked thread must call.
  1588. * @prev: the thread we just switched away from.
  1589. */
  1590. asmlinkage void schedule_tail(struct task_struct *prev)
  1591. __releases(rq->lock)
  1592. {
  1593. struct rq *rq = this_rq();
  1594. finish_task_switch(rq, prev);
  1595. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1596. /* In this case, finish_task_switch does not reenable preemption */
  1597. preempt_enable();
  1598. #endif
  1599. if (current->set_child_tid)
  1600. put_user(current->pid, current->set_child_tid);
  1601. }
  1602. /*
  1603. * context_switch - switch to the new MM and the new
  1604. * thread's register state.
  1605. */
  1606. static inline void
  1607. context_switch(struct rq *rq, struct task_struct *prev,
  1608. struct task_struct *next)
  1609. {
  1610. struct mm_struct *mm, *oldmm;
  1611. prepare_task_switch(rq, prev, next);
  1612. mm = next->mm;
  1613. oldmm = prev->active_mm;
  1614. /*
  1615. * For paravirt, this is coupled with an exit in switch_to to
  1616. * combine the page table reload and the switch backend into
  1617. * one hypercall.
  1618. */
  1619. arch_enter_lazy_cpu_mode();
  1620. if (unlikely(!mm)) {
  1621. next->active_mm = oldmm;
  1622. atomic_inc(&oldmm->mm_count);
  1623. enter_lazy_tlb(oldmm, next);
  1624. } else
  1625. switch_mm(oldmm, mm, next);
  1626. if (unlikely(!prev->mm)) {
  1627. prev->active_mm = NULL;
  1628. rq->prev_mm = oldmm;
  1629. }
  1630. /*
  1631. * Since the runqueue lock will be released by the next
  1632. * task (which is an invalid locking op but in the case
  1633. * of the scheduler it's an obvious special-case), so we
  1634. * do an early lockdep release here:
  1635. */
  1636. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1637. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1638. #endif
  1639. /* Here we just switch the register state and the stack. */
  1640. switch_to(prev, next, prev);
  1641. barrier();
  1642. /*
  1643. * this_rq must be evaluated again because prev may have moved
  1644. * CPUs since it called schedule(), thus the 'rq' on its stack
  1645. * frame will be invalid.
  1646. */
  1647. finish_task_switch(this_rq(), prev);
  1648. }
  1649. /*
  1650. * nr_running, nr_uninterruptible and nr_context_switches:
  1651. *
  1652. * externally visible scheduler statistics: current number of runnable
  1653. * threads, current number of uninterruptible-sleeping threads, total
  1654. * number of context switches performed since bootup.
  1655. */
  1656. unsigned long nr_running(void)
  1657. {
  1658. unsigned long i, sum = 0;
  1659. for_each_online_cpu(i)
  1660. sum += cpu_rq(i)->nr_running;
  1661. return sum;
  1662. }
  1663. unsigned long nr_uninterruptible(void)
  1664. {
  1665. unsigned long i, sum = 0;
  1666. for_each_possible_cpu(i)
  1667. sum += cpu_rq(i)->nr_uninterruptible;
  1668. /*
  1669. * Since we read the counters lockless, it might be slightly
  1670. * inaccurate. Do not allow it to go below zero though:
  1671. */
  1672. if (unlikely((long)sum < 0))
  1673. sum = 0;
  1674. return sum;
  1675. }
  1676. unsigned long long nr_context_switches(void)
  1677. {
  1678. int i;
  1679. unsigned long long sum = 0;
  1680. for_each_possible_cpu(i)
  1681. sum += cpu_rq(i)->nr_switches;
  1682. return sum;
  1683. }
  1684. unsigned long nr_iowait(void)
  1685. {
  1686. unsigned long i, sum = 0;
  1687. for_each_possible_cpu(i)
  1688. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1689. return sum;
  1690. }
  1691. unsigned long nr_active(void)
  1692. {
  1693. unsigned long i, running = 0, uninterruptible = 0;
  1694. for_each_online_cpu(i) {
  1695. running += cpu_rq(i)->nr_running;
  1696. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1697. }
  1698. if (unlikely((long)uninterruptible < 0))
  1699. uninterruptible = 0;
  1700. return running + uninterruptible;
  1701. }
  1702. /*
  1703. * Update rq->cpu_load[] statistics. This function is usually called every
  1704. * scheduler tick (TICK_NSEC).
  1705. */
  1706. static void update_cpu_load(struct rq *this_rq)
  1707. {
  1708. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1709. unsigned long total_load = this_rq->ls.load.weight;
  1710. unsigned long this_load = total_load;
  1711. struct load_stat *ls = &this_rq->ls;
  1712. int i, scale;
  1713. this_rq->nr_load_updates++;
  1714. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1715. goto do_avg;
  1716. /* Update delta_fair/delta_exec fields first */
  1717. update_curr_load(this_rq);
  1718. fair_delta64 = ls->delta_fair + 1;
  1719. ls->delta_fair = 0;
  1720. exec_delta64 = ls->delta_exec + 1;
  1721. ls->delta_exec = 0;
  1722. sample_interval64 = this_rq->clock - ls->load_update_last;
  1723. ls->load_update_last = this_rq->clock;
  1724. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1725. sample_interval64 = TICK_NSEC;
  1726. if (exec_delta64 > sample_interval64)
  1727. exec_delta64 = sample_interval64;
  1728. idle_delta64 = sample_interval64 - exec_delta64;
  1729. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1730. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1731. this_load = (unsigned long)tmp64;
  1732. do_avg:
  1733. /* Update our load: */
  1734. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1735. unsigned long old_load, new_load;
  1736. /* scale is effectively 1 << i now, and >> i divides by scale */
  1737. old_load = this_rq->cpu_load[i];
  1738. new_load = this_load;
  1739. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1740. }
  1741. }
  1742. #ifdef CONFIG_SMP
  1743. /*
  1744. * double_rq_lock - safely lock two runqueues
  1745. *
  1746. * Note this does not disable interrupts like task_rq_lock,
  1747. * you need to do so manually before calling.
  1748. */
  1749. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1750. __acquires(rq1->lock)
  1751. __acquires(rq2->lock)
  1752. {
  1753. BUG_ON(!irqs_disabled());
  1754. if (rq1 == rq2) {
  1755. spin_lock(&rq1->lock);
  1756. __acquire(rq2->lock); /* Fake it out ;) */
  1757. } else {
  1758. if (rq1 < rq2) {
  1759. spin_lock(&rq1->lock);
  1760. spin_lock(&rq2->lock);
  1761. } else {
  1762. spin_lock(&rq2->lock);
  1763. spin_lock(&rq1->lock);
  1764. }
  1765. }
  1766. update_rq_clock(rq1);
  1767. update_rq_clock(rq2);
  1768. }
  1769. /*
  1770. * double_rq_unlock - safely unlock two runqueues
  1771. *
  1772. * Note this does not restore interrupts like task_rq_unlock,
  1773. * you need to do so manually after calling.
  1774. */
  1775. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1776. __releases(rq1->lock)
  1777. __releases(rq2->lock)
  1778. {
  1779. spin_unlock(&rq1->lock);
  1780. if (rq1 != rq2)
  1781. spin_unlock(&rq2->lock);
  1782. else
  1783. __release(rq2->lock);
  1784. }
  1785. /*
  1786. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1787. */
  1788. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1789. __releases(this_rq->lock)
  1790. __acquires(busiest->lock)
  1791. __acquires(this_rq->lock)
  1792. {
  1793. if (unlikely(!irqs_disabled())) {
  1794. /* printk() doesn't work good under rq->lock */
  1795. spin_unlock(&this_rq->lock);
  1796. BUG_ON(1);
  1797. }
  1798. if (unlikely(!spin_trylock(&busiest->lock))) {
  1799. if (busiest < this_rq) {
  1800. spin_unlock(&this_rq->lock);
  1801. spin_lock(&busiest->lock);
  1802. spin_lock(&this_rq->lock);
  1803. } else
  1804. spin_lock(&busiest->lock);
  1805. }
  1806. }
  1807. /*
  1808. * If dest_cpu is allowed for this process, migrate the task to it.
  1809. * This is accomplished by forcing the cpu_allowed mask to only
  1810. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1811. * the cpu_allowed mask is restored.
  1812. */
  1813. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1814. {
  1815. struct migration_req req;
  1816. unsigned long flags;
  1817. struct rq *rq;
  1818. rq = task_rq_lock(p, &flags);
  1819. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1820. || unlikely(cpu_is_offline(dest_cpu)))
  1821. goto out;
  1822. /* force the process onto the specified CPU */
  1823. if (migrate_task(p, dest_cpu, &req)) {
  1824. /* Need to wait for migration thread (might exit: take ref). */
  1825. struct task_struct *mt = rq->migration_thread;
  1826. get_task_struct(mt);
  1827. task_rq_unlock(rq, &flags);
  1828. wake_up_process(mt);
  1829. put_task_struct(mt);
  1830. wait_for_completion(&req.done);
  1831. return;
  1832. }
  1833. out:
  1834. task_rq_unlock(rq, &flags);
  1835. }
  1836. /*
  1837. * sched_exec - execve() is a valuable balancing opportunity, because at
  1838. * this point the task has the smallest effective memory and cache footprint.
  1839. */
  1840. void sched_exec(void)
  1841. {
  1842. int new_cpu, this_cpu = get_cpu();
  1843. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1844. put_cpu();
  1845. if (new_cpu != this_cpu)
  1846. sched_migrate_task(current, new_cpu);
  1847. }
  1848. /*
  1849. * pull_task - move a task from a remote runqueue to the local runqueue.
  1850. * Both runqueues must be locked.
  1851. */
  1852. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1853. struct rq *this_rq, int this_cpu)
  1854. {
  1855. deactivate_task(src_rq, p, 0);
  1856. set_task_cpu(p, this_cpu);
  1857. activate_task(this_rq, p, 0);
  1858. /*
  1859. * Note that idle threads have a prio of MAX_PRIO, for this test
  1860. * to be always true for them.
  1861. */
  1862. check_preempt_curr(this_rq, p);
  1863. }
  1864. /*
  1865. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1866. */
  1867. static
  1868. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1869. struct sched_domain *sd, enum cpu_idle_type idle,
  1870. int *all_pinned)
  1871. {
  1872. /*
  1873. * We do not migrate tasks that are:
  1874. * 1) running (obviously), or
  1875. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1876. * 3) are cache-hot on their current CPU.
  1877. */
  1878. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1879. return 0;
  1880. *all_pinned = 0;
  1881. if (task_running(rq, p))
  1882. return 0;
  1883. return 1;
  1884. }
  1885. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1886. unsigned long max_nr_move, unsigned long max_load_move,
  1887. struct sched_domain *sd, enum cpu_idle_type idle,
  1888. int *all_pinned, unsigned long *load_moved,
  1889. int *this_best_prio, struct rq_iterator *iterator)
  1890. {
  1891. int pulled = 0, pinned = 0, skip_for_load;
  1892. struct task_struct *p;
  1893. long rem_load_move = max_load_move;
  1894. if (max_nr_move == 0 || max_load_move == 0)
  1895. goto out;
  1896. pinned = 1;
  1897. /*
  1898. * Start the load-balancing iterator:
  1899. */
  1900. p = iterator->start(iterator->arg);
  1901. next:
  1902. if (!p)
  1903. goto out;
  1904. /*
  1905. * To help distribute high priority tasks accross CPUs we don't
  1906. * skip a task if it will be the highest priority task (i.e. smallest
  1907. * prio value) on its new queue regardless of its load weight
  1908. */
  1909. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1910. SCHED_LOAD_SCALE_FUZZ;
  1911. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1912. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1913. p = iterator->next(iterator->arg);
  1914. goto next;
  1915. }
  1916. pull_task(busiest, p, this_rq, this_cpu);
  1917. pulled++;
  1918. rem_load_move -= p->se.load.weight;
  1919. /*
  1920. * We only want to steal up to the prescribed number of tasks
  1921. * and the prescribed amount of weighted load.
  1922. */
  1923. if (pulled < max_nr_move && rem_load_move > 0) {
  1924. if (p->prio < *this_best_prio)
  1925. *this_best_prio = p->prio;
  1926. p = iterator->next(iterator->arg);
  1927. goto next;
  1928. }
  1929. out:
  1930. /*
  1931. * Right now, this is the only place pull_task() is called,
  1932. * so we can safely collect pull_task() stats here rather than
  1933. * inside pull_task().
  1934. */
  1935. schedstat_add(sd, lb_gained[idle], pulled);
  1936. if (all_pinned)
  1937. *all_pinned = pinned;
  1938. *load_moved = max_load_move - rem_load_move;
  1939. return pulled;
  1940. }
  1941. /*
  1942. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1943. * this_rq, as part of a balancing operation within domain "sd".
  1944. * Returns 1 if successful and 0 otherwise.
  1945. *
  1946. * Called with both runqueues locked.
  1947. */
  1948. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1949. unsigned long max_load_move,
  1950. struct sched_domain *sd, enum cpu_idle_type idle,
  1951. int *all_pinned)
  1952. {
  1953. struct sched_class *class = sched_class_highest;
  1954. unsigned long total_load_moved = 0;
  1955. int this_best_prio = this_rq->curr->prio;
  1956. do {
  1957. total_load_moved +=
  1958. class->load_balance(this_rq, this_cpu, busiest,
  1959. ULONG_MAX, max_load_move - total_load_moved,
  1960. sd, idle, all_pinned, &this_best_prio);
  1961. class = class->next;
  1962. } while (class && max_load_move > total_load_moved);
  1963. return total_load_moved > 0;
  1964. }
  1965. /*
  1966. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1967. * part of active balancing operations within "domain".
  1968. * Returns 1 if successful and 0 otherwise.
  1969. *
  1970. * Called with both runqueues locked.
  1971. */
  1972. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1973. struct sched_domain *sd, enum cpu_idle_type idle)
  1974. {
  1975. struct sched_class *class;
  1976. int this_best_prio = MAX_PRIO;
  1977. for (class = sched_class_highest; class; class = class->next)
  1978. if (class->load_balance(this_rq, this_cpu, busiest,
  1979. 1, ULONG_MAX, sd, idle, NULL,
  1980. &this_best_prio))
  1981. return 1;
  1982. return 0;
  1983. }
  1984. /*
  1985. * find_busiest_group finds and returns the busiest CPU group within the
  1986. * domain. It calculates and returns the amount of weighted load which
  1987. * should be moved to restore balance via the imbalance parameter.
  1988. */
  1989. static struct sched_group *
  1990. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1991. unsigned long *imbalance, enum cpu_idle_type idle,
  1992. int *sd_idle, cpumask_t *cpus, int *balance)
  1993. {
  1994. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1995. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1996. unsigned long max_pull;
  1997. unsigned long busiest_load_per_task, busiest_nr_running;
  1998. unsigned long this_load_per_task, this_nr_running;
  1999. int load_idx;
  2000. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2001. int power_savings_balance = 1;
  2002. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2003. unsigned long min_nr_running = ULONG_MAX;
  2004. struct sched_group *group_min = NULL, *group_leader = NULL;
  2005. #endif
  2006. max_load = this_load = total_load = total_pwr = 0;
  2007. busiest_load_per_task = busiest_nr_running = 0;
  2008. this_load_per_task = this_nr_running = 0;
  2009. if (idle == CPU_NOT_IDLE)
  2010. load_idx = sd->busy_idx;
  2011. else if (idle == CPU_NEWLY_IDLE)
  2012. load_idx = sd->newidle_idx;
  2013. else
  2014. load_idx = sd->idle_idx;
  2015. do {
  2016. unsigned long load, group_capacity;
  2017. int local_group;
  2018. int i;
  2019. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2020. unsigned long sum_nr_running, sum_weighted_load;
  2021. local_group = cpu_isset(this_cpu, group->cpumask);
  2022. if (local_group)
  2023. balance_cpu = first_cpu(group->cpumask);
  2024. /* Tally up the load of all CPUs in the group */
  2025. sum_weighted_load = sum_nr_running = avg_load = 0;
  2026. for_each_cpu_mask(i, group->cpumask) {
  2027. struct rq *rq;
  2028. if (!cpu_isset(i, *cpus))
  2029. continue;
  2030. rq = cpu_rq(i);
  2031. if (*sd_idle && rq->nr_running)
  2032. *sd_idle = 0;
  2033. /* Bias balancing toward cpus of our domain */
  2034. if (local_group) {
  2035. if (idle_cpu(i) && !first_idle_cpu) {
  2036. first_idle_cpu = 1;
  2037. balance_cpu = i;
  2038. }
  2039. load = target_load(i, load_idx);
  2040. } else
  2041. load = source_load(i, load_idx);
  2042. avg_load += load;
  2043. sum_nr_running += rq->nr_running;
  2044. sum_weighted_load += weighted_cpuload(i);
  2045. }
  2046. /*
  2047. * First idle cpu or the first cpu(busiest) in this sched group
  2048. * is eligible for doing load balancing at this and above
  2049. * domains. In the newly idle case, we will allow all the cpu's
  2050. * to do the newly idle load balance.
  2051. */
  2052. if (idle != CPU_NEWLY_IDLE && local_group &&
  2053. balance_cpu != this_cpu && balance) {
  2054. *balance = 0;
  2055. goto ret;
  2056. }
  2057. total_load += avg_load;
  2058. total_pwr += group->__cpu_power;
  2059. /* Adjust by relative CPU power of the group */
  2060. avg_load = sg_div_cpu_power(group,
  2061. avg_load * SCHED_LOAD_SCALE);
  2062. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2063. if (local_group) {
  2064. this_load = avg_load;
  2065. this = group;
  2066. this_nr_running = sum_nr_running;
  2067. this_load_per_task = sum_weighted_load;
  2068. } else if (avg_load > max_load &&
  2069. sum_nr_running > group_capacity) {
  2070. max_load = avg_load;
  2071. busiest = group;
  2072. busiest_nr_running = sum_nr_running;
  2073. busiest_load_per_task = sum_weighted_load;
  2074. }
  2075. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2076. /*
  2077. * Busy processors will not participate in power savings
  2078. * balance.
  2079. */
  2080. if (idle == CPU_NOT_IDLE ||
  2081. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2082. goto group_next;
  2083. /*
  2084. * If the local group is idle or completely loaded
  2085. * no need to do power savings balance at this domain
  2086. */
  2087. if (local_group && (this_nr_running >= group_capacity ||
  2088. !this_nr_running))
  2089. power_savings_balance = 0;
  2090. /*
  2091. * If a group is already running at full capacity or idle,
  2092. * don't include that group in power savings calculations
  2093. */
  2094. if (!power_savings_balance || sum_nr_running >= group_capacity
  2095. || !sum_nr_running)
  2096. goto group_next;
  2097. /*
  2098. * Calculate the group which has the least non-idle load.
  2099. * This is the group from where we need to pick up the load
  2100. * for saving power
  2101. */
  2102. if ((sum_nr_running < min_nr_running) ||
  2103. (sum_nr_running == min_nr_running &&
  2104. first_cpu(group->cpumask) <
  2105. first_cpu(group_min->cpumask))) {
  2106. group_min = group;
  2107. min_nr_running = sum_nr_running;
  2108. min_load_per_task = sum_weighted_load /
  2109. sum_nr_running;
  2110. }
  2111. /*
  2112. * Calculate the group which is almost near its
  2113. * capacity but still has some space to pick up some load
  2114. * from other group and save more power
  2115. */
  2116. if (sum_nr_running <= group_capacity - 1) {
  2117. if (sum_nr_running > leader_nr_running ||
  2118. (sum_nr_running == leader_nr_running &&
  2119. first_cpu(group->cpumask) >
  2120. first_cpu(group_leader->cpumask))) {
  2121. group_leader = group;
  2122. leader_nr_running = sum_nr_running;
  2123. }
  2124. }
  2125. group_next:
  2126. #endif
  2127. group = group->next;
  2128. } while (group != sd->groups);
  2129. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2130. goto out_balanced;
  2131. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2132. if (this_load >= avg_load ||
  2133. 100*max_load <= sd->imbalance_pct*this_load)
  2134. goto out_balanced;
  2135. busiest_load_per_task /= busiest_nr_running;
  2136. /*
  2137. * We're trying to get all the cpus to the average_load, so we don't
  2138. * want to push ourselves above the average load, nor do we wish to
  2139. * reduce the max loaded cpu below the average load, as either of these
  2140. * actions would just result in more rebalancing later, and ping-pong
  2141. * tasks around. Thus we look for the minimum possible imbalance.
  2142. * Negative imbalances (*we* are more loaded than anyone else) will
  2143. * be counted as no imbalance for these purposes -- we can't fix that
  2144. * by pulling tasks to us. Be careful of negative numbers as they'll
  2145. * appear as very large values with unsigned longs.
  2146. */
  2147. if (max_load <= busiest_load_per_task)
  2148. goto out_balanced;
  2149. /*
  2150. * In the presence of smp nice balancing, certain scenarios can have
  2151. * max load less than avg load(as we skip the groups at or below
  2152. * its cpu_power, while calculating max_load..)
  2153. */
  2154. if (max_load < avg_load) {
  2155. *imbalance = 0;
  2156. goto small_imbalance;
  2157. }
  2158. /* Don't want to pull so many tasks that a group would go idle */
  2159. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2160. /* How much load to actually move to equalise the imbalance */
  2161. *imbalance = min(max_pull * busiest->__cpu_power,
  2162. (avg_load - this_load) * this->__cpu_power)
  2163. / SCHED_LOAD_SCALE;
  2164. /*
  2165. * if *imbalance is less than the average load per runnable task
  2166. * there is no gaurantee that any tasks will be moved so we'll have
  2167. * a think about bumping its value to force at least one task to be
  2168. * moved
  2169. */
  2170. if (*imbalance < busiest_load_per_task) {
  2171. unsigned long tmp, pwr_now, pwr_move;
  2172. unsigned int imbn;
  2173. small_imbalance:
  2174. pwr_move = pwr_now = 0;
  2175. imbn = 2;
  2176. if (this_nr_running) {
  2177. this_load_per_task /= this_nr_running;
  2178. if (busiest_load_per_task > this_load_per_task)
  2179. imbn = 1;
  2180. } else
  2181. this_load_per_task = SCHED_LOAD_SCALE;
  2182. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2183. busiest_load_per_task * imbn) {
  2184. *imbalance = busiest_load_per_task;
  2185. return busiest;
  2186. }
  2187. /*
  2188. * OK, we don't have enough imbalance to justify moving tasks,
  2189. * however we may be able to increase total CPU power used by
  2190. * moving them.
  2191. */
  2192. pwr_now += busiest->__cpu_power *
  2193. min(busiest_load_per_task, max_load);
  2194. pwr_now += this->__cpu_power *
  2195. min(this_load_per_task, this_load);
  2196. pwr_now /= SCHED_LOAD_SCALE;
  2197. /* Amount of load we'd subtract */
  2198. tmp = sg_div_cpu_power(busiest,
  2199. busiest_load_per_task * SCHED_LOAD_SCALE);
  2200. if (max_load > tmp)
  2201. pwr_move += busiest->__cpu_power *
  2202. min(busiest_load_per_task, max_load - tmp);
  2203. /* Amount of load we'd add */
  2204. if (max_load * busiest->__cpu_power <
  2205. busiest_load_per_task * SCHED_LOAD_SCALE)
  2206. tmp = sg_div_cpu_power(this,
  2207. max_load * busiest->__cpu_power);
  2208. else
  2209. tmp = sg_div_cpu_power(this,
  2210. busiest_load_per_task * SCHED_LOAD_SCALE);
  2211. pwr_move += this->__cpu_power *
  2212. min(this_load_per_task, this_load + tmp);
  2213. pwr_move /= SCHED_LOAD_SCALE;
  2214. /* Move if we gain throughput */
  2215. if (pwr_move > pwr_now)
  2216. *imbalance = busiest_load_per_task;
  2217. }
  2218. return busiest;
  2219. out_balanced:
  2220. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2221. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2222. goto ret;
  2223. if (this == group_leader && group_leader != group_min) {
  2224. *imbalance = min_load_per_task;
  2225. return group_min;
  2226. }
  2227. #endif
  2228. ret:
  2229. *imbalance = 0;
  2230. return NULL;
  2231. }
  2232. /*
  2233. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2234. */
  2235. static struct rq *
  2236. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2237. unsigned long imbalance, cpumask_t *cpus)
  2238. {
  2239. struct rq *busiest = NULL, *rq;
  2240. unsigned long max_load = 0;
  2241. int i;
  2242. for_each_cpu_mask(i, group->cpumask) {
  2243. unsigned long wl;
  2244. if (!cpu_isset(i, *cpus))
  2245. continue;
  2246. rq = cpu_rq(i);
  2247. wl = weighted_cpuload(i);
  2248. if (rq->nr_running == 1 && wl > imbalance)
  2249. continue;
  2250. if (wl > max_load) {
  2251. max_load = wl;
  2252. busiest = rq;
  2253. }
  2254. }
  2255. return busiest;
  2256. }
  2257. /*
  2258. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2259. * so long as it is large enough.
  2260. */
  2261. #define MAX_PINNED_INTERVAL 512
  2262. /*
  2263. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2264. * tasks if there is an imbalance.
  2265. */
  2266. static int load_balance(int this_cpu, struct rq *this_rq,
  2267. struct sched_domain *sd, enum cpu_idle_type idle,
  2268. int *balance)
  2269. {
  2270. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2271. struct sched_group *group;
  2272. unsigned long imbalance;
  2273. struct rq *busiest;
  2274. cpumask_t cpus = CPU_MASK_ALL;
  2275. unsigned long flags;
  2276. /*
  2277. * When power savings policy is enabled for the parent domain, idle
  2278. * sibling can pick up load irrespective of busy siblings. In this case,
  2279. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2280. * portraying it as CPU_NOT_IDLE.
  2281. */
  2282. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2283. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2284. sd_idle = 1;
  2285. schedstat_inc(sd, lb_cnt[idle]);
  2286. redo:
  2287. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2288. &cpus, balance);
  2289. if (*balance == 0)
  2290. goto out_balanced;
  2291. if (!group) {
  2292. schedstat_inc(sd, lb_nobusyg[idle]);
  2293. goto out_balanced;
  2294. }
  2295. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2296. if (!busiest) {
  2297. schedstat_inc(sd, lb_nobusyq[idle]);
  2298. goto out_balanced;
  2299. }
  2300. BUG_ON(busiest == this_rq);
  2301. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2302. ld_moved = 0;
  2303. if (busiest->nr_running > 1) {
  2304. /*
  2305. * Attempt to move tasks. If find_busiest_group has found
  2306. * an imbalance but busiest->nr_running <= 1, the group is
  2307. * still unbalanced. ld_moved simply stays zero, so it is
  2308. * correctly treated as an imbalance.
  2309. */
  2310. local_irq_save(flags);
  2311. double_rq_lock(this_rq, busiest);
  2312. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2313. imbalance, sd, idle, &all_pinned);
  2314. double_rq_unlock(this_rq, busiest);
  2315. local_irq_restore(flags);
  2316. /*
  2317. * some other cpu did the load balance for us.
  2318. */
  2319. if (ld_moved && this_cpu != smp_processor_id())
  2320. resched_cpu(this_cpu);
  2321. /* All tasks on this runqueue were pinned by CPU affinity */
  2322. if (unlikely(all_pinned)) {
  2323. cpu_clear(cpu_of(busiest), cpus);
  2324. if (!cpus_empty(cpus))
  2325. goto redo;
  2326. goto out_balanced;
  2327. }
  2328. }
  2329. if (!ld_moved) {
  2330. schedstat_inc(sd, lb_failed[idle]);
  2331. sd->nr_balance_failed++;
  2332. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2333. spin_lock_irqsave(&busiest->lock, flags);
  2334. /* don't kick the migration_thread, if the curr
  2335. * task on busiest cpu can't be moved to this_cpu
  2336. */
  2337. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2338. spin_unlock_irqrestore(&busiest->lock, flags);
  2339. all_pinned = 1;
  2340. goto out_one_pinned;
  2341. }
  2342. if (!busiest->active_balance) {
  2343. busiest->active_balance = 1;
  2344. busiest->push_cpu = this_cpu;
  2345. active_balance = 1;
  2346. }
  2347. spin_unlock_irqrestore(&busiest->lock, flags);
  2348. if (active_balance)
  2349. wake_up_process(busiest->migration_thread);
  2350. /*
  2351. * We've kicked active balancing, reset the failure
  2352. * counter.
  2353. */
  2354. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2355. }
  2356. } else
  2357. sd->nr_balance_failed = 0;
  2358. if (likely(!active_balance)) {
  2359. /* We were unbalanced, so reset the balancing interval */
  2360. sd->balance_interval = sd->min_interval;
  2361. } else {
  2362. /*
  2363. * If we've begun active balancing, start to back off. This
  2364. * case may not be covered by the all_pinned logic if there
  2365. * is only 1 task on the busy runqueue (because we don't call
  2366. * move_tasks).
  2367. */
  2368. if (sd->balance_interval < sd->max_interval)
  2369. sd->balance_interval *= 2;
  2370. }
  2371. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2372. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2373. return -1;
  2374. return ld_moved;
  2375. out_balanced:
  2376. schedstat_inc(sd, lb_balanced[idle]);
  2377. sd->nr_balance_failed = 0;
  2378. out_one_pinned:
  2379. /* tune up the balancing interval */
  2380. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2381. (sd->balance_interval < sd->max_interval))
  2382. sd->balance_interval *= 2;
  2383. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2384. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2385. return -1;
  2386. return 0;
  2387. }
  2388. /*
  2389. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2390. * tasks if there is an imbalance.
  2391. *
  2392. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2393. * this_rq is locked.
  2394. */
  2395. static int
  2396. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2397. {
  2398. struct sched_group *group;
  2399. struct rq *busiest = NULL;
  2400. unsigned long imbalance;
  2401. int ld_moved = 0;
  2402. int sd_idle = 0;
  2403. int all_pinned = 0;
  2404. cpumask_t cpus = CPU_MASK_ALL;
  2405. /*
  2406. * When power savings policy is enabled for the parent domain, idle
  2407. * sibling can pick up load irrespective of busy siblings. In this case,
  2408. * let the state of idle sibling percolate up as IDLE, instead of
  2409. * portraying it as CPU_NOT_IDLE.
  2410. */
  2411. if (sd->flags & SD_SHARE_CPUPOWER &&
  2412. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2413. sd_idle = 1;
  2414. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2415. redo:
  2416. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2417. &sd_idle, &cpus, NULL);
  2418. if (!group) {
  2419. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2420. goto out_balanced;
  2421. }
  2422. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2423. &cpus);
  2424. if (!busiest) {
  2425. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2426. goto out_balanced;
  2427. }
  2428. BUG_ON(busiest == this_rq);
  2429. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2430. ld_moved = 0;
  2431. if (busiest->nr_running > 1) {
  2432. /* Attempt to move tasks */
  2433. double_lock_balance(this_rq, busiest);
  2434. /* this_rq->clock is already updated */
  2435. update_rq_clock(busiest);
  2436. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2437. imbalance, sd, CPU_NEWLY_IDLE,
  2438. &all_pinned);
  2439. spin_unlock(&busiest->lock);
  2440. if (unlikely(all_pinned)) {
  2441. cpu_clear(cpu_of(busiest), cpus);
  2442. if (!cpus_empty(cpus))
  2443. goto redo;
  2444. }
  2445. }
  2446. if (!ld_moved) {
  2447. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2448. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2449. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2450. return -1;
  2451. } else
  2452. sd->nr_balance_failed = 0;
  2453. return ld_moved;
  2454. out_balanced:
  2455. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2456. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2457. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2458. return -1;
  2459. sd->nr_balance_failed = 0;
  2460. return 0;
  2461. }
  2462. /*
  2463. * idle_balance is called by schedule() if this_cpu is about to become
  2464. * idle. Attempts to pull tasks from other CPUs.
  2465. */
  2466. static void idle_balance(int this_cpu, struct rq *this_rq)
  2467. {
  2468. struct sched_domain *sd;
  2469. int pulled_task = -1;
  2470. unsigned long next_balance = jiffies + HZ;
  2471. for_each_domain(this_cpu, sd) {
  2472. unsigned long interval;
  2473. if (!(sd->flags & SD_LOAD_BALANCE))
  2474. continue;
  2475. if (sd->flags & SD_BALANCE_NEWIDLE)
  2476. /* If we've pulled tasks over stop searching: */
  2477. pulled_task = load_balance_newidle(this_cpu,
  2478. this_rq, sd);
  2479. interval = msecs_to_jiffies(sd->balance_interval);
  2480. if (time_after(next_balance, sd->last_balance + interval))
  2481. next_balance = sd->last_balance + interval;
  2482. if (pulled_task)
  2483. break;
  2484. }
  2485. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2486. /*
  2487. * We are going idle. next_balance may be set based on
  2488. * a busy processor. So reset next_balance.
  2489. */
  2490. this_rq->next_balance = next_balance;
  2491. }
  2492. }
  2493. /*
  2494. * active_load_balance is run by migration threads. It pushes running tasks
  2495. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2496. * running on each physical CPU where possible, and avoids physical /
  2497. * logical imbalances.
  2498. *
  2499. * Called with busiest_rq locked.
  2500. */
  2501. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2502. {
  2503. int target_cpu = busiest_rq->push_cpu;
  2504. struct sched_domain *sd;
  2505. struct rq *target_rq;
  2506. /* Is there any task to move? */
  2507. if (busiest_rq->nr_running <= 1)
  2508. return;
  2509. target_rq = cpu_rq(target_cpu);
  2510. /*
  2511. * This condition is "impossible", if it occurs
  2512. * we need to fix it. Originally reported by
  2513. * Bjorn Helgaas on a 128-cpu setup.
  2514. */
  2515. BUG_ON(busiest_rq == target_rq);
  2516. /* move a task from busiest_rq to target_rq */
  2517. double_lock_balance(busiest_rq, target_rq);
  2518. update_rq_clock(busiest_rq);
  2519. update_rq_clock(target_rq);
  2520. /* Search for an sd spanning us and the target CPU. */
  2521. for_each_domain(target_cpu, sd) {
  2522. if ((sd->flags & SD_LOAD_BALANCE) &&
  2523. cpu_isset(busiest_cpu, sd->span))
  2524. break;
  2525. }
  2526. if (likely(sd)) {
  2527. schedstat_inc(sd, alb_cnt);
  2528. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2529. sd, CPU_IDLE))
  2530. schedstat_inc(sd, alb_pushed);
  2531. else
  2532. schedstat_inc(sd, alb_failed);
  2533. }
  2534. spin_unlock(&target_rq->lock);
  2535. }
  2536. #ifdef CONFIG_NO_HZ
  2537. static struct {
  2538. atomic_t load_balancer;
  2539. cpumask_t cpu_mask;
  2540. } nohz ____cacheline_aligned = {
  2541. .load_balancer = ATOMIC_INIT(-1),
  2542. .cpu_mask = CPU_MASK_NONE,
  2543. };
  2544. /*
  2545. * This routine will try to nominate the ilb (idle load balancing)
  2546. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2547. * load balancing on behalf of all those cpus. If all the cpus in the system
  2548. * go into this tickless mode, then there will be no ilb owner (as there is
  2549. * no need for one) and all the cpus will sleep till the next wakeup event
  2550. * arrives...
  2551. *
  2552. * For the ilb owner, tick is not stopped. And this tick will be used
  2553. * for idle load balancing. ilb owner will still be part of
  2554. * nohz.cpu_mask..
  2555. *
  2556. * While stopping the tick, this cpu will become the ilb owner if there
  2557. * is no other owner. And will be the owner till that cpu becomes busy
  2558. * or if all cpus in the system stop their ticks at which point
  2559. * there is no need for ilb owner.
  2560. *
  2561. * When the ilb owner becomes busy, it nominates another owner, during the
  2562. * next busy scheduler_tick()
  2563. */
  2564. int select_nohz_load_balancer(int stop_tick)
  2565. {
  2566. int cpu = smp_processor_id();
  2567. if (stop_tick) {
  2568. cpu_set(cpu, nohz.cpu_mask);
  2569. cpu_rq(cpu)->in_nohz_recently = 1;
  2570. /*
  2571. * If we are going offline and still the leader, give up!
  2572. */
  2573. if (cpu_is_offline(cpu) &&
  2574. atomic_read(&nohz.load_balancer) == cpu) {
  2575. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2576. BUG();
  2577. return 0;
  2578. }
  2579. /* time for ilb owner also to sleep */
  2580. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2581. if (atomic_read(&nohz.load_balancer) == cpu)
  2582. atomic_set(&nohz.load_balancer, -1);
  2583. return 0;
  2584. }
  2585. if (atomic_read(&nohz.load_balancer) == -1) {
  2586. /* make me the ilb owner */
  2587. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2588. return 1;
  2589. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2590. return 1;
  2591. } else {
  2592. if (!cpu_isset(cpu, nohz.cpu_mask))
  2593. return 0;
  2594. cpu_clear(cpu, nohz.cpu_mask);
  2595. if (atomic_read(&nohz.load_balancer) == cpu)
  2596. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2597. BUG();
  2598. }
  2599. return 0;
  2600. }
  2601. #endif
  2602. static DEFINE_SPINLOCK(balancing);
  2603. /*
  2604. * It checks each scheduling domain to see if it is due to be balanced,
  2605. * and initiates a balancing operation if so.
  2606. *
  2607. * Balancing parameters are set up in arch_init_sched_domains.
  2608. */
  2609. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2610. {
  2611. int balance = 1;
  2612. struct rq *rq = cpu_rq(cpu);
  2613. unsigned long interval;
  2614. struct sched_domain *sd;
  2615. /* Earliest time when we have to do rebalance again */
  2616. unsigned long next_balance = jiffies + 60*HZ;
  2617. int update_next_balance = 0;
  2618. for_each_domain(cpu, sd) {
  2619. if (!(sd->flags & SD_LOAD_BALANCE))
  2620. continue;
  2621. interval = sd->balance_interval;
  2622. if (idle != CPU_IDLE)
  2623. interval *= sd->busy_factor;
  2624. /* scale ms to jiffies */
  2625. interval = msecs_to_jiffies(interval);
  2626. if (unlikely(!interval))
  2627. interval = 1;
  2628. if (interval > HZ*NR_CPUS/10)
  2629. interval = HZ*NR_CPUS/10;
  2630. if (sd->flags & SD_SERIALIZE) {
  2631. if (!spin_trylock(&balancing))
  2632. goto out;
  2633. }
  2634. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2635. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2636. /*
  2637. * We've pulled tasks over so either we're no
  2638. * longer idle, or one of our SMT siblings is
  2639. * not idle.
  2640. */
  2641. idle = CPU_NOT_IDLE;
  2642. }
  2643. sd->last_balance = jiffies;
  2644. }
  2645. if (sd->flags & SD_SERIALIZE)
  2646. spin_unlock(&balancing);
  2647. out:
  2648. if (time_after(next_balance, sd->last_balance + interval)) {
  2649. next_balance = sd->last_balance + interval;
  2650. update_next_balance = 1;
  2651. }
  2652. /*
  2653. * Stop the load balance at this level. There is another
  2654. * CPU in our sched group which is doing load balancing more
  2655. * actively.
  2656. */
  2657. if (!balance)
  2658. break;
  2659. }
  2660. /*
  2661. * next_balance will be updated only when there is a need.
  2662. * When the cpu is attached to null domain for ex, it will not be
  2663. * updated.
  2664. */
  2665. if (likely(update_next_balance))
  2666. rq->next_balance = next_balance;
  2667. }
  2668. /*
  2669. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2670. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2671. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2672. */
  2673. static void run_rebalance_domains(struct softirq_action *h)
  2674. {
  2675. int this_cpu = smp_processor_id();
  2676. struct rq *this_rq = cpu_rq(this_cpu);
  2677. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2678. CPU_IDLE : CPU_NOT_IDLE;
  2679. rebalance_domains(this_cpu, idle);
  2680. #ifdef CONFIG_NO_HZ
  2681. /*
  2682. * If this cpu is the owner for idle load balancing, then do the
  2683. * balancing on behalf of the other idle cpus whose ticks are
  2684. * stopped.
  2685. */
  2686. if (this_rq->idle_at_tick &&
  2687. atomic_read(&nohz.load_balancer) == this_cpu) {
  2688. cpumask_t cpus = nohz.cpu_mask;
  2689. struct rq *rq;
  2690. int balance_cpu;
  2691. cpu_clear(this_cpu, cpus);
  2692. for_each_cpu_mask(balance_cpu, cpus) {
  2693. /*
  2694. * If this cpu gets work to do, stop the load balancing
  2695. * work being done for other cpus. Next load
  2696. * balancing owner will pick it up.
  2697. */
  2698. if (need_resched())
  2699. break;
  2700. rebalance_domains(balance_cpu, CPU_IDLE);
  2701. rq = cpu_rq(balance_cpu);
  2702. if (time_after(this_rq->next_balance, rq->next_balance))
  2703. this_rq->next_balance = rq->next_balance;
  2704. }
  2705. }
  2706. #endif
  2707. }
  2708. /*
  2709. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2710. *
  2711. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2712. * idle load balancing owner or decide to stop the periodic load balancing,
  2713. * if the whole system is idle.
  2714. */
  2715. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2716. {
  2717. #ifdef CONFIG_NO_HZ
  2718. /*
  2719. * If we were in the nohz mode recently and busy at the current
  2720. * scheduler tick, then check if we need to nominate new idle
  2721. * load balancer.
  2722. */
  2723. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2724. rq->in_nohz_recently = 0;
  2725. if (atomic_read(&nohz.load_balancer) == cpu) {
  2726. cpu_clear(cpu, nohz.cpu_mask);
  2727. atomic_set(&nohz.load_balancer, -1);
  2728. }
  2729. if (atomic_read(&nohz.load_balancer) == -1) {
  2730. /*
  2731. * simple selection for now: Nominate the
  2732. * first cpu in the nohz list to be the next
  2733. * ilb owner.
  2734. *
  2735. * TBD: Traverse the sched domains and nominate
  2736. * the nearest cpu in the nohz.cpu_mask.
  2737. */
  2738. int ilb = first_cpu(nohz.cpu_mask);
  2739. if (ilb != NR_CPUS)
  2740. resched_cpu(ilb);
  2741. }
  2742. }
  2743. /*
  2744. * If this cpu is idle and doing idle load balancing for all the
  2745. * cpus with ticks stopped, is it time for that to stop?
  2746. */
  2747. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2748. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2749. resched_cpu(cpu);
  2750. return;
  2751. }
  2752. /*
  2753. * If this cpu is idle and the idle load balancing is done by
  2754. * someone else, then no need raise the SCHED_SOFTIRQ
  2755. */
  2756. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2757. cpu_isset(cpu, nohz.cpu_mask))
  2758. return;
  2759. #endif
  2760. if (time_after_eq(jiffies, rq->next_balance))
  2761. raise_softirq(SCHED_SOFTIRQ);
  2762. }
  2763. #else /* CONFIG_SMP */
  2764. /*
  2765. * on UP we do not need to balance between CPUs:
  2766. */
  2767. static inline void idle_balance(int cpu, struct rq *rq)
  2768. {
  2769. }
  2770. /* Avoid "used but not defined" warning on UP */
  2771. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2772. unsigned long max_nr_move, unsigned long max_load_move,
  2773. struct sched_domain *sd, enum cpu_idle_type idle,
  2774. int *all_pinned, unsigned long *load_moved,
  2775. int *this_best_prio, struct rq_iterator *iterator)
  2776. {
  2777. *load_moved = 0;
  2778. return 0;
  2779. }
  2780. #endif
  2781. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2782. EXPORT_PER_CPU_SYMBOL(kstat);
  2783. /*
  2784. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2785. * that have not yet been banked in case the task is currently running.
  2786. */
  2787. unsigned long long task_sched_runtime(struct task_struct *p)
  2788. {
  2789. unsigned long flags;
  2790. u64 ns, delta_exec;
  2791. struct rq *rq;
  2792. rq = task_rq_lock(p, &flags);
  2793. ns = p->se.sum_exec_runtime;
  2794. if (rq->curr == p) {
  2795. update_rq_clock(rq);
  2796. delta_exec = rq->clock - p->se.exec_start;
  2797. if ((s64)delta_exec > 0)
  2798. ns += delta_exec;
  2799. }
  2800. task_rq_unlock(rq, &flags);
  2801. return ns;
  2802. }
  2803. /*
  2804. * Account user cpu time to a process.
  2805. * @p: the process that the cpu time gets accounted to
  2806. * @hardirq_offset: the offset to subtract from hardirq_count()
  2807. * @cputime: the cpu time spent in user space since the last update
  2808. */
  2809. void account_user_time(struct task_struct *p, cputime_t cputime)
  2810. {
  2811. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2812. cputime64_t tmp;
  2813. p->utime = cputime_add(p->utime, cputime);
  2814. /* Add user time to cpustat. */
  2815. tmp = cputime_to_cputime64(cputime);
  2816. if (TASK_NICE(p) > 0)
  2817. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2818. else
  2819. cpustat->user = cputime64_add(cpustat->user, tmp);
  2820. }
  2821. /*
  2822. * Account system cpu time to a process.
  2823. * @p: the process that the cpu time gets accounted to
  2824. * @hardirq_offset: the offset to subtract from hardirq_count()
  2825. * @cputime: the cpu time spent in kernel space since the last update
  2826. */
  2827. void account_system_time(struct task_struct *p, int hardirq_offset,
  2828. cputime_t cputime)
  2829. {
  2830. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2831. struct rq *rq = this_rq();
  2832. cputime64_t tmp;
  2833. p->stime = cputime_add(p->stime, cputime);
  2834. /* Add system time to cpustat. */
  2835. tmp = cputime_to_cputime64(cputime);
  2836. if (hardirq_count() - hardirq_offset)
  2837. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2838. else if (softirq_count())
  2839. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2840. else if (p != rq->idle)
  2841. cpustat->system = cputime64_add(cpustat->system, tmp);
  2842. else if (atomic_read(&rq->nr_iowait) > 0)
  2843. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2844. else
  2845. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2846. /* Account for system time used */
  2847. acct_update_integrals(p);
  2848. }
  2849. /*
  2850. * Account for involuntary wait time.
  2851. * @p: the process from which the cpu time has been stolen
  2852. * @steal: the cpu time spent in involuntary wait
  2853. */
  2854. void account_steal_time(struct task_struct *p, cputime_t steal)
  2855. {
  2856. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2857. cputime64_t tmp = cputime_to_cputime64(steal);
  2858. struct rq *rq = this_rq();
  2859. if (p == rq->idle) {
  2860. p->stime = cputime_add(p->stime, steal);
  2861. if (atomic_read(&rq->nr_iowait) > 0)
  2862. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2863. else
  2864. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2865. } else
  2866. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2867. }
  2868. /*
  2869. * This function gets called by the timer code, with HZ frequency.
  2870. * We call it with interrupts disabled.
  2871. *
  2872. * It also gets called by the fork code, when changing the parent's
  2873. * timeslices.
  2874. */
  2875. void scheduler_tick(void)
  2876. {
  2877. int cpu = smp_processor_id();
  2878. struct rq *rq = cpu_rq(cpu);
  2879. struct task_struct *curr = rq->curr;
  2880. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2881. spin_lock(&rq->lock);
  2882. __update_rq_clock(rq);
  2883. /*
  2884. * Let rq->clock advance by at least TICK_NSEC:
  2885. */
  2886. if (unlikely(rq->clock < next_tick))
  2887. rq->clock = next_tick;
  2888. rq->tick_timestamp = rq->clock;
  2889. update_cpu_load(rq);
  2890. if (curr != rq->idle) /* FIXME: needed? */
  2891. curr->sched_class->task_tick(rq, curr);
  2892. spin_unlock(&rq->lock);
  2893. #ifdef CONFIG_SMP
  2894. rq->idle_at_tick = idle_cpu(cpu);
  2895. trigger_load_balance(rq, cpu);
  2896. #endif
  2897. }
  2898. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2899. void fastcall add_preempt_count(int val)
  2900. {
  2901. /*
  2902. * Underflow?
  2903. */
  2904. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2905. return;
  2906. preempt_count() += val;
  2907. /*
  2908. * Spinlock count overflowing soon?
  2909. */
  2910. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2911. PREEMPT_MASK - 10);
  2912. }
  2913. EXPORT_SYMBOL(add_preempt_count);
  2914. void fastcall sub_preempt_count(int val)
  2915. {
  2916. /*
  2917. * Underflow?
  2918. */
  2919. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2920. return;
  2921. /*
  2922. * Is the spinlock portion underflowing?
  2923. */
  2924. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2925. !(preempt_count() & PREEMPT_MASK)))
  2926. return;
  2927. preempt_count() -= val;
  2928. }
  2929. EXPORT_SYMBOL(sub_preempt_count);
  2930. #endif
  2931. /*
  2932. * Print scheduling while atomic bug:
  2933. */
  2934. static noinline void __schedule_bug(struct task_struct *prev)
  2935. {
  2936. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2937. prev->comm, preempt_count(), prev->pid);
  2938. debug_show_held_locks(prev);
  2939. if (irqs_disabled())
  2940. print_irqtrace_events(prev);
  2941. dump_stack();
  2942. }
  2943. /*
  2944. * Various schedule()-time debugging checks and statistics:
  2945. */
  2946. static inline void schedule_debug(struct task_struct *prev)
  2947. {
  2948. /*
  2949. * Test if we are atomic. Since do_exit() needs to call into
  2950. * schedule() atomically, we ignore that path for now.
  2951. * Otherwise, whine if we are scheduling when we should not be.
  2952. */
  2953. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2954. __schedule_bug(prev);
  2955. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2956. schedstat_inc(this_rq(), sched_cnt);
  2957. }
  2958. /*
  2959. * Pick up the highest-prio task:
  2960. */
  2961. static inline struct task_struct *
  2962. pick_next_task(struct rq *rq, struct task_struct *prev)
  2963. {
  2964. struct sched_class *class;
  2965. struct task_struct *p;
  2966. /*
  2967. * Optimization: we know that if all tasks are in
  2968. * the fair class we can call that function directly:
  2969. */
  2970. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2971. p = fair_sched_class.pick_next_task(rq);
  2972. if (likely(p))
  2973. return p;
  2974. }
  2975. class = sched_class_highest;
  2976. for ( ; ; ) {
  2977. p = class->pick_next_task(rq);
  2978. if (p)
  2979. return p;
  2980. /*
  2981. * Will never be NULL as the idle class always
  2982. * returns a non-NULL p:
  2983. */
  2984. class = class->next;
  2985. }
  2986. }
  2987. /*
  2988. * schedule() is the main scheduler function.
  2989. */
  2990. asmlinkage void __sched schedule(void)
  2991. {
  2992. struct task_struct *prev, *next;
  2993. long *switch_count;
  2994. struct rq *rq;
  2995. int cpu;
  2996. need_resched:
  2997. preempt_disable();
  2998. cpu = smp_processor_id();
  2999. rq = cpu_rq(cpu);
  3000. rcu_qsctr_inc(cpu);
  3001. prev = rq->curr;
  3002. switch_count = &prev->nivcsw;
  3003. release_kernel_lock(prev);
  3004. need_resched_nonpreemptible:
  3005. schedule_debug(prev);
  3006. spin_lock_irq(&rq->lock);
  3007. clear_tsk_need_resched(prev);
  3008. __update_rq_clock(rq);
  3009. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3010. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3011. unlikely(signal_pending(prev)))) {
  3012. prev->state = TASK_RUNNING;
  3013. } else {
  3014. deactivate_task(rq, prev, 1);
  3015. }
  3016. switch_count = &prev->nvcsw;
  3017. }
  3018. if (unlikely(!rq->nr_running))
  3019. idle_balance(cpu, rq);
  3020. prev->sched_class->put_prev_task(rq, prev);
  3021. next = pick_next_task(rq, prev);
  3022. sched_info_switch(prev, next);
  3023. if (likely(prev != next)) {
  3024. rq->nr_switches++;
  3025. rq->curr = next;
  3026. ++*switch_count;
  3027. context_switch(rq, prev, next); /* unlocks the rq */
  3028. } else
  3029. spin_unlock_irq(&rq->lock);
  3030. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3031. cpu = smp_processor_id();
  3032. rq = cpu_rq(cpu);
  3033. goto need_resched_nonpreemptible;
  3034. }
  3035. preempt_enable_no_resched();
  3036. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3037. goto need_resched;
  3038. }
  3039. EXPORT_SYMBOL(schedule);
  3040. #ifdef CONFIG_PREEMPT
  3041. /*
  3042. * this is the entry point to schedule() from in-kernel preemption
  3043. * off of preempt_enable. Kernel preemptions off return from interrupt
  3044. * occur there and call schedule directly.
  3045. */
  3046. asmlinkage void __sched preempt_schedule(void)
  3047. {
  3048. struct thread_info *ti = current_thread_info();
  3049. #ifdef CONFIG_PREEMPT_BKL
  3050. struct task_struct *task = current;
  3051. int saved_lock_depth;
  3052. #endif
  3053. /*
  3054. * If there is a non-zero preempt_count or interrupts are disabled,
  3055. * we do not want to preempt the current task. Just return..
  3056. */
  3057. if (likely(ti->preempt_count || irqs_disabled()))
  3058. return;
  3059. need_resched:
  3060. add_preempt_count(PREEMPT_ACTIVE);
  3061. /*
  3062. * We keep the big kernel semaphore locked, but we
  3063. * clear ->lock_depth so that schedule() doesnt
  3064. * auto-release the semaphore:
  3065. */
  3066. #ifdef CONFIG_PREEMPT_BKL
  3067. saved_lock_depth = task->lock_depth;
  3068. task->lock_depth = -1;
  3069. #endif
  3070. schedule();
  3071. #ifdef CONFIG_PREEMPT_BKL
  3072. task->lock_depth = saved_lock_depth;
  3073. #endif
  3074. sub_preempt_count(PREEMPT_ACTIVE);
  3075. /* we could miss a preemption opportunity between schedule and now */
  3076. barrier();
  3077. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3078. goto need_resched;
  3079. }
  3080. EXPORT_SYMBOL(preempt_schedule);
  3081. /*
  3082. * this is the entry point to schedule() from kernel preemption
  3083. * off of irq context.
  3084. * Note, that this is called and return with irqs disabled. This will
  3085. * protect us against recursive calling from irq.
  3086. */
  3087. asmlinkage void __sched preempt_schedule_irq(void)
  3088. {
  3089. struct thread_info *ti = current_thread_info();
  3090. #ifdef CONFIG_PREEMPT_BKL
  3091. struct task_struct *task = current;
  3092. int saved_lock_depth;
  3093. #endif
  3094. /* Catch callers which need to be fixed */
  3095. BUG_ON(ti->preempt_count || !irqs_disabled());
  3096. need_resched:
  3097. add_preempt_count(PREEMPT_ACTIVE);
  3098. /*
  3099. * We keep the big kernel semaphore locked, but we
  3100. * clear ->lock_depth so that schedule() doesnt
  3101. * auto-release the semaphore:
  3102. */
  3103. #ifdef CONFIG_PREEMPT_BKL
  3104. saved_lock_depth = task->lock_depth;
  3105. task->lock_depth = -1;
  3106. #endif
  3107. local_irq_enable();
  3108. schedule();
  3109. local_irq_disable();
  3110. #ifdef CONFIG_PREEMPT_BKL
  3111. task->lock_depth = saved_lock_depth;
  3112. #endif
  3113. sub_preempt_count(PREEMPT_ACTIVE);
  3114. /* we could miss a preemption opportunity between schedule and now */
  3115. barrier();
  3116. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3117. goto need_resched;
  3118. }
  3119. #endif /* CONFIG_PREEMPT */
  3120. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3121. void *key)
  3122. {
  3123. return try_to_wake_up(curr->private, mode, sync);
  3124. }
  3125. EXPORT_SYMBOL(default_wake_function);
  3126. /*
  3127. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3128. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3129. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3130. *
  3131. * There are circumstances in which we can try to wake a task which has already
  3132. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3133. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3134. */
  3135. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3136. int nr_exclusive, int sync, void *key)
  3137. {
  3138. wait_queue_t *curr, *next;
  3139. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3140. unsigned flags = curr->flags;
  3141. if (curr->func(curr, mode, sync, key) &&
  3142. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3143. break;
  3144. }
  3145. }
  3146. /**
  3147. * __wake_up - wake up threads blocked on a waitqueue.
  3148. * @q: the waitqueue
  3149. * @mode: which threads
  3150. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3151. * @key: is directly passed to the wakeup function
  3152. */
  3153. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3154. int nr_exclusive, void *key)
  3155. {
  3156. unsigned long flags;
  3157. spin_lock_irqsave(&q->lock, flags);
  3158. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3159. spin_unlock_irqrestore(&q->lock, flags);
  3160. }
  3161. EXPORT_SYMBOL(__wake_up);
  3162. /*
  3163. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3164. */
  3165. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3166. {
  3167. __wake_up_common(q, mode, 1, 0, NULL);
  3168. }
  3169. /**
  3170. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3171. * @q: the waitqueue
  3172. * @mode: which threads
  3173. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3174. *
  3175. * The sync wakeup differs that the waker knows that it will schedule
  3176. * away soon, so while the target thread will be woken up, it will not
  3177. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3178. * with each other. This can prevent needless bouncing between CPUs.
  3179. *
  3180. * On UP it can prevent extra preemption.
  3181. */
  3182. void fastcall
  3183. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3184. {
  3185. unsigned long flags;
  3186. int sync = 1;
  3187. if (unlikely(!q))
  3188. return;
  3189. if (unlikely(!nr_exclusive))
  3190. sync = 0;
  3191. spin_lock_irqsave(&q->lock, flags);
  3192. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3193. spin_unlock_irqrestore(&q->lock, flags);
  3194. }
  3195. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3196. void fastcall complete(struct completion *x)
  3197. {
  3198. unsigned long flags;
  3199. spin_lock_irqsave(&x->wait.lock, flags);
  3200. x->done++;
  3201. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3202. 1, 0, NULL);
  3203. spin_unlock_irqrestore(&x->wait.lock, flags);
  3204. }
  3205. EXPORT_SYMBOL(complete);
  3206. void fastcall complete_all(struct completion *x)
  3207. {
  3208. unsigned long flags;
  3209. spin_lock_irqsave(&x->wait.lock, flags);
  3210. x->done += UINT_MAX/2;
  3211. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3212. 0, 0, NULL);
  3213. spin_unlock_irqrestore(&x->wait.lock, flags);
  3214. }
  3215. EXPORT_SYMBOL(complete_all);
  3216. void fastcall __sched wait_for_completion(struct completion *x)
  3217. {
  3218. might_sleep();
  3219. spin_lock_irq(&x->wait.lock);
  3220. if (!x->done) {
  3221. DECLARE_WAITQUEUE(wait, current);
  3222. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3223. __add_wait_queue_tail(&x->wait, &wait);
  3224. do {
  3225. __set_current_state(TASK_UNINTERRUPTIBLE);
  3226. spin_unlock_irq(&x->wait.lock);
  3227. schedule();
  3228. spin_lock_irq(&x->wait.lock);
  3229. } while (!x->done);
  3230. __remove_wait_queue(&x->wait, &wait);
  3231. }
  3232. x->done--;
  3233. spin_unlock_irq(&x->wait.lock);
  3234. }
  3235. EXPORT_SYMBOL(wait_for_completion);
  3236. unsigned long fastcall __sched
  3237. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3238. {
  3239. might_sleep();
  3240. spin_lock_irq(&x->wait.lock);
  3241. if (!x->done) {
  3242. DECLARE_WAITQUEUE(wait, current);
  3243. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3244. __add_wait_queue_tail(&x->wait, &wait);
  3245. do {
  3246. __set_current_state(TASK_UNINTERRUPTIBLE);
  3247. spin_unlock_irq(&x->wait.lock);
  3248. timeout = schedule_timeout(timeout);
  3249. spin_lock_irq(&x->wait.lock);
  3250. if (!timeout) {
  3251. __remove_wait_queue(&x->wait, &wait);
  3252. goto out;
  3253. }
  3254. } while (!x->done);
  3255. __remove_wait_queue(&x->wait, &wait);
  3256. }
  3257. x->done--;
  3258. out:
  3259. spin_unlock_irq(&x->wait.lock);
  3260. return timeout;
  3261. }
  3262. EXPORT_SYMBOL(wait_for_completion_timeout);
  3263. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3264. {
  3265. int ret = 0;
  3266. might_sleep();
  3267. spin_lock_irq(&x->wait.lock);
  3268. if (!x->done) {
  3269. DECLARE_WAITQUEUE(wait, current);
  3270. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3271. __add_wait_queue_tail(&x->wait, &wait);
  3272. do {
  3273. if (signal_pending(current)) {
  3274. ret = -ERESTARTSYS;
  3275. __remove_wait_queue(&x->wait, &wait);
  3276. goto out;
  3277. }
  3278. __set_current_state(TASK_INTERRUPTIBLE);
  3279. spin_unlock_irq(&x->wait.lock);
  3280. schedule();
  3281. spin_lock_irq(&x->wait.lock);
  3282. } while (!x->done);
  3283. __remove_wait_queue(&x->wait, &wait);
  3284. }
  3285. x->done--;
  3286. out:
  3287. spin_unlock_irq(&x->wait.lock);
  3288. return ret;
  3289. }
  3290. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3291. unsigned long fastcall __sched
  3292. wait_for_completion_interruptible_timeout(struct completion *x,
  3293. unsigned long timeout)
  3294. {
  3295. might_sleep();
  3296. spin_lock_irq(&x->wait.lock);
  3297. if (!x->done) {
  3298. DECLARE_WAITQUEUE(wait, current);
  3299. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3300. __add_wait_queue_tail(&x->wait, &wait);
  3301. do {
  3302. if (signal_pending(current)) {
  3303. timeout = -ERESTARTSYS;
  3304. __remove_wait_queue(&x->wait, &wait);
  3305. goto out;
  3306. }
  3307. __set_current_state(TASK_INTERRUPTIBLE);
  3308. spin_unlock_irq(&x->wait.lock);
  3309. timeout = schedule_timeout(timeout);
  3310. spin_lock_irq(&x->wait.lock);
  3311. if (!timeout) {
  3312. __remove_wait_queue(&x->wait, &wait);
  3313. goto out;
  3314. }
  3315. } while (!x->done);
  3316. __remove_wait_queue(&x->wait, &wait);
  3317. }
  3318. x->done--;
  3319. out:
  3320. spin_unlock_irq(&x->wait.lock);
  3321. return timeout;
  3322. }
  3323. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3324. static inline void
  3325. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3326. {
  3327. spin_lock_irqsave(&q->lock, *flags);
  3328. __add_wait_queue(q, wait);
  3329. spin_unlock(&q->lock);
  3330. }
  3331. static inline void
  3332. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3333. {
  3334. spin_lock_irq(&q->lock);
  3335. __remove_wait_queue(q, wait);
  3336. spin_unlock_irqrestore(&q->lock, *flags);
  3337. }
  3338. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3339. {
  3340. unsigned long flags;
  3341. wait_queue_t wait;
  3342. init_waitqueue_entry(&wait, current);
  3343. current->state = TASK_INTERRUPTIBLE;
  3344. sleep_on_head(q, &wait, &flags);
  3345. schedule();
  3346. sleep_on_tail(q, &wait, &flags);
  3347. }
  3348. EXPORT_SYMBOL(interruptible_sleep_on);
  3349. long __sched
  3350. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3351. {
  3352. unsigned long flags;
  3353. wait_queue_t wait;
  3354. init_waitqueue_entry(&wait, current);
  3355. current->state = TASK_INTERRUPTIBLE;
  3356. sleep_on_head(q, &wait, &flags);
  3357. timeout = schedule_timeout(timeout);
  3358. sleep_on_tail(q, &wait, &flags);
  3359. return timeout;
  3360. }
  3361. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3362. void __sched sleep_on(wait_queue_head_t *q)
  3363. {
  3364. unsigned long flags;
  3365. wait_queue_t wait;
  3366. init_waitqueue_entry(&wait, current);
  3367. current->state = TASK_UNINTERRUPTIBLE;
  3368. sleep_on_head(q, &wait, &flags);
  3369. schedule();
  3370. sleep_on_tail(q, &wait, &flags);
  3371. }
  3372. EXPORT_SYMBOL(sleep_on);
  3373. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3374. {
  3375. unsigned long flags;
  3376. wait_queue_t wait;
  3377. init_waitqueue_entry(&wait, current);
  3378. current->state = TASK_UNINTERRUPTIBLE;
  3379. sleep_on_head(q, &wait, &flags);
  3380. timeout = schedule_timeout(timeout);
  3381. sleep_on_tail(q, &wait, &flags);
  3382. return timeout;
  3383. }
  3384. EXPORT_SYMBOL(sleep_on_timeout);
  3385. #ifdef CONFIG_RT_MUTEXES
  3386. /*
  3387. * rt_mutex_setprio - set the current priority of a task
  3388. * @p: task
  3389. * @prio: prio value (kernel-internal form)
  3390. *
  3391. * This function changes the 'effective' priority of a task. It does
  3392. * not touch ->normal_prio like __setscheduler().
  3393. *
  3394. * Used by the rt_mutex code to implement priority inheritance logic.
  3395. */
  3396. void rt_mutex_setprio(struct task_struct *p, int prio)
  3397. {
  3398. unsigned long flags;
  3399. int oldprio, on_rq;
  3400. struct rq *rq;
  3401. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3402. rq = task_rq_lock(p, &flags);
  3403. update_rq_clock(rq);
  3404. oldprio = p->prio;
  3405. on_rq = p->se.on_rq;
  3406. if (on_rq)
  3407. dequeue_task(rq, p, 0);
  3408. if (rt_prio(prio))
  3409. p->sched_class = &rt_sched_class;
  3410. else
  3411. p->sched_class = &fair_sched_class;
  3412. p->prio = prio;
  3413. if (on_rq) {
  3414. enqueue_task(rq, p, 0);
  3415. /*
  3416. * Reschedule if we are currently running on this runqueue and
  3417. * our priority decreased, or if we are not currently running on
  3418. * this runqueue and our priority is higher than the current's
  3419. */
  3420. if (task_running(rq, p)) {
  3421. if (p->prio > oldprio)
  3422. resched_task(rq->curr);
  3423. } else {
  3424. check_preempt_curr(rq, p);
  3425. }
  3426. }
  3427. task_rq_unlock(rq, &flags);
  3428. }
  3429. #endif
  3430. void set_user_nice(struct task_struct *p, long nice)
  3431. {
  3432. int old_prio, delta, on_rq;
  3433. unsigned long flags;
  3434. struct rq *rq;
  3435. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3436. return;
  3437. /*
  3438. * We have to be careful, if called from sys_setpriority(),
  3439. * the task might be in the middle of scheduling on another CPU.
  3440. */
  3441. rq = task_rq_lock(p, &flags);
  3442. update_rq_clock(rq);
  3443. /*
  3444. * The RT priorities are set via sched_setscheduler(), but we still
  3445. * allow the 'normal' nice value to be set - but as expected
  3446. * it wont have any effect on scheduling until the task is
  3447. * SCHED_FIFO/SCHED_RR:
  3448. */
  3449. if (task_has_rt_policy(p)) {
  3450. p->static_prio = NICE_TO_PRIO(nice);
  3451. goto out_unlock;
  3452. }
  3453. on_rq = p->se.on_rq;
  3454. if (on_rq) {
  3455. dequeue_task(rq, p, 0);
  3456. dec_load(rq, p);
  3457. }
  3458. p->static_prio = NICE_TO_PRIO(nice);
  3459. set_load_weight(p);
  3460. old_prio = p->prio;
  3461. p->prio = effective_prio(p);
  3462. delta = p->prio - old_prio;
  3463. if (on_rq) {
  3464. enqueue_task(rq, p, 0);
  3465. inc_load(rq, p);
  3466. /*
  3467. * If the task increased its priority or is running and
  3468. * lowered its priority, then reschedule its CPU:
  3469. */
  3470. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3471. resched_task(rq->curr);
  3472. }
  3473. out_unlock:
  3474. task_rq_unlock(rq, &flags);
  3475. }
  3476. EXPORT_SYMBOL(set_user_nice);
  3477. /*
  3478. * can_nice - check if a task can reduce its nice value
  3479. * @p: task
  3480. * @nice: nice value
  3481. */
  3482. int can_nice(const struct task_struct *p, const int nice)
  3483. {
  3484. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3485. int nice_rlim = 20 - nice;
  3486. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3487. capable(CAP_SYS_NICE));
  3488. }
  3489. #ifdef __ARCH_WANT_SYS_NICE
  3490. /*
  3491. * sys_nice - change the priority of the current process.
  3492. * @increment: priority increment
  3493. *
  3494. * sys_setpriority is a more generic, but much slower function that
  3495. * does similar things.
  3496. */
  3497. asmlinkage long sys_nice(int increment)
  3498. {
  3499. long nice, retval;
  3500. /*
  3501. * Setpriority might change our priority at the same moment.
  3502. * We don't have to worry. Conceptually one call occurs first
  3503. * and we have a single winner.
  3504. */
  3505. if (increment < -40)
  3506. increment = -40;
  3507. if (increment > 40)
  3508. increment = 40;
  3509. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3510. if (nice < -20)
  3511. nice = -20;
  3512. if (nice > 19)
  3513. nice = 19;
  3514. if (increment < 0 && !can_nice(current, nice))
  3515. return -EPERM;
  3516. retval = security_task_setnice(current, nice);
  3517. if (retval)
  3518. return retval;
  3519. set_user_nice(current, nice);
  3520. return 0;
  3521. }
  3522. #endif
  3523. /**
  3524. * task_prio - return the priority value of a given task.
  3525. * @p: the task in question.
  3526. *
  3527. * This is the priority value as seen by users in /proc.
  3528. * RT tasks are offset by -200. Normal tasks are centered
  3529. * around 0, value goes from -16 to +15.
  3530. */
  3531. int task_prio(const struct task_struct *p)
  3532. {
  3533. return p->prio - MAX_RT_PRIO;
  3534. }
  3535. /**
  3536. * task_nice - return the nice value of a given task.
  3537. * @p: the task in question.
  3538. */
  3539. int task_nice(const struct task_struct *p)
  3540. {
  3541. return TASK_NICE(p);
  3542. }
  3543. EXPORT_SYMBOL_GPL(task_nice);
  3544. /**
  3545. * idle_cpu - is a given cpu idle currently?
  3546. * @cpu: the processor in question.
  3547. */
  3548. int idle_cpu(int cpu)
  3549. {
  3550. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3551. }
  3552. /**
  3553. * idle_task - return the idle task for a given cpu.
  3554. * @cpu: the processor in question.
  3555. */
  3556. struct task_struct *idle_task(int cpu)
  3557. {
  3558. return cpu_rq(cpu)->idle;
  3559. }
  3560. /**
  3561. * find_process_by_pid - find a process with a matching PID value.
  3562. * @pid: the pid in question.
  3563. */
  3564. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3565. {
  3566. return pid ? find_task_by_pid(pid) : current;
  3567. }
  3568. /* Actually do priority change: must hold rq lock. */
  3569. static void
  3570. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3571. {
  3572. BUG_ON(p->se.on_rq);
  3573. p->policy = policy;
  3574. switch (p->policy) {
  3575. case SCHED_NORMAL:
  3576. case SCHED_BATCH:
  3577. case SCHED_IDLE:
  3578. p->sched_class = &fair_sched_class;
  3579. break;
  3580. case SCHED_FIFO:
  3581. case SCHED_RR:
  3582. p->sched_class = &rt_sched_class;
  3583. break;
  3584. }
  3585. p->rt_priority = prio;
  3586. p->normal_prio = normal_prio(p);
  3587. /* we are holding p->pi_lock already */
  3588. p->prio = rt_mutex_getprio(p);
  3589. set_load_weight(p);
  3590. }
  3591. /**
  3592. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3593. * @p: the task in question.
  3594. * @policy: new policy.
  3595. * @param: structure containing the new RT priority.
  3596. *
  3597. * NOTE that the task may be already dead.
  3598. */
  3599. int sched_setscheduler(struct task_struct *p, int policy,
  3600. struct sched_param *param)
  3601. {
  3602. int retval, oldprio, oldpolicy = -1, on_rq;
  3603. unsigned long flags;
  3604. struct rq *rq;
  3605. /* may grab non-irq protected spin_locks */
  3606. BUG_ON(in_interrupt());
  3607. recheck:
  3608. /* double check policy once rq lock held */
  3609. if (policy < 0)
  3610. policy = oldpolicy = p->policy;
  3611. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3612. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3613. policy != SCHED_IDLE)
  3614. return -EINVAL;
  3615. /*
  3616. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3617. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3618. * SCHED_BATCH and SCHED_IDLE is 0.
  3619. */
  3620. if (param->sched_priority < 0 ||
  3621. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3622. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3623. return -EINVAL;
  3624. if (rt_policy(policy) != (param->sched_priority != 0))
  3625. return -EINVAL;
  3626. /*
  3627. * Allow unprivileged RT tasks to decrease priority:
  3628. */
  3629. if (!capable(CAP_SYS_NICE)) {
  3630. if (rt_policy(policy)) {
  3631. unsigned long rlim_rtprio;
  3632. if (!lock_task_sighand(p, &flags))
  3633. return -ESRCH;
  3634. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3635. unlock_task_sighand(p, &flags);
  3636. /* can't set/change the rt policy */
  3637. if (policy != p->policy && !rlim_rtprio)
  3638. return -EPERM;
  3639. /* can't increase priority */
  3640. if (param->sched_priority > p->rt_priority &&
  3641. param->sched_priority > rlim_rtprio)
  3642. return -EPERM;
  3643. }
  3644. /*
  3645. * Like positive nice levels, dont allow tasks to
  3646. * move out of SCHED_IDLE either:
  3647. */
  3648. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3649. return -EPERM;
  3650. /* can't change other user's priorities */
  3651. if ((current->euid != p->euid) &&
  3652. (current->euid != p->uid))
  3653. return -EPERM;
  3654. }
  3655. retval = security_task_setscheduler(p, policy, param);
  3656. if (retval)
  3657. return retval;
  3658. /*
  3659. * make sure no PI-waiters arrive (or leave) while we are
  3660. * changing the priority of the task:
  3661. */
  3662. spin_lock_irqsave(&p->pi_lock, flags);
  3663. /*
  3664. * To be able to change p->policy safely, the apropriate
  3665. * runqueue lock must be held.
  3666. */
  3667. rq = __task_rq_lock(p);
  3668. /* recheck policy now with rq lock held */
  3669. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3670. policy = oldpolicy = -1;
  3671. __task_rq_unlock(rq);
  3672. spin_unlock_irqrestore(&p->pi_lock, flags);
  3673. goto recheck;
  3674. }
  3675. update_rq_clock(rq);
  3676. on_rq = p->se.on_rq;
  3677. if (on_rq)
  3678. deactivate_task(rq, p, 0);
  3679. oldprio = p->prio;
  3680. __setscheduler(rq, p, policy, param->sched_priority);
  3681. if (on_rq) {
  3682. activate_task(rq, p, 0);
  3683. /*
  3684. * Reschedule if we are currently running on this runqueue and
  3685. * our priority decreased, or if we are not currently running on
  3686. * this runqueue and our priority is higher than the current's
  3687. */
  3688. if (task_running(rq, p)) {
  3689. if (p->prio > oldprio)
  3690. resched_task(rq->curr);
  3691. } else {
  3692. check_preempt_curr(rq, p);
  3693. }
  3694. }
  3695. __task_rq_unlock(rq);
  3696. spin_unlock_irqrestore(&p->pi_lock, flags);
  3697. rt_mutex_adjust_pi(p);
  3698. return 0;
  3699. }
  3700. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3701. static int
  3702. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3703. {
  3704. struct sched_param lparam;
  3705. struct task_struct *p;
  3706. int retval;
  3707. if (!param || pid < 0)
  3708. return -EINVAL;
  3709. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3710. return -EFAULT;
  3711. rcu_read_lock();
  3712. retval = -ESRCH;
  3713. p = find_process_by_pid(pid);
  3714. if (p != NULL)
  3715. retval = sched_setscheduler(p, policy, &lparam);
  3716. rcu_read_unlock();
  3717. return retval;
  3718. }
  3719. /**
  3720. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3721. * @pid: the pid in question.
  3722. * @policy: new policy.
  3723. * @param: structure containing the new RT priority.
  3724. */
  3725. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3726. struct sched_param __user *param)
  3727. {
  3728. /* negative values for policy are not valid */
  3729. if (policy < 0)
  3730. return -EINVAL;
  3731. return do_sched_setscheduler(pid, policy, param);
  3732. }
  3733. /**
  3734. * sys_sched_setparam - set/change the RT priority of a thread
  3735. * @pid: the pid in question.
  3736. * @param: structure containing the new RT priority.
  3737. */
  3738. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3739. {
  3740. return do_sched_setscheduler(pid, -1, param);
  3741. }
  3742. /**
  3743. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3744. * @pid: the pid in question.
  3745. */
  3746. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3747. {
  3748. struct task_struct *p;
  3749. int retval = -EINVAL;
  3750. if (pid < 0)
  3751. goto out_nounlock;
  3752. retval = -ESRCH;
  3753. read_lock(&tasklist_lock);
  3754. p = find_process_by_pid(pid);
  3755. if (p) {
  3756. retval = security_task_getscheduler(p);
  3757. if (!retval)
  3758. retval = p->policy;
  3759. }
  3760. read_unlock(&tasklist_lock);
  3761. out_nounlock:
  3762. return retval;
  3763. }
  3764. /**
  3765. * sys_sched_getscheduler - get the RT priority of a thread
  3766. * @pid: the pid in question.
  3767. * @param: structure containing the RT priority.
  3768. */
  3769. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3770. {
  3771. struct sched_param lp;
  3772. struct task_struct *p;
  3773. int retval = -EINVAL;
  3774. if (!param || pid < 0)
  3775. goto out_nounlock;
  3776. read_lock(&tasklist_lock);
  3777. p = find_process_by_pid(pid);
  3778. retval = -ESRCH;
  3779. if (!p)
  3780. goto out_unlock;
  3781. retval = security_task_getscheduler(p);
  3782. if (retval)
  3783. goto out_unlock;
  3784. lp.sched_priority = p->rt_priority;
  3785. read_unlock(&tasklist_lock);
  3786. /*
  3787. * This one might sleep, we cannot do it with a spinlock held ...
  3788. */
  3789. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3790. out_nounlock:
  3791. return retval;
  3792. out_unlock:
  3793. read_unlock(&tasklist_lock);
  3794. return retval;
  3795. }
  3796. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3797. {
  3798. cpumask_t cpus_allowed;
  3799. struct task_struct *p;
  3800. int retval;
  3801. mutex_lock(&sched_hotcpu_mutex);
  3802. read_lock(&tasklist_lock);
  3803. p = find_process_by_pid(pid);
  3804. if (!p) {
  3805. read_unlock(&tasklist_lock);
  3806. mutex_unlock(&sched_hotcpu_mutex);
  3807. return -ESRCH;
  3808. }
  3809. /*
  3810. * It is not safe to call set_cpus_allowed with the
  3811. * tasklist_lock held. We will bump the task_struct's
  3812. * usage count and then drop tasklist_lock.
  3813. */
  3814. get_task_struct(p);
  3815. read_unlock(&tasklist_lock);
  3816. retval = -EPERM;
  3817. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3818. !capable(CAP_SYS_NICE))
  3819. goto out_unlock;
  3820. retval = security_task_setscheduler(p, 0, NULL);
  3821. if (retval)
  3822. goto out_unlock;
  3823. cpus_allowed = cpuset_cpus_allowed(p);
  3824. cpus_and(new_mask, new_mask, cpus_allowed);
  3825. retval = set_cpus_allowed(p, new_mask);
  3826. out_unlock:
  3827. put_task_struct(p);
  3828. mutex_unlock(&sched_hotcpu_mutex);
  3829. return retval;
  3830. }
  3831. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3832. cpumask_t *new_mask)
  3833. {
  3834. if (len < sizeof(cpumask_t)) {
  3835. memset(new_mask, 0, sizeof(cpumask_t));
  3836. } else if (len > sizeof(cpumask_t)) {
  3837. len = sizeof(cpumask_t);
  3838. }
  3839. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3840. }
  3841. /**
  3842. * sys_sched_setaffinity - set the cpu affinity of a process
  3843. * @pid: pid of the process
  3844. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3845. * @user_mask_ptr: user-space pointer to the new cpu mask
  3846. */
  3847. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3848. unsigned long __user *user_mask_ptr)
  3849. {
  3850. cpumask_t new_mask;
  3851. int retval;
  3852. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3853. if (retval)
  3854. return retval;
  3855. return sched_setaffinity(pid, new_mask);
  3856. }
  3857. /*
  3858. * Represents all cpu's present in the system
  3859. * In systems capable of hotplug, this map could dynamically grow
  3860. * as new cpu's are detected in the system via any platform specific
  3861. * method, such as ACPI for e.g.
  3862. */
  3863. cpumask_t cpu_present_map __read_mostly;
  3864. EXPORT_SYMBOL(cpu_present_map);
  3865. #ifndef CONFIG_SMP
  3866. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3867. EXPORT_SYMBOL(cpu_online_map);
  3868. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3869. EXPORT_SYMBOL(cpu_possible_map);
  3870. #endif
  3871. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3872. {
  3873. struct task_struct *p;
  3874. int retval;
  3875. mutex_lock(&sched_hotcpu_mutex);
  3876. read_lock(&tasklist_lock);
  3877. retval = -ESRCH;
  3878. p = find_process_by_pid(pid);
  3879. if (!p)
  3880. goto out_unlock;
  3881. retval = security_task_getscheduler(p);
  3882. if (retval)
  3883. goto out_unlock;
  3884. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3885. out_unlock:
  3886. read_unlock(&tasklist_lock);
  3887. mutex_unlock(&sched_hotcpu_mutex);
  3888. return retval;
  3889. }
  3890. /**
  3891. * sys_sched_getaffinity - get the cpu affinity of a process
  3892. * @pid: pid of the process
  3893. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3894. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3895. */
  3896. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3897. unsigned long __user *user_mask_ptr)
  3898. {
  3899. int ret;
  3900. cpumask_t mask;
  3901. if (len < sizeof(cpumask_t))
  3902. return -EINVAL;
  3903. ret = sched_getaffinity(pid, &mask);
  3904. if (ret < 0)
  3905. return ret;
  3906. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3907. return -EFAULT;
  3908. return sizeof(cpumask_t);
  3909. }
  3910. /**
  3911. * sys_sched_yield - yield the current processor to other threads.
  3912. *
  3913. * This function yields the current CPU to other tasks. If there are no
  3914. * other threads running on this CPU then this function will return.
  3915. */
  3916. asmlinkage long sys_sched_yield(void)
  3917. {
  3918. struct rq *rq = this_rq_lock();
  3919. schedstat_inc(rq, yld_cnt);
  3920. current->sched_class->yield_task(rq, current);
  3921. /*
  3922. * Since we are going to call schedule() anyway, there's
  3923. * no need to preempt or enable interrupts:
  3924. */
  3925. __release(rq->lock);
  3926. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3927. _raw_spin_unlock(&rq->lock);
  3928. preempt_enable_no_resched();
  3929. schedule();
  3930. return 0;
  3931. }
  3932. static void __cond_resched(void)
  3933. {
  3934. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3935. __might_sleep(__FILE__, __LINE__);
  3936. #endif
  3937. /*
  3938. * The BKS might be reacquired before we have dropped
  3939. * PREEMPT_ACTIVE, which could trigger a second
  3940. * cond_resched() call.
  3941. */
  3942. do {
  3943. add_preempt_count(PREEMPT_ACTIVE);
  3944. schedule();
  3945. sub_preempt_count(PREEMPT_ACTIVE);
  3946. } while (need_resched());
  3947. }
  3948. int __sched cond_resched(void)
  3949. {
  3950. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3951. system_state == SYSTEM_RUNNING) {
  3952. __cond_resched();
  3953. return 1;
  3954. }
  3955. return 0;
  3956. }
  3957. EXPORT_SYMBOL(cond_resched);
  3958. /*
  3959. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3960. * call schedule, and on return reacquire the lock.
  3961. *
  3962. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3963. * operations here to prevent schedule() from being called twice (once via
  3964. * spin_unlock(), once by hand).
  3965. */
  3966. int cond_resched_lock(spinlock_t *lock)
  3967. {
  3968. int ret = 0;
  3969. if (need_lockbreak(lock)) {
  3970. spin_unlock(lock);
  3971. cpu_relax();
  3972. ret = 1;
  3973. spin_lock(lock);
  3974. }
  3975. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3976. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3977. _raw_spin_unlock(lock);
  3978. preempt_enable_no_resched();
  3979. __cond_resched();
  3980. ret = 1;
  3981. spin_lock(lock);
  3982. }
  3983. return ret;
  3984. }
  3985. EXPORT_SYMBOL(cond_resched_lock);
  3986. int __sched cond_resched_softirq(void)
  3987. {
  3988. BUG_ON(!in_softirq());
  3989. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3990. local_bh_enable();
  3991. __cond_resched();
  3992. local_bh_disable();
  3993. return 1;
  3994. }
  3995. return 0;
  3996. }
  3997. EXPORT_SYMBOL(cond_resched_softirq);
  3998. /**
  3999. * yield - yield the current processor to other threads.
  4000. *
  4001. * This is a shortcut for kernel-space yielding - it marks the
  4002. * thread runnable and calls sys_sched_yield().
  4003. */
  4004. void __sched yield(void)
  4005. {
  4006. set_current_state(TASK_RUNNING);
  4007. sys_sched_yield();
  4008. }
  4009. EXPORT_SYMBOL(yield);
  4010. /*
  4011. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4012. * that process accounting knows that this is a task in IO wait state.
  4013. *
  4014. * But don't do that if it is a deliberate, throttling IO wait (this task
  4015. * has set its backing_dev_info: the queue against which it should throttle)
  4016. */
  4017. void __sched io_schedule(void)
  4018. {
  4019. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4020. delayacct_blkio_start();
  4021. atomic_inc(&rq->nr_iowait);
  4022. schedule();
  4023. atomic_dec(&rq->nr_iowait);
  4024. delayacct_blkio_end();
  4025. }
  4026. EXPORT_SYMBOL(io_schedule);
  4027. long __sched io_schedule_timeout(long timeout)
  4028. {
  4029. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4030. long ret;
  4031. delayacct_blkio_start();
  4032. atomic_inc(&rq->nr_iowait);
  4033. ret = schedule_timeout(timeout);
  4034. atomic_dec(&rq->nr_iowait);
  4035. delayacct_blkio_end();
  4036. return ret;
  4037. }
  4038. /**
  4039. * sys_sched_get_priority_max - return maximum RT priority.
  4040. * @policy: scheduling class.
  4041. *
  4042. * this syscall returns the maximum rt_priority that can be used
  4043. * by a given scheduling class.
  4044. */
  4045. asmlinkage long sys_sched_get_priority_max(int policy)
  4046. {
  4047. int ret = -EINVAL;
  4048. switch (policy) {
  4049. case SCHED_FIFO:
  4050. case SCHED_RR:
  4051. ret = MAX_USER_RT_PRIO-1;
  4052. break;
  4053. case SCHED_NORMAL:
  4054. case SCHED_BATCH:
  4055. case SCHED_IDLE:
  4056. ret = 0;
  4057. break;
  4058. }
  4059. return ret;
  4060. }
  4061. /**
  4062. * sys_sched_get_priority_min - return minimum RT priority.
  4063. * @policy: scheduling class.
  4064. *
  4065. * this syscall returns the minimum rt_priority that can be used
  4066. * by a given scheduling class.
  4067. */
  4068. asmlinkage long sys_sched_get_priority_min(int policy)
  4069. {
  4070. int ret = -EINVAL;
  4071. switch (policy) {
  4072. case SCHED_FIFO:
  4073. case SCHED_RR:
  4074. ret = 1;
  4075. break;
  4076. case SCHED_NORMAL:
  4077. case SCHED_BATCH:
  4078. case SCHED_IDLE:
  4079. ret = 0;
  4080. }
  4081. return ret;
  4082. }
  4083. /**
  4084. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4085. * @pid: pid of the process.
  4086. * @interval: userspace pointer to the timeslice value.
  4087. *
  4088. * this syscall writes the default timeslice value of a given process
  4089. * into the user-space timespec buffer. A value of '0' means infinity.
  4090. */
  4091. asmlinkage
  4092. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4093. {
  4094. struct task_struct *p;
  4095. int retval = -EINVAL;
  4096. struct timespec t;
  4097. if (pid < 0)
  4098. goto out_nounlock;
  4099. retval = -ESRCH;
  4100. read_lock(&tasklist_lock);
  4101. p = find_process_by_pid(pid);
  4102. if (!p)
  4103. goto out_unlock;
  4104. retval = security_task_getscheduler(p);
  4105. if (retval)
  4106. goto out_unlock;
  4107. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4108. 0 : static_prio_timeslice(p->static_prio), &t);
  4109. read_unlock(&tasklist_lock);
  4110. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4111. out_nounlock:
  4112. return retval;
  4113. out_unlock:
  4114. read_unlock(&tasklist_lock);
  4115. return retval;
  4116. }
  4117. static const char stat_nam[] = "RSDTtZX";
  4118. static void show_task(struct task_struct *p)
  4119. {
  4120. unsigned long free = 0;
  4121. unsigned state;
  4122. state = p->state ? __ffs(p->state) + 1 : 0;
  4123. printk("%-13.13s %c", p->comm,
  4124. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4125. #if BITS_PER_LONG == 32
  4126. if (state == TASK_RUNNING)
  4127. printk(" running ");
  4128. else
  4129. printk(" %08lx ", thread_saved_pc(p));
  4130. #else
  4131. if (state == TASK_RUNNING)
  4132. printk(" running task ");
  4133. else
  4134. printk(" %016lx ", thread_saved_pc(p));
  4135. #endif
  4136. #ifdef CONFIG_DEBUG_STACK_USAGE
  4137. {
  4138. unsigned long *n = end_of_stack(p);
  4139. while (!*n)
  4140. n++;
  4141. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4142. }
  4143. #endif
  4144. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4145. if (state != TASK_RUNNING)
  4146. show_stack(p, NULL);
  4147. }
  4148. void show_state_filter(unsigned long state_filter)
  4149. {
  4150. struct task_struct *g, *p;
  4151. #if BITS_PER_LONG == 32
  4152. printk(KERN_INFO
  4153. " task PC stack pid father\n");
  4154. #else
  4155. printk(KERN_INFO
  4156. " task PC stack pid father\n");
  4157. #endif
  4158. read_lock(&tasklist_lock);
  4159. do_each_thread(g, p) {
  4160. /*
  4161. * reset the NMI-timeout, listing all files on a slow
  4162. * console might take alot of time:
  4163. */
  4164. touch_nmi_watchdog();
  4165. if (!state_filter || (p->state & state_filter))
  4166. show_task(p);
  4167. } while_each_thread(g, p);
  4168. touch_all_softlockup_watchdogs();
  4169. #ifdef CONFIG_SCHED_DEBUG
  4170. sysrq_sched_debug_show();
  4171. #endif
  4172. read_unlock(&tasklist_lock);
  4173. /*
  4174. * Only show locks if all tasks are dumped:
  4175. */
  4176. if (state_filter == -1)
  4177. debug_show_all_locks();
  4178. }
  4179. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4180. {
  4181. idle->sched_class = &idle_sched_class;
  4182. }
  4183. /**
  4184. * init_idle - set up an idle thread for a given CPU
  4185. * @idle: task in question
  4186. * @cpu: cpu the idle task belongs to
  4187. *
  4188. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4189. * flag, to make booting more robust.
  4190. */
  4191. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4192. {
  4193. struct rq *rq = cpu_rq(cpu);
  4194. unsigned long flags;
  4195. __sched_fork(idle);
  4196. idle->se.exec_start = sched_clock();
  4197. idle->prio = idle->normal_prio = MAX_PRIO;
  4198. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4199. __set_task_cpu(idle, cpu);
  4200. spin_lock_irqsave(&rq->lock, flags);
  4201. rq->curr = rq->idle = idle;
  4202. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4203. idle->oncpu = 1;
  4204. #endif
  4205. spin_unlock_irqrestore(&rq->lock, flags);
  4206. /* Set the preempt count _outside_ the spinlocks! */
  4207. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4208. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4209. #else
  4210. task_thread_info(idle)->preempt_count = 0;
  4211. #endif
  4212. /*
  4213. * The idle tasks have their own, simple scheduling class:
  4214. */
  4215. idle->sched_class = &idle_sched_class;
  4216. }
  4217. /*
  4218. * In a system that switches off the HZ timer nohz_cpu_mask
  4219. * indicates which cpus entered this state. This is used
  4220. * in the rcu update to wait only for active cpus. For system
  4221. * which do not switch off the HZ timer nohz_cpu_mask should
  4222. * always be CPU_MASK_NONE.
  4223. */
  4224. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4225. #ifdef CONFIG_SMP
  4226. /*
  4227. * This is how migration works:
  4228. *
  4229. * 1) we queue a struct migration_req structure in the source CPU's
  4230. * runqueue and wake up that CPU's migration thread.
  4231. * 2) we down() the locked semaphore => thread blocks.
  4232. * 3) migration thread wakes up (implicitly it forces the migrated
  4233. * thread off the CPU)
  4234. * 4) it gets the migration request and checks whether the migrated
  4235. * task is still in the wrong runqueue.
  4236. * 5) if it's in the wrong runqueue then the migration thread removes
  4237. * it and puts it into the right queue.
  4238. * 6) migration thread up()s the semaphore.
  4239. * 7) we wake up and the migration is done.
  4240. */
  4241. /*
  4242. * Change a given task's CPU affinity. Migrate the thread to a
  4243. * proper CPU and schedule it away if the CPU it's executing on
  4244. * is removed from the allowed bitmask.
  4245. *
  4246. * NOTE: the caller must have a valid reference to the task, the
  4247. * task must not exit() & deallocate itself prematurely. The
  4248. * call is not atomic; no spinlocks may be held.
  4249. */
  4250. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4251. {
  4252. struct migration_req req;
  4253. unsigned long flags;
  4254. struct rq *rq;
  4255. int ret = 0;
  4256. rq = task_rq_lock(p, &flags);
  4257. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4258. ret = -EINVAL;
  4259. goto out;
  4260. }
  4261. p->cpus_allowed = new_mask;
  4262. /* Can the task run on the task's current CPU? If so, we're done */
  4263. if (cpu_isset(task_cpu(p), new_mask))
  4264. goto out;
  4265. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4266. /* Need help from migration thread: drop lock and wait. */
  4267. task_rq_unlock(rq, &flags);
  4268. wake_up_process(rq->migration_thread);
  4269. wait_for_completion(&req.done);
  4270. tlb_migrate_finish(p->mm);
  4271. return 0;
  4272. }
  4273. out:
  4274. task_rq_unlock(rq, &flags);
  4275. return ret;
  4276. }
  4277. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4278. /*
  4279. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4280. * this because either it can't run here any more (set_cpus_allowed()
  4281. * away from this CPU, or CPU going down), or because we're
  4282. * attempting to rebalance this task on exec (sched_exec).
  4283. *
  4284. * So we race with normal scheduler movements, but that's OK, as long
  4285. * as the task is no longer on this CPU.
  4286. *
  4287. * Returns non-zero if task was successfully migrated.
  4288. */
  4289. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4290. {
  4291. struct rq *rq_dest, *rq_src;
  4292. int ret = 0, on_rq;
  4293. if (unlikely(cpu_is_offline(dest_cpu)))
  4294. return ret;
  4295. rq_src = cpu_rq(src_cpu);
  4296. rq_dest = cpu_rq(dest_cpu);
  4297. double_rq_lock(rq_src, rq_dest);
  4298. /* Already moved. */
  4299. if (task_cpu(p) != src_cpu)
  4300. goto out;
  4301. /* Affinity changed (again). */
  4302. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4303. goto out;
  4304. on_rq = p->se.on_rq;
  4305. if (on_rq)
  4306. deactivate_task(rq_src, p, 0);
  4307. set_task_cpu(p, dest_cpu);
  4308. if (on_rq) {
  4309. activate_task(rq_dest, p, 0);
  4310. check_preempt_curr(rq_dest, p);
  4311. }
  4312. ret = 1;
  4313. out:
  4314. double_rq_unlock(rq_src, rq_dest);
  4315. return ret;
  4316. }
  4317. /*
  4318. * migration_thread - this is a highprio system thread that performs
  4319. * thread migration by bumping thread off CPU then 'pushing' onto
  4320. * another runqueue.
  4321. */
  4322. static int migration_thread(void *data)
  4323. {
  4324. int cpu = (long)data;
  4325. struct rq *rq;
  4326. rq = cpu_rq(cpu);
  4327. BUG_ON(rq->migration_thread != current);
  4328. set_current_state(TASK_INTERRUPTIBLE);
  4329. while (!kthread_should_stop()) {
  4330. struct migration_req *req;
  4331. struct list_head *head;
  4332. spin_lock_irq(&rq->lock);
  4333. if (cpu_is_offline(cpu)) {
  4334. spin_unlock_irq(&rq->lock);
  4335. goto wait_to_die;
  4336. }
  4337. if (rq->active_balance) {
  4338. active_load_balance(rq, cpu);
  4339. rq->active_balance = 0;
  4340. }
  4341. head = &rq->migration_queue;
  4342. if (list_empty(head)) {
  4343. spin_unlock_irq(&rq->lock);
  4344. schedule();
  4345. set_current_state(TASK_INTERRUPTIBLE);
  4346. continue;
  4347. }
  4348. req = list_entry(head->next, struct migration_req, list);
  4349. list_del_init(head->next);
  4350. spin_unlock(&rq->lock);
  4351. __migrate_task(req->task, cpu, req->dest_cpu);
  4352. local_irq_enable();
  4353. complete(&req->done);
  4354. }
  4355. __set_current_state(TASK_RUNNING);
  4356. return 0;
  4357. wait_to_die:
  4358. /* Wait for kthread_stop */
  4359. set_current_state(TASK_INTERRUPTIBLE);
  4360. while (!kthread_should_stop()) {
  4361. schedule();
  4362. set_current_state(TASK_INTERRUPTIBLE);
  4363. }
  4364. __set_current_state(TASK_RUNNING);
  4365. return 0;
  4366. }
  4367. #ifdef CONFIG_HOTPLUG_CPU
  4368. /*
  4369. * Figure out where task on dead CPU should go, use force if neccessary.
  4370. * NOTE: interrupts should be disabled by the caller
  4371. */
  4372. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4373. {
  4374. unsigned long flags;
  4375. cpumask_t mask;
  4376. struct rq *rq;
  4377. int dest_cpu;
  4378. restart:
  4379. /* On same node? */
  4380. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4381. cpus_and(mask, mask, p->cpus_allowed);
  4382. dest_cpu = any_online_cpu(mask);
  4383. /* On any allowed CPU? */
  4384. if (dest_cpu == NR_CPUS)
  4385. dest_cpu = any_online_cpu(p->cpus_allowed);
  4386. /* No more Mr. Nice Guy. */
  4387. if (dest_cpu == NR_CPUS) {
  4388. rq = task_rq_lock(p, &flags);
  4389. cpus_setall(p->cpus_allowed);
  4390. dest_cpu = any_online_cpu(p->cpus_allowed);
  4391. task_rq_unlock(rq, &flags);
  4392. /*
  4393. * Don't tell them about moving exiting tasks or
  4394. * kernel threads (both mm NULL), since they never
  4395. * leave kernel.
  4396. */
  4397. if (p->mm && printk_ratelimit())
  4398. printk(KERN_INFO "process %d (%s) no "
  4399. "longer affine to cpu%d\n",
  4400. p->pid, p->comm, dead_cpu);
  4401. }
  4402. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4403. goto restart;
  4404. }
  4405. /*
  4406. * While a dead CPU has no uninterruptible tasks queued at this point,
  4407. * it might still have a nonzero ->nr_uninterruptible counter, because
  4408. * for performance reasons the counter is not stricly tracking tasks to
  4409. * their home CPUs. So we just add the counter to another CPU's counter,
  4410. * to keep the global sum constant after CPU-down:
  4411. */
  4412. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4413. {
  4414. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4415. unsigned long flags;
  4416. local_irq_save(flags);
  4417. double_rq_lock(rq_src, rq_dest);
  4418. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4419. rq_src->nr_uninterruptible = 0;
  4420. double_rq_unlock(rq_src, rq_dest);
  4421. local_irq_restore(flags);
  4422. }
  4423. /* Run through task list and migrate tasks from the dead cpu. */
  4424. static void migrate_live_tasks(int src_cpu)
  4425. {
  4426. struct task_struct *p, *t;
  4427. write_lock_irq(&tasklist_lock);
  4428. do_each_thread(t, p) {
  4429. if (p == current)
  4430. continue;
  4431. if (task_cpu(p) == src_cpu)
  4432. move_task_off_dead_cpu(src_cpu, p);
  4433. } while_each_thread(t, p);
  4434. write_unlock_irq(&tasklist_lock);
  4435. }
  4436. /*
  4437. * Schedules idle task to be the next runnable task on current CPU.
  4438. * It does so by boosting its priority to highest possible and adding it to
  4439. * the _front_ of the runqueue. Used by CPU offline code.
  4440. */
  4441. void sched_idle_next(void)
  4442. {
  4443. int this_cpu = smp_processor_id();
  4444. struct rq *rq = cpu_rq(this_cpu);
  4445. struct task_struct *p = rq->idle;
  4446. unsigned long flags;
  4447. /* cpu has to be offline */
  4448. BUG_ON(cpu_online(this_cpu));
  4449. /*
  4450. * Strictly not necessary since rest of the CPUs are stopped by now
  4451. * and interrupts disabled on the current cpu.
  4452. */
  4453. spin_lock_irqsave(&rq->lock, flags);
  4454. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4455. /* Add idle task to the _front_ of its priority queue: */
  4456. activate_idle_task(p, rq);
  4457. spin_unlock_irqrestore(&rq->lock, flags);
  4458. }
  4459. /*
  4460. * Ensures that the idle task is using init_mm right before its cpu goes
  4461. * offline.
  4462. */
  4463. void idle_task_exit(void)
  4464. {
  4465. struct mm_struct *mm = current->active_mm;
  4466. BUG_ON(cpu_online(smp_processor_id()));
  4467. if (mm != &init_mm)
  4468. switch_mm(mm, &init_mm, current);
  4469. mmdrop(mm);
  4470. }
  4471. /* called under rq->lock with disabled interrupts */
  4472. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4473. {
  4474. struct rq *rq = cpu_rq(dead_cpu);
  4475. /* Must be exiting, otherwise would be on tasklist. */
  4476. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4477. /* Cannot have done final schedule yet: would have vanished. */
  4478. BUG_ON(p->state == TASK_DEAD);
  4479. get_task_struct(p);
  4480. /*
  4481. * Drop lock around migration; if someone else moves it,
  4482. * that's OK. No task can be added to this CPU, so iteration is
  4483. * fine.
  4484. * NOTE: interrupts should be left disabled --dev@
  4485. */
  4486. spin_unlock(&rq->lock);
  4487. move_task_off_dead_cpu(dead_cpu, p);
  4488. spin_lock(&rq->lock);
  4489. put_task_struct(p);
  4490. }
  4491. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4492. static void migrate_dead_tasks(unsigned int dead_cpu)
  4493. {
  4494. struct rq *rq = cpu_rq(dead_cpu);
  4495. struct task_struct *next;
  4496. for ( ; ; ) {
  4497. if (!rq->nr_running)
  4498. break;
  4499. update_rq_clock(rq);
  4500. next = pick_next_task(rq, rq->curr);
  4501. if (!next)
  4502. break;
  4503. migrate_dead(dead_cpu, next);
  4504. }
  4505. }
  4506. #endif /* CONFIG_HOTPLUG_CPU */
  4507. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4508. static struct ctl_table sd_ctl_dir[] = {
  4509. {
  4510. .procname = "sched_domain",
  4511. .mode = 0555,
  4512. },
  4513. {0,},
  4514. };
  4515. static struct ctl_table sd_ctl_root[] = {
  4516. {
  4517. .ctl_name = CTL_KERN,
  4518. .procname = "kernel",
  4519. .mode = 0555,
  4520. .child = sd_ctl_dir,
  4521. },
  4522. {0,},
  4523. };
  4524. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4525. {
  4526. struct ctl_table *entry =
  4527. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4528. BUG_ON(!entry);
  4529. memset(entry, 0, n * sizeof(struct ctl_table));
  4530. return entry;
  4531. }
  4532. static void
  4533. set_table_entry(struct ctl_table *entry,
  4534. const char *procname, void *data, int maxlen,
  4535. mode_t mode, proc_handler *proc_handler)
  4536. {
  4537. entry->procname = procname;
  4538. entry->data = data;
  4539. entry->maxlen = maxlen;
  4540. entry->mode = mode;
  4541. entry->proc_handler = proc_handler;
  4542. }
  4543. static struct ctl_table *
  4544. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4545. {
  4546. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4547. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4548. sizeof(long), 0644, proc_doulongvec_minmax);
  4549. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4550. sizeof(long), 0644, proc_doulongvec_minmax);
  4551. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4552. sizeof(int), 0644, proc_dointvec_minmax);
  4553. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4554. sizeof(int), 0644, proc_dointvec_minmax);
  4555. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4556. sizeof(int), 0644, proc_dointvec_minmax);
  4557. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4558. sizeof(int), 0644, proc_dointvec_minmax);
  4559. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4560. sizeof(int), 0644, proc_dointvec_minmax);
  4561. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4562. sizeof(int), 0644, proc_dointvec_minmax);
  4563. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4564. sizeof(int), 0644, proc_dointvec_minmax);
  4565. set_table_entry(&table[10], "cache_nice_tries",
  4566. &sd->cache_nice_tries,
  4567. sizeof(int), 0644, proc_dointvec_minmax);
  4568. set_table_entry(&table[12], "flags", &sd->flags,
  4569. sizeof(int), 0644, proc_dointvec_minmax);
  4570. return table;
  4571. }
  4572. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4573. {
  4574. struct ctl_table *entry, *table;
  4575. struct sched_domain *sd;
  4576. int domain_num = 0, i;
  4577. char buf[32];
  4578. for_each_domain(cpu, sd)
  4579. domain_num++;
  4580. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4581. i = 0;
  4582. for_each_domain(cpu, sd) {
  4583. snprintf(buf, 32, "domain%d", i);
  4584. entry->procname = kstrdup(buf, GFP_KERNEL);
  4585. entry->mode = 0555;
  4586. entry->child = sd_alloc_ctl_domain_table(sd);
  4587. entry++;
  4588. i++;
  4589. }
  4590. return table;
  4591. }
  4592. static struct ctl_table_header *sd_sysctl_header;
  4593. static void init_sched_domain_sysctl(void)
  4594. {
  4595. int i, cpu_num = num_online_cpus();
  4596. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4597. char buf[32];
  4598. sd_ctl_dir[0].child = entry;
  4599. for (i = 0; i < cpu_num; i++, entry++) {
  4600. snprintf(buf, 32, "cpu%d", i);
  4601. entry->procname = kstrdup(buf, GFP_KERNEL);
  4602. entry->mode = 0555;
  4603. entry->child = sd_alloc_ctl_cpu_table(i);
  4604. }
  4605. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4606. }
  4607. #else
  4608. static void init_sched_domain_sysctl(void)
  4609. {
  4610. }
  4611. #endif
  4612. /*
  4613. * migration_call - callback that gets triggered when a CPU is added.
  4614. * Here we can start up the necessary migration thread for the new CPU.
  4615. */
  4616. static int __cpuinit
  4617. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4618. {
  4619. struct task_struct *p;
  4620. int cpu = (long)hcpu;
  4621. unsigned long flags;
  4622. struct rq *rq;
  4623. switch (action) {
  4624. case CPU_LOCK_ACQUIRE:
  4625. mutex_lock(&sched_hotcpu_mutex);
  4626. break;
  4627. case CPU_UP_PREPARE:
  4628. case CPU_UP_PREPARE_FROZEN:
  4629. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4630. if (IS_ERR(p))
  4631. return NOTIFY_BAD;
  4632. kthread_bind(p, cpu);
  4633. /* Must be high prio: stop_machine expects to yield to it. */
  4634. rq = task_rq_lock(p, &flags);
  4635. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4636. task_rq_unlock(rq, &flags);
  4637. cpu_rq(cpu)->migration_thread = p;
  4638. break;
  4639. case CPU_ONLINE:
  4640. case CPU_ONLINE_FROZEN:
  4641. /* Strictly unneccessary, as first user will wake it. */
  4642. wake_up_process(cpu_rq(cpu)->migration_thread);
  4643. break;
  4644. #ifdef CONFIG_HOTPLUG_CPU
  4645. case CPU_UP_CANCELED:
  4646. case CPU_UP_CANCELED_FROZEN:
  4647. if (!cpu_rq(cpu)->migration_thread)
  4648. break;
  4649. /* Unbind it from offline cpu so it can run. Fall thru. */
  4650. kthread_bind(cpu_rq(cpu)->migration_thread,
  4651. any_online_cpu(cpu_online_map));
  4652. kthread_stop(cpu_rq(cpu)->migration_thread);
  4653. cpu_rq(cpu)->migration_thread = NULL;
  4654. break;
  4655. case CPU_DEAD:
  4656. case CPU_DEAD_FROZEN:
  4657. migrate_live_tasks(cpu);
  4658. rq = cpu_rq(cpu);
  4659. kthread_stop(rq->migration_thread);
  4660. rq->migration_thread = NULL;
  4661. /* Idle task back to normal (off runqueue, low prio) */
  4662. rq = task_rq_lock(rq->idle, &flags);
  4663. update_rq_clock(rq);
  4664. deactivate_task(rq, rq->idle, 0);
  4665. rq->idle->static_prio = MAX_PRIO;
  4666. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4667. rq->idle->sched_class = &idle_sched_class;
  4668. migrate_dead_tasks(cpu);
  4669. task_rq_unlock(rq, &flags);
  4670. migrate_nr_uninterruptible(rq);
  4671. BUG_ON(rq->nr_running != 0);
  4672. /* No need to migrate the tasks: it was best-effort if
  4673. * they didn't take sched_hotcpu_mutex. Just wake up
  4674. * the requestors. */
  4675. spin_lock_irq(&rq->lock);
  4676. while (!list_empty(&rq->migration_queue)) {
  4677. struct migration_req *req;
  4678. req = list_entry(rq->migration_queue.next,
  4679. struct migration_req, list);
  4680. list_del_init(&req->list);
  4681. complete(&req->done);
  4682. }
  4683. spin_unlock_irq(&rq->lock);
  4684. break;
  4685. #endif
  4686. case CPU_LOCK_RELEASE:
  4687. mutex_unlock(&sched_hotcpu_mutex);
  4688. break;
  4689. }
  4690. return NOTIFY_OK;
  4691. }
  4692. /* Register at highest priority so that task migration (migrate_all_tasks)
  4693. * happens before everything else.
  4694. */
  4695. static struct notifier_block __cpuinitdata migration_notifier = {
  4696. .notifier_call = migration_call,
  4697. .priority = 10
  4698. };
  4699. int __init migration_init(void)
  4700. {
  4701. void *cpu = (void *)(long)smp_processor_id();
  4702. int err;
  4703. /* Start one for the boot CPU: */
  4704. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4705. BUG_ON(err == NOTIFY_BAD);
  4706. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4707. register_cpu_notifier(&migration_notifier);
  4708. return 0;
  4709. }
  4710. #endif
  4711. #ifdef CONFIG_SMP
  4712. /* Number of possible processor ids */
  4713. int nr_cpu_ids __read_mostly = NR_CPUS;
  4714. EXPORT_SYMBOL(nr_cpu_ids);
  4715. #undef SCHED_DOMAIN_DEBUG
  4716. #ifdef SCHED_DOMAIN_DEBUG
  4717. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4718. {
  4719. int level = 0;
  4720. if (!sd) {
  4721. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4722. return;
  4723. }
  4724. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4725. do {
  4726. int i;
  4727. char str[NR_CPUS];
  4728. struct sched_group *group = sd->groups;
  4729. cpumask_t groupmask;
  4730. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4731. cpus_clear(groupmask);
  4732. printk(KERN_DEBUG);
  4733. for (i = 0; i < level + 1; i++)
  4734. printk(" ");
  4735. printk("domain %d: ", level);
  4736. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4737. printk("does not load-balance\n");
  4738. if (sd->parent)
  4739. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4740. " has parent");
  4741. break;
  4742. }
  4743. printk("span %s\n", str);
  4744. if (!cpu_isset(cpu, sd->span))
  4745. printk(KERN_ERR "ERROR: domain->span does not contain "
  4746. "CPU%d\n", cpu);
  4747. if (!cpu_isset(cpu, group->cpumask))
  4748. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4749. " CPU%d\n", cpu);
  4750. printk(KERN_DEBUG);
  4751. for (i = 0; i < level + 2; i++)
  4752. printk(" ");
  4753. printk("groups:");
  4754. do {
  4755. if (!group) {
  4756. printk("\n");
  4757. printk(KERN_ERR "ERROR: group is NULL\n");
  4758. break;
  4759. }
  4760. if (!group->__cpu_power) {
  4761. printk("\n");
  4762. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4763. "set\n");
  4764. }
  4765. if (!cpus_weight(group->cpumask)) {
  4766. printk("\n");
  4767. printk(KERN_ERR "ERROR: empty group\n");
  4768. }
  4769. if (cpus_intersects(groupmask, group->cpumask)) {
  4770. printk("\n");
  4771. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4772. }
  4773. cpus_or(groupmask, groupmask, group->cpumask);
  4774. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4775. printk(" %s", str);
  4776. group = group->next;
  4777. } while (group != sd->groups);
  4778. printk("\n");
  4779. if (!cpus_equal(sd->span, groupmask))
  4780. printk(KERN_ERR "ERROR: groups don't span "
  4781. "domain->span\n");
  4782. level++;
  4783. sd = sd->parent;
  4784. if (!sd)
  4785. continue;
  4786. if (!cpus_subset(groupmask, sd->span))
  4787. printk(KERN_ERR "ERROR: parent span is not a superset "
  4788. "of domain->span\n");
  4789. } while (sd);
  4790. }
  4791. #else
  4792. # define sched_domain_debug(sd, cpu) do { } while (0)
  4793. #endif
  4794. static int sd_degenerate(struct sched_domain *sd)
  4795. {
  4796. if (cpus_weight(sd->span) == 1)
  4797. return 1;
  4798. /* Following flags need at least 2 groups */
  4799. if (sd->flags & (SD_LOAD_BALANCE |
  4800. SD_BALANCE_NEWIDLE |
  4801. SD_BALANCE_FORK |
  4802. SD_BALANCE_EXEC |
  4803. SD_SHARE_CPUPOWER |
  4804. SD_SHARE_PKG_RESOURCES)) {
  4805. if (sd->groups != sd->groups->next)
  4806. return 0;
  4807. }
  4808. /* Following flags don't use groups */
  4809. if (sd->flags & (SD_WAKE_IDLE |
  4810. SD_WAKE_AFFINE |
  4811. SD_WAKE_BALANCE))
  4812. return 0;
  4813. return 1;
  4814. }
  4815. static int
  4816. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4817. {
  4818. unsigned long cflags = sd->flags, pflags = parent->flags;
  4819. if (sd_degenerate(parent))
  4820. return 1;
  4821. if (!cpus_equal(sd->span, parent->span))
  4822. return 0;
  4823. /* Does parent contain flags not in child? */
  4824. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4825. if (cflags & SD_WAKE_AFFINE)
  4826. pflags &= ~SD_WAKE_BALANCE;
  4827. /* Flags needing groups don't count if only 1 group in parent */
  4828. if (parent->groups == parent->groups->next) {
  4829. pflags &= ~(SD_LOAD_BALANCE |
  4830. SD_BALANCE_NEWIDLE |
  4831. SD_BALANCE_FORK |
  4832. SD_BALANCE_EXEC |
  4833. SD_SHARE_CPUPOWER |
  4834. SD_SHARE_PKG_RESOURCES);
  4835. }
  4836. if (~cflags & pflags)
  4837. return 0;
  4838. return 1;
  4839. }
  4840. /*
  4841. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4842. * hold the hotplug lock.
  4843. */
  4844. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4845. {
  4846. struct rq *rq = cpu_rq(cpu);
  4847. struct sched_domain *tmp;
  4848. /* Remove the sched domains which do not contribute to scheduling. */
  4849. for (tmp = sd; tmp; tmp = tmp->parent) {
  4850. struct sched_domain *parent = tmp->parent;
  4851. if (!parent)
  4852. break;
  4853. if (sd_parent_degenerate(tmp, parent)) {
  4854. tmp->parent = parent->parent;
  4855. if (parent->parent)
  4856. parent->parent->child = tmp;
  4857. }
  4858. }
  4859. if (sd && sd_degenerate(sd)) {
  4860. sd = sd->parent;
  4861. if (sd)
  4862. sd->child = NULL;
  4863. }
  4864. sched_domain_debug(sd, cpu);
  4865. rcu_assign_pointer(rq->sd, sd);
  4866. }
  4867. /* cpus with isolated domains */
  4868. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4869. /* Setup the mask of cpus configured for isolated domains */
  4870. static int __init isolated_cpu_setup(char *str)
  4871. {
  4872. int ints[NR_CPUS], i;
  4873. str = get_options(str, ARRAY_SIZE(ints), ints);
  4874. cpus_clear(cpu_isolated_map);
  4875. for (i = 1; i <= ints[0]; i++)
  4876. if (ints[i] < NR_CPUS)
  4877. cpu_set(ints[i], cpu_isolated_map);
  4878. return 1;
  4879. }
  4880. __setup ("isolcpus=", isolated_cpu_setup);
  4881. /*
  4882. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4883. * to a function which identifies what group(along with sched group) a CPU
  4884. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4885. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4886. *
  4887. * init_sched_build_groups will build a circular linked list of the groups
  4888. * covered by the given span, and will set each group's ->cpumask correctly,
  4889. * and ->cpu_power to 0.
  4890. */
  4891. static void
  4892. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4893. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4894. struct sched_group **sg))
  4895. {
  4896. struct sched_group *first = NULL, *last = NULL;
  4897. cpumask_t covered = CPU_MASK_NONE;
  4898. int i;
  4899. for_each_cpu_mask(i, span) {
  4900. struct sched_group *sg;
  4901. int group = group_fn(i, cpu_map, &sg);
  4902. int j;
  4903. if (cpu_isset(i, covered))
  4904. continue;
  4905. sg->cpumask = CPU_MASK_NONE;
  4906. sg->__cpu_power = 0;
  4907. for_each_cpu_mask(j, span) {
  4908. if (group_fn(j, cpu_map, NULL) != group)
  4909. continue;
  4910. cpu_set(j, covered);
  4911. cpu_set(j, sg->cpumask);
  4912. }
  4913. if (!first)
  4914. first = sg;
  4915. if (last)
  4916. last->next = sg;
  4917. last = sg;
  4918. }
  4919. last->next = first;
  4920. }
  4921. #define SD_NODES_PER_DOMAIN 16
  4922. #ifdef CONFIG_NUMA
  4923. /**
  4924. * find_next_best_node - find the next node to include in a sched_domain
  4925. * @node: node whose sched_domain we're building
  4926. * @used_nodes: nodes already in the sched_domain
  4927. *
  4928. * Find the next node to include in a given scheduling domain. Simply
  4929. * finds the closest node not already in the @used_nodes map.
  4930. *
  4931. * Should use nodemask_t.
  4932. */
  4933. static int find_next_best_node(int node, unsigned long *used_nodes)
  4934. {
  4935. int i, n, val, min_val, best_node = 0;
  4936. min_val = INT_MAX;
  4937. for (i = 0; i < MAX_NUMNODES; i++) {
  4938. /* Start at @node */
  4939. n = (node + i) % MAX_NUMNODES;
  4940. if (!nr_cpus_node(n))
  4941. continue;
  4942. /* Skip already used nodes */
  4943. if (test_bit(n, used_nodes))
  4944. continue;
  4945. /* Simple min distance search */
  4946. val = node_distance(node, n);
  4947. if (val < min_val) {
  4948. min_val = val;
  4949. best_node = n;
  4950. }
  4951. }
  4952. set_bit(best_node, used_nodes);
  4953. return best_node;
  4954. }
  4955. /**
  4956. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4957. * @node: node whose cpumask we're constructing
  4958. * @size: number of nodes to include in this span
  4959. *
  4960. * Given a node, construct a good cpumask for its sched_domain to span. It
  4961. * should be one that prevents unnecessary balancing, but also spreads tasks
  4962. * out optimally.
  4963. */
  4964. static cpumask_t sched_domain_node_span(int node)
  4965. {
  4966. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4967. cpumask_t span, nodemask;
  4968. int i;
  4969. cpus_clear(span);
  4970. bitmap_zero(used_nodes, MAX_NUMNODES);
  4971. nodemask = node_to_cpumask(node);
  4972. cpus_or(span, span, nodemask);
  4973. set_bit(node, used_nodes);
  4974. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4975. int next_node = find_next_best_node(node, used_nodes);
  4976. nodemask = node_to_cpumask(next_node);
  4977. cpus_or(span, span, nodemask);
  4978. }
  4979. return span;
  4980. }
  4981. #endif
  4982. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4983. /*
  4984. * SMT sched-domains:
  4985. */
  4986. #ifdef CONFIG_SCHED_SMT
  4987. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4988. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4989. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4990. struct sched_group **sg)
  4991. {
  4992. if (sg)
  4993. *sg = &per_cpu(sched_group_cpus, cpu);
  4994. return cpu;
  4995. }
  4996. #endif
  4997. /*
  4998. * multi-core sched-domains:
  4999. */
  5000. #ifdef CONFIG_SCHED_MC
  5001. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5002. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5003. #endif
  5004. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5005. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5006. struct sched_group **sg)
  5007. {
  5008. int group;
  5009. cpumask_t mask = cpu_sibling_map[cpu];
  5010. cpus_and(mask, mask, *cpu_map);
  5011. group = first_cpu(mask);
  5012. if (sg)
  5013. *sg = &per_cpu(sched_group_core, group);
  5014. return group;
  5015. }
  5016. #elif defined(CONFIG_SCHED_MC)
  5017. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5018. struct sched_group **sg)
  5019. {
  5020. if (sg)
  5021. *sg = &per_cpu(sched_group_core, cpu);
  5022. return cpu;
  5023. }
  5024. #endif
  5025. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5026. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5027. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5028. struct sched_group **sg)
  5029. {
  5030. int group;
  5031. #ifdef CONFIG_SCHED_MC
  5032. cpumask_t mask = cpu_coregroup_map(cpu);
  5033. cpus_and(mask, mask, *cpu_map);
  5034. group = first_cpu(mask);
  5035. #elif defined(CONFIG_SCHED_SMT)
  5036. cpumask_t mask = cpu_sibling_map[cpu];
  5037. cpus_and(mask, mask, *cpu_map);
  5038. group = first_cpu(mask);
  5039. #else
  5040. group = cpu;
  5041. #endif
  5042. if (sg)
  5043. *sg = &per_cpu(sched_group_phys, group);
  5044. return group;
  5045. }
  5046. #ifdef CONFIG_NUMA
  5047. /*
  5048. * The init_sched_build_groups can't handle what we want to do with node
  5049. * groups, so roll our own. Now each node has its own list of groups which
  5050. * gets dynamically allocated.
  5051. */
  5052. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5053. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5054. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5055. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5056. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5057. struct sched_group **sg)
  5058. {
  5059. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5060. int group;
  5061. cpus_and(nodemask, nodemask, *cpu_map);
  5062. group = first_cpu(nodemask);
  5063. if (sg)
  5064. *sg = &per_cpu(sched_group_allnodes, group);
  5065. return group;
  5066. }
  5067. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5068. {
  5069. struct sched_group *sg = group_head;
  5070. int j;
  5071. if (!sg)
  5072. return;
  5073. next_sg:
  5074. for_each_cpu_mask(j, sg->cpumask) {
  5075. struct sched_domain *sd;
  5076. sd = &per_cpu(phys_domains, j);
  5077. if (j != first_cpu(sd->groups->cpumask)) {
  5078. /*
  5079. * Only add "power" once for each
  5080. * physical package.
  5081. */
  5082. continue;
  5083. }
  5084. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5085. }
  5086. sg = sg->next;
  5087. if (sg != group_head)
  5088. goto next_sg;
  5089. }
  5090. #endif
  5091. #ifdef CONFIG_NUMA
  5092. /* Free memory allocated for various sched_group structures */
  5093. static void free_sched_groups(const cpumask_t *cpu_map)
  5094. {
  5095. int cpu, i;
  5096. for_each_cpu_mask(cpu, *cpu_map) {
  5097. struct sched_group **sched_group_nodes
  5098. = sched_group_nodes_bycpu[cpu];
  5099. if (!sched_group_nodes)
  5100. continue;
  5101. for (i = 0; i < MAX_NUMNODES; i++) {
  5102. cpumask_t nodemask = node_to_cpumask(i);
  5103. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5104. cpus_and(nodemask, nodemask, *cpu_map);
  5105. if (cpus_empty(nodemask))
  5106. continue;
  5107. if (sg == NULL)
  5108. continue;
  5109. sg = sg->next;
  5110. next_sg:
  5111. oldsg = sg;
  5112. sg = sg->next;
  5113. kfree(oldsg);
  5114. if (oldsg != sched_group_nodes[i])
  5115. goto next_sg;
  5116. }
  5117. kfree(sched_group_nodes);
  5118. sched_group_nodes_bycpu[cpu] = NULL;
  5119. }
  5120. }
  5121. #else
  5122. static void free_sched_groups(const cpumask_t *cpu_map)
  5123. {
  5124. }
  5125. #endif
  5126. /*
  5127. * Initialize sched groups cpu_power.
  5128. *
  5129. * cpu_power indicates the capacity of sched group, which is used while
  5130. * distributing the load between different sched groups in a sched domain.
  5131. * Typically cpu_power for all the groups in a sched domain will be same unless
  5132. * there are asymmetries in the topology. If there are asymmetries, group
  5133. * having more cpu_power will pickup more load compared to the group having
  5134. * less cpu_power.
  5135. *
  5136. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5137. * the maximum number of tasks a group can handle in the presence of other idle
  5138. * or lightly loaded groups in the same sched domain.
  5139. */
  5140. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5141. {
  5142. struct sched_domain *child;
  5143. struct sched_group *group;
  5144. WARN_ON(!sd || !sd->groups);
  5145. if (cpu != first_cpu(sd->groups->cpumask))
  5146. return;
  5147. child = sd->child;
  5148. sd->groups->__cpu_power = 0;
  5149. /*
  5150. * For perf policy, if the groups in child domain share resources
  5151. * (for example cores sharing some portions of the cache hierarchy
  5152. * or SMT), then set this domain groups cpu_power such that each group
  5153. * can handle only one task, when there are other idle groups in the
  5154. * same sched domain.
  5155. */
  5156. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5157. (child->flags &
  5158. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5159. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5160. return;
  5161. }
  5162. /*
  5163. * add cpu_power of each child group to this groups cpu_power
  5164. */
  5165. group = child->groups;
  5166. do {
  5167. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5168. group = group->next;
  5169. } while (group != child->groups);
  5170. }
  5171. /*
  5172. * Build sched domains for a given set of cpus and attach the sched domains
  5173. * to the individual cpus
  5174. */
  5175. static int build_sched_domains(const cpumask_t *cpu_map)
  5176. {
  5177. int i;
  5178. #ifdef CONFIG_NUMA
  5179. struct sched_group **sched_group_nodes = NULL;
  5180. int sd_allnodes = 0;
  5181. /*
  5182. * Allocate the per-node list of sched groups
  5183. */
  5184. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5185. GFP_KERNEL);
  5186. if (!sched_group_nodes) {
  5187. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5188. return -ENOMEM;
  5189. }
  5190. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5191. #endif
  5192. /*
  5193. * Set up domains for cpus specified by the cpu_map.
  5194. */
  5195. for_each_cpu_mask(i, *cpu_map) {
  5196. struct sched_domain *sd = NULL, *p;
  5197. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5198. cpus_and(nodemask, nodemask, *cpu_map);
  5199. #ifdef CONFIG_NUMA
  5200. if (cpus_weight(*cpu_map) >
  5201. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5202. sd = &per_cpu(allnodes_domains, i);
  5203. *sd = SD_ALLNODES_INIT;
  5204. sd->span = *cpu_map;
  5205. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5206. p = sd;
  5207. sd_allnodes = 1;
  5208. } else
  5209. p = NULL;
  5210. sd = &per_cpu(node_domains, i);
  5211. *sd = SD_NODE_INIT;
  5212. sd->span = sched_domain_node_span(cpu_to_node(i));
  5213. sd->parent = p;
  5214. if (p)
  5215. p->child = sd;
  5216. cpus_and(sd->span, sd->span, *cpu_map);
  5217. #endif
  5218. p = sd;
  5219. sd = &per_cpu(phys_domains, i);
  5220. *sd = SD_CPU_INIT;
  5221. sd->span = nodemask;
  5222. sd->parent = p;
  5223. if (p)
  5224. p->child = sd;
  5225. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5226. #ifdef CONFIG_SCHED_MC
  5227. p = sd;
  5228. sd = &per_cpu(core_domains, i);
  5229. *sd = SD_MC_INIT;
  5230. sd->span = cpu_coregroup_map(i);
  5231. cpus_and(sd->span, sd->span, *cpu_map);
  5232. sd->parent = p;
  5233. p->child = sd;
  5234. cpu_to_core_group(i, cpu_map, &sd->groups);
  5235. #endif
  5236. #ifdef CONFIG_SCHED_SMT
  5237. p = sd;
  5238. sd = &per_cpu(cpu_domains, i);
  5239. *sd = SD_SIBLING_INIT;
  5240. sd->span = cpu_sibling_map[i];
  5241. cpus_and(sd->span, sd->span, *cpu_map);
  5242. sd->parent = p;
  5243. p->child = sd;
  5244. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5245. #endif
  5246. }
  5247. #ifdef CONFIG_SCHED_SMT
  5248. /* Set up CPU (sibling) groups */
  5249. for_each_cpu_mask(i, *cpu_map) {
  5250. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5251. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5252. if (i != first_cpu(this_sibling_map))
  5253. continue;
  5254. init_sched_build_groups(this_sibling_map, cpu_map,
  5255. &cpu_to_cpu_group);
  5256. }
  5257. #endif
  5258. #ifdef CONFIG_SCHED_MC
  5259. /* Set up multi-core groups */
  5260. for_each_cpu_mask(i, *cpu_map) {
  5261. cpumask_t this_core_map = cpu_coregroup_map(i);
  5262. cpus_and(this_core_map, this_core_map, *cpu_map);
  5263. if (i != first_cpu(this_core_map))
  5264. continue;
  5265. init_sched_build_groups(this_core_map, cpu_map,
  5266. &cpu_to_core_group);
  5267. }
  5268. #endif
  5269. /* Set up physical groups */
  5270. for (i = 0; i < MAX_NUMNODES; i++) {
  5271. cpumask_t nodemask = node_to_cpumask(i);
  5272. cpus_and(nodemask, nodemask, *cpu_map);
  5273. if (cpus_empty(nodemask))
  5274. continue;
  5275. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5276. }
  5277. #ifdef CONFIG_NUMA
  5278. /* Set up node groups */
  5279. if (sd_allnodes)
  5280. init_sched_build_groups(*cpu_map, cpu_map,
  5281. &cpu_to_allnodes_group);
  5282. for (i = 0; i < MAX_NUMNODES; i++) {
  5283. /* Set up node groups */
  5284. struct sched_group *sg, *prev;
  5285. cpumask_t nodemask = node_to_cpumask(i);
  5286. cpumask_t domainspan;
  5287. cpumask_t covered = CPU_MASK_NONE;
  5288. int j;
  5289. cpus_and(nodemask, nodemask, *cpu_map);
  5290. if (cpus_empty(nodemask)) {
  5291. sched_group_nodes[i] = NULL;
  5292. continue;
  5293. }
  5294. domainspan = sched_domain_node_span(i);
  5295. cpus_and(domainspan, domainspan, *cpu_map);
  5296. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5297. if (!sg) {
  5298. printk(KERN_WARNING "Can not alloc domain group for "
  5299. "node %d\n", i);
  5300. goto error;
  5301. }
  5302. sched_group_nodes[i] = sg;
  5303. for_each_cpu_mask(j, nodemask) {
  5304. struct sched_domain *sd;
  5305. sd = &per_cpu(node_domains, j);
  5306. sd->groups = sg;
  5307. }
  5308. sg->__cpu_power = 0;
  5309. sg->cpumask = nodemask;
  5310. sg->next = sg;
  5311. cpus_or(covered, covered, nodemask);
  5312. prev = sg;
  5313. for (j = 0; j < MAX_NUMNODES; j++) {
  5314. cpumask_t tmp, notcovered;
  5315. int n = (i + j) % MAX_NUMNODES;
  5316. cpus_complement(notcovered, covered);
  5317. cpus_and(tmp, notcovered, *cpu_map);
  5318. cpus_and(tmp, tmp, domainspan);
  5319. if (cpus_empty(tmp))
  5320. break;
  5321. nodemask = node_to_cpumask(n);
  5322. cpus_and(tmp, tmp, nodemask);
  5323. if (cpus_empty(tmp))
  5324. continue;
  5325. sg = kmalloc_node(sizeof(struct sched_group),
  5326. GFP_KERNEL, i);
  5327. if (!sg) {
  5328. printk(KERN_WARNING
  5329. "Can not alloc domain group for node %d\n", j);
  5330. goto error;
  5331. }
  5332. sg->__cpu_power = 0;
  5333. sg->cpumask = tmp;
  5334. sg->next = prev->next;
  5335. cpus_or(covered, covered, tmp);
  5336. prev->next = sg;
  5337. prev = sg;
  5338. }
  5339. }
  5340. #endif
  5341. /* Calculate CPU power for physical packages and nodes */
  5342. #ifdef CONFIG_SCHED_SMT
  5343. for_each_cpu_mask(i, *cpu_map) {
  5344. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5345. init_sched_groups_power(i, sd);
  5346. }
  5347. #endif
  5348. #ifdef CONFIG_SCHED_MC
  5349. for_each_cpu_mask(i, *cpu_map) {
  5350. struct sched_domain *sd = &per_cpu(core_domains, i);
  5351. init_sched_groups_power(i, sd);
  5352. }
  5353. #endif
  5354. for_each_cpu_mask(i, *cpu_map) {
  5355. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5356. init_sched_groups_power(i, sd);
  5357. }
  5358. #ifdef CONFIG_NUMA
  5359. for (i = 0; i < MAX_NUMNODES; i++)
  5360. init_numa_sched_groups_power(sched_group_nodes[i]);
  5361. if (sd_allnodes) {
  5362. struct sched_group *sg;
  5363. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5364. init_numa_sched_groups_power(sg);
  5365. }
  5366. #endif
  5367. /* Attach the domains */
  5368. for_each_cpu_mask(i, *cpu_map) {
  5369. struct sched_domain *sd;
  5370. #ifdef CONFIG_SCHED_SMT
  5371. sd = &per_cpu(cpu_domains, i);
  5372. #elif defined(CONFIG_SCHED_MC)
  5373. sd = &per_cpu(core_domains, i);
  5374. #else
  5375. sd = &per_cpu(phys_domains, i);
  5376. #endif
  5377. cpu_attach_domain(sd, i);
  5378. }
  5379. return 0;
  5380. #ifdef CONFIG_NUMA
  5381. error:
  5382. free_sched_groups(cpu_map);
  5383. return -ENOMEM;
  5384. #endif
  5385. }
  5386. /*
  5387. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5388. */
  5389. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5390. {
  5391. cpumask_t cpu_default_map;
  5392. int err;
  5393. /*
  5394. * Setup mask for cpus without special case scheduling requirements.
  5395. * For now this just excludes isolated cpus, but could be used to
  5396. * exclude other special cases in the future.
  5397. */
  5398. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5399. err = build_sched_domains(&cpu_default_map);
  5400. return err;
  5401. }
  5402. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5403. {
  5404. free_sched_groups(cpu_map);
  5405. }
  5406. /*
  5407. * Detach sched domains from a group of cpus specified in cpu_map
  5408. * These cpus will now be attached to the NULL domain
  5409. */
  5410. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5411. {
  5412. int i;
  5413. for_each_cpu_mask(i, *cpu_map)
  5414. cpu_attach_domain(NULL, i);
  5415. synchronize_sched();
  5416. arch_destroy_sched_domains(cpu_map);
  5417. }
  5418. /*
  5419. * Partition sched domains as specified by the cpumasks below.
  5420. * This attaches all cpus from the cpumasks to the NULL domain,
  5421. * waits for a RCU quiescent period, recalculates sched
  5422. * domain information and then attaches them back to the
  5423. * correct sched domains
  5424. * Call with hotplug lock held
  5425. */
  5426. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5427. {
  5428. cpumask_t change_map;
  5429. int err = 0;
  5430. cpus_and(*partition1, *partition1, cpu_online_map);
  5431. cpus_and(*partition2, *partition2, cpu_online_map);
  5432. cpus_or(change_map, *partition1, *partition2);
  5433. /* Detach sched domains from all of the affected cpus */
  5434. detach_destroy_domains(&change_map);
  5435. if (!cpus_empty(*partition1))
  5436. err = build_sched_domains(partition1);
  5437. if (!err && !cpus_empty(*partition2))
  5438. err = build_sched_domains(partition2);
  5439. return err;
  5440. }
  5441. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5442. static int arch_reinit_sched_domains(void)
  5443. {
  5444. int err;
  5445. mutex_lock(&sched_hotcpu_mutex);
  5446. detach_destroy_domains(&cpu_online_map);
  5447. err = arch_init_sched_domains(&cpu_online_map);
  5448. mutex_unlock(&sched_hotcpu_mutex);
  5449. return err;
  5450. }
  5451. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5452. {
  5453. int ret;
  5454. if (buf[0] != '0' && buf[0] != '1')
  5455. return -EINVAL;
  5456. if (smt)
  5457. sched_smt_power_savings = (buf[0] == '1');
  5458. else
  5459. sched_mc_power_savings = (buf[0] == '1');
  5460. ret = arch_reinit_sched_domains();
  5461. return ret ? ret : count;
  5462. }
  5463. #ifdef CONFIG_SCHED_MC
  5464. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5465. {
  5466. return sprintf(page, "%u\n", sched_mc_power_savings);
  5467. }
  5468. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5469. const char *buf, size_t count)
  5470. {
  5471. return sched_power_savings_store(buf, count, 0);
  5472. }
  5473. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5474. sched_mc_power_savings_store);
  5475. #endif
  5476. #ifdef CONFIG_SCHED_SMT
  5477. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5478. {
  5479. return sprintf(page, "%u\n", sched_smt_power_savings);
  5480. }
  5481. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5482. const char *buf, size_t count)
  5483. {
  5484. return sched_power_savings_store(buf, count, 1);
  5485. }
  5486. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5487. sched_smt_power_savings_store);
  5488. #endif
  5489. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5490. {
  5491. int err = 0;
  5492. #ifdef CONFIG_SCHED_SMT
  5493. if (smt_capable())
  5494. err = sysfs_create_file(&cls->kset.kobj,
  5495. &attr_sched_smt_power_savings.attr);
  5496. #endif
  5497. #ifdef CONFIG_SCHED_MC
  5498. if (!err && mc_capable())
  5499. err = sysfs_create_file(&cls->kset.kobj,
  5500. &attr_sched_mc_power_savings.attr);
  5501. #endif
  5502. return err;
  5503. }
  5504. #endif
  5505. /*
  5506. * Force a reinitialization of the sched domains hierarchy. The domains
  5507. * and groups cannot be updated in place without racing with the balancing
  5508. * code, so we temporarily attach all running cpus to the NULL domain
  5509. * which will prevent rebalancing while the sched domains are recalculated.
  5510. */
  5511. static int update_sched_domains(struct notifier_block *nfb,
  5512. unsigned long action, void *hcpu)
  5513. {
  5514. switch (action) {
  5515. case CPU_UP_PREPARE:
  5516. case CPU_UP_PREPARE_FROZEN:
  5517. case CPU_DOWN_PREPARE:
  5518. case CPU_DOWN_PREPARE_FROZEN:
  5519. detach_destroy_domains(&cpu_online_map);
  5520. return NOTIFY_OK;
  5521. case CPU_UP_CANCELED:
  5522. case CPU_UP_CANCELED_FROZEN:
  5523. case CPU_DOWN_FAILED:
  5524. case CPU_DOWN_FAILED_FROZEN:
  5525. case CPU_ONLINE:
  5526. case CPU_ONLINE_FROZEN:
  5527. case CPU_DEAD:
  5528. case CPU_DEAD_FROZEN:
  5529. /*
  5530. * Fall through and re-initialise the domains.
  5531. */
  5532. break;
  5533. default:
  5534. return NOTIFY_DONE;
  5535. }
  5536. /* The hotplug lock is already held by cpu_up/cpu_down */
  5537. arch_init_sched_domains(&cpu_online_map);
  5538. return NOTIFY_OK;
  5539. }
  5540. void __init sched_init_smp(void)
  5541. {
  5542. cpumask_t non_isolated_cpus;
  5543. mutex_lock(&sched_hotcpu_mutex);
  5544. arch_init_sched_domains(&cpu_online_map);
  5545. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5546. if (cpus_empty(non_isolated_cpus))
  5547. cpu_set(smp_processor_id(), non_isolated_cpus);
  5548. mutex_unlock(&sched_hotcpu_mutex);
  5549. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5550. hotcpu_notifier(update_sched_domains, 0);
  5551. init_sched_domain_sysctl();
  5552. /* Move init over to a non-isolated CPU */
  5553. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5554. BUG();
  5555. }
  5556. #else
  5557. void __init sched_init_smp(void)
  5558. {
  5559. }
  5560. #endif /* CONFIG_SMP */
  5561. int in_sched_functions(unsigned long addr)
  5562. {
  5563. /* Linker adds these: start and end of __sched functions */
  5564. extern char __sched_text_start[], __sched_text_end[];
  5565. return in_lock_functions(addr) ||
  5566. (addr >= (unsigned long)__sched_text_start
  5567. && addr < (unsigned long)__sched_text_end);
  5568. }
  5569. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5570. {
  5571. cfs_rq->tasks_timeline = RB_ROOT;
  5572. cfs_rq->fair_clock = 1;
  5573. #ifdef CONFIG_FAIR_GROUP_SCHED
  5574. cfs_rq->rq = rq;
  5575. #endif
  5576. }
  5577. void __init sched_init(void)
  5578. {
  5579. u64 now = sched_clock();
  5580. int highest_cpu = 0;
  5581. int i, j;
  5582. /*
  5583. * Link up the scheduling class hierarchy:
  5584. */
  5585. rt_sched_class.next = &fair_sched_class;
  5586. fair_sched_class.next = &idle_sched_class;
  5587. idle_sched_class.next = NULL;
  5588. for_each_possible_cpu(i) {
  5589. struct rt_prio_array *array;
  5590. struct rq *rq;
  5591. rq = cpu_rq(i);
  5592. spin_lock_init(&rq->lock);
  5593. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5594. rq->nr_running = 0;
  5595. rq->clock = 1;
  5596. init_cfs_rq(&rq->cfs, rq);
  5597. #ifdef CONFIG_FAIR_GROUP_SCHED
  5598. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5599. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5600. #endif
  5601. rq->ls.load_update_last = now;
  5602. rq->ls.load_update_start = now;
  5603. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5604. rq->cpu_load[j] = 0;
  5605. #ifdef CONFIG_SMP
  5606. rq->sd = NULL;
  5607. rq->active_balance = 0;
  5608. rq->next_balance = jiffies;
  5609. rq->push_cpu = 0;
  5610. rq->cpu = i;
  5611. rq->migration_thread = NULL;
  5612. INIT_LIST_HEAD(&rq->migration_queue);
  5613. #endif
  5614. atomic_set(&rq->nr_iowait, 0);
  5615. array = &rq->rt.active;
  5616. for (j = 0; j < MAX_RT_PRIO; j++) {
  5617. INIT_LIST_HEAD(array->queue + j);
  5618. __clear_bit(j, array->bitmap);
  5619. }
  5620. highest_cpu = i;
  5621. /* delimiter for bitsearch: */
  5622. __set_bit(MAX_RT_PRIO, array->bitmap);
  5623. }
  5624. set_load_weight(&init_task);
  5625. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5626. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5627. #endif
  5628. #ifdef CONFIG_SMP
  5629. nr_cpu_ids = highest_cpu + 1;
  5630. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5631. #endif
  5632. #ifdef CONFIG_RT_MUTEXES
  5633. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5634. #endif
  5635. /*
  5636. * The boot idle thread does lazy MMU switching as well:
  5637. */
  5638. atomic_inc(&init_mm.mm_count);
  5639. enter_lazy_tlb(&init_mm, current);
  5640. /*
  5641. * Make us the idle thread. Technically, schedule() should not be
  5642. * called from this thread, however somewhere below it might be,
  5643. * but because we are the idle thread, we just pick up running again
  5644. * when this runqueue becomes "idle".
  5645. */
  5646. init_idle(current, smp_processor_id());
  5647. /*
  5648. * During early bootup we pretend to be a normal task:
  5649. */
  5650. current->sched_class = &fair_sched_class;
  5651. }
  5652. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5653. void __might_sleep(char *file, int line)
  5654. {
  5655. #ifdef in_atomic
  5656. static unsigned long prev_jiffy; /* ratelimiting */
  5657. if ((in_atomic() || irqs_disabled()) &&
  5658. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5659. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5660. return;
  5661. prev_jiffy = jiffies;
  5662. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5663. " context at %s:%d\n", file, line);
  5664. printk("in_atomic():%d, irqs_disabled():%d\n",
  5665. in_atomic(), irqs_disabled());
  5666. debug_show_held_locks(current);
  5667. if (irqs_disabled())
  5668. print_irqtrace_events(current);
  5669. dump_stack();
  5670. }
  5671. #endif
  5672. }
  5673. EXPORT_SYMBOL(__might_sleep);
  5674. #endif
  5675. #ifdef CONFIG_MAGIC_SYSRQ
  5676. void normalize_rt_tasks(void)
  5677. {
  5678. struct task_struct *g, *p;
  5679. unsigned long flags;
  5680. struct rq *rq;
  5681. int on_rq;
  5682. read_lock_irq(&tasklist_lock);
  5683. do_each_thread(g, p) {
  5684. p->se.fair_key = 0;
  5685. p->se.wait_runtime = 0;
  5686. p->se.exec_start = 0;
  5687. p->se.wait_start_fair = 0;
  5688. p->se.sleep_start_fair = 0;
  5689. #ifdef CONFIG_SCHEDSTATS
  5690. p->se.wait_start = 0;
  5691. p->se.sleep_start = 0;
  5692. p->se.block_start = 0;
  5693. #endif
  5694. task_rq(p)->cfs.fair_clock = 0;
  5695. task_rq(p)->clock = 0;
  5696. if (!rt_task(p)) {
  5697. /*
  5698. * Renice negative nice level userspace
  5699. * tasks back to 0:
  5700. */
  5701. if (TASK_NICE(p) < 0 && p->mm)
  5702. set_user_nice(p, 0);
  5703. continue;
  5704. }
  5705. spin_lock_irqsave(&p->pi_lock, flags);
  5706. rq = __task_rq_lock(p);
  5707. #ifdef CONFIG_SMP
  5708. /*
  5709. * Do not touch the migration thread:
  5710. */
  5711. if (p == rq->migration_thread)
  5712. goto out_unlock;
  5713. #endif
  5714. update_rq_clock(rq);
  5715. on_rq = p->se.on_rq;
  5716. if (on_rq)
  5717. deactivate_task(rq, p, 0);
  5718. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5719. if (on_rq) {
  5720. activate_task(rq, p, 0);
  5721. resched_task(rq->curr);
  5722. }
  5723. #ifdef CONFIG_SMP
  5724. out_unlock:
  5725. #endif
  5726. __task_rq_unlock(rq);
  5727. spin_unlock_irqrestore(&p->pi_lock, flags);
  5728. } while_each_thread(g, p);
  5729. read_unlock_irq(&tasklist_lock);
  5730. }
  5731. #endif /* CONFIG_MAGIC_SYSRQ */
  5732. #ifdef CONFIG_IA64
  5733. /*
  5734. * These functions are only useful for the IA64 MCA handling.
  5735. *
  5736. * They can only be called when the whole system has been
  5737. * stopped - every CPU needs to be quiescent, and no scheduling
  5738. * activity can take place. Using them for anything else would
  5739. * be a serious bug, and as a result, they aren't even visible
  5740. * under any other configuration.
  5741. */
  5742. /**
  5743. * curr_task - return the current task for a given cpu.
  5744. * @cpu: the processor in question.
  5745. *
  5746. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5747. */
  5748. struct task_struct *curr_task(int cpu)
  5749. {
  5750. return cpu_curr(cpu);
  5751. }
  5752. /**
  5753. * set_curr_task - set the current task for a given cpu.
  5754. * @cpu: the processor in question.
  5755. * @p: the task pointer to set.
  5756. *
  5757. * Description: This function must only be used when non-maskable interrupts
  5758. * are serviced on a separate stack. It allows the architecture to switch the
  5759. * notion of the current task on a cpu in a non-blocking manner. This function
  5760. * must be called with all CPU's synchronized, and interrupts disabled, the
  5761. * and caller must save the original value of the current task (see
  5762. * curr_task() above) and restore that value before reenabling interrupts and
  5763. * re-starting the system.
  5764. *
  5765. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5766. */
  5767. void set_curr_task(int cpu, struct task_struct *p)
  5768. {
  5769. cpu_curr(cpu) = p;
  5770. }
  5771. #endif