vmx.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include "kvm_vmx.h"
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/profile.h>
  25. #include <asm/io.h>
  26. #include <asm/desc.h>
  27. #include "segment_descriptor.h"
  28. MODULE_AUTHOR("Qumranet");
  29. MODULE_LICENSE("GPL");
  30. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  31. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  32. #ifdef CONFIG_X86_64
  33. #define HOST_IS_64 1
  34. #else
  35. #define HOST_IS_64 0
  36. #endif
  37. static struct vmcs_descriptor {
  38. int size;
  39. int order;
  40. u32 revision_id;
  41. } vmcs_descriptor;
  42. #define VMX_SEGMENT_FIELD(seg) \
  43. [VCPU_SREG_##seg] = { \
  44. .selector = GUEST_##seg##_SELECTOR, \
  45. .base = GUEST_##seg##_BASE, \
  46. .limit = GUEST_##seg##_LIMIT, \
  47. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  48. }
  49. static struct kvm_vmx_segment_field {
  50. unsigned selector;
  51. unsigned base;
  52. unsigned limit;
  53. unsigned ar_bytes;
  54. } kvm_vmx_segment_fields[] = {
  55. VMX_SEGMENT_FIELD(CS),
  56. VMX_SEGMENT_FIELD(DS),
  57. VMX_SEGMENT_FIELD(ES),
  58. VMX_SEGMENT_FIELD(FS),
  59. VMX_SEGMENT_FIELD(GS),
  60. VMX_SEGMENT_FIELD(SS),
  61. VMX_SEGMENT_FIELD(TR),
  62. VMX_SEGMENT_FIELD(LDTR),
  63. };
  64. static const u32 vmx_msr_index[] = {
  65. #ifdef CONFIG_X86_64
  66. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  67. #endif
  68. MSR_EFER, MSR_K6_STAR,
  69. };
  70. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  71. static inline int is_page_fault(u32 intr_info)
  72. {
  73. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  74. INTR_INFO_VALID_MASK)) ==
  75. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  76. }
  77. static inline int is_external_interrupt(u32 intr_info)
  78. {
  79. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  80. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  81. }
  82. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  83. {
  84. int i;
  85. for (i = 0; i < vcpu->nmsrs; ++i)
  86. if (vcpu->guest_msrs[i].index == msr)
  87. return &vcpu->guest_msrs[i];
  88. return NULL;
  89. }
  90. static void vmcs_clear(struct vmcs *vmcs)
  91. {
  92. u64 phys_addr = __pa(vmcs);
  93. u8 error;
  94. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  95. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  96. : "cc", "memory");
  97. if (error)
  98. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  99. vmcs, phys_addr);
  100. }
  101. static void __vcpu_clear(void *arg)
  102. {
  103. struct kvm_vcpu *vcpu = arg;
  104. int cpu = raw_smp_processor_id();
  105. if (vcpu->cpu == cpu)
  106. vmcs_clear(vcpu->vmcs);
  107. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  108. per_cpu(current_vmcs, cpu) = NULL;
  109. }
  110. static void vcpu_clear(struct kvm_vcpu *vcpu)
  111. {
  112. if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
  113. smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
  114. else
  115. __vcpu_clear(vcpu);
  116. vcpu->launched = 0;
  117. }
  118. static unsigned long vmcs_readl(unsigned long field)
  119. {
  120. unsigned long value;
  121. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  122. : "=a"(value) : "d"(field) : "cc");
  123. return value;
  124. }
  125. static u16 vmcs_read16(unsigned long field)
  126. {
  127. return vmcs_readl(field);
  128. }
  129. static u32 vmcs_read32(unsigned long field)
  130. {
  131. return vmcs_readl(field);
  132. }
  133. static u64 vmcs_read64(unsigned long field)
  134. {
  135. #ifdef CONFIG_X86_64
  136. return vmcs_readl(field);
  137. #else
  138. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  139. #endif
  140. }
  141. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  142. {
  143. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  144. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  145. dump_stack();
  146. }
  147. static void vmcs_writel(unsigned long field, unsigned long value)
  148. {
  149. u8 error;
  150. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  151. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  152. if (unlikely(error))
  153. vmwrite_error(field, value);
  154. }
  155. static void vmcs_write16(unsigned long field, u16 value)
  156. {
  157. vmcs_writel(field, value);
  158. }
  159. static void vmcs_write32(unsigned long field, u32 value)
  160. {
  161. vmcs_writel(field, value);
  162. }
  163. static void vmcs_write64(unsigned long field, u64 value)
  164. {
  165. #ifdef CONFIG_X86_64
  166. vmcs_writel(field, value);
  167. #else
  168. vmcs_writel(field, value);
  169. asm volatile ("");
  170. vmcs_writel(field+1, value >> 32);
  171. #endif
  172. }
  173. /*
  174. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  175. * vcpu mutex is already taken.
  176. */
  177. static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
  178. {
  179. u64 phys_addr = __pa(vcpu->vmcs);
  180. int cpu;
  181. cpu = get_cpu();
  182. if (vcpu->cpu != cpu)
  183. vcpu_clear(vcpu);
  184. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  185. u8 error;
  186. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  187. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  188. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  189. : "cc");
  190. if (error)
  191. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  192. vcpu->vmcs, phys_addr);
  193. }
  194. if (vcpu->cpu != cpu) {
  195. struct descriptor_table dt;
  196. unsigned long sysenter_esp;
  197. vcpu->cpu = cpu;
  198. /*
  199. * Linux uses per-cpu TSS and GDT, so set these when switching
  200. * processors.
  201. */
  202. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  203. get_gdt(&dt);
  204. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  205. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  206. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  207. }
  208. }
  209. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  210. {
  211. put_cpu();
  212. }
  213. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  214. {
  215. vcpu_clear(vcpu);
  216. }
  217. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  218. {
  219. return vmcs_readl(GUEST_RFLAGS);
  220. }
  221. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  222. {
  223. vmcs_writel(GUEST_RFLAGS, rflags);
  224. }
  225. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  226. {
  227. unsigned long rip;
  228. u32 interruptibility;
  229. rip = vmcs_readl(GUEST_RIP);
  230. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  231. vmcs_writel(GUEST_RIP, rip);
  232. /*
  233. * We emulated an instruction, so temporary interrupt blocking
  234. * should be removed, if set.
  235. */
  236. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  237. if (interruptibility & 3)
  238. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  239. interruptibility & ~3);
  240. vcpu->interrupt_window_open = 1;
  241. }
  242. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  243. {
  244. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  245. vmcs_readl(GUEST_RIP));
  246. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  247. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  248. GP_VECTOR |
  249. INTR_TYPE_EXCEPTION |
  250. INTR_INFO_DELIEVER_CODE_MASK |
  251. INTR_INFO_VALID_MASK);
  252. }
  253. /*
  254. * reads and returns guest's timestamp counter "register"
  255. * guest_tsc = host_tsc + tsc_offset -- 21.3
  256. */
  257. static u64 guest_read_tsc(void)
  258. {
  259. u64 host_tsc, tsc_offset;
  260. rdtscll(host_tsc);
  261. tsc_offset = vmcs_read64(TSC_OFFSET);
  262. return host_tsc + tsc_offset;
  263. }
  264. /*
  265. * writes 'guest_tsc' into guest's timestamp counter "register"
  266. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  267. */
  268. static void guest_write_tsc(u64 guest_tsc)
  269. {
  270. u64 host_tsc;
  271. rdtscll(host_tsc);
  272. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  273. }
  274. static void reload_tss(void)
  275. {
  276. #ifndef CONFIG_X86_64
  277. /*
  278. * VT restores TR but not its size. Useless.
  279. */
  280. struct descriptor_table gdt;
  281. struct segment_descriptor *descs;
  282. get_gdt(&gdt);
  283. descs = (void *)gdt.base;
  284. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  285. load_TR_desc();
  286. #endif
  287. }
  288. /*
  289. * Reads an msr value (of 'msr_index') into 'pdata'.
  290. * Returns 0 on success, non-0 otherwise.
  291. * Assumes vcpu_load() was already called.
  292. */
  293. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  294. {
  295. u64 data;
  296. struct vmx_msr_entry *msr;
  297. if (!pdata) {
  298. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  299. return -EINVAL;
  300. }
  301. switch (msr_index) {
  302. #ifdef CONFIG_X86_64
  303. case MSR_FS_BASE:
  304. data = vmcs_readl(GUEST_FS_BASE);
  305. break;
  306. case MSR_GS_BASE:
  307. data = vmcs_readl(GUEST_GS_BASE);
  308. break;
  309. case MSR_EFER:
  310. return kvm_get_msr_common(vcpu, msr_index, pdata);
  311. #endif
  312. case MSR_IA32_TIME_STAMP_COUNTER:
  313. data = guest_read_tsc();
  314. break;
  315. case MSR_IA32_SYSENTER_CS:
  316. data = vmcs_read32(GUEST_SYSENTER_CS);
  317. break;
  318. case MSR_IA32_SYSENTER_EIP:
  319. data = vmcs_readl(GUEST_SYSENTER_EIP);
  320. break;
  321. case MSR_IA32_SYSENTER_ESP:
  322. data = vmcs_readl(GUEST_SYSENTER_ESP);
  323. break;
  324. default:
  325. msr = find_msr_entry(vcpu, msr_index);
  326. if (msr) {
  327. data = msr->data;
  328. break;
  329. }
  330. return kvm_get_msr_common(vcpu, msr_index, pdata);
  331. }
  332. *pdata = data;
  333. return 0;
  334. }
  335. /*
  336. * Writes msr value into into the appropriate "register".
  337. * Returns 0 on success, non-0 otherwise.
  338. * Assumes vcpu_load() was already called.
  339. */
  340. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  341. {
  342. struct vmx_msr_entry *msr;
  343. switch (msr_index) {
  344. #ifdef CONFIG_X86_64
  345. case MSR_EFER:
  346. return kvm_set_msr_common(vcpu, msr_index, data);
  347. case MSR_FS_BASE:
  348. vmcs_writel(GUEST_FS_BASE, data);
  349. break;
  350. case MSR_GS_BASE:
  351. vmcs_writel(GUEST_GS_BASE, data);
  352. break;
  353. #endif
  354. case MSR_IA32_SYSENTER_CS:
  355. vmcs_write32(GUEST_SYSENTER_CS, data);
  356. break;
  357. case MSR_IA32_SYSENTER_EIP:
  358. vmcs_writel(GUEST_SYSENTER_EIP, data);
  359. break;
  360. case MSR_IA32_SYSENTER_ESP:
  361. vmcs_writel(GUEST_SYSENTER_ESP, data);
  362. break;
  363. case MSR_IA32_TIME_STAMP_COUNTER:
  364. guest_write_tsc(data);
  365. break;
  366. default:
  367. msr = find_msr_entry(vcpu, msr_index);
  368. if (msr) {
  369. msr->data = data;
  370. break;
  371. }
  372. return kvm_set_msr_common(vcpu, msr_index, data);
  373. msr->data = data;
  374. break;
  375. }
  376. return 0;
  377. }
  378. /*
  379. * Sync the rsp and rip registers into the vcpu structure. This allows
  380. * registers to be accessed by indexing vcpu->regs.
  381. */
  382. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  383. {
  384. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  385. vcpu->rip = vmcs_readl(GUEST_RIP);
  386. }
  387. /*
  388. * Syncs rsp and rip back into the vmcs. Should be called after possible
  389. * modification.
  390. */
  391. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  392. {
  393. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  394. vmcs_writel(GUEST_RIP, vcpu->rip);
  395. }
  396. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  397. {
  398. unsigned long dr7 = 0x400;
  399. u32 exception_bitmap;
  400. int old_singlestep;
  401. exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
  402. old_singlestep = vcpu->guest_debug.singlestep;
  403. vcpu->guest_debug.enabled = dbg->enabled;
  404. if (vcpu->guest_debug.enabled) {
  405. int i;
  406. dr7 |= 0x200; /* exact */
  407. for (i = 0; i < 4; ++i) {
  408. if (!dbg->breakpoints[i].enabled)
  409. continue;
  410. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  411. dr7 |= 2 << (i*2); /* global enable */
  412. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  413. }
  414. exception_bitmap |= (1u << 1); /* Trap debug exceptions */
  415. vcpu->guest_debug.singlestep = dbg->singlestep;
  416. } else {
  417. exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
  418. vcpu->guest_debug.singlestep = 0;
  419. }
  420. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  421. unsigned long flags;
  422. flags = vmcs_readl(GUEST_RFLAGS);
  423. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  424. vmcs_writel(GUEST_RFLAGS, flags);
  425. }
  426. vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
  427. vmcs_writel(GUEST_DR7, dr7);
  428. return 0;
  429. }
  430. static __init int cpu_has_kvm_support(void)
  431. {
  432. unsigned long ecx = cpuid_ecx(1);
  433. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  434. }
  435. static __init int vmx_disabled_by_bios(void)
  436. {
  437. u64 msr;
  438. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  439. return (msr & 5) == 1; /* locked but not enabled */
  440. }
  441. static void hardware_enable(void *garbage)
  442. {
  443. int cpu = raw_smp_processor_id();
  444. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  445. u64 old;
  446. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  447. if ((old & 5) != 5)
  448. /* enable and lock */
  449. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  450. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  451. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  452. : "memory", "cc");
  453. }
  454. static void hardware_disable(void *garbage)
  455. {
  456. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  457. }
  458. static __init void setup_vmcs_descriptor(void)
  459. {
  460. u32 vmx_msr_low, vmx_msr_high;
  461. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  462. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  463. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  464. vmcs_descriptor.revision_id = vmx_msr_low;
  465. }
  466. static struct vmcs *alloc_vmcs_cpu(int cpu)
  467. {
  468. int node = cpu_to_node(cpu);
  469. struct page *pages;
  470. struct vmcs *vmcs;
  471. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  472. if (!pages)
  473. return NULL;
  474. vmcs = page_address(pages);
  475. memset(vmcs, 0, vmcs_descriptor.size);
  476. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  477. return vmcs;
  478. }
  479. static struct vmcs *alloc_vmcs(void)
  480. {
  481. return alloc_vmcs_cpu(raw_smp_processor_id());
  482. }
  483. static void free_vmcs(struct vmcs *vmcs)
  484. {
  485. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  486. }
  487. static __exit void free_kvm_area(void)
  488. {
  489. int cpu;
  490. for_each_online_cpu(cpu)
  491. free_vmcs(per_cpu(vmxarea, cpu));
  492. }
  493. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  494. static __init int alloc_kvm_area(void)
  495. {
  496. int cpu;
  497. for_each_online_cpu(cpu) {
  498. struct vmcs *vmcs;
  499. vmcs = alloc_vmcs_cpu(cpu);
  500. if (!vmcs) {
  501. free_kvm_area();
  502. return -ENOMEM;
  503. }
  504. per_cpu(vmxarea, cpu) = vmcs;
  505. }
  506. return 0;
  507. }
  508. static __init int hardware_setup(void)
  509. {
  510. setup_vmcs_descriptor();
  511. return alloc_kvm_area();
  512. }
  513. static __exit void hardware_unsetup(void)
  514. {
  515. free_kvm_area();
  516. }
  517. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  518. {
  519. if (vcpu->rmode.active)
  520. vmcs_write32(EXCEPTION_BITMAP, ~0);
  521. else
  522. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  523. }
  524. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  525. {
  526. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  527. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  528. vmcs_write16(sf->selector, save->selector);
  529. vmcs_writel(sf->base, save->base);
  530. vmcs_write32(sf->limit, save->limit);
  531. vmcs_write32(sf->ar_bytes, save->ar);
  532. } else {
  533. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  534. << AR_DPL_SHIFT;
  535. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  536. }
  537. }
  538. static void enter_pmode(struct kvm_vcpu *vcpu)
  539. {
  540. unsigned long flags;
  541. vcpu->rmode.active = 0;
  542. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  543. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  544. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  545. flags = vmcs_readl(GUEST_RFLAGS);
  546. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  547. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  548. vmcs_writel(GUEST_RFLAGS, flags);
  549. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  550. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  551. update_exception_bitmap(vcpu);
  552. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  553. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  554. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  555. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  556. vmcs_write16(GUEST_SS_SELECTOR, 0);
  557. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  558. vmcs_write16(GUEST_CS_SELECTOR,
  559. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  560. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  561. }
  562. static int rmode_tss_base(struct kvm* kvm)
  563. {
  564. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  565. return base_gfn << PAGE_SHIFT;
  566. }
  567. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  568. {
  569. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  570. save->selector = vmcs_read16(sf->selector);
  571. save->base = vmcs_readl(sf->base);
  572. save->limit = vmcs_read32(sf->limit);
  573. save->ar = vmcs_read32(sf->ar_bytes);
  574. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  575. vmcs_write32(sf->limit, 0xffff);
  576. vmcs_write32(sf->ar_bytes, 0xf3);
  577. }
  578. static void enter_rmode(struct kvm_vcpu *vcpu)
  579. {
  580. unsigned long flags;
  581. vcpu->rmode.active = 1;
  582. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  583. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  584. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  585. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  586. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  587. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  588. flags = vmcs_readl(GUEST_RFLAGS);
  589. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  590. flags |= IOPL_MASK | X86_EFLAGS_VM;
  591. vmcs_writel(GUEST_RFLAGS, flags);
  592. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  593. update_exception_bitmap(vcpu);
  594. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  595. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  596. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  597. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  598. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  599. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  600. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  601. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  602. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  603. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  604. }
  605. #ifdef CONFIG_X86_64
  606. static void enter_lmode(struct kvm_vcpu *vcpu)
  607. {
  608. u32 guest_tr_ar;
  609. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  610. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  611. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  612. __FUNCTION__);
  613. vmcs_write32(GUEST_TR_AR_BYTES,
  614. (guest_tr_ar & ~AR_TYPE_MASK)
  615. | AR_TYPE_BUSY_64_TSS);
  616. }
  617. vcpu->shadow_efer |= EFER_LMA;
  618. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  619. vmcs_write32(VM_ENTRY_CONTROLS,
  620. vmcs_read32(VM_ENTRY_CONTROLS)
  621. | VM_ENTRY_CONTROLS_IA32E_MASK);
  622. }
  623. static void exit_lmode(struct kvm_vcpu *vcpu)
  624. {
  625. vcpu->shadow_efer &= ~EFER_LMA;
  626. vmcs_write32(VM_ENTRY_CONTROLS,
  627. vmcs_read32(VM_ENTRY_CONTROLS)
  628. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  629. }
  630. #endif
  631. static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
  632. {
  633. vcpu->cr0 &= KVM_GUEST_CR0_MASK;
  634. vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
  635. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  636. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  637. }
  638. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  639. {
  640. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  641. enter_pmode(vcpu);
  642. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  643. enter_rmode(vcpu);
  644. #ifdef CONFIG_X86_64
  645. if (vcpu->shadow_efer & EFER_LME) {
  646. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  647. enter_lmode(vcpu);
  648. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  649. exit_lmode(vcpu);
  650. }
  651. #endif
  652. vmcs_writel(CR0_READ_SHADOW, cr0);
  653. vmcs_writel(GUEST_CR0,
  654. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  655. vcpu->cr0 = cr0;
  656. }
  657. /*
  658. * Used when restoring the VM to avoid corrupting segment registers
  659. */
  660. static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
  661. {
  662. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  663. enter_rmode(vcpu);
  664. vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
  665. update_exception_bitmap(vcpu);
  666. vmcs_writel(CR0_READ_SHADOW, cr0);
  667. vmcs_writel(GUEST_CR0,
  668. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  669. vcpu->cr0 = cr0;
  670. }
  671. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  672. {
  673. vmcs_writel(GUEST_CR3, cr3);
  674. }
  675. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  676. {
  677. vmcs_writel(CR4_READ_SHADOW, cr4);
  678. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  679. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  680. vcpu->cr4 = cr4;
  681. }
  682. #ifdef CONFIG_X86_64
  683. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  684. {
  685. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  686. vcpu->shadow_efer = efer;
  687. if (efer & EFER_LMA) {
  688. vmcs_write32(VM_ENTRY_CONTROLS,
  689. vmcs_read32(VM_ENTRY_CONTROLS) |
  690. VM_ENTRY_CONTROLS_IA32E_MASK);
  691. msr->data = efer;
  692. } else {
  693. vmcs_write32(VM_ENTRY_CONTROLS,
  694. vmcs_read32(VM_ENTRY_CONTROLS) &
  695. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  696. msr->data = efer & ~EFER_LME;
  697. }
  698. }
  699. #endif
  700. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  701. {
  702. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  703. return vmcs_readl(sf->base);
  704. }
  705. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  706. struct kvm_segment *var, int seg)
  707. {
  708. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  709. u32 ar;
  710. var->base = vmcs_readl(sf->base);
  711. var->limit = vmcs_read32(sf->limit);
  712. var->selector = vmcs_read16(sf->selector);
  713. ar = vmcs_read32(sf->ar_bytes);
  714. if (ar & AR_UNUSABLE_MASK)
  715. ar = 0;
  716. var->type = ar & 15;
  717. var->s = (ar >> 4) & 1;
  718. var->dpl = (ar >> 5) & 3;
  719. var->present = (ar >> 7) & 1;
  720. var->avl = (ar >> 12) & 1;
  721. var->l = (ar >> 13) & 1;
  722. var->db = (ar >> 14) & 1;
  723. var->g = (ar >> 15) & 1;
  724. var->unusable = (ar >> 16) & 1;
  725. }
  726. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  727. struct kvm_segment *var, int seg)
  728. {
  729. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  730. u32 ar;
  731. vmcs_writel(sf->base, var->base);
  732. vmcs_write32(sf->limit, var->limit);
  733. vmcs_write16(sf->selector, var->selector);
  734. if (var->unusable)
  735. ar = 1 << 16;
  736. else {
  737. ar = var->type & 15;
  738. ar |= (var->s & 1) << 4;
  739. ar |= (var->dpl & 3) << 5;
  740. ar |= (var->present & 1) << 7;
  741. ar |= (var->avl & 1) << 12;
  742. ar |= (var->l & 1) << 13;
  743. ar |= (var->db & 1) << 14;
  744. ar |= (var->g & 1) << 15;
  745. }
  746. if (ar == 0) /* a 0 value means unusable */
  747. ar = AR_UNUSABLE_MASK;
  748. vmcs_write32(sf->ar_bytes, ar);
  749. }
  750. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  751. {
  752. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  753. *db = (ar >> 14) & 1;
  754. *l = (ar >> 13) & 1;
  755. }
  756. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  757. {
  758. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  759. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  760. }
  761. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  762. {
  763. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  764. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  765. }
  766. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  767. {
  768. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  769. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  770. }
  771. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  772. {
  773. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  774. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  775. }
  776. static int init_rmode_tss(struct kvm* kvm)
  777. {
  778. struct page *p1, *p2, *p3;
  779. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  780. char *page;
  781. p1 = _gfn_to_page(kvm, fn++);
  782. p2 = _gfn_to_page(kvm, fn++);
  783. p3 = _gfn_to_page(kvm, fn);
  784. if (!p1 || !p2 || !p3) {
  785. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  786. return 0;
  787. }
  788. page = kmap_atomic(p1, KM_USER0);
  789. memset(page, 0, PAGE_SIZE);
  790. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  791. kunmap_atomic(page, KM_USER0);
  792. page = kmap_atomic(p2, KM_USER0);
  793. memset(page, 0, PAGE_SIZE);
  794. kunmap_atomic(page, KM_USER0);
  795. page = kmap_atomic(p3, KM_USER0);
  796. memset(page, 0, PAGE_SIZE);
  797. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  798. kunmap_atomic(page, KM_USER0);
  799. return 1;
  800. }
  801. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  802. {
  803. u32 msr_high, msr_low;
  804. rdmsr(msr, msr_low, msr_high);
  805. val &= msr_high;
  806. val |= msr_low;
  807. vmcs_write32(vmcs_field, val);
  808. }
  809. static void seg_setup(int seg)
  810. {
  811. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  812. vmcs_write16(sf->selector, 0);
  813. vmcs_writel(sf->base, 0);
  814. vmcs_write32(sf->limit, 0xffff);
  815. vmcs_write32(sf->ar_bytes, 0x93);
  816. }
  817. /*
  818. * Sets up the vmcs for emulated real mode.
  819. */
  820. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  821. {
  822. u32 host_sysenter_cs;
  823. u32 junk;
  824. unsigned long a;
  825. struct descriptor_table dt;
  826. int i;
  827. int ret = 0;
  828. int nr_good_msrs;
  829. extern asmlinkage void kvm_vmx_return(void);
  830. if (!init_rmode_tss(vcpu->kvm)) {
  831. ret = -ENOMEM;
  832. goto out;
  833. }
  834. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  835. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  836. vcpu->cr8 = 0;
  837. vcpu->apic_base = 0xfee00000 |
  838. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  839. MSR_IA32_APICBASE_ENABLE;
  840. fx_init(vcpu);
  841. /*
  842. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  843. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  844. */
  845. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  846. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  847. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  848. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  849. seg_setup(VCPU_SREG_DS);
  850. seg_setup(VCPU_SREG_ES);
  851. seg_setup(VCPU_SREG_FS);
  852. seg_setup(VCPU_SREG_GS);
  853. seg_setup(VCPU_SREG_SS);
  854. vmcs_write16(GUEST_TR_SELECTOR, 0);
  855. vmcs_writel(GUEST_TR_BASE, 0);
  856. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  857. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  858. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  859. vmcs_writel(GUEST_LDTR_BASE, 0);
  860. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  861. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  862. vmcs_write32(GUEST_SYSENTER_CS, 0);
  863. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  864. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  865. vmcs_writel(GUEST_RFLAGS, 0x02);
  866. vmcs_writel(GUEST_RIP, 0xfff0);
  867. vmcs_writel(GUEST_RSP, 0);
  868. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  869. vmcs_writel(GUEST_DR7, 0x400);
  870. vmcs_writel(GUEST_GDTR_BASE, 0);
  871. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  872. vmcs_writel(GUEST_IDTR_BASE, 0);
  873. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  874. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  875. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  876. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  877. /* I/O */
  878. vmcs_write64(IO_BITMAP_A, 0);
  879. vmcs_write64(IO_BITMAP_B, 0);
  880. guest_write_tsc(0);
  881. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  882. /* Special registers */
  883. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  884. /* Control */
  885. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  886. PIN_BASED_VM_EXEC_CONTROL,
  887. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  888. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  889. );
  890. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  891. CPU_BASED_VM_EXEC_CONTROL,
  892. CPU_BASED_HLT_EXITING /* 20.6.2 */
  893. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  894. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  895. | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
  896. | CPU_BASED_MOV_DR_EXITING
  897. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  898. );
  899. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  900. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  901. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  902. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  903. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  904. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  905. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  906. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  907. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  908. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  909. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  910. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  911. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  912. #ifdef CONFIG_X86_64
  913. rdmsrl(MSR_FS_BASE, a);
  914. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  915. rdmsrl(MSR_GS_BASE, a);
  916. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  917. #else
  918. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  919. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  920. #endif
  921. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  922. get_idt(&dt);
  923. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  924. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  925. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  926. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  927. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  928. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  929. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  930. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  931. for (i = 0; i < NR_VMX_MSR; ++i) {
  932. u32 index = vmx_msr_index[i];
  933. u32 data_low, data_high;
  934. u64 data;
  935. int j = vcpu->nmsrs;
  936. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  937. continue;
  938. if (wrmsr_safe(index, data_low, data_high) < 0)
  939. continue;
  940. data = data_low | ((u64)data_high << 32);
  941. vcpu->host_msrs[j].index = index;
  942. vcpu->host_msrs[j].reserved = 0;
  943. vcpu->host_msrs[j].data = data;
  944. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  945. ++vcpu->nmsrs;
  946. }
  947. printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
  948. nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
  949. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  950. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  951. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  952. virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
  953. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  954. virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
  955. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  956. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  957. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  958. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  959. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  960. /* 22.2.1, 20.8.1 */
  961. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  962. VM_ENTRY_CONTROLS, 0);
  963. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  964. #ifdef CONFIG_X86_64
  965. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  966. vmcs_writel(TPR_THRESHOLD, 0);
  967. #endif
  968. vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
  969. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  970. vcpu->cr0 = 0x60000010;
  971. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  972. vmx_set_cr4(vcpu, 0);
  973. #ifdef CONFIG_X86_64
  974. vmx_set_efer(vcpu, 0);
  975. #endif
  976. return 0;
  977. out:
  978. return ret;
  979. }
  980. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  981. {
  982. u16 ent[2];
  983. u16 cs;
  984. u16 ip;
  985. unsigned long flags;
  986. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  987. u16 sp = vmcs_readl(GUEST_RSP);
  988. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  989. if (sp > ss_limit || sp - 6 > sp) {
  990. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  991. __FUNCTION__,
  992. vmcs_readl(GUEST_RSP),
  993. vmcs_readl(GUEST_SS_BASE),
  994. vmcs_read32(GUEST_SS_LIMIT));
  995. return;
  996. }
  997. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  998. sizeof(ent)) {
  999. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1000. return;
  1001. }
  1002. flags = vmcs_readl(GUEST_RFLAGS);
  1003. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1004. ip = vmcs_readl(GUEST_RIP);
  1005. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1006. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1007. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1008. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1009. return;
  1010. }
  1011. vmcs_writel(GUEST_RFLAGS, flags &
  1012. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1013. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1014. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1015. vmcs_writel(GUEST_RIP, ent[0]);
  1016. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1017. }
  1018. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1019. {
  1020. int word_index = __ffs(vcpu->irq_summary);
  1021. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1022. int irq = word_index * BITS_PER_LONG + bit_index;
  1023. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1024. if (!vcpu->irq_pending[word_index])
  1025. clear_bit(word_index, &vcpu->irq_summary);
  1026. if (vcpu->rmode.active) {
  1027. inject_rmode_irq(vcpu, irq);
  1028. return;
  1029. }
  1030. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1031. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1032. }
  1033. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1034. struct kvm_run *kvm_run)
  1035. {
  1036. u32 cpu_based_vm_exec_control;
  1037. vcpu->interrupt_window_open =
  1038. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1039. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1040. if (vcpu->interrupt_window_open &&
  1041. vcpu->irq_summary &&
  1042. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1043. /*
  1044. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1045. */
  1046. kvm_do_inject_irq(vcpu);
  1047. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1048. if (!vcpu->interrupt_window_open &&
  1049. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1050. /*
  1051. * Interrupts blocked. Wait for unblock.
  1052. */
  1053. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1054. else
  1055. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1056. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1057. }
  1058. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1059. {
  1060. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1061. set_debugreg(dbg->bp[0], 0);
  1062. set_debugreg(dbg->bp[1], 1);
  1063. set_debugreg(dbg->bp[2], 2);
  1064. set_debugreg(dbg->bp[3], 3);
  1065. if (dbg->singlestep) {
  1066. unsigned long flags;
  1067. flags = vmcs_readl(GUEST_RFLAGS);
  1068. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1069. vmcs_writel(GUEST_RFLAGS, flags);
  1070. }
  1071. }
  1072. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1073. int vec, u32 err_code)
  1074. {
  1075. if (!vcpu->rmode.active)
  1076. return 0;
  1077. if (vec == GP_VECTOR && err_code == 0)
  1078. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1079. return 1;
  1080. return 0;
  1081. }
  1082. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1083. {
  1084. u32 intr_info, error_code;
  1085. unsigned long cr2, rip;
  1086. u32 vect_info;
  1087. enum emulation_result er;
  1088. int r;
  1089. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1090. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1091. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1092. !is_page_fault(intr_info)) {
  1093. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1094. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1095. }
  1096. if (is_external_interrupt(vect_info)) {
  1097. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1098. set_bit(irq, vcpu->irq_pending);
  1099. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1100. }
  1101. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1102. asm ("int $2");
  1103. return 1;
  1104. }
  1105. error_code = 0;
  1106. rip = vmcs_readl(GUEST_RIP);
  1107. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1108. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1109. if (is_page_fault(intr_info)) {
  1110. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1111. spin_lock(&vcpu->kvm->lock);
  1112. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1113. if (r < 0) {
  1114. spin_unlock(&vcpu->kvm->lock);
  1115. return r;
  1116. }
  1117. if (!r) {
  1118. spin_unlock(&vcpu->kvm->lock);
  1119. return 1;
  1120. }
  1121. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1122. spin_unlock(&vcpu->kvm->lock);
  1123. switch (er) {
  1124. case EMULATE_DONE:
  1125. return 1;
  1126. case EMULATE_DO_MMIO:
  1127. ++kvm_stat.mmio_exits;
  1128. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1129. return 0;
  1130. case EMULATE_FAIL:
  1131. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1132. break;
  1133. default:
  1134. BUG();
  1135. }
  1136. }
  1137. if (vcpu->rmode.active &&
  1138. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1139. error_code))
  1140. return 1;
  1141. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1142. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1143. return 0;
  1144. }
  1145. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1146. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1147. kvm_run->ex.error_code = error_code;
  1148. return 0;
  1149. }
  1150. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1151. struct kvm_run *kvm_run)
  1152. {
  1153. ++kvm_stat.irq_exits;
  1154. return 1;
  1155. }
  1156. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1157. {
  1158. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1159. return 0;
  1160. }
  1161. static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
  1162. {
  1163. u64 inst;
  1164. gva_t rip;
  1165. int countr_size;
  1166. int i, n;
  1167. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1168. countr_size = 2;
  1169. } else {
  1170. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1171. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1172. (cs_ar & AR_DB_MASK) ? 4: 2;
  1173. }
  1174. rip = vmcs_readl(GUEST_RIP);
  1175. if (countr_size != 8)
  1176. rip += vmcs_readl(GUEST_CS_BASE);
  1177. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1178. for (i = 0; i < n; i++) {
  1179. switch (((u8*)&inst)[i]) {
  1180. case 0xf0:
  1181. case 0xf2:
  1182. case 0xf3:
  1183. case 0x2e:
  1184. case 0x36:
  1185. case 0x3e:
  1186. case 0x26:
  1187. case 0x64:
  1188. case 0x65:
  1189. case 0x66:
  1190. break;
  1191. case 0x67:
  1192. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1193. default:
  1194. goto done;
  1195. }
  1196. }
  1197. return 0;
  1198. done:
  1199. countr_size *= 8;
  1200. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1201. return 1;
  1202. }
  1203. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1204. {
  1205. u64 exit_qualification;
  1206. ++kvm_stat.io_exits;
  1207. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1208. kvm_run->exit_reason = KVM_EXIT_IO;
  1209. if (exit_qualification & 8)
  1210. kvm_run->io.direction = KVM_EXIT_IO_IN;
  1211. else
  1212. kvm_run->io.direction = KVM_EXIT_IO_OUT;
  1213. kvm_run->io.size = (exit_qualification & 7) + 1;
  1214. kvm_run->io.string = (exit_qualification & 16) != 0;
  1215. kvm_run->io.string_down
  1216. = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1217. kvm_run->io.rep = (exit_qualification & 32) != 0;
  1218. kvm_run->io.port = exit_qualification >> 16;
  1219. kvm_run->io.count = 1;
  1220. if (kvm_run->io.string) {
  1221. if (!get_io_count(vcpu, &kvm_run->io.count))
  1222. return 1;
  1223. kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1224. } else
  1225. kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
  1226. vcpu->pio_pending = 1;
  1227. return 0;
  1228. }
  1229. static void
  1230. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1231. {
  1232. /*
  1233. * Patch in the VMCALL instruction:
  1234. */
  1235. hypercall[0] = 0x0f;
  1236. hypercall[1] = 0x01;
  1237. hypercall[2] = 0xc1;
  1238. hypercall[3] = 0xc3;
  1239. }
  1240. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1241. {
  1242. u64 exit_qualification;
  1243. int cr;
  1244. int reg;
  1245. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1246. cr = exit_qualification & 15;
  1247. reg = (exit_qualification >> 8) & 15;
  1248. switch ((exit_qualification >> 4) & 3) {
  1249. case 0: /* mov to cr */
  1250. switch (cr) {
  1251. case 0:
  1252. vcpu_load_rsp_rip(vcpu);
  1253. set_cr0(vcpu, vcpu->regs[reg]);
  1254. skip_emulated_instruction(vcpu);
  1255. return 1;
  1256. case 3:
  1257. vcpu_load_rsp_rip(vcpu);
  1258. set_cr3(vcpu, vcpu->regs[reg]);
  1259. skip_emulated_instruction(vcpu);
  1260. return 1;
  1261. case 4:
  1262. vcpu_load_rsp_rip(vcpu);
  1263. set_cr4(vcpu, vcpu->regs[reg]);
  1264. skip_emulated_instruction(vcpu);
  1265. return 1;
  1266. case 8:
  1267. vcpu_load_rsp_rip(vcpu);
  1268. set_cr8(vcpu, vcpu->regs[reg]);
  1269. skip_emulated_instruction(vcpu);
  1270. return 1;
  1271. };
  1272. break;
  1273. case 1: /*mov from cr*/
  1274. switch (cr) {
  1275. case 3:
  1276. vcpu_load_rsp_rip(vcpu);
  1277. vcpu->regs[reg] = vcpu->cr3;
  1278. vcpu_put_rsp_rip(vcpu);
  1279. skip_emulated_instruction(vcpu);
  1280. return 1;
  1281. case 8:
  1282. printk(KERN_DEBUG "handle_cr: read CR8 "
  1283. "cpu erratum AA15\n");
  1284. vcpu_load_rsp_rip(vcpu);
  1285. vcpu->regs[reg] = vcpu->cr8;
  1286. vcpu_put_rsp_rip(vcpu);
  1287. skip_emulated_instruction(vcpu);
  1288. return 1;
  1289. }
  1290. break;
  1291. case 3: /* lmsw */
  1292. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1293. skip_emulated_instruction(vcpu);
  1294. return 1;
  1295. default:
  1296. break;
  1297. }
  1298. kvm_run->exit_reason = 0;
  1299. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1300. (int)(exit_qualification >> 4) & 3, cr);
  1301. return 0;
  1302. }
  1303. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1304. {
  1305. u64 exit_qualification;
  1306. unsigned long val;
  1307. int dr, reg;
  1308. /*
  1309. * FIXME: this code assumes the host is debugging the guest.
  1310. * need to deal with guest debugging itself too.
  1311. */
  1312. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1313. dr = exit_qualification & 7;
  1314. reg = (exit_qualification >> 8) & 15;
  1315. vcpu_load_rsp_rip(vcpu);
  1316. if (exit_qualification & 16) {
  1317. /* mov from dr */
  1318. switch (dr) {
  1319. case 6:
  1320. val = 0xffff0ff0;
  1321. break;
  1322. case 7:
  1323. val = 0x400;
  1324. break;
  1325. default:
  1326. val = 0;
  1327. }
  1328. vcpu->regs[reg] = val;
  1329. } else {
  1330. /* mov to dr */
  1331. }
  1332. vcpu_put_rsp_rip(vcpu);
  1333. skip_emulated_instruction(vcpu);
  1334. return 1;
  1335. }
  1336. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1337. {
  1338. kvm_emulate_cpuid(vcpu);
  1339. return 1;
  1340. }
  1341. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1342. {
  1343. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1344. u64 data;
  1345. if (vmx_get_msr(vcpu, ecx, &data)) {
  1346. vmx_inject_gp(vcpu, 0);
  1347. return 1;
  1348. }
  1349. /* FIXME: handling of bits 32:63 of rax, rdx */
  1350. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1351. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1352. skip_emulated_instruction(vcpu);
  1353. return 1;
  1354. }
  1355. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1356. {
  1357. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1358. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1359. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1360. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1361. vmx_inject_gp(vcpu, 0);
  1362. return 1;
  1363. }
  1364. skip_emulated_instruction(vcpu);
  1365. return 1;
  1366. }
  1367. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1368. struct kvm_run *kvm_run)
  1369. {
  1370. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1371. kvm_run->cr8 = vcpu->cr8;
  1372. kvm_run->apic_base = vcpu->apic_base;
  1373. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1374. vcpu->irq_summary == 0);
  1375. }
  1376. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1377. struct kvm_run *kvm_run)
  1378. {
  1379. /*
  1380. * If the user space waits to inject interrupts, exit as soon as
  1381. * possible
  1382. */
  1383. if (kvm_run->request_interrupt_window &&
  1384. !vcpu->irq_summary) {
  1385. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1386. ++kvm_stat.irq_window_exits;
  1387. return 0;
  1388. }
  1389. return 1;
  1390. }
  1391. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1392. {
  1393. skip_emulated_instruction(vcpu);
  1394. if (vcpu->irq_summary)
  1395. return 1;
  1396. kvm_run->exit_reason = KVM_EXIT_HLT;
  1397. ++kvm_stat.halt_exits;
  1398. return 0;
  1399. }
  1400. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1401. {
  1402. skip_emulated_instruction(vcpu);
  1403. return kvm_hypercall(vcpu, kvm_run);
  1404. }
  1405. /*
  1406. * The exit handlers return 1 if the exit was handled fully and guest execution
  1407. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1408. * to be done to userspace and return 0.
  1409. */
  1410. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1411. struct kvm_run *kvm_run) = {
  1412. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1413. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1414. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1415. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1416. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1417. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1418. [EXIT_REASON_CPUID] = handle_cpuid,
  1419. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1420. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1421. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1422. [EXIT_REASON_HLT] = handle_halt,
  1423. [EXIT_REASON_VMCALL] = handle_vmcall,
  1424. };
  1425. static const int kvm_vmx_max_exit_handlers =
  1426. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1427. /*
  1428. * The guest has exited. See if we can fix it or if we need userspace
  1429. * assistance.
  1430. */
  1431. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1432. {
  1433. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1434. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1435. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1436. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1437. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1438. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1439. kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1440. if (exit_reason < kvm_vmx_max_exit_handlers
  1441. && kvm_vmx_exit_handlers[exit_reason])
  1442. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1443. else {
  1444. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1445. kvm_run->hw.hardware_exit_reason = exit_reason;
  1446. }
  1447. return 0;
  1448. }
  1449. /*
  1450. * Check if userspace requested an interrupt window, and that the
  1451. * interrupt window is open.
  1452. *
  1453. * No need to exit to userspace if we already have an interrupt queued.
  1454. */
  1455. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1456. struct kvm_run *kvm_run)
  1457. {
  1458. return (!vcpu->irq_summary &&
  1459. kvm_run->request_interrupt_window &&
  1460. vcpu->interrupt_window_open &&
  1461. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1462. }
  1463. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1464. {
  1465. u8 fail;
  1466. u16 fs_sel, gs_sel, ldt_sel;
  1467. int fs_gs_ldt_reload_needed;
  1468. int r;
  1469. again:
  1470. /*
  1471. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1472. * allow segment selectors with cpl > 0 or ti == 1.
  1473. */
  1474. fs_sel = read_fs();
  1475. gs_sel = read_gs();
  1476. ldt_sel = read_ldt();
  1477. fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
  1478. if (!fs_gs_ldt_reload_needed) {
  1479. vmcs_write16(HOST_FS_SELECTOR, fs_sel);
  1480. vmcs_write16(HOST_GS_SELECTOR, gs_sel);
  1481. } else {
  1482. vmcs_write16(HOST_FS_SELECTOR, 0);
  1483. vmcs_write16(HOST_GS_SELECTOR, 0);
  1484. }
  1485. #ifdef CONFIG_X86_64
  1486. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1487. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1488. #else
  1489. vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
  1490. vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
  1491. #endif
  1492. if (!vcpu->mmio_read_completed)
  1493. do_interrupt_requests(vcpu, kvm_run);
  1494. if (vcpu->guest_debug.enabled)
  1495. kvm_guest_debug_pre(vcpu);
  1496. fx_save(vcpu->host_fx_image);
  1497. fx_restore(vcpu->guest_fx_image);
  1498. save_msrs(vcpu->host_msrs, vcpu->nmsrs);
  1499. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1500. asm (
  1501. /* Store host registers */
  1502. "pushf \n\t"
  1503. #ifdef CONFIG_X86_64
  1504. "push %%rax; push %%rbx; push %%rdx;"
  1505. "push %%rsi; push %%rdi; push %%rbp;"
  1506. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1507. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1508. "push %%rcx \n\t"
  1509. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1510. #else
  1511. "pusha; push %%ecx \n\t"
  1512. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1513. #endif
  1514. /* Check if vmlaunch of vmresume is needed */
  1515. "cmp $0, %1 \n\t"
  1516. /* Load guest registers. Don't clobber flags. */
  1517. #ifdef CONFIG_X86_64
  1518. "mov %c[cr2](%3), %%rax \n\t"
  1519. "mov %%rax, %%cr2 \n\t"
  1520. "mov %c[rax](%3), %%rax \n\t"
  1521. "mov %c[rbx](%3), %%rbx \n\t"
  1522. "mov %c[rdx](%3), %%rdx \n\t"
  1523. "mov %c[rsi](%3), %%rsi \n\t"
  1524. "mov %c[rdi](%3), %%rdi \n\t"
  1525. "mov %c[rbp](%3), %%rbp \n\t"
  1526. "mov %c[r8](%3), %%r8 \n\t"
  1527. "mov %c[r9](%3), %%r9 \n\t"
  1528. "mov %c[r10](%3), %%r10 \n\t"
  1529. "mov %c[r11](%3), %%r11 \n\t"
  1530. "mov %c[r12](%3), %%r12 \n\t"
  1531. "mov %c[r13](%3), %%r13 \n\t"
  1532. "mov %c[r14](%3), %%r14 \n\t"
  1533. "mov %c[r15](%3), %%r15 \n\t"
  1534. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1535. #else
  1536. "mov %c[cr2](%3), %%eax \n\t"
  1537. "mov %%eax, %%cr2 \n\t"
  1538. "mov %c[rax](%3), %%eax \n\t"
  1539. "mov %c[rbx](%3), %%ebx \n\t"
  1540. "mov %c[rdx](%3), %%edx \n\t"
  1541. "mov %c[rsi](%3), %%esi \n\t"
  1542. "mov %c[rdi](%3), %%edi \n\t"
  1543. "mov %c[rbp](%3), %%ebp \n\t"
  1544. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1545. #endif
  1546. /* Enter guest mode */
  1547. "jne launched \n\t"
  1548. ASM_VMX_VMLAUNCH "\n\t"
  1549. "jmp kvm_vmx_return \n\t"
  1550. "launched: " ASM_VMX_VMRESUME "\n\t"
  1551. ".globl kvm_vmx_return \n\t"
  1552. "kvm_vmx_return: "
  1553. /* Save guest registers, load host registers, keep flags */
  1554. #ifdef CONFIG_X86_64
  1555. "xchg %3, (%%rsp) \n\t"
  1556. "mov %%rax, %c[rax](%3) \n\t"
  1557. "mov %%rbx, %c[rbx](%3) \n\t"
  1558. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1559. "mov %%rdx, %c[rdx](%3) \n\t"
  1560. "mov %%rsi, %c[rsi](%3) \n\t"
  1561. "mov %%rdi, %c[rdi](%3) \n\t"
  1562. "mov %%rbp, %c[rbp](%3) \n\t"
  1563. "mov %%r8, %c[r8](%3) \n\t"
  1564. "mov %%r9, %c[r9](%3) \n\t"
  1565. "mov %%r10, %c[r10](%3) \n\t"
  1566. "mov %%r11, %c[r11](%3) \n\t"
  1567. "mov %%r12, %c[r12](%3) \n\t"
  1568. "mov %%r13, %c[r13](%3) \n\t"
  1569. "mov %%r14, %c[r14](%3) \n\t"
  1570. "mov %%r15, %c[r15](%3) \n\t"
  1571. "mov %%cr2, %%rax \n\t"
  1572. "mov %%rax, %c[cr2](%3) \n\t"
  1573. "mov (%%rsp), %3 \n\t"
  1574. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1575. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1576. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1577. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1578. #else
  1579. "xchg %3, (%%esp) \n\t"
  1580. "mov %%eax, %c[rax](%3) \n\t"
  1581. "mov %%ebx, %c[rbx](%3) \n\t"
  1582. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1583. "mov %%edx, %c[rdx](%3) \n\t"
  1584. "mov %%esi, %c[rsi](%3) \n\t"
  1585. "mov %%edi, %c[rdi](%3) \n\t"
  1586. "mov %%ebp, %c[rbp](%3) \n\t"
  1587. "mov %%cr2, %%eax \n\t"
  1588. "mov %%eax, %c[cr2](%3) \n\t"
  1589. "mov (%%esp), %3 \n\t"
  1590. "pop %%ecx; popa \n\t"
  1591. #endif
  1592. "setbe %0 \n\t"
  1593. "popf \n\t"
  1594. : "=q" (fail)
  1595. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1596. "c"(vcpu),
  1597. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1598. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1599. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1600. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1601. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1602. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1603. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1604. #ifdef CONFIG_X86_64
  1605. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1606. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1607. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1608. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1609. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1610. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1611. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1612. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1613. #endif
  1614. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1615. : "cc", "memory" );
  1616. /*
  1617. * Reload segment selectors ASAP. (it's needed for a functional
  1618. * kernel: x86 relies on having __KERNEL_PDA in %fs and x86_64
  1619. * relies on having 0 in %gs for the CPU PDA to work.)
  1620. */
  1621. if (fs_gs_ldt_reload_needed) {
  1622. load_ldt(ldt_sel);
  1623. load_fs(fs_sel);
  1624. /*
  1625. * If we have to reload gs, we must take care to
  1626. * preserve our gs base.
  1627. */
  1628. local_irq_disable();
  1629. load_gs(gs_sel);
  1630. #ifdef CONFIG_X86_64
  1631. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  1632. #endif
  1633. local_irq_enable();
  1634. reload_tss();
  1635. }
  1636. ++kvm_stat.exits;
  1637. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1638. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  1639. fx_save(vcpu->guest_fx_image);
  1640. fx_restore(vcpu->host_fx_image);
  1641. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1642. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1643. if (fail) {
  1644. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1645. kvm_run->fail_entry.hardware_entry_failure_reason
  1646. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1647. r = 0;
  1648. } else {
  1649. /*
  1650. * Profile KVM exit RIPs:
  1651. */
  1652. if (unlikely(prof_on == KVM_PROFILING))
  1653. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1654. vcpu->launched = 1;
  1655. r = kvm_handle_exit(kvm_run, vcpu);
  1656. if (r > 0) {
  1657. /* Give scheduler a change to reschedule. */
  1658. if (signal_pending(current)) {
  1659. ++kvm_stat.signal_exits;
  1660. post_kvm_run_save(vcpu, kvm_run);
  1661. return -EINTR;
  1662. }
  1663. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1664. ++kvm_stat.request_irq_exits;
  1665. post_kvm_run_save(vcpu, kvm_run);
  1666. return -EINTR;
  1667. }
  1668. kvm_resched(vcpu);
  1669. goto again;
  1670. }
  1671. }
  1672. post_kvm_run_save(vcpu, kvm_run);
  1673. return r;
  1674. }
  1675. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1676. {
  1677. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1678. }
  1679. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1680. unsigned long addr,
  1681. u32 err_code)
  1682. {
  1683. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1684. ++kvm_stat.pf_guest;
  1685. if (is_page_fault(vect_info)) {
  1686. printk(KERN_DEBUG "inject_page_fault: "
  1687. "double fault 0x%lx @ 0x%lx\n",
  1688. addr, vmcs_readl(GUEST_RIP));
  1689. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1690. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1691. DF_VECTOR |
  1692. INTR_TYPE_EXCEPTION |
  1693. INTR_INFO_DELIEVER_CODE_MASK |
  1694. INTR_INFO_VALID_MASK);
  1695. return;
  1696. }
  1697. vcpu->cr2 = addr;
  1698. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1699. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1700. PF_VECTOR |
  1701. INTR_TYPE_EXCEPTION |
  1702. INTR_INFO_DELIEVER_CODE_MASK |
  1703. INTR_INFO_VALID_MASK);
  1704. }
  1705. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1706. {
  1707. if (vcpu->vmcs) {
  1708. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1709. free_vmcs(vcpu->vmcs);
  1710. vcpu->vmcs = NULL;
  1711. }
  1712. }
  1713. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1714. {
  1715. vmx_free_vmcs(vcpu);
  1716. }
  1717. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1718. {
  1719. struct vmcs *vmcs;
  1720. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1721. if (!vcpu->guest_msrs)
  1722. return -ENOMEM;
  1723. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1724. if (!vcpu->host_msrs)
  1725. goto out_free_guest_msrs;
  1726. vmcs = alloc_vmcs();
  1727. if (!vmcs)
  1728. goto out_free_msrs;
  1729. vmcs_clear(vmcs);
  1730. vcpu->vmcs = vmcs;
  1731. vcpu->launched = 0;
  1732. return 0;
  1733. out_free_msrs:
  1734. kfree(vcpu->host_msrs);
  1735. vcpu->host_msrs = NULL;
  1736. out_free_guest_msrs:
  1737. kfree(vcpu->guest_msrs);
  1738. vcpu->guest_msrs = NULL;
  1739. return -ENOMEM;
  1740. }
  1741. static struct kvm_arch_ops vmx_arch_ops = {
  1742. .cpu_has_kvm_support = cpu_has_kvm_support,
  1743. .disabled_by_bios = vmx_disabled_by_bios,
  1744. .hardware_setup = hardware_setup,
  1745. .hardware_unsetup = hardware_unsetup,
  1746. .hardware_enable = hardware_enable,
  1747. .hardware_disable = hardware_disable,
  1748. .vcpu_create = vmx_create_vcpu,
  1749. .vcpu_free = vmx_free_vcpu,
  1750. .vcpu_load = vmx_vcpu_load,
  1751. .vcpu_put = vmx_vcpu_put,
  1752. .vcpu_decache = vmx_vcpu_decache,
  1753. .set_guest_debug = set_guest_debug,
  1754. .get_msr = vmx_get_msr,
  1755. .set_msr = vmx_set_msr,
  1756. .get_segment_base = vmx_get_segment_base,
  1757. .get_segment = vmx_get_segment,
  1758. .set_segment = vmx_set_segment,
  1759. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1760. .decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
  1761. .set_cr0 = vmx_set_cr0,
  1762. .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
  1763. .set_cr3 = vmx_set_cr3,
  1764. .set_cr4 = vmx_set_cr4,
  1765. #ifdef CONFIG_X86_64
  1766. .set_efer = vmx_set_efer,
  1767. #endif
  1768. .get_idt = vmx_get_idt,
  1769. .set_idt = vmx_set_idt,
  1770. .get_gdt = vmx_get_gdt,
  1771. .set_gdt = vmx_set_gdt,
  1772. .cache_regs = vcpu_load_rsp_rip,
  1773. .decache_regs = vcpu_put_rsp_rip,
  1774. .get_rflags = vmx_get_rflags,
  1775. .set_rflags = vmx_set_rflags,
  1776. .tlb_flush = vmx_flush_tlb,
  1777. .inject_page_fault = vmx_inject_page_fault,
  1778. .inject_gp = vmx_inject_gp,
  1779. .run = vmx_vcpu_run,
  1780. .skip_emulated_instruction = skip_emulated_instruction,
  1781. .vcpu_setup = vmx_vcpu_setup,
  1782. .patch_hypercall = vmx_patch_hypercall,
  1783. };
  1784. static int __init vmx_init(void)
  1785. {
  1786. return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1787. }
  1788. static void __exit vmx_exit(void)
  1789. {
  1790. kvm_exit_arch();
  1791. }
  1792. module_init(vmx_init)
  1793. module_exit(vmx_exit)