paging_tmpl.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. /*
  21. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  22. * so the code in this file is compiled twice, once per pte size.
  23. */
  24. #if PTTYPE == 64
  25. #define pt_element_t u64
  26. #define guest_walker guest_walker64
  27. #define FNAME(name) paging##64_##name
  28. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  29. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  30. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  31. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define FNAME(name) paging##32_##name
  44. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  45. #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  46. #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  47. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  48. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  49. #define PT_MAX_FULL_LEVELS 2
  50. #define CMPXCHG cmpxchg
  51. #else
  52. #error Invalid PTTYPE value
  53. #endif
  54. #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  55. #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  56. /*
  57. * The guest_walker structure emulates the behavior of the hardware page
  58. * table walker.
  59. */
  60. struct guest_walker {
  61. int level;
  62. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  63. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  64. pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  65. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  66. unsigned pt_access;
  67. unsigned pte_access;
  68. gfn_t gfn;
  69. struct x86_exception fault;
  70. };
  71. static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
  72. {
  73. return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
  74. }
  75. static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  76. pt_element_t __user *ptep_user, unsigned index,
  77. pt_element_t orig_pte, pt_element_t new_pte)
  78. {
  79. int npages;
  80. pt_element_t ret;
  81. pt_element_t *table;
  82. struct page *page;
  83. npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
  84. /* Check if the user is doing something meaningless. */
  85. if (unlikely(npages != 1))
  86. return -EFAULT;
  87. table = kmap_atomic(page);
  88. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  89. kunmap_atomic(table);
  90. kvm_release_page_dirty(page);
  91. return (ret != orig_pte);
  92. }
  93. static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
  94. {
  95. unsigned access;
  96. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  97. #if PTTYPE == 64
  98. if (vcpu->arch.mmu.nx)
  99. access &= ~(gpte >> PT64_NX_SHIFT);
  100. #endif
  101. return access;
  102. }
  103. static bool FNAME(is_last_gpte)(struct guest_walker *walker,
  104. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  105. pt_element_t gpte)
  106. {
  107. if (walker->level == PT_PAGE_TABLE_LEVEL)
  108. return true;
  109. if ((walker->level == PT_DIRECTORY_LEVEL) && is_large_pte(gpte) &&
  110. (PTTYPE == 64 || is_pse(vcpu)))
  111. return true;
  112. if ((walker->level == PT_PDPE_LEVEL) && is_large_pte(gpte) &&
  113. (mmu->root_level == PT64_ROOT_LEVEL))
  114. return true;
  115. return false;
  116. }
  117. /*
  118. * Fetch a guest pte for a guest virtual address
  119. */
  120. static int FNAME(walk_addr_generic)(struct guest_walker *walker,
  121. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  122. gva_t addr, u32 access)
  123. {
  124. pt_element_t pte;
  125. pt_element_t __user *uninitialized_var(ptep_user);
  126. gfn_t table_gfn;
  127. unsigned index, pt_access, uninitialized_var(pte_access);
  128. gpa_t pte_gpa;
  129. bool eperm, last_gpte;
  130. int offset;
  131. const int write_fault = access & PFERR_WRITE_MASK;
  132. const int user_fault = access & PFERR_USER_MASK;
  133. const int fetch_fault = access & PFERR_FETCH_MASK;
  134. u16 errcode = 0;
  135. trace_kvm_mmu_pagetable_walk(addr, access);
  136. retry_walk:
  137. eperm = false;
  138. walker->level = mmu->root_level;
  139. pte = mmu->get_cr3(vcpu);
  140. #if PTTYPE == 64
  141. if (walker->level == PT32E_ROOT_LEVEL) {
  142. pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
  143. trace_kvm_mmu_paging_element(pte, walker->level);
  144. if (!is_present_gpte(pte))
  145. goto error;
  146. --walker->level;
  147. }
  148. #endif
  149. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  150. (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
  151. pt_access = ACC_ALL;
  152. for (;;) {
  153. gfn_t real_gfn;
  154. unsigned long host_addr;
  155. index = PT_INDEX(addr, walker->level);
  156. table_gfn = gpte_to_gfn(pte);
  157. offset = index * sizeof(pt_element_t);
  158. pte_gpa = gfn_to_gpa(table_gfn) + offset;
  159. walker->table_gfn[walker->level - 1] = table_gfn;
  160. walker->pte_gpa[walker->level - 1] = pte_gpa;
  161. real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
  162. PFERR_USER_MASK|PFERR_WRITE_MASK);
  163. if (unlikely(real_gfn == UNMAPPED_GVA))
  164. goto error;
  165. real_gfn = gpa_to_gfn(real_gfn);
  166. host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
  167. if (unlikely(kvm_is_error_hva(host_addr)))
  168. goto error;
  169. ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
  170. if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
  171. goto error;
  172. trace_kvm_mmu_paging_element(pte, walker->level);
  173. if (unlikely(!is_present_gpte(pte)))
  174. goto error;
  175. if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
  176. walker->level))) {
  177. errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
  178. goto error;
  179. }
  180. if (!check_write_user_access(vcpu, write_fault, user_fault,
  181. pte))
  182. eperm = true;
  183. #if PTTYPE == 64
  184. if (unlikely(fetch_fault && (pte & PT64_NX_MASK)))
  185. eperm = true;
  186. #endif
  187. last_gpte = FNAME(is_last_gpte)(walker, vcpu, mmu, pte);
  188. if (last_gpte) {
  189. pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
  190. /* check if the kernel is fetching from user page */
  191. if (unlikely(pte_access & PT_USER_MASK) &&
  192. kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  193. if (fetch_fault && !user_fault)
  194. eperm = true;
  195. }
  196. if (!eperm && unlikely(!(pte & PT_ACCESSED_MASK))) {
  197. int ret;
  198. trace_kvm_mmu_set_accessed_bit(table_gfn, index,
  199. sizeof(pte));
  200. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
  201. pte, pte|PT_ACCESSED_MASK);
  202. if (unlikely(ret < 0))
  203. goto error;
  204. else if (ret)
  205. goto retry_walk;
  206. mark_page_dirty(vcpu->kvm, table_gfn);
  207. pte |= PT_ACCESSED_MASK;
  208. }
  209. walker->ptes[walker->level - 1] = pte;
  210. if (last_gpte) {
  211. int lvl = walker->level;
  212. gpa_t real_gpa;
  213. gfn_t gfn;
  214. u32 ac;
  215. gfn = gpte_to_gfn_lvl(pte, lvl);
  216. gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
  217. if (PTTYPE == 32 &&
  218. walker->level == PT_DIRECTORY_LEVEL &&
  219. is_cpuid_PSE36())
  220. gfn += pse36_gfn_delta(pte);
  221. ac = write_fault | fetch_fault | user_fault;
  222. real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
  223. ac);
  224. if (real_gpa == UNMAPPED_GVA)
  225. return 0;
  226. walker->gfn = real_gpa >> PAGE_SHIFT;
  227. break;
  228. }
  229. pt_access &= FNAME(gpte_access)(vcpu, pte);
  230. --walker->level;
  231. }
  232. if (unlikely(eperm)) {
  233. errcode |= PFERR_PRESENT_MASK;
  234. goto error;
  235. }
  236. if (!write_fault)
  237. protect_clean_gpte(&pte_access, pte);
  238. else if (unlikely(!is_dirty_gpte(pte))) {
  239. int ret;
  240. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  241. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
  242. pte, pte|PT_DIRTY_MASK);
  243. if (unlikely(ret < 0))
  244. goto error;
  245. else if (ret)
  246. goto retry_walk;
  247. mark_page_dirty(vcpu->kvm, table_gfn);
  248. pte |= PT_DIRTY_MASK;
  249. walker->ptes[walker->level - 1] = pte;
  250. }
  251. walker->pt_access = pt_access;
  252. walker->pte_access = pte_access;
  253. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  254. __func__, (u64)pte, pte_access, pt_access);
  255. return 1;
  256. error:
  257. errcode |= write_fault | user_fault;
  258. if (fetch_fault && (mmu->nx ||
  259. kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
  260. errcode |= PFERR_FETCH_MASK;
  261. walker->fault.vector = PF_VECTOR;
  262. walker->fault.error_code_valid = true;
  263. walker->fault.error_code = errcode;
  264. walker->fault.address = addr;
  265. walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
  266. trace_kvm_mmu_walker_error(walker->fault.error_code);
  267. return 0;
  268. }
  269. static int FNAME(walk_addr)(struct guest_walker *walker,
  270. struct kvm_vcpu *vcpu, gva_t addr, u32 access)
  271. {
  272. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
  273. access);
  274. }
  275. static int FNAME(walk_addr_nested)(struct guest_walker *walker,
  276. struct kvm_vcpu *vcpu, gva_t addr,
  277. u32 access)
  278. {
  279. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
  280. addr, access);
  281. }
  282. static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
  283. struct kvm_mmu_page *sp, u64 *spte,
  284. pt_element_t gpte)
  285. {
  286. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  287. goto no_present;
  288. if (!is_present_gpte(gpte))
  289. goto no_present;
  290. if (!(gpte & PT_ACCESSED_MASK))
  291. goto no_present;
  292. return false;
  293. no_present:
  294. drop_spte(vcpu->kvm, spte);
  295. return true;
  296. }
  297. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  298. u64 *spte, const void *pte)
  299. {
  300. pt_element_t gpte;
  301. unsigned pte_access;
  302. pfn_t pfn;
  303. gpte = *(const pt_element_t *)pte;
  304. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  305. return;
  306. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  307. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  308. protect_clean_gpte(&pte_access, gpte);
  309. pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
  310. if (mmu_invalid_pfn(pfn))
  311. return;
  312. /*
  313. * we call mmu_set_spte() with host_writable = true because that
  314. * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
  315. */
  316. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  317. NULL, PT_PAGE_TABLE_LEVEL,
  318. gpte_to_gfn(gpte), pfn, true, true);
  319. }
  320. static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
  321. struct guest_walker *gw, int level)
  322. {
  323. pt_element_t curr_pte;
  324. gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
  325. u64 mask;
  326. int r, index;
  327. if (level == PT_PAGE_TABLE_LEVEL) {
  328. mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
  329. base_gpa = pte_gpa & ~mask;
  330. index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
  331. r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
  332. gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
  333. curr_pte = gw->prefetch_ptes[index];
  334. } else
  335. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
  336. &curr_pte, sizeof(curr_pte));
  337. return r || curr_pte != gw->ptes[level - 1];
  338. }
  339. static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
  340. u64 *sptep)
  341. {
  342. struct kvm_mmu_page *sp;
  343. pt_element_t *gptep = gw->prefetch_ptes;
  344. u64 *spte;
  345. int i;
  346. sp = page_header(__pa(sptep));
  347. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  348. return;
  349. if (sp->role.direct)
  350. return __direct_pte_prefetch(vcpu, sp, sptep);
  351. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  352. spte = sp->spt + i;
  353. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  354. pt_element_t gpte;
  355. unsigned pte_access;
  356. gfn_t gfn;
  357. pfn_t pfn;
  358. if (spte == sptep)
  359. continue;
  360. if (is_shadow_present_pte(*spte))
  361. continue;
  362. gpte = gptep[i];
  363. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  364. continue;
  365. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  366. protect_clean_gpte(&pte_access, gpte);
  367. gfn = gpte_to_gfn(gpte);
  368. pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
  369. pte_access & ACC_WRITE_MASK);
  370. if (mmu_invalid_pfn(pfn))
  371. break;
  372. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  373. NULL, PT_PAGE_TABLE_LEVEL, gfn,
  374. pfn, true, true);
  375. }
  376. }
  377. /*
  378. * Fetch a shadow pte for a specific level in the paging hierarchy.
  379. */
  380. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  381. struct guest_walker *gw,
  382. int user_fault, int write_fault, int hlevel,
  383. int *emulate, pfn_t pfn, bool map_writable,
  384. bool prefault)
  385. {
  386. unsigned access = gw->pt_access;
  387. struct kvm_mmu_page *sp = NULL;
  388. int top_level;
  389. unsigned direct_access;
  390. struct kvm_shadow_walk_iterator it;
  391. if (!is_present_gpte(gw->ptes[gw->level - 1]))
  392. return NULL;
  393. direct_access = gw->pte_access;
  394. top_level = vcpu->arch.mmu.root_level;
  395. if (top_level == PT32E_ROOT_LEVEL)
  396. top_level = PT32_ROOT_LEVEL;
  397. /*
  398. * Verify that the top-level gpte is still there. Since the page
  399. * is a root page, it is either write protected (and cannot be
  400. * changed from now on) or it is invalid (in which case, we don't
  401. * really care if it changes underneath us after this point).
  402. */
  403. if (FNAME(gpte_changed)(vcpu, gw, top_level))
  404. goto out_gpte_changed;
  405. for (shadow_walk_init(&it, vcpu, addr);
  406. shadow_walk_okay(&it) && it.level > gw->level;
  407. shadow_walk_next(&it)) {
  408. gfn_t table_gfn;
  409. clear_sp_write_flooding_count(it.sptep);
  410. drop_large_spte(vcpu, it.sptep);
  411. sp = NULL;
  412. if (!is_shadow_present_pte(*it.sptep)) {
  413. table_gfn = gw->table_gfn[it.level - 2];
  414. sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
  415. false, access, it.sptep);
  416. }
  417. /*
  418. * Verify that the gpte in the page we've just write
  419. * protected is still there.
  420. */
  421. if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
  422. goto out_gpte_changed;
  423. if (sp)
  424. link_shadow_page(it.sptep, sp);
  425. }
  426. for (;
  427. shadow_walk_okay(&it) && it.level > hlevel;
  428. shadow_walk_next(&it)) {
  429. gfn_t direct_gfn;
  430. clear_sp_write_flooding_count(it.sptep);
  431. validate_direct_spte(vcpu, it.sptep, direct_access);
  432. drop_large_spte(vcpu, it.sptep);
  433. if (is_shadow_present_pte(*it.sptep))
  434. continue;
  435. direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
  436. sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
  437. true, direct_access, it.sptep);
  438. link_shadow_page(it.sptep, sp);
  439. }
  440. clear_sp_write_flooding_count(it.sptep);
  441. mmu_set_spte(vcpu, it.sptep, access, gw->pte_access,
  442. user_fault, write_fault, emulate, it.level,
  443. gw->gfn, pfn, prefault, map_writable);
  444. FNAME(pte_prefetch)(vcpu, gw, it.sptep);
  445. return it.sptep;
  446. out_gpte_changed:
  447. if (sp)
  448. kvm_mmu_put_page(sp, it.sptep);
  449. kvm_release_pfn_clean(pfn);
  450. return NULL;
  451. }
  452. /*
  453. * Page fault handler. There are several causes for a page fault:
  454. * - there is no shadow pte for the guest pte
  455. * - write access through a shadow pte marked read only so that we can set
  456. * the dirty bit
  457. * - write access to a shadow pte marked read only so we can update the page
  458. * dirty bitmap, when userspace requests it
  459. * - mmio access; in this case we will never install a present shadow pte
  460. * - normal guest page fault due to the guest pte marked not present, not
  461. * writable, or not executable
  462. *
  463. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  464. * a negative value on error.
  465. */
  466. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
  467. bool prefault)
  468. {
  469. int write_fault = error_code & PFERR_WRITE_MASK;
  470. int user_fault = error_code & PFERR_USER_MASK;
  471. struct guest_walker walker;
  472. u64 *sptep;
  473. int emulate = 0;
  474. int r;
  475. pfn_t pfn;
  476. int level = PT_PAGE_TABLE_LEVEL;
  477. int force_pt_level;
  478. unsigned long mmu_seq;
  479. bool map_writable;
  480. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  481. if (unlikely(error_code & PFERR_RSVD_MASK))
  482. return handle_mmio_page_fault(vcpu, addr, error_code,
  483. mmu_is_nested(vcpu));
  484. r = mmu_topup_memory_caches(vcpu);
  485. if (r)
  486. return r;
  487. /*
  488. * Look up the guest pte for the faulting address.
  489. */
  490. r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
  491. /*
  492. * The page is not mapped by the guest. Let the guest handle it.
  493. */
  494. if (!r) {
  495. pgprintk("%s: guest page fault\n", __func__);
  496. if (!prefault)
  497. inject_page_fault(vcpu, &walker.fault);
  498. return 0;
  499. }
  500. if (walker.level >= PT_DIRECTORY_LEVEL)
  501. force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
  502. else
  503. force_pt_level = 1;
  504. if (!force_pt_level) {
  505. level = min(walker.level, mapping_level(vcpu, walker.gfn));
  506. walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
  507. }
  508. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  509. smp_rmb();
  510. if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
  511. &map_writable))
  512. return 0;
  513. if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
  514. walker.gfn, pfn, walker.pte_access, &r))
  515. return r;
  516. spin_lock(&vcpu->kvm->mmu_lock);
  517. if (mmu_notifier_retry(vcpu, mmu_seq))
  518. goto out_unlock;
  519. kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
  520. kvm_mmu_free_some_pages(vcpu);
  521. if (!force_pt_level)
  522. transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
  523. sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  524. level, &emulate, pfn, map_writable, prefault);
  525. (void)sptep;
  526. pgprintk("%s: shadow pte %p %llx emulate %d\n", __func__,
  527. sptep, *sptep, emulate);
  528. ++vcpu->stat.pf_fixed;
  529. kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
  530. spin_unlock(&vcpu->kvm->mmu_lock);
  531. return emulate;
  532. out_unlock:
  533. spin_unlock(&vcpu->kvm->mmu_lock);
  534. kvm_release_pfn_clean(pfn);
  535. return 0;
  536. }
  537. static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
  538. {
  539. int offset = 0;
  540. WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
  541. if (PTTYPE == 32)
  542. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  543. return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
  544. }
  545. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  546. {
  547. struct kvm_shadow_walk_iterator iterator;
  548. struct kvm_mmu_page *sp;
  549. int level;
  550. u64 *sptep;
  551. vcpu_clear_mmio_info(vcpu, gva);
  552. /*
  553. * No need to check return value here, rmap_can_add() can
  554. * help us to skip pte prefetch later.
  555. */
  556. mmu_topup_memory_caches(vcpu);
  557. spin_lock(&vcpu->kvm->mmu_lock);
  558. for_each_shadow_entry(vcpu, gva, iterator) {
  559. level = iterator.level;
  560. sptep = iterator.sptep;
  561. sp = page_header(__pa(sptep));
  562. if (is_last_spte(*sptep, level)) {
  563. pt_element_t gpte;
  564. gpa_t pte_gpa;
  565. if (!sp->unsync)
  566. break;
  567. pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  568. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  569. if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
  570. kvm_flush_remote_tlbs(vcpu->kvm);
  571. if (!rmap_can_add(vcpu))
  572. break;
  573. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  574. sizeof(pt_element_t)))
  575. break;
  576. FNAME(update_pte)(vcpu, sp, sptep, &gpte);
  577. }
  578. if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
  579. break;
  580. }
  581. spin_unlock(&vcpu->kvm->mmu_lock);
  582. }
  583. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
  584. struct x86_exception *exception)
  585. {
  586. struct guest_walker walker;
  587. gpa_t gpa = UNMAPPED_GVA;
  588. int r;
  589. r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
  590. if (r) {
  591. gpa = gfn_to_gpa(walker.gfn);
  592. gpa |= vaddr & ~PAGE_MASK;
  593. } else if (exception)
  594. *exception = walker.fault;
  595. return gpa;
  596. }
  597. static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
  598. u32 access,
  599. struct x86_exception *exception)
  600. {
  601. struct guest_walker walker;
  602. gpa_t gpa = UNMAPPED_GVA;
  603. int r;
  604. r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
  605. if (r) {
  606. gpa = gfn_to_gpa(walker.gfn);
  607. gpa |= vaddr & ~PAGE_MASK;
  608. } else if (exception)
  609. *exception = walker.fault;
  610. return gpa;
  611. }
  612. /*
  613. * Using the cached information from sp->gfns is safe because:
  614. * - The spte has a reference to the struct page, so the pfn for a given gfn
  615. * can't change unless all sptes pointing to it are nuked first.
  616. *
  617. * Note:
  618. * We should flush all tlbs if spte is dropped even though guest is
  619. * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
  620. * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
  621. * used by guest then tlbs are not flushed, so guest is allowed to access the
  622. * freed pages.
  623. * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
  624. */
  625. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  626. {
  627. int i, nr_present = 0;
  628. bool host_writable;
  629. gpa_t first_pte_gpa;
  630. /* direct kvm_mmu_page can not be unsync. */
  631. BUG_ON(sp->role.direct);
  632. first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  633. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  634. unsigned pte_access;
  635. pt_element_t gpte;
  636. gpa_t pte_gpa;
  637. gfn_t gfn;
  638. if (!sp->spt[i])
  639. continue;
  640. pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
  641. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  642. sizeof(pt_element_t)))
  643. return -EINVAL;
  644. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
  645. vcpu->kvm->tlbs_dirty++;
  646. continue;
  647. }
  648. gfn = gpte_to_gfn(gpte);
  649. pte_access = sp->role.access;
  650. pte_access &= FNAME(gpte_access)(vcpu, gpte);
  651. protect_clean_gpte(&pte_access, gpte);
  652. if (sync_mmio_spte(&sp->spt[i], gfn, pte_access, &nr_present))
  653. continue;
  654. if (gfn != sp->gfns[i]) {
  655. drop_spte(vcpu->kvm, &sp->spt[i]);
  656. vcpu->kvm->tlbs_dirty++;
  657. continue;
  658. }
  659. nr_present++;
  660. host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
  661. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  662. PT_PAGE_TABLE_LEVEL, gfn,
  663. spte_to_pfn(sp->spt[i]), true, false,
  664. host_writable);
  665. }
  666. return !nr_present;
  667. }
  668. #undef pt_element_t
  669. #undef guest_walker
  670. #undef FNAME
  671. #undef PT_BASE_ADDR_MASK
  672. #undef PT_INDEX
  673. #undef PT_LVL_ADDR_MASK
  674. #undef PT_LVL_OFFSET_MASK
  675. #undef PT_LEVEL_BITS
  676. #undef PT_MAX_FULL_LEVELS
  677. #undef gpte_to_gfn
  678. #undef gpte_to_gfn_lvl
  679. #undef CMPXCHG